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Abstract. Coordination is the process of managing the possible ictiers be-
tween activities and processes; a mechanism to handlestechdtions is known
as a coordination regime. A successful coordination regiffigorevent negative
interactions occurring (e.g., by preventing two proce$ses simultaneously ac-
cessing a non-shareable resource), and wherever possiblacilitate positive
interactions (e.g., by ensuring that activities are nodfessly duplicated). We
start from the premise that effective coordination mecémasirequire the shar-
ing of knowledge about activities, resources and their @rtigs, and hence, that
in a heterogeneous environment, an ontological approachdmination is ap-
propriate. After surveying recent work on dynamic coortiorg we describe an
ontology for coordination that we have developed with thalgd coordinating
semantic web processes. We then present a implementatmur adeas, which
serves as a proof of concept for how this ontology can be usedyhamic co-
ordination. We conclude with a summary of the presented witlitkstrate its
relation to the Semantic Web, and provide insights intoriigxtensions.

1 Introduction

Coordinationis one of the fundamental problems in systems composed dipieuh-
teracting processes. Such processes will need to cooedmeit activities if ever there
is a possibility that these activities may interact with @mother. As an example, imag-
ine two processes making use of a non-shareable resoutghlprocesses attempt to
use the resource simultaneously, we will naturally havélermos - a lost update at best,
perhaps damage to the resource at worst. The processesetbdisacoordinatetheir
activities, to make use of the non-shareable resourceo@dth such a scenario repre-
sents the best-known type of possible coordination intemaghere are many other less
obvious ways in which coordination may be mutually benefi€iar example, imagine
two e-science processes carrying out some computaticsiglwdere both processes
require the results of some intermediate computation; themakes sense for them to
adopt a policy of pro-actively exchanging information thaty be of use to other pro-
cesses. Here, coordination is metuiredfor the agents to be successful in their tasks,
but there is a global benefit to be gained by adopting this rule

Coordination in the limited sense of synchronisation (preing scenarios such
as simultaneous access to a non-shareable resource) lgasden a central topic of
research in the concurrency community [1]. However, thedmminant approach to



handling coordination has beenhard-wirethe coordination mechanism into the sys-
tem structure (for example by means of semaphores, mopitolscks). In more open
systems, where the processes and resources of which tleensigsstomprised are not
known at design time, such an approach is often impossiblud¢h systems, it may be
desirable to allow the relevant processes to communicateititentions with respect
to future activities and resource utilisation, and get themeasonabout coordination

at run time, with the goal of preventing negative interatsioand facilitating positive
interactions. This is @ynamicapproach to coordination, since the coordination re-
quirement is handled atin-time rather than design time. Note that the communication
implied by this approach requires an agreed common vocagbigiacoordination, with

a precise semantics, and hence we have an ontological apypimdynamic coordina-
tion, in short.

Our goal in this paper is to describe such an ontological@gugr to coordination,
and present our results with respect to a proof-of-conaaptémentation of the ap-
proach. We begin in the following section with a brief sunayprevious work on
coordination, which has been carried out largely within tidti-agent systems com-
munity. In section 3, we give an informal overview of our cdioiation ontology; the
key concepts, their attributes, and their relationshipsekction 4, we present a proof-of-
concept implementation of the ontological approach to dimation, in which multiple
processes detect coordination relationships using aRtessgé implementation of the
ontology. We conclude with some conclusions and pointefsrtber work.

2 Background

Coordination is perhaps the defining problem in cooperatimking. Since much work
on coordination (and in particular, the precursors to oun avork) arises from the
multi-agent systems community [2], we will adopt the corti@m of referring to the
processes which need to coordinate as “agents”. The catialinproblem is that of
managing relationships between the activities of agg3itsCoordination is essential
if the activities that agents engage in dateractin any way. Consider the following
examples.

— You and | both want to leave the room, and so we independeatly towards
the door, which can only fit one of us. | graciously permit yoleave firstIn this
example, our activities need to be coordinated because itharesource (the door)
which we both wish to use, but which can only be used by oneopeata time.

— | intend to submit a grant proposal, but in order to do this,gea your signature.
In this case, my activity of sending a grant proposal depempas your activity
of signing it off — | cannot carry out my activity until yours tcompleted. In other
words, my activitydependsipon yours.

