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Abstract. This paper presentsSERSE– SEmantic Routing SystEm– a distributed
multi-agent system composed of specialised agents that provides robust and ef-
ficient gathering and aggregation of digital content from diverse resources. The
agents composingSERSEuse ontological descriptions to search and retrieve se-
mantically annotated knowledge sources, by maintaining asemantic indexof the
instances of the annotation ontology. The efficient retrieval is made it possible
through the semantic routing mechanism, that permits to identify the agent index-
ing the resources requested by a user query without having tomaintain a central
index, and by minimising the number of messages broadcastedto the system. The
system is also capable of exhibiting autonomic behaviour. Autonomic behaviour
is characterised by self configuration and self healing capabilities, aimed at per-
mitting the system to manage the failure of one or more of its agents and ensure
continuous functioning.

1 Introduction

The Semantic Web primarily aims to share knowledge from distributed, dynamic, and
heterogeneous sources, whose content is expressed in a machine-readable format by
means of languages such as RDF [1] and OWL, in a similar way to that in which in-
formation is shared on the World Wide Web. Agents play an integral role in this vision;
they use these machine-readable representations to gatherand aggregate knowledge, as
well as to reason in order to manage inconsistencies, and to infer new facts. Together
with their ability to process Semantic Web content, agents contribute features, such as
distribution, autonomy, and social ability, that make themparticularly suited to man-
age large, heterogenous, and distributed knowledge bases.In recent years, many tools
have been developed for managing traditional knowledge sources, but such approaches
usually imply a centralised, and static environment where the ultimate control is cen-
tralised. This type of approach does not promise to scale well to the Semantic Web,
which is an open, dynamic, and often chaotic environment.

Distributed, decentralised systems are thought to be a better alternative for scalabil-
ity [2]; their architecture is characterised by system components each with equal roles
and the capability to exchange knowledge and services directly with each other. Peer-
to-peer technology (P2P) such as Edutella [2] or Morpheus [3] is a possible answer to
this quest for decentralisation. P2P systems are networks of peers with equal roles and
capabilities, and recently peer-based management systemshave been proposed, which
exploit P2P technology for sharing and retrieving huge amounts of data [4]. However,



most approaches are oriented at file sharing, rather than at the management of semanti-
cally enriched content as provided by the Semantic Web. The agent paradigm seems to
offer equally good prospects for the management of semantically annotated content: on
the one hand, agents are intrinsically distributed, and platforms for agent oriented pro-
gramming offer standardised communication protocols and management mechanisms
(for instance, Jade [5]). On the other hand agents can provide “smart”, service-based
support for autonomous semantic web tools, and well-automated discovery mecha-
nisms for advertising and locating resources within an openframework, established
trust and reputation frameworks, and proactive support forfact maintenance [6]. One
way in which the adoption of the agent-oriented paradigm canbe beneficial to semantic
web applications is by making them exhibitautonomic behaviour. Autonomic comput-
ing is an emerging branch of software engineering promotingthe design and imple-
mentation of self-managing systems, many of which consist of several interacting, au-
tonomous components that in turn comprise large numbers of interacting, autonomous,
self-governing components at the next level down [7]. This type of behaviour is intended
to make it easier to manage the complexity and scalability ofcomplex distributed sys-
tems, such as those to manage Semantic Web content.

In this work we concentrate on therobustandefficientgathering and aggregation of
digital content from diverse resources. We developed a multi-agent system composed of
specialised agents that is able to search and retrieve semantically annotated knowledge
sources. In addition to searching for digital content, the semantic information used to
annotate resources is used to explore the addition of autonomic features to the system,
in order to equip it with self-management and self-healing capabilities, aimed at permit-
ting the system to manage the failure of one or more of its agents and ensure continuous
functioning. In this paper we introduce the systemSERSE(SEmantic Routing SystEm)
and its main functionalities. This paper extends our previous work in this area [8, 9]
by introducing the autonomic behaviour features exhibitedby SERSEand by presenting
details of its multi-platform implementation. In the remainder of this paper we describe
the system’s conceptual architecture and the information flow between the system com-
ponents. We examine the two main functionalities offered bythe system, namely query
management and autonomic behaviour, and we present a set of experiments aimed at
evaluating the performance for each of these functionalities.1.

