
An Ontological Framework for Dynamic Coordination

Valentina Tamma1, Chris van Aart2, Thierry Moyaux1,
Shamimabi Paurobally1, Ben Lithgow-Smith1, and Michael Wooldridge1

1Dept of Computer Science 2Acklin BV
University of Liverpool Taxandriaweg 12b
Liverpool L69 7ZF, UK 5142 PA Waalwijk, The Netherlands

Abstract. Coordination is the process of managing the possible interactions be-
tween activities and processes; a mechanism to handle such interactions is known
as a coordination regime. A successful coordination regimewill prevent negative
interactions occurring (e.g., by preventing two processesfrom simultaneously ac-
cessing a non-shareable resource), and wherever possible will facilitate positive
interactions (e.g., by ensuring that activities are not needlessly duplicated). We
start from the premise that effective coordination mechanisms require the shar-
ing of knowledge about activities, resources and their properties, and hence, that
in a heterogeneous environment, an ontological approach tocoordination is ap-
propriate. After surveying recent work on dynamic coordination, we describe an
ontology for coordination that we have developed with the goal of coordinating
semantic web processes. We then present a implementation ofour ideas, which
serves as a proof of concept for how this ontology can be used for dynamic co-
ordination. We conclude with a summary of the presented work, illustrate its
relation to the Semantic Web, and provide insights into future extensions.

1 Introduction

Coordinationis one of the fundamental problems in systems composed of multiple in-
teracting processes. Such processes will need to coordinate their activities if ever there
is a possibility that these activities may interact with one-another. As an example, imag-
ine two processes making use of a non-shareable resource. Ifboth processes attempt to
use the resource simultaneously, we will naturally have problems - a lost update at best,
perhaps damage to the resource at worst. The processes thus need tocoordinatetheir
activities, to make use of the non-shareable resource. Although such a scenario repre-
sents the best-known type of possible coordination interaction, there are many other less
obvious ways in which coordination may be mutually beneficial. For example, imagine
two e-science processes carrying out some computational task, where both processes
require the results of some intermediate computation; then, it makes sense for them to
adopt a policy of pro-actively exchanging information thatmay be of use to other pro-
cesses. Here, coordination is notrequiredfor the agents to be successful in their tasks,
but there is a global benefit to be gained by adopting this rule.

Coordination in the limited sense of synchronisation (preventing scenarios such
as simultaneous access to a non-shareable resource) has long been a central topic of
research in the concurrency community [1]. However, the pre-dominant approach to



handling coordination has been tohard-wire the coordination mechanism into the sys-
tem structure (for example by means of semaphores, monitors, or locks). In more open
systems, where the processes and resources of which the system is comprised are not
known at design time, such an approach is often impossible. In such systems, it may be
desirable to allow the relevant processes to communicate their intentions with respect
to future activities and resource utilisation, and get themto reasonabout coordination
at run time, with the goal of preventing negative interactions, and facilitating positive
interactions. This is adynamicapproach to coordination, since the coordination re-
quirement is handled atrun-time, rather than design time. Note that the communication
implied by this approach requires an agreed common vocabulary for coordination, with
a precise semantics, and hence we have an ontological approach to dynamic coordina-
tion, in short.

Our goal in this paper is to describe such an ontological approach to coordination,
and present our results with respect to a proof-of-concept implementation of the ap-
proach. We begin in the following section with a brief surveyof previous work on
coordination, which has been carried out largely within themulti-agent systems com-
munity. In section 3, we give an informal overview of our coordination ontology; the
key concepts, their attributes, and their relationships. In section 4, we present a proof-of-
concept implementation of the ontological approach to coordination, in which multiple
processes detect coordination relationships using a Jess/Protégé implementation of the
ontology. We conclude with some conclusions and pointers tofurther work.

2 Background

Coordination is perhaps the defining problem in cooperativeworking. Since much work
on coordination (and in particular, the precursors to our own work) arises from the
multi-agent systems community [2], we will adopt the convention of referring to the
processes which need to coordinate as “agents”. The coordination problem is that of
managing relationships between the activities of agents[3]. Coordination is essential
if the activities that agents engage in caninteract in any way. Consider the following
examples.

– You and I both want to leave the room, and so we independently walk towards
the door, which can only fit one of us. I graciously permit you to leave first.In this
example, our activities need to be coordinated because there is a resource (the door)
which we both wish to use, but which can only be used by one person at a time.