— | obtain a soft copy of a paper from a Web page. | know that thpert will be of
interest to you as well. Knowing this, | pro-actively phaipg the report, and give
you a copyln this case, our activities do not strictly need to be cowatbd — since
the report is freely available on a Web page, you could doadhland print your
own copy. But, by pro-actively printing a copy, | save youdim



Notice that coordination, defined in this way, subsumes tal-known (and widely
studied) concept a$ynchronisatiorf1]. Synchronisation is generally concerned with
the rather restricted case of ensuring that processes diestructively interact with
one another. While solving this problem certainly requaesrdination, the concept of
coordination is actually much broader than this. Standahatisns to synchronisation
problems involvénard-wiring coordination regimes into program code. Thus, for exam-
ple, asava method may be flagged aynchr oni zed by a programmer, indicating
that a certain access regime is enforced whenever this ohé&thiovoked. However, in
large-scale, dynamic, open systems, of the kind we are coedeavithin this project,
such hard-wired regimes are too limiting. We ideally wanhpaitational processes to
be able taeason abouthe coordination issues in their system, and resolve tlssses
autonomously

In order to build agents for semantic web applications thatreason about coordi-
nation issues dynamically, we must first identify the pdssibteraction relationships
that may exist in these applications. Hence, the goal, hiete, derive and formally
define the possible interaction relationships that mayt édsveen activities. There is
some prior work on this topic — von Martial [4] puts forward igh-level typology for
coordination relationships. He suggested that, broaélgtionships between activities
could be eithepositiveor negative Positive relationships “are all those relationships
between two plans from which some benefit can be derived, fierar both of the
agents plans, by combining them” [5, p. 111]. Such relatiggsmay beaequested|
explicitly ask you for help with my activities) anon-requestedit so happens that by
working together we can achieve a solution that is betteafdeast one of us, without
making the other any worse off). Von Martial distinguishe®e types of non-requested
relationships:

The action equality relationshipWe both plan to perform an identical action, and by
recognizing this, one of us can perform the action alone,smdave the other
effort.

The consequence relationshifhe actions in my plan have the side-effect of achieving
one of your goals, relieving thus you of the need to explictthieve it.

The favour relationshipSome part of my plan has the side effect of contributing to the
achievement of one of your goals, perhaps by making it eésigr, by achieving a
precondition of one of the actions in it).

Another major body of work on this issue is that Bartial Global Planning[6]. The
basic idea of partial global planning is that agents devalumbexchange plans of local
activity in order to identify possible interactions (pogtor negative). The ideas were
refined in Decker’s subsequent work Generalised Partial Global Plannin(GPGP)
in the TAEMS testbed [7]. GPGP makes use of five techniquesfandmating activi-
ties:

— Updating non-local viewpoint#gents have only local views of activities, and so,
sharing information can help them achieve broader view$isnT £MS system,
Decker uses three variations of this policy: communicateoal information, com-
municate all information, or an intermediate level.



— Communicate resultsAgents may communicate results in three different ways.
A minimal approach is where agents only communicate rethdisare essential to
satisfy obligations. Another approach involves sendihgeallts. A third is to send
results to those with an interest in them.

— Handling simple redundanciRedundancy occurs when efforts are duplicated. This
may be deliberate — an agent may get more than one agent towartask because
it wants to ensure the task gets done. However, in genedalndancies indicate
wasted resources, and are therefore to be avoided. Théosohdopted in GPGP
is as follows. When redundancy is detected, in the form otiplelagents working
on identical tasks, one agent is selected at random to catmye task. The results
are then broadcast to other interested agents.

— Handling hard coordination relationship§Hard” coordination relationships are
essentially the “negative” relationships of von Martiakrdd coordination relation-
ships are thus those that threaten to prevent activitiegjlsiccessfully completed.
Thus a hard relationship occurs when there is a danger ofgéets actions de-
structively interfering with one another, or preventingleathers actions being
carried out. When such relationships are encountered,diingti@s of agents are
rescheduled to resolve the problem.