2 SERSE

SERSE’s primary goal is to enable the semantic retrieval and aggregation of the digital
content of web resources.SERSEis designed as a multi-agent system composed of spe-
cialised agents capable of functioning in a scalable, self-managing, open, and dynamic
fashion. The system requires resources to be semantically annotated according to one or
more ontologies expressed in OWL, and at present is not capable of discovering anno-
tated resources autonomously. For this purposeSERSErelies on the Annotation System
component of Esperonto, that informs it of newly acquired content providing references

1 SERSEwas developed as part of the now concluded Esperonto project(IST-2001-34373) whose
aim was to provide a set of tools for performing the transition from the traditional web to the
semantic web [8]



to both the resources and their RDF annotations. The description of the Annotation Sys-
tem is outside the scope of this paper. However, for the purpose of describingSERSE, it
is sufficient to say that annotations are semi-structured representations of information
referencing instances (of one or more concepts in the annotation ontology) that appear
in the content of web resources.2

The core of the system is represented by a network of specialised agents providing
indexingand routing functionalites, that permit them to efficiently retrieve resources
based on the semantics of their content. Each agent isspecialisedwith respect to a
concept, meaning that it can access the resources whose annotations contain instances
of that concept, and it is only aware of those agents specialised with concepts that are
similar or related to its own. Therefore, the agent network is organised intosemantic
neighbourhoodsthat mirror the structure of the ontology (in terms of the hierarchical
and specific relationships defined in the ontology).

That is, more formally, if we consider the ontology as a directed, labelled graph
G = (N, E), whereN is a finite set of labelled nodes, each corresponding to a concept
in the ontology, andE is a finite set of labelled edges, then the topology of the network
of routers is determined by the structure ofG (that is by the semantic relations between
the nodes), and there is a one to one correspondence between the nodesN and the set
of agents composing the neworkA. For each agent in the networkai, following [21],
we can define a functionknows ⊆ A × A, such thatknows(ai, aj), if there is an edge
ek between the conceptni of the agentai, and the conceptnj of the agentaj, or, more
informally, if there is a relationship linkingni to nj . The functionknows is symmetric,
thusknows(ai, aj) = knows(aj , ai). The neighbourhood of an agentai is then given
by the setNeighbourai

= {aj ∈ A|knows(ai, aj)}.
Neighbourhoods are partially overlapping, and this permits the routing mechanism to
find the answer to a query in a limited number of hops, without having to browse
the whole ontology and without having to flood the network with a large number of
messages. Semantic neighbourhoods are automatically determined when the system re-
ceives a notification of new ontological content – received as new concepts are used to
annotate resources. The neighbourhoods are not static but they dynamically change as
the system is required to handle further notification of new ontological content, or if the
ontology is modified (and a new version of the ontology is usedin the annotation). In
this way, we have multiple overlapping neighbourhoods, each centred on one concept,
and agents have knowledge only of the agents composing theirneighbourhood.

Indexing ontological content consists of creating structures that link resources, iden-
tified through their URLs, to RDF statements describing instances of the concepts in the
ontologies. The routing functionality permitsSERSEto route queries to the agents that
are capable of retrieving the resources annotated with the concepts they are specialised
on.SERSEhandles queries expressed in RDQL [10] (an RDF query language developed
by HP as part of the Jena toolkit) [11] on any combination of concepts and concepts
properties (including object properties). Complex queries are decomposed into simple
ones, each regarding a single concept. Each simple query is routed to one of the agents
in the network of routers, and the agent consults its index todetermine whether it can
answer the query. If the agent cannot answer the query, then it routes the request to the