– I intend to submit a grant proposal, but in order to do this, I need your signature.
In this case, my activity of sending a grant proposal dependsupon your activity
of signing it off – I cannot carry out my activity until yours is completed. In other
words, my activitydependsupon yours.

– I obtain a soft copy of a paper from a Web page. I know that this report will be of
interest to you as well. Knowing this, I pro-actively photocopy the report, and give
you a copy.In this case, our activities do not strictly need to be coordinated – since
the report is freely available on a Web page, you could download and print your
own copy. But, by pro-actively printing a copy, I save you time.



Notice that coordination, defined in this way, subsumes the well-known (and widely
studied) concept ofsynchronisation[1]. Synchronisation is generally concerned with
the rather restricted case of ensuring that processes do notdestructively interact with
one another. While solving this problem certainly requirescoordination, the concept of
coordination is actually much broader than this. Standard solutions to synchronisation
problems involvehard-wiringcoordination regimes into program code. Thus, for exam-
ple, aJAVA method may be flagged assynchronized by a programmer, indicating
that a certain access regime is enforced whenever this method is invoked. However, in
large-scale, dynamic, open systems, of the kind we are concerned within this project,
such hard-wired regimes are too limiting. We ideally want computational processes to
be able toreason aboutthe coordination issues in their system, and resolve these issues
autonomously.

In order to build agents for semantic web applications that can reason about coordi-
nation issues dynamically, we must first identify the possible interaction relationships
that may exist in these applications. Hence, the goal, here,is to derive and formally
define the possible interaction relationships that may exist between activities. There is
some prior work on this topic — von Martial [4] puts forward a high-level typology for
coordination relationships. He suggested that, broadly, relationships between activities
could be eitherpositiveor negative. Positive relationships “are all those relationships
between two plans from which some benefit can be derived, for one or both of the
agents plans, by combining them” [5, p. 111]. Such relationships may berequested(I
explicitly ask you for help with my activities) ornon-requested(it so happens that by
working together we can achieve a solution that is better forat least one of us, without
making the other any worse off). Von Martial distinguishes three types of non-requested
relationships:

The action equality relationship: We both plan to perform an identical action, and by
recognizing this, one of us can perform the action alone, andso, save the other
effort.

The consequence relationship:The actions in my plan have the side-effect of achieving
one of your goals, relieving thus you of the need to explicitly achieve it.

The favour relationship:Some part of my plan has the side effect of contributing to the
achievement of one of your goals, perhaps by making it easier(e.g., by achieving a
precondition of one of the actions in it).

Another major body of work on this issue is that onPartial Global Planning[6]. The
basic idea of partial global planning is that agents developand exchange plans of local
activity in order to identify possible interactions (positive or negative). The ideas were
refined in Decker’s subsequent work onGeneralised Partial Global Planning(GPGP)
in the TÆMS testbed [7]. GPGP makes use of five techniques for coordinating activi-
ties:

– Updating non-local viewpoints: Agents have only local views of activities, and so,
sharing information can help them achieve broader views. Inhis TÆMS system,
Decker uses three variations of this policy: communicate nolocal information, com-
municate all information, or an intermediate level.



– Communicate results: Agents may communicate results in three different ways.
A minimal approach is where agents only communicate resultsthat are essential to
satisfy obligations. Another approach involves sending all results. A third is to send
results to those with an interest in them.

– Handling simple redundancy: Redundancy occurs when efforts are duplicated. This
may be deliberate – an agent may get more than one agent to workon a task because
it wants to ensure the task gets done. However, in general, redundancies indicate
wasted resources, and are therefore to be avoided. The solution adopted in GPGP
is as follows. When redundancy is detected, in the form of multiple agents working
on identical tasks, one agent is selected at random to carry out the task. The results
are then broadcast to other interested agents.

– Handling hard coordination relationships: “Hard” coordination relationships are
essentially the “negative” relationships of von Martial. Hard coordination relation-
ships are thus those that threaten to prevent activities being successfully completed.
Thus a hard relationship occurs when there is a danger of the agents’ actions de-
structively interfering with one another, or preventing each others actions being
carried out. When such relationships are encountered, the activities of agents are
rescheduled to resolve the problem.

– Handling soft coordination relationships: “Soft” coordination relationships include
the “positive” relationships of von Martial. Thus, these relationships include those
that are not “mission critical”, but which may improve overall performance. When
these are encountered, then rescheduling takes place, but with a high degree of “ne-
gotiability”: if rescheduling is not found possible, then the system does not worry
about it too much.