— Handling soft coordination relationship$Soft” coordination relationships include
the “positive” relationships of von Martial. Thus, theséat®nships include those
that are not “mission critical”, but which may improve oviéperformance. When
these are encountered, then rescheduling takes placeitha kigh degree of “ne-
gotiability”: if rescheduling is not found possible, thdretsystem does not worry
about it too much.

Based on all this body of work, we have designed an ontologyxdordination,
which is presented in the next section. Although ontolofpeservice based comput-
ing have been developed, such as OWL-S [8] and WSMO [9], thaini;nfocus on
describing the services and their orchestration/comiposkiVe argue that our ontology
is complementary to existing efforts. Coordination is iad@n important aspect of ser-
vice based computing, however it addresses the way in whitldpendentand possibly
conflicting agents choreograph with others. While in efdite OWL-S and WSMO
the interaction and composition of processes are modedledveorkflow that is deter-
mineda priory and that is executed by a workflow execution component, intalgased
coordination, the choreography is determined by the exghaf messages among the
agents that need to interapt¢tocol). However, OWL-S first order logic representation
of process theory based on PSL [18] could be integrated irootalogy, in a future
implementation.

3 An Ontology for Coordination

As described above, we define an ontology for coordinatibe.dasic idea is to enable
agents to reason about the relationships of their actviti¢he activities of other agents.
So, the fundamental purpose of the ontology is to answerdlt@rfing questions:

— what is acoordinable activit®



— whatcoordination relationshipsuch activities have to one another?

In the sub-sections that follow, we give an overview of théotogy: the key concepts,
the slots associated with these concepts, the relationbleipveen these concepts, and
axioms. In the interests of comprehensibility, we do nospre all the components of
the ontology. Also note that our presentation is informad: am to give an overview
of the ontology, rather than present all the low-level techindetails. The “definitive”
version of the ontology is maintained using Protégé [1@] iz illustrated in in Figure 1.
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Fig. 1. The Protégé version of the coordination ontology

3.1 Agents

Our starting concept i8gent The idea is, obviously enough, that this concept relates to
the agents in the system, i.e., the things that do the adtiath& system needing to be
coordinated. For the purposes of the coordination ontglaggnts have just one slot:
id, which is a string representation of the unique identifiettfie agent (e.g., a URI).

3.2 Processes and Activities

Our next concept iProcessA process is an activity that changes the state of the envi-
ronment in some way. It may be terminating or non-termirggtamd be carried out by
a human or other agent, or be a natural (physical) process.



The process concept has two sub-classes: the most impoftahich is that of a
CoordinableActivity A coordinable activity is a process that can be manageddh au
way as to be coordinated with other coordinable activities.example, executing the
process of invoking a web service would be a coordinableifgtin the sense that the
invocation of such a service can be managed so as to cocdiithtother invocations.
For example, suppose we have two agents, both of which waimvtke the same
web service, with different parameters. Then, in genénalagents could manage their
invocations so as not to interfere with one another.

Not all processes of interest to a system are coordinablaeehge have thBlonCo-
ordinableActivityconcept. We intend this concept to capture all those preseskose
coordination is not possible by the agents within the systewhich a particular knowl-
edge base refers. This will include at least the following types of process (although
we do not represent these as concepts):

— Natural eventsThese are physical processes that will take place irr¢ispeaf
what any agent in the system does. An extreme example wouttebdecay of
an atom, caused by essentially random quantum events.\Clsach processes
cannot be coordinated with other processes: they will tédeep(or not take place)
irrespective of what the agents in the system do.

— External processed hese are processes — either physical world processed-or na
ural processes — which are simply outside the control of yiséem, in that they
cannot be managed by the agents in the system. Notice tHapsocesses may be
coordinated by entitiegutsidethe system: the point is, that for the purposes of the
system to which the knowledge base refers, they cannot heicated.

Another way of thinking about the distinction between a dimable and a non-coordinable
activity is that there is always an agent (i.e., a softwarenagithin the system) asso-
ciated with a coordinable activity, whereas there is no sagbnt associated with a
non-coordinable activity.