2 We are currently working at makingSERSEa standalone system.



agent in its neighbourhood that handles the conceptclosestto the one in the query. We
evaluate similarity between concepts according to the method proposed in the Quick
Ontology Mapping (QOM) approach by [12]. However, we modified the algorithm so
that it exhibits a greedy but less precise behaviour, implemented through heuristics, and
that provides a higher number of potential matches. Ehrig and Staab’s approach is aimed
at ontology mapping, a process that can be taken off line and requires high precision
in order to establish the correct mappings. Semantic routing is different in nature: the
evaluation of similarity should be sufficiently precise to determine a new agent to whom
the query can be routed, not necessarily thebestagent. In addition, semantic routing is
a dynamic process executed on line, and therefore it requires fast computation in order
to minimise the time spent by the user waiting for an answer. We discuss in more de-
tail the indexing and routing in Section 4, where these functionalities are related to the
component ofSERSE’s architecture that provides them.

In addition to the main indexing and routing facilities, thesystem is also intended to
be self-governing; it uses autonomic computing techniquesto preserve index knowledge
and to adjust the index connections when one or more indices within the system are
unavailable. Autonomic behaviour is also used to maintain the system operative in case
of failure of one or more agent or one platform. Section 5 describes the mechanisms
used to implement autonomic behaviour inSERSE.

3 Conceptual architecture

SERSE’s conceptual architecture is composed of six types of specialised agents provid-
ing different functionalities. The heart of the architecture is composed by the network of
Router agents, providing indexing and routing capabilities. These agents are com-
plemented by a number of other specialised agents providingancillary services, that
implement system management functions. Figure 1 shows the different roles played by
agents inSERSEand the message flow in the system.

SERSEis built within JADE – a FIPA compliant agent deployment environment [5].
The system is designed to be distributed over a number ofJADE platforms, on differ-
ent host machines, with each platform containing a part of the indexing system and its
own interface agent set. This enables the system to operate even when reduced to one
platform, and to dynamically reconfigure the index network in response to temporary
or permanent outages of agents and platforms in the system. It also uses theJENA se-
mantic web toolkit to handle RDFS, OWL, and RDQL.SERSEis able to use ontological
definitions expressed in either RDFS or OWL (Lite and DL), using the full range of ex-
pressions available. The different roles that agents play in SERSEare described below,
and Figure 2 shows the interactions between the different types of agents on a single
platform and on multiple platforms.

– Router Agents: Router agents provide the core functionalities of the system:
indexing, routing and self-management. In order to providethese functionalities
these agents maintain two types of indices, acontent indexand arouting index. The
content index stores the URI identifying the RDF statementsreferring to instances
of some resources, the statements, and the URLs used to identify them. The routing
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index stores the communications address and concept handled by each of the router
agents that are semantic neighbours. Routing indexes contain entries for three types
of neighbour links:

• actual: neighbour concepts which are handled by existing agents;
• ontology: neighbouring concepts (according to the ontology) for which no

agent yet exists; and
• implied: concepts outside the neighbourhood that have still to be linked to ex-

isting concepts. These links can be implied from the absenceof one or more
ontology neighbours.

Implied and ontology neighbours are used to provide some of the self management
functionalities described in Section 5 and are used to querythe routers even if the
generation of the network is not complete, and, more in general, in all cases when
a path between two agents should have been established, because they concern
concepts in the ontology that are related, but the link has not been created, yet. By
means of this mechanism, each agent is responsible for a sub-set of the total system
knowledge and has only localised knowledge of its semantic neighbours.
Router agents are also equipped with self management capabilities that allow
them to actively respond to changes in the state of their neighbourhood. In order
to ascertain the actual status of their neighbourhood, Router agents employ two
types of messages: they both monitor the result of their outgoing routing messages
(to verify that they do not return an error), and they periodically sendheartbeat
messages[7] that “ping” their neighbour. In addition, Router agentsperiodically
save the state of their content and routing indexes enablingthe knowledge to be
recovered following any failure of the agent. Router agentsare distributed over
multiple platforms, while the other agents described beloware replicated for each
of the platforms.