Based on all this body of work, we have designed an ontology for coordination,
which is presented in the next section. Although ontologiesfor service based comput-
ing have been developed, such as OWL-S [8] and WSMO [9], they mainly focus on
describing the services and their orchestration/composition. We argue that our ontology
is complementary to existing efforts. Coordination is indeed an important aspect of ser-
vice based computing, however it addresses the way in whichindependent, and possibly
conflicting agents choreograph with others. While in efforts like OWL-S and WSMO
the interaction and composition of processes are modelled as a workflow that is deter-
mineda priory and that is executed by a workflow execution component, in agent-based
coordination, the choreography is determined by the exchange of messages among the
agents that need to interact (protocol). However, OWL-S first order logic representation
of process theory based on PSL [18] could be integrated in ourontology, in a future
implementation.

3 An Ontology for Coordination

As described above, we define an ontology for coordination. The basic idea is to enable
agents to reason about the relationships of their activities to the activities of other agents.
So, the fundamental purpose of the ontology is to answer the following questions:

– what is acoordinable activity?



– whatcoordination relationshipssuch activities have to one another?

In the sub-sections that follow, we give an overview of the ontology: the key concepts,
the slots associated with these concepts, the relationships between these concepts, and
axioms. In the interests of comprehensibility, we do not present all the components of
the ontology. Also note that our presentation is informal: we aim to give an overview
of the ontology, rather than present all the low-level technical details. The “definitive”
version of the ontology is maintained using Protégé [10] and is illustrated in in Figure 1.

Fig. 1. The Protégé version of the coordination ontology

3.1 Agents

Our starting concept isAgent. The idea is, obviously enough, that this concept relates to
the agents in the system, i.e., the things that do the actionsin the system needing to be
coordinated. For the purposes of the coordination ontology, agents have just one slot:
id, which is a string representation of the unique identifier for the agent (e.g., a URI).

3.2 Processes and Activities

Our next concept isProcess. A process is an activity that changes the state of the envi-
ronment in some way. It may be terminating or non-terminating, and be carried out by
a human or other agent, or be a natural (physical) process.



The process concept has two sub-classes: the most importantof which is that of a
CoordinableActivity. A coordinable activity is a process that can be managed in such a
way as to be coordinated with other coordinable activities.For example, executing the
process of invoking a web service would be a coordinable activity, in the sense that the
invocation of such a service can be managed so as to coordinate with other invocations.
For example, suppose we have two agents, both of which want toinvoke the same
web service, with different parameters. Then, in general, the agents could manage their
invocations so as not to interfere with one another.

Not all processes of interest to a system are coordinable – hence we have theNonCo-
ordinableActivityconcept. We intend this concept to capture all those processes whose
coordination is not possible by the agents within the systemto which a particular knowl-
edge base refers. This will include at least the following two types of process (although
we do not represent these as concepts):

– Natural events: These are physical processes that will take place irrespective of
what any agent in the system does. An extreme example would bethe decay of
an atom, caused by essentially random quantum events. Clearly, such processes
cannot be coordinated with other processes: they will take place (or not take place)
irrespective of what the agents in the system do.

– External processes: These are processes – either physical world processes or nat-
ural processes – which are simply outside the control of the system, in that they
cannot be managed by the agents in the system. Notice that such processes may be
coordinated by entitiesoutsidethe system: the point is, that for the purposes of the
system to which the knowledge base refers, they cannot be coordinated.

Another way of thinking about the distinction between a coordinable and a non-coordinable
activity is that there is always an agent (i.e., a software agent within the system) asso-
ciated with a coordinable activity, whereas there is no suchagent associated with a
non-coordinable activity.

We think of particularCoordinableActivityas being arranged into an and/or tree
hierarchy of activities, withAtomicActivitys as leaves of the tree. Thus aCoordinable-
Activity is composedOfpossibly many otherActivitys, and may be:

– a ConjunctiveActivity: in this case, it is composed of a number of other activities,
which mustall be successfully completed in order for the overall activityto be
completed;

– DisjunctiveActivity: it is composed of a number of other activities, of whichat
least onemust be successfully completed in order for the overall activity to be
completed; or

– AtomicActivity– in which case the activity is composed ofno further activities.
(The set ofCoordinableActivitys of which this activity is composed is empty.)