We think of particularCoordinableActivityas being arranged into an and/or tree
hierarchy of activities, wittAtomicActivity as leaves of the tree. Thu€aordinable-
Activity is composedOpossibly many othefctivitys, and may be:

— a ConjunctiveActivityin this case, it is composed of a number of other activities,
which mustall be successfully completed in order for the overall activitybe
completed,;

— DisjunctiveActivity it is composed of a humber of other activities, of whigh
least onemust be successfully completed in order for the overallvigtio be
completed; or

— AtomicActivity— in which case the activity is composed rd further activities.
(The set ofCoordinableActivitg of which this activity is composed is empty.)

In future work, it may be interesting to compare these natioith those of the OWL-S
model of processes, and one possibility is to attempt tonatigm in some way [8]
We can further identify the following sub-classesfgbmicActivity

! The point is that there may be some relation at this point éoptftocess model in OWL-S,
so perhaps aAtomicActivityis a sub-class of an OWL-S process, and similarly for OWL-S
composite processes.



— ConcludedCoordinableActivitan activity that has taken place in the past, and is
now fully concluded;

— ContinuingCoordinableActivitythis is an activity that is currently in progress;

— ScheduledCoordinableActivitihis is an activity that it is expecteddll take place,
in the sense that it is scheduled for execution by some &gent

— SuspendedCoordinableActivitlis is an activity that whose status is undetermined.

Let us briefly consider slots and properties of our conceéptSoordinableActivitywill
have the following slots:

— actor. an Agent i.e., the agent that intends to carry out, or has carriedttust
activity;

— earliest start dateeither a date onul | , with a date indicating the earliest date at
which the activity may begimul | indicates that this information is not known;

— latest start dateeither a date onul | , with a date indicating the latest date at
which the activity may begimul | indicates that this information is not known;

— expected duratioreither a natural number, indicating the number of milleedts
the activity is expected to take, oul | indicates an unknown duration;

— latest end dateeither a date onul | , with a date indicating the latest date at which
the activity may endnul | indicates that this information is not known;

— actual start dateeither a date onul | , with a date indicating the date at which the
activity actually begamul | indicates that this information is not known;

— actual end dateeither a date onul | , with a date indicating the date at which the
activity actually endedhul | indicates that this information is not known;

— final statusan enumeration type, eitheucceeded, f ai | ed, ornul | .

There are a number of axioms that may be introduced at thist.pdlith respect to
ConjunctiveandDisjunctiveActivitg, we have the following:

— a ConjunctiveActivityhas successfully terminated if all its components have suc-
cessfully terminated;

— a DisjunctiveActvityhas successfully terminated if at least one of its companent
has successfully terminated.

With respect to the relationship between scheduled aetvénd their successful com-
pletion, we have the following:

if an activity is scheduled, then it should haveal | actual start date and actual
end date.

if an activity is concluded, then the final status must be nahi ;

if an activity started before its earliest start date, thdrasf ai | ed;

if an activity started after its latest start date, then ghai | ed.

2 We do not worry about exactly what “scheduled for executim&ans: we simply assume that
some agent is expected to carry out the activity, or that thigity appears in some agent’s
plan.



3.3 Resources

Next, we have th&kesourceoncept. The idea of this concept, as we discussed in the
introduction, is that a resource is something that may baired to expedite an activ-

ity. Thus, we have a one-to-many relationship betw&emmicActivity andResourcs.
Note that we regard this set as being fixed, for any giveniagtivthe Resourceoncept

has the following slots:

— viable a Boolean value, indicating whether the resource is stildistate to be
used; a value dof al se here would indicate that the resource could not be used by
any activity (even if these activitid®equireit). Another simple way to think about
viableis that it indicates whether a resource is “broken” or “warKior not.

— consumablea Boolean value, which indicates whether the use of thauresowill
reduce subsequent availability of the resource in some maye precisely, whether
the repeated use of the resource in activities would makesg@uirce non-viable.

— shareable a Boolean value, indicating whether a resource may be ugeddve
than one agent at any given time.

— cloneable a Boolean value, indicating whether or not the resourcdaseable
(= true), or unigue and not-cloneable (=l se). An example of a cloneable
resource would be a dataset or a digital document. An exaofijple@nique resource
would be a physical artefact produced as the output of aquéaiti experiment, or a
human being.