– Router Platform Agents: They enable the distribution over multiple plat-
forms and provide management services, such as the creationof a newRouter
agent, for each agent platform on which the network of routers is distributed. The
Router Platform Agent is also responsible for triggering the dynamic cre-
ation and adjustment of the network of routers upon receipt of the notifications of
new content, as described in Section 5

– Notification Agents: They are the interface between each platform and the
Annotation System of Esperonto, and receive notifications regarding the annotation
of new resources, or the addition of new concepts in the ontology. They decompose
notifications regarding multiple concepts and re-send these atomic notifications into
theRouter Agents network as Agent Communication Language messages.

– Interface Agents: They provide a connection between each agent platform
and the software components operating outside the platform, such as the web-based
query interface, by creating a socket interface and passingquery and response ob-
jects across it.

– Query Management Agents (QMA): They decompose complex queries, that
involve multiple concepts linked by logical connectives, into atomic queries. The
atomic queries are then sent into theRouter Agent network; when the QMA re-
ceives the responses to each query, these are aggregated by re-applying the logical



connectives, thus producing a set of web resources that match the constraints ex-
pressed in the complex query. During the process duplicate instances are identified
and removed.

– Portal Agents: They act as a gateway into theRouter Agent network,
through which all atomic notifications and queries are passed. Each platform in
the system has aPortal Agent, that maintains a list ofsignificant pointswithin
the router system, and send messages into the network by initially routing them to
the most appropriate of these points.

Finally, the other main component ofSERSE is the web-based query interface. This
enables the construction of queries using concepts from multiple ontologies, logical
connectives between the concepts, and specification of the values of concept properties.
Responses to queries are displayed as lists of web resources, identified by URLs, that
match query constraints together with the URIs of the instances that annotate them. In
addition, query replies also contain a list of the concepts that are neighbours of each the
responding agents. This enables follow-up queries in whichthe original query is modi-
fied by changing property values of concepts, exchanging oneconcept for a similar one,
broadening or narrowing a query by substituting ontological ancestors or descendents
of a concept, etc.

4 Query management

As mentioned in Section 2,SERSEhandles queries specified in RDQL on any combina-
tion of concepts and concept properties (including object properties). Queries are sent
from the localInterface Agent to the localQMA, where they are decomposed into
atomic queries. Query decomposition is achieved by syntactically parsing the query and
identifying blocks that form atomic queries, but preserve the semantics of the original
query.

TheQMA sends each atomic query to the localPortal Agent, which forwards
each of them to the mostcompetentRouter Agent known to the localPortal
Agent, that is theRouter Agent that has the highest similarity score with the con-
cept in the atomic query. In the current implementation ofSERSE, these agents are those
which have knowledge of the root nodes of each of the ontologies that have been no-
tified to the system. The purpose of this initial semantic routing is to enter the router
network in the general semantic area of the queried concept improving the efficiency
of the routing process. Although routing first to the root node agents might potentially
be perceived as a bottleneck, these agents are effectively those that are likely to have
the smallest workload from handling queries. In fact, in thedomain ontologies used by
SERSE, as well as in most domain ontologies, the majority of the instances are direct
instances of very specific concepts (leaf nodes), whilst root nodes have few (if any)
instances. Therefore, the additional routing effort of these agents is compensated by
answering fewer queries. In addition, any set of significantentry points could become a
bottleneck, and alternatives are constrained by the processing necessary to identify the
best entry point, and message workloads.

Once an atomic query is received by the appropriateRouter Agent, it extracts
the query constraints expressed in RDQL, then it consults its content index to check if



it stores the URI of instances of the query concept. Any instances that match the query
contribute to the answer set, which consists of a list of resources that are described by
matching instances, and is returned directly to theQMA that sent out the query. Included
in the query reply is information about the concepts handledby neighbours of the reply-
ing Router Agent and the agent address - which is then used in follow-up queries.
This then enables users to semantically browse from one concept to other closely related
concepts, using knowledge about these relationships held by theRouter Agent and
revealed by the original query.

If the Router agent does not know the queried concept, the query is routed to
the semantic neighbour with the most similar expertise Thissemantic routing mecha-
nism is designed to move messages in a series of hops across the network ofRouter
Agents, until the message is addressed to theRouter Agent indexing instances of
the concept in the message.