In future work, it may be interesting to compare these notions with those of the OWL-S
model of processes, and one possibility is to attempt to align them in some way [8]1.
We can further identify the following sub-classes ofAtomicActivity:

1 The point is that there may be some relation at this point to the process model in OWL-S,
so perhaps anAtomicActivityis a sub-class of an OWL-S process, and similarly for OWL-S
composite processes.



– ConcludedCoordinableActivity: an activity that has taken place in the past, and is
now fully concluded;

– ContinuingCoordinableActivity: this is an activity that is currently in progress;
– ScheduledCoordinableActivity: this is an activity that it is expectedwill take place,

in the sense that it is scheduled for execution by some agent2;
– SuspendedCoordinableActivity: this is an activity that whose status is undetermined.

Let us briefly consider slots and properties of our concepts.A CoordinableActivitywill
have the following slots:

– actor: an Agent, i.e., the agent that intends to carry out, or has carried outthis
activity;

– earliest start date: either a date ornull, with a date indicating the earliest date at
which the activity may begin;null indicates that this information is not known;

– latest start date: either a date ornull, with a date indicating the latest date at
which the activity may begin;null indicates that this information is not known;

– expected duration: either a natural number, indicating the number of milliseconds
the activity is expected to take, ornull indicates an unknown duration;

– latest end date: either a date ornull, with a date indicating the latest date at which
the activity may end;null indicates that this information is not known;

– actual start date: either a date ornull, with a date indicating the date at which the
activity actually began;null indicates that this information is not known;

– actual end date: either a date ornull, with a date indicating the date at which the
activity actually ended;null indicates that this information is not known;

– final status: an enumeration type, eithersucceeded, failed, ornull.

There are a number of axioms that may be introduced at this point. With respect to
ConjunctiveandDisjunctiveActivitys, we have the following:

– a ConjunctiveActivityhas successfully terminated if all its components have suc-
cessfully terminated;

– a DisjunctiveActvityhas successfully terminated if at least one of its components
has successfully terminated.

With respect to the relationship between scheduled activities and their successful com-
pletion, we have the following:

– if an activity is scheduled, then it should have anull actual start date and actual
end date.

– if an activity is concluded, then the final status must be non-null;
– if an activity started before its earliest start date, then it hasfailed;
– if an activity started after its latest start date, then it hasfailed.

2 We do not worry about exactly what “scheduled for execution”means: we simply assume that
some agent is expected to carry out the activity, or that the activity appears in some agent’s
plan.



3.3 Resources

Next, we have theResourceconcept. The idea of this concept, as we discussed in the
introduction, is that a resource is something that may be required to expedite an activ-
ity. Thus, we have a one-to-many relationship betweenAtomicActivitys andResources.
Note that we regard this set as being fixed, for any given activity. TheResourceconcept
has the following slots:

– viable: a Boolean value, indicating whether the resource is still in a state to be
used; a value offalse here would indicate that the resource could not be used by
any activity (even if these activitiesRequireit). Another simple way to think about
viable is that it indicates whether a resource is “broken” or “working” or not.

– consumable: a Boolean value, which indicates whether the use of the resource will
reduce subsequent availability of the resource in some way;more precisely, whether
the repeated use of the resource in activities would make theresource non-viable.

– shareable: a Boolean value, indicating whether a resource may be used by more
than one agent at any given time.

– cloneable: a Boolean value, indicating whether or not the resource is cloneable
(= true), or unique and not-cloneable (=false). An example of a cloneable
resource would be a dataset or a digital document. An exampleof a unique resource
would be a physical artefact produced as the output of a particular experiment, or a
human being.

– owner: either anAgent(in which case this is the agent that owns the resource), or
null (in which case the semantics are that the resource may be usedby any agent
at no cost). If a resource is owned by an agent, and another agent wishes to use this
resource, then it may be necessary to enter into negotiationover the exploitation of
the resource.

3.4 Interdependencies Between Activities

We now turn to the interrelationships that exist between activities. Our first concept is
that of anInterdependency. The interdependency concept has the following slots:

– sourceand target: both slots areActivities, the idea being that these are the two
activities which are interdependent.

– isHard: a Boolean value, which indicates whether the relation is “soft” (= false)
or “hard” (=true), with the following semantics:
• a hard relation is one which will materially affect the success or otherwise of

the activities;
• a soft relation is one whichmayaffect the activities, positively or negatively,

but will not affect whether they are successful or not.