— owner. either anAgent(in which case this is the agent that owns the resource), or
nul | (in which case the semantics are that the resource may béyset agent
at no cost). If a resource is owned by an agent, and anothat aighes to use this
resource, then it may be necessary to enter into negotiavi@nthe exploitation of
the resource.

3.4 Interdependencies Between Activities

We now turn to the interrelationships that exist betweeividiets. Our first concept is
that of aninterdependencyfhe interdependency concept has the following slots:

— sourceandtarget both slots aréActivities the idea being that these are the two
activities which are interdependent.
— isHard: a Boolean value, which indicates whether the relationddt”§= f al se)
or “hard” (=t r ue), with the following semantics:
e ahard relation is one which will materially affect the success treswise of
the activities;
e asoftrelation is one whichmayaffect the activities, positively or negatively,
but will not affect whether they are successful or not.

Sub-classes dfoordinationRelatiorare:

— NegativeCoordinatioran interaction which, if it occurs, will lead to a reduction
the quality of the solution or the utility of the participant



— PositiveCoordinationan interaction which, if it occurs, will lead to an increase
the utility of the participants or the quality of the solutio

We have a further sub-classégativeCoordinatiorFatalCoordinatioris a hard coor-
dination relationship which, if it occurs, will inevitablgad to the failure of one or more
of the component activities. Note that instance&athlCoordinationrelationships are
alwayshard. As sub-classes dfatalCoordination we have:

— MutuallyExclude an instance of this relationship will exist between thomic
Activitys iff:
1. they bothRequiresome resource,
2. the actual or scheduled usage &y both activities overlaps;
3. ris non-shareable.

The idea is thus that these two activities will be mutuallglesive, in the sense that
they cannot possibly both succeed, as they require accesesmurce that cannot
be shared.
— ResourceContentioan instance of this relationship will exist between tomic
Activitys iff:
1. they bothRequiresome resource
2. resource is consumable.
The idea here is thus that one of the activities (the earnfiej oould prevent the suc-
cessful completion of the other activity, by depleting itendering it unviable. We
do not require thaResourceContentiarlationships ardard,although, of course,
they could be.
— Disables one activity will disable another if the occurrence of itivdefinitively
prevent the occurrence of the other.

Sub-classes dPositiveCoordinatiorare:

— ConditionallyFeedsin such a coordination, the occurrence of activigywill sub-
sequently make possible the occurrence of acti¥tybut it is nevertheless possible
thatA; could occur (i.e., the occurrenceAf is a sufficient but not necessary event
for the occurrence oh,);

— Enables the occurrence of activitp; is both necessary and sufficient for the oc-
currence ofAy;

— IsSubsumedBactivity A; is subsumed by activitg, if A, contains all the activi-
ties ofA;.;

— Subsumeghe inverse ofsSubsumedBy

— Favors an activityA; favors another activity; if its prior occurrence will subse-
guently improve the overall quality &;. We include this as a “catch all”. This is
asoftrelationship.

3.5 Operational Relationships

In order toresolvea coordination relationship between two activities, we rhaye
to appeal to th@perational relationshipshat exist between the agents that will carry



them out. Intuitively, operational relationships existheen agents that carry out activ-
ities, and by understanding these relationships, it cap teetesolve the coordination
relationships. The main concept her®iperationalRelationshipr his concept has two
slots, both of which ar&gents sourceandtarget Sub-classes ddperationalRelation-
shipinclude:

— LegalAuthority this sub-class indicates thsdurcehas legal authority ovaarget
(of course, this begs the question of what “legal authoritgans in the context of
semantic web services and processes, but this is outsidsetpe of our current
work, and is left as a placeholder for the future);

— ContractualAuthoritythis indicates thatourcehas contractual authority overget
(i.e., that both agents “belong” to the same organisatind,that in the context of
this organisationsourceshould take precedence ovarged;

— ProducerConsumethis indicates thasourceis theownerof a Resourcehat is to
be used byarget,

— ConsumerProducethe inverse oProducerConsumer

— Peer. two agents that work as peers, i.e., that neither has ampatyt over the
other. We have developed a prototype as a proof-of-conoepiir ontology. The
current state of its development is now presented.