5 Autonomic behaviour

SERSEhas been designed to autonomously react to a number of eventsthat can affect its
processing. These include the notification of new ontology,but also exceptional events
such as the controlled shut down of an agent. The aim is to havea system that can work
in an open environment, such as the Semantic Web, and that is scalable, robust, and
requires limited human intervention for its functioning. For this reason,SERSEhas been
designed as a multi-agent system in which agents can join andleave the system without
having to take (part of) the system off-line, or without degrading the performance of the
system.

Autonomic behaviour inSERSEsupervises two main functionalities: dynamic man-
agement of the network of router agents, and failure management.
The management of the router agents consists mainly of the ofthe operations to create
the network of routers from scratch once the system is notified by theNotification
Agent that a new ontology is available. Failure management consist of the functional-
ities that enable the system to continue to operate despite the temporary or permanent
loss of agents or whole platforms from an existing index network. Autonomic behaviour
is achieved by a number of different mechanisms:

– Creation request messages: When theNotification Agent in one of the
platforms receives a notification of new annotation ontology, it determines au-
tonomously the root concept(s) and generates a creation request message for each
of these concepts, to be sent to theRouter Platform Agent, that in turn,
creates a router agent for each root concept.

– Router network population: The population of the network of routers is triggered
by the notification of new content messages received bySERSE. If the message
notifies instances of a concept for which a router agent has not yet been created,
theRouter Platform Agent creates a newRouter agent, and each of
the neighbouring router agents affected by this event update their neighbourhood
indices, with the pointers to the new actual neighbours. In this situation, ontology
and implied links are created, in order to fill gaps between the existing routers and
the newly created one.



– Heartbeat monitor: Router Agents monitor the success of messages sent to
neighbours, and record this in their routing index. When messages are unsuccess-
ful the neighbour is first set to a warning level, and if failure continues for a short
time the entry is marked as unavailable. The neighbour will be considered avail-
able again if a message is received from it within a time period, but otherwise will
eventually be removed from the neighbourhood.

– Index backup and backup recovery:Router Agents periodically save their knowl-
edge to an XML backup file, which enables the recovery of knowledge follow-
ing the failure of theRouter Agent or platform. The knowledge stored in the
file consists of the contents of both the content index and routing index. Recov-
ery from failure of a platform is addressed by having theRouter Platform
Agent on start-up (following a manual platform re-start) check for saved state
files, and, if any are found, re-creatingRouter Agents using the stored knowl-
edge. Recovery from the failure of individualRouter Agents is addressed by
them contacting the localRouter Platform Agent when they shut-down,
and theRouter Platform Agent will then use the saved state to re-create
theRouter Agent.

– Router Agent shutdown procedure: WhenRouter Agents are subject to a
controlled shut-down of their platform, they immediately save their knowledge to
file, and then contact each of their neighbours to inform themof the shut-down.
This enables the neighbours to reactively adapt their neighbourhood connections
to reflect the loss of neighbour. Recovery from shut-down, like that for failure, is
initially a manual process but once started theRouter Platform Agent will
detect the saved-states and restore theRouter Agents.

6 Experimental evaluation

We conducted a number of experiments aimed to analyse the performance of the two
main functionalities provided by the system: query management, and autonomic be-
haviour. In our experiments, we used two ontologies developed as part of the use-cases
of Esperonto, the Fund Finder and the Cultural Tour ontologies for which we had also
the annotated documents storing the instances of the concepts. The Fund Finder is ex-
pressed in OWL-Lite, and it is composed of around 50 concepts(12 of which are root
concepts), and of 118 instances. The Cultural Tour ontologyis an RDFS ontology com-
posed of 60 concepts, and has more that 61000 instances.