Sub-classes ofCoordinationRelationare:

– NegativeCoordination: an interaction which, if it occurs, will lead to a reductionin
the quality of the solution or the utility of the participants;



– PositiveCoordination: an interaction which, if it occurs, will lead to an increasein
the utility of the participants or the quality of the solution.

We have a further sub-class ofNegativeCoordination: FatalCoordinationis a hard coor-
dination relationship which, if it occurs, will inevitablylead to the failure of one or more
of the component activities. Note that instances ofFatalCoordinationrelationships are
alwayshard. As sub-classes ofFatalCoordination, we have:

– MutuallyExclude: an instance of this relationship will exist between twoAtomic-
Activitys iff:

1. they bothRequiresome resourcer,
2. the actual or scheduled usage ofr by both activities overlaps;
3. r is non-shareable.

The idea is thus that these two activities will be mutually exclusive, in the sense that
they cannot possibly both succeed, as they require access toa resource that cannot
be shared.

– ResourceContention: an instance of this relationship will exist between twoAtomic-
Activitys iff:
1. they bothRequiresome resourcer;
2. resourcer is consumable.

The idea here is thus that one of the activities (the earlier one) could prevent the suc-
cessful completion of the other activity, by depleting it orrendering it unviable. We
do not require thatResourceContentionrelationships arehard,although, of course,
they could be.

– Disables: one activity will disable another if the occurrence of it will definitively
prevent the occurrence of the other.

Sub-classes ofPositiveCoordinationare:

– ConditionallyFeeds: in such a coordination, the occurrence of activityA1 will sub-
sequently make possible the occurrence of activityA2, but it is nevertheless possible
thatA2 could occur (i.e., the occurrence ofA1 is a sufficient but not necessary event
for the occurrence ofA2);

– Enables: the occurrence of activityA1 is both necessary and sufficient for the oc-
currence ofA2;

– IsSubsumedBy: activity A1 is subsumed by activityA2 if A2 contains all the activi-
ties ofA1.;

– Subsumes: the inverse ofIsSubsumedBy;
– Favors: an activityA1 favors another activityA2 if its prior occurrence will subse-

quently improve the overall quality ofA2. We include this as a “catch all”. This is
a softrelationship.

3.5 Operational Relationships

In order toresolvea coordination relationship between two activities, we mayhave
to appeal to theoperational relationshipsthat exist between the agents that will carry



them out. Intuitively, operational relationships exist between agents that carry out activ-
ities, and by understanding these relationships, it can help to resolve the coordination
relationships. The main concept here isOperationalRelationship. This concept has two
slots, both of which areAgents: sourceandtarget. Sub-classes ofOperationalRelation-
ship include:

– LegalAuthority: this sub-class indicates thatsourcehas legal authority overtarget
(of course, this begs the question of what “legal authority”means in the context of
semantic web services and processes, but this is outside thescope of our current
work, and is left as a placeholder for the future);

– ContractualAuthority: this indicates thatsourcehas contractual authority overtarget
(i.e., that both agents “belong” to the same organisation, and that in the context of
this organisation,sourceshould take precedence overtarget);

– ProducerConsumer: this indicates thatsourceis theownerof a Resourcethat is to
be used bytarget;

– ConsumerProducer: the inverse ofProducerConsumer;
– Peer: two agents that work as peers, i.e., that neither has any authority over the

other. We have developed a prototype as a proof-of-concept for our ontology. The
current state of its development is now presented.

4 Implementation

We have implemented our prototype with the plug-in JessTab 1.1 [11] in Protégé 3.0.
JessTab is a plug-in integrating the inference engine Jess (in its version 6.1p7 [12] in
our case) with Protégé, so that Jess can carry out inferences on the knowledge base in
Protégé. More precisely, JessTab enables Jess to work with a Protégé knowledge base,
i.e., Jess can (i) access the ontology and the instances represented in Protégé, (ii) di-
rectly manipulate these ontology and instances, (iii) infer new facts deduced from these
ontology and instances, and (iv) perform all the other programming tasks permitted by
Jess, such as calculating or launching Java operations.