4 Implementation

We have implemented our prototype with the plug-in JessTalj11] in Protégé 3.0.
JessTab is a plug-in integrating the inference engine Jests (version 6.1p7 [12] in
our case) with Protégé, so that Jess can carry out infesamt the knowledge base in
Protégé. More precisely, JessTab enables Jess to wdrlaviAtotégé knowledge base,
i.e., Jess can (i) access the ontology and the instancessesyied in Protégé, (ii) di-
rectly manipulate these ontology and instances, (iii)rinfew facts deduced from these
ontology and instances, and (iv) perform all the other progning tasks permitted by
Jess, such as calculating or launching Java operations.

In our prototype, we use these capabilities of JessTab irfdite@ving way. We
first design an ontology for our agents in OWL [13] using Bgét. For this proof of
concept we restrict our attention to few concepts and typeordination and we
do not implement the whole ontology described in Sectiom3ur implementation,
concepts in the ontology are translated into Jess factéswthée coordination strategy
is translated into a set of Jess rules. In our ontology , waterthe clasg&\gent with
subclasse®rovider, Requesteand Registry as well as the classes required by these
three types ofAgens, i.e.,RegistryMemorylntention and Resourcewhich are now
outlined.

A RegistryMemorys related to an instance &egistryby the property “hasMem-
ory”. Every instance oRegistryMemoryepresents either Requesteand one of its
Intentiors, or aProviderand one of its capabities and associdResourcs.

The second elemeniiitention is related to instances @éfgentto describe one of
the activities planned by a particulagent Besides a\gent anintentionmay also be
linked to aRegistryMemoryo enable d&Registryto memorize am\gents Intention



The third class iResourcewhich contains the name of a resource (we assume this
name is a unique identifier for this resource) and the flagtas8able”.

After the creation of the classes of this ontology, we poteutie ontology with in-
stances. In our example, we instantiate one resdRireder, two resourcdkequesters
and oneRegistry These first two steps related to ontology building do nounex
JessTab, but only Protégé. Finally, we add Jess rulesiion&@te” our instances. These
rules implement the choreography between the instanchgeds. These three stages
are detailed in the following subsections.

4.1 Classes in the ontology

As noted, we basically deal with three different classesyaig Provider, Requester
andRegistry Each time &Provideror aRequesteregisters to &egistry this Registry
records the information sent by thifrovider/Requesteby creating aRegistryMem-
ory, which means that RegistryMemorys very similar to aProvider/Requesteand
thus to anAgent(of course, only from an ontological viewpoint, like evdriytg in this
subsection!). To record RegistryMemoryRegistryhas an object property called “has-
Memory” listing instances oRegistryMemorysed by thisRegistry “hasMemaory” is
the only property of interest in a semanReqgistry even if aRegistryinherits all the
properties of arAgent namely “hasName”, “hasCapabilities”, “hasGoals”, “hesh-
tion” and “hasResource”.

It is worth noting the difference we make between “hasGoaisl “hasintention”:
in a similar way to the BDI (Belief, Desire and Intention) aitecture [14], an agent
desires to achieve its multiple goals, and as a result, tiestaselects and adopts the
appropriate intention (which is a plan of actions in the Bbdhdtecture). In our on-
tology, we translate this in the following way: akgenthas a property “hasGoals”
pointing to several instances bftention and one property “hasintention” pointing to
one of these instances titention This latterIintentionrepresents what current ac-
tion this Agentcurrently tries to achieve. Indeed, this is the main diffieee between
a RegistryMemoryand anAgent only an Agenthas a property “hasintention”, while
bothRegistryMemonandAgenthave a property “hasGoals”. A semarniegistryuses
the property “hasGoals” to register in one of RegistryMemory what it knows about
an Agents planned activities. In other words, there is dRegistryMemonper Agent
(normally, thisAgentshould be &Requestgr and as many properties “hasGoals” per
RegistryMemoryas theAgentcommunicates to thRegistry

Finally, all Agens may have object properties “hasResource” of fgpsourceand
“hasCapabilities” of typetring. As previously stated, there is oRegistryMemoryper
Agent(this Agentshould now be #&rovider), and as many properties “hasResource”
and “hasCapabilities” peRegistryMemonas theAgentcommunicates to thRegistry

A Resourcedescribes a resource, such as a CPU, a hard drive, a printemd
datatype properties “hasCapabilities” of type string,.,esgving-information, calcu-
lating, printing, etc. In additionRegistryMemonhas two datatype properties “agent-
Name” and “agentRef” to respectively record the name (wisctihe string arAgent
records in its datatype property “hasName”) and the addrethe agent.