In our prototype, we use these capabilities of JessTab in thefollowing way. We
first design an ontology for our agents in OWL [13] using Prot´egé. For this proof of
concept we restrict our attention to few concepts and types of coordination and we
do not implement the whole ontology described in Section 3. In our implementation,
concepts in the ontology are translated into Jess facts, whilst the coordination strategy
is translated into a set of Jess rules. In our ontology , we create the classAgent, with
subclassesProvider, RequesterandRegistry, as well as the classes required by these
three types ofAgents, i.e.,RegistryMemory, Intentionand Resource, which are now
outlined.

A RegistryMemoryis related to an instance ofRegistryby the property “hasMem-
ory”. Every instance ofRegistryMemoryrepresents either aRequesterand one of its
Intentions, or aProviderand one of its capabities and associatedResources.

The second element,Intention, is related to instances ofAgentto describe one of
the activities planned by a particularAgent. Besides anAgent, anIntentionmay also be
linked to aRegistryMemoryto enable aRegistryto memorize anAgent’s Intention.



The third class isResource, which contains the name of a resource (we assume this
name is a unique identifier for this resource) and the flag “isShareable”.

After the creation of the classes of this ontology, we populate the ontology with in-
stances. In our example, we instantiate one resourceProvider, two resourceRequesters
and oneRegistry. These first two steps related to ontology building do not require
JessTab, but only Protégé. Finally, we add Jess rules to “animate” our instances. These
rules implement the choreography between the instanciatedAgents. These three stages
are detailed in the following subsections.

4.1 Classes in the ontology

As noted, we basically deal with three different classes, namely Provider, Requester
andRegistry. Each time aProvideror aRequesterregisters to aRegistry, thisRegistry
records the information sent by thisProvider/Requesterby creating aRegistryMem-
ory, which means that aRegistryMemoryis very similar to aProvider/Requesterand
thus to anAgent(of course, only from an ontological viewpoint, like everything in this
subsection!). To record aRegistryMemory, Registryhas an object property called “has-
Memory” listing instances ofRegistryMemoryused by thisRegistry. “hasMemory” is
the only property of interest in a semanticRegistry, even if aRegistryinherits all the
properties of anAgent, namely “hasName”, “hasCapabilities”, “hasGoals”, “hasInten-
tion” and “hasResource”.

It is worth noting the difference we make between “hasGoals”and “hasIntention”:
in a similar way to the BDI (Belief, Desire and Intention) architecture [14], an agent
desires to achieve its multiple goals, and as a result, this agent selects and adopts the
appropriate intention (which is a plan of actions in the BDI architecture). In our on-
tology, we translate this in the following way: anAgenthas a property “hasGoals”
pointing to several instances ofIntention, and one property “hasIntention” pointing to
one of these instances ofIntention. This latterIntention represents what current ac-
tion this Agentcurrently tries to achieve. Indeed, this is the main difference between
a RegistryMemoryand anAgent: only anAgenthas a property “hasIntention”, while
bothRegistryMemoryandAgenthave a property “hasGoals”. A semanticRegistryuses
the property “hasGoals” to register in one of itsRegistryMemorys what it knows about
an Agent’s planned activities. In other words, there is oneRegistryMemoryper Agent
(normally, thisAgentshould be aRequester), and as many properties “hasGoals” per
RegistryMemoryas theAgentcommunicates to theRegistry.

Finally, all Agents may have object properties “hasResource” of typeResource, and
“hasCapabilities” of typestring. As previously stated, there is oneRegistryMemoryper
Agent(this Agentshould now be aProvider), and as many properties “hasResource”
and “hasCapabilities” perRegistryMemoryas theAgentcommunicates to theRegistry.

A Resourcedescribes a resource, such as a CPU, a hard drive, a printer,. . . and
datatype properties “hasCapabilities” of type string, e.g., saving-information, calcu-
lating, printing, etc. In addition,RegistryMemoryhas two datatype properties “agent-
Name” and “agentRef” to respectively record the name (whichis the string anAgent
records in its datatype property “hasName”) and the addressof the agent.



4.2 An example of instances for our ontology

As a case study, we have implemented a system with four agents, in which “Requester 1”
and “Requester 2” look for the non-shareable resource called “Printer”, while “Provider
Printer” manages this resource. Requester 1 has “intention1”, which describes the fact
that this agent has scheduled to use Printer from the date 5 and for a duration of 10
time units. Figure 2 displays this Requester 1’s intention to use Printer, as well as Re-
quester 2’s.

Requester 2

Requester 1

time

intention24

intention23intention22intention21

intention1

}
0 5 10 15 20

Fig. 2. Gantt chart of Requester 1 and Requester 2’s schedules for Printer.

In this figure, we can also see that the property “hasGoals” ofRequester 2 points to
four intentions, namely intention21, 22, 23 and 24, and thatintention24 is at the same
time as intention21, 22 and 23. We assume that Agent2 has not seen this overlapping in
its own schedule, and the registry should thus detect this clash among Agent2’s goals.
The registry should also detect the clashes between Agent2’s goals and Agent1’s.

4.3 Orchestration implemented in the prototype

The Jess program roughly adopts the following four steps. By“roughly”, we mean that
these steps are interlaced in practice, while we are now presenting them sequentially:

– Step 1: The Protégé classes, instances and templates are translated into Jess. This
is performed by the JessTab command(mapclass :THING) that translates the
root node of the Jess ontology, as well as all its children up to the instances, into
Jess. Note that this command is an addition of JessTab to Jess.

– Step 2: Every agent sends (i.e., asserts) a registration message to every registry.
This message contains the description of this agent, one of its capabilities, one of
its goals and one of its resources. The agent sends several messages to register all
its capabilities, goals and resources, and can write “none”if it does not have one of
these features.

– Step 3: Every registry receives these messages and saves their content by creating
RegistryMemorys. OneRegistryMemoryis created for each registeringAgent, and
this RegistryMemoryis almost a copy ofAgentreconstructed from the registration
messages.
In practice, the JessTab commandsmake-instance andslot-set add in-
stances and slots in the Protégé base, and thenmapinstance converts this in-
formation into Jess, so as the consistency is maintained between Jess and Protégé
knowledge bases.



– Step 4: Every semanticRegistrydetects clashes between non-shareable resources.
Intention21, 22, 23 and 24 in Figure 2 represent the four possible types of clash with
intention1. For example, intention1/intention21 is a conflict in which the beginning
of the time interval represented in intention1 overlaps theend of intention21. This
conflict is characterized by the following conjunction: (i)the starting date requested
by Requester 1 is later (greater) than the starting date requested by Requester 2,
(ii) the starting date requested by Requester 1 is earlier (lower) than the ending
date requested by Requester 2, (iii) the ending date requested by Requester 1 is
later (greater) than the the ending date requested by Requester 2. Notice that (i)
and (ii) mean that Requester 1’s starting date is in the time interval requested by
Requester 2, while (ii) and (iii) mean that Requester 2’s ending date is in the time
interval requested by Requester 1.
A separate Jess rule is programmed to detect each of these four possible clashes.
We call *1* the rule detecting the conflict intention1/intention21, *2* for inten-
tion1/intention22, etc.

4.4 Results

The execution trace in JessTab is displayed in Figure 3, in which we can see seven
conflicts, each one beginning with the name of the rule that detected it followed by some
explanations. For example, the first conflict was detected bythe rule *2*, and is thus

Fig. 3. JessTab detects the conflicts in the schedule of the non-shareable resource.

of the type intention1/intention22, but this first conflict is not between Requester 1’s
intention1 and Requester 2’s intention22. In fact, this conflict is due to the fact that



Requester 2 wants to use Printer both over [1;6] and [0;20], and thus, the former time
interval is included in the latter while Printer is non-shareable.

Conversely to this, the second clash is between two different requesters. In other
words, inter-agent as well as intra-agent conflicts are detected. We have checked that it
is possible to add more instances of resources, providers, requesters and registries and
JessTab still detects the conflicts.

5 Conclusions

The effectiveness of the Semantic Web relies on enabling technologies that permit the
various components – ontologies, reasoning engines, and agents – to work harmo-
niously together. The interactions need to be managed according to a theory that is
understood and agreed upon by all the components (in the paper we loosely referred
to these components asagents). Coordination is the process of managing the possible
interactions between activities and processes. The premise of the work presented in this
paper is that effective coordination requires the sharing of knowledge about activities,
resources and their properties. Typically, this sharing isachieved statically, by hard-
coding at design time the coordination mechanism in the agents. However, in more
open systems, where the processes and resources of which thesystem is comprised are
not known at design time, such an approach is often impossible. A viable alternative in
this type of systems would be adynamicapproach, in which the coordination require-
ment is handled atrun-time, rather than design time. Such approach allows the relevant
processes to communicate their intentions with respect to future activities and resource
utilisation, and gets them to “reason” about coordination at run time, with the goal of
preventing negative interactions, and facilitating positive interactions. The communica-
tion implied by this solution requires an agreed common vocabulary for coordination,
with a precise semantics, that is, an ontological approach to dynamic coordination.