4.2 An example of instances for our ontology

As a case study, we have implemented a system with four ggemtsich “Requester 1”
and “Requester 2" look for the non-shareable resourceccdfenter”, while “Provider
Printer” manages this resource. Requester 1 has “intelitiarhich describes the fact
that this agent has scheduled to use Printer from the datel Soara duration of 10
time units. Figure 2 displays this Requester 1's intentmnge Printer, as well as Re-
quester 2’s.

intentionl
[ —— 1 l-------------= Requester]

. ,__intention21 | intention22 , _L__intenton23 2

: intention24 , } Requester 2
} >

— > time

0 5 10 15

Fig. 2. Gantt chart of Requester 1 and Requester 2’s schedulesifbePr

In this figure, we can also see that the property “hasGoalRegfuester 2 points to
four intentions, namely intention21, 22, 23 and 24, and ithi@ihtion24 is at the same
time as intention21, 22 and 23. We assume that Agent2 hagenthkis overlapping in
its own schedule, and the registry should thus detect taghchmong Agent2’s goals.
The registry should also detect the clashes between Agegls and Agentl’s.

4.3 Orchestration implemented in the prototype

The Jess program roughly adopts the following four stepsr@&yghly”, we mean that
these steps are interlaced in practice, while we are noveptieg them sequentially:

— Step 1 The Protégeé classes, instances and templates areatehsito Jess. This
is performed by the JessTab commd&mahpcl ass : THI NG that translates the
root node of the Jess ontology, as well as all its childrenouih¢ instances, into
Jess. Note that this command is an addition of JessTab to Jess

— Step 2 Every agent sends (i.e., asserts) a registration messageety registry.
This message contains the description of this agent, orts o&pabilities, one of
its goals and one of its resources. The agent sends sevesshges to register all
its capabilities, goals and resources, and can write “ndriitloes not have one of
these features.

— Step 3 Every registry receives these messages and saves th&ntdy creating
RegistryMemory. OneRegistryMemorys created for each registeridgent and
this RegistryMemorys almost a copy oAgentreconstructed from the registration
messages.

In practice, the JessTab commandske- i nst ance andsl ot - set add in-
stances and slots in the Protégé base, and rifegmi nst ance converts this in-
formation into Jess, so as the consistency is maintaineddeet Jess and Protégé
knowledge bases.



— Step 4 Every semantidRegistrydetects clashes between non-shareable resources.
Intention21, 22, 23 and 24 in Figure 2 represent the fouriplestypes of clash with
intentionl1. For example, intentionl/intention21 is a ciehfh which the beginning
of the time interval represented in intention1 overlapsehe of intention21. This
conflictis characterized by the following conjunction:tfig starting date requested
by Requester 1 is later (greater) than the starting dateestgd by Requester 2,
(ii) the starting date requested by Requester 1 is earlsve(l) than the ending
date requested by Requester 2, (iii) the ending date rezpidst Requester 1 is
later (greater) than the the ending date requested by ReeguzsNotice that (i)
and (ii) mean that Requester 1's starting date is in the tmerval requested by
Requester 2, while (ii) and (iii) mean that Requester 2’srmdate is in the time
interval requested by Requester 1.

A separate Jess rule is programmed to detect each of thespdssible clashes.
We call *1* the rule detecting the conflict intentionl/intem21, *2* for inten-
tionl/intention22, etc.