This paper describes such an ontological approach to coordination, and presents
our results with respect to a proof-of-concept implementation of the approach, in which
multiple processes detect coordination relationships using a Jess/Protégé implementa-
tion of the ontology. This prototype is only intended to showhow an inference engine
may be used to perform coordination tasks in Semantic Web Services. In fact, inference
engines have already been being used to check semantic consistency, e.g., Racer [15]
both checks semantic consistency and improves the organization of Protégé knowledge
bases.

This work is still at an embryonic stage, the results obtained by the proof-of-concept
implementation are very promising and encourage us to proceed towards the develop-
ment of a representation of coordination mechanisms using Semantic Web rule lan-
guages. One possible implementation strategy consists of representing the rules in SWRL
[16] and using a reasoner such as Vampire [17], to reason about the coordination rules.
This strategy raises a number of research issues, such as whether the choice of rules
will fail to provide a definitive answer due to the undecidability of SWRL. As an im-
provement on our prototype, we could:

– Make every agent register to only one registryinstead of every possible registry;



– Add other protocols: e.g, some methods of clash resolution, and the update ofReg-
istrys byAgents;

– Add message format: at the moment, we only handle a basic registration message;
– Looking for the maximum size of a semantic registry: how many resources, providers,

and requesters make the semantic registry too slow (in a dynamic environment, un-
like our prototype).

Acknowledgements

The work presented in this paper is partially funded by the FP6 EU project Ontogrid
(FP6-511513). The authors would like to thank Sean Bechoferand Terry Payne for their
insightful comments on this work.

References

1. Ben-Ari, M.: Principles of Concurrent and Distributed Programming. Prentice Hall (1990)
2. Wooldridge, M.: An Introduction to Multiagent Systems. John Wiley & Sons (2002)
3. Malone, T.W., Crowston, K.: The interdisciplinary studyof coordination. ACM Computing

surveys26 (1994) 87–119
4. von Martial, F.: Coordinating Plans of Autonomous Agents(LNAI Volume 610). Springer-

Verlag: Berlin, Germany (1992)
5. von Martial, F.: Interactions among autonomous planningagents. In Demazeau, Y., Müller,

J.P., eds.: Decentralized AI — Proceedings of the First European Workshop on Modelling
Autonomous Agents in a Multi-Agent World (MAAMAW-89), Elsevier Science Publishers
B.V.: Amsterdam, The Netherlands (1990) 105–120

6. Durfee, E.H.: Coordination of Distributed Problem Solvers. Kluwer Academic Publishers:
Dordrecht, The Netherlands (1988)

7. Decker, K., Lesser, V.: Designing a family of coordination algorithms. In: Proceedings of
the First International Conference on Multi-Agent Systems(ICMAS-95), San Francisco, CA
(1995) 73–80

8. OWL-S: OWL Semantic Web Services (2004):http://www.daml.org/services/.
9. WSMO: Web Service Modelling Ontology (2004):http://www.wsmo.org.

10. Stanford Medical Informatics: Protégé (2005)http://protege.stanford.edu/
(accessed 31 March 2005).

11. Eriksson, H.: JessTab (2005)http://www.ida.liu.se/∼her/JessTab/ (accessed
31 March 2005).

12. Friedman-Hill, E.: Jess (2005)http://herzberg.ca.sandia.gov/jess/
13. W.W.W. Consortium: Web site for the specification of OWL (2004)http://www.w3.

org/2004/OWL/.
14. Agent Oriented Software Group: Company web site (2004).
15. Haarslev, V., Möller, R.: Web site for the software Racer (2005) http://www.cs.

concordia.ca/Ehaarslev/racer/download.html
16. SWRL. (http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/)
17. Tsarkov, D., Riazanov, A., Bechofer, S., Horrocks, I.: Using Vampire to reason with OWL. In

McIlraith, S.A., Plexousakis, D., van Harmelen, F., eds.: Proc. of the 2004 International Se-
mantic Web Conference (ISWC 2004). Number 3298 in Lecture Notes in Computer Science,
Springer (2004) 471–485

18. PSL, process specification language. (http://www.mel.nist.gov/psl/)