4.4 Results

The execution trace in JessTab is displayed in Figure 3, ilclwive can see seven
conflicts, each one beginning with the name of the rule thiztaded it followed by some
explanations. For example, the first conflict was detectethbyrule *2*, and is thus
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less, the Java Expert System Shell
Copyright (C) 2001 E. Friedman Hill and the Sandia Corporation
Jess Version 6.1p7 5/7/2004

Jess> (hatch ontaCricl.clp)

*2* "Requester 2' requests “Printer’ over [1;6], which is inclucled in [0;20] requested by “Reguester 2'.
*1* "Requester 2' requests “Printer’ over [1;6], which overlaps the beginning of [5;15] requested by
“Requester 1’

4" "Requester 2' requests “Printer’ over [0;20], which includes [14;,19] requested by “Requester 2',
*3* "Requester 2' requests “Printer' over [14;19], which overlaps the end of [5;15] requested by
“Requester 1'

*4* "Requester 2' requests “Printer' over [0;20], which includes [7;13] requested by “Requester 2'.
4" "Reguester 2' requests “Printer’ over [0;20], which includes [5;15] requasted by “Requester 1",
*2% "Requester 2' requests “Printer’ over [7;13], which is included in [5;15] requested by “Requester 1,
39

Jess>

“ Enter |E”E| Break H Clear Window

Fig. 3. JessTab detects the conflicts in the schedule of the noeadtiarresource.

of the type intentionl/intention22, but this first conflistriot between Requester 1's
intention1 and Requester 2’s intention22. In fact, thisflicnis due to the fact that



Requester 2 wants to use Printer both over [1;6] and [0;2@] taus, the former time
interval is included in the latter while Printer is non-siwnle.

Conversely to this, the second clash is between two differeguesters. In other
words, inter-agent as well as intra-agent conflicts arectietie We have checked that it
is possible to add more instances of resources, providagaesters and registries and
JessTab still detects the conflicts.

5 Conclusions

The effectiveness of the Semantic Web relies on enablifgtdogies that permit the
various components — ontologies, reasoning engines, aadtag to work harmo-
niously together. The interactions need to be managed @iocpto a theory that is
understood and agreed upon by all the components (in the paposely referred

to these components agent3. Coordination is the process of managing the possible
interactions between activities and processes. The pesshibe work presented in this
paper is that effective coordination requires the sharingnowledge about activities,
resources and their properties. Typically, this sharingdsieved statically, by hard-
coding at design time the coordination mechanism in the tagéfowever, in more
open systems, where the processes and resources of whgysthen is comprised are
not known at design time, such an approach is often impassibviable alternative in
this type of systems would bedynamicapproach, in which the coordination require-
ment is handled aun-time rather than design time. Such approach allows the relevant
processes to communicate their intentions with respectttod activities and resource
utilisation, and gets them to “reason” about coordinatibrua time, with the goal of
preventing negative interactions, and facilitating pesiinteractions. The communica-
tion implied by this solution requires an agreed common batary for coordination,
with a precise semantics, that is, an ontological approadymhamic coordination.

This paper describes such an ontological approach to cuatidh, and presents
our results with respect to a proof-of-conceptimpleméatedf the approach, in which
multiple processes detect coordination relationshipsguai Jess/Protégé implementa-
tion of the ontology. This prototype is only intended to shwow an inference engine
may be used to perform coordination tasks in Semantic Welic®ar. In fact, inference
engines have already been being used to check semantistemty, e.g., Racer [15]
both checks semantic consistency and improves the orgemz Protégé knowledge
bases.

This work is still at an embryonic stage, the results obtéimgthe proof-of-concept
implementation are very promising and encourage us to prbttavards the develop-
ment of a representation of coordination mechanisms usérgagtic Web rule lan-
guages. One possible implementation strategy consist¢podsenting the rules in SWRL
[16] and using a reasoner such as Vampire [17], to reasort #fwaoordination rules.
This strategy raises a number of research issues, such dsewliee choice of rules
will fail to provide a definitive answer due to the undecidiépiof SWRL. As an im-
provement on our prototype, we could:

— Make every agent register to only one registrgtead of every possible registry;



— Add other protocolse.g, some methods of clash resolution, and the upd&Regf
istrys by Agens;

— Add message formadt the moment, we only handle a basic registration message;

— Looking for the maximum size of a semantic registow many resources, providers,
and requesters make the semantic registry too slow (in andigrenvironment, un-
like our prototype).
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