In order to test the performance of the query management process we measured,
for each ontology, the round-trip reply time for a set of twenty fixed queries, listed in
increasing order of complexity. Figure 5 and Figure 6 illustrate the last query we posed
for each of the ontologies, in order to show the level of complexity of the queries used
in the experiments. The queries were posed toSERSEin sequence, and for each query
we performed 1000independentrepetitions, in order to guarantee the reliability of the
results. Since we are using exact queries, the use of traditional Information Retrieval
measures, such asprecisionand recall makes no sense, since precision will always
be 1. Figure 3 shows the response time, averaged over the repetitions, for each of the
ontologies. We have compared these results with those obtained by querying the static
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Fig. 3. SERSE response times in relation to queries about the Fund Finder and Cultural Tour
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Fig. 4. Jena response times in relation to the same queries for each of the two ontologies

SELECT ?x, ?z WHERE
(?x, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,

<http://www.blacoe.uk/Fund_Finder.owl#Discount>)
(?x, <http://www.blacoe.uk/Fund_Finder.owl#Aims>, ?y)
(?y, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,

<http://www.blacoe.uk/Fund_Finder.owl#Objective>)
(?y, <http://www.blacoe.uk/Fund_Finder.owl#objectiveName>, "Company_Creation")
(?x, <http://www.blacoe.uk/Fund_Finder.owl#negotiated_by>, ?u)
(?u, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,

<http://www.blacoe.uk/Fund_Finder.owl#Negotiator_Body>)
(?u, <http://www.blacoe.uk/Fund_Finder.owl#actsForBody>, ?t)
(?t, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,

<http://www.blacoe.uk/Fund_Finder.owl#State_Funding_Body>)
(?z, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,

<http://www.blacoe.uk/Fund_Finder.owl#subvention>)
(?z, <http://www.blacoe.uk/Fund_Finder.owl#Deadline>, "30-juny-2005")
(?z, <http://www.blacoe.uk/Fund_Finder.owl#Aims>, ?w)
(?w, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,

<http://www.blacoe.uk/Fund_Finder.owl#Objective>)
(?w, <http://www.blacoe.uk/Fund_Finder.owl#objectiveName>, "Quality")
(?z, <http://www.blacoe.uk/Fund_Finder.owl#hasRelatedRegulation>, ?v)
(?v, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,

<http://www.blacoe.uk/Fund_Finder.owl#Diari_Oficial_de_la_Generalitat_de_Catalunya>)
(?v, <http://www.blacoe.uk/Fund_Finder.owl#date>, "26/04/1996")

Fig. 5. Query number 20 for the Fund Finder ontology



SELECT ?x, ?z WHERE
(?x, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,

<http://www.blacoe.uk/tesauro#RelacionExistenciaPersona>)
(?x, <http://www.blacoe.uk/tesauro#referencia>, "500001146")
(?x, <http://www.blacoe.uk/tesauro#entidad_existente>, ?y)
(?y, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,

<http://www.blacoe.uk/tesauro#Persona>)
(?y, <http://www.blacoe.uk/tesauro#fuente>,

"Nadia Sokolova [Barcelona (CapCom) : Espaa?, ? - Barcelona (CapCom) : Espaa?, ?]")
(?y, <http://www.blacoe.uk/tesauro#autor_anotacion>, "prototipo")
(?z, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,

<http://www.blacoe.uk/tesauro#RelacionCreacion>)
(?z, <http://www.blacoe.uk/tesauro#estado>, "provisional")
(?z, <http://www.blacoe.uk/tesauro#creacion_relacionada>, ?w)
(?w, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,

<http://www.blacoe.uk/tesauro#ObraLiteraria>)
(?w, <http://www.blacoe.uk/tesauro#tipo_obra_literaria>, "articulo")
(?w, <http://www.blacoe.uk/tesauro#referencia>, "EL PASEO DE ROSALES ")

Fig. 6. Query number 20 for the Cultural Tour ontology

RDF model in Jena, the response times averaged over 100 repetitions for each query
are depicted in Figure 4.

With respect to the autonomic behaviour exhibited bySERSE, we measured, for
each of the two ontologies, the query response time in two different scenarios. Scenario
1 aims to test how wellSERSEcopes with the notifications of new content. This was
achieved by creating newRouter agents along the route of a query, by means of in-
troducing messages notifying the acquisition of new content – that is, of new resources
containing instances of some concept that was not instantiated before. The experiment
was designed to implement the following procedure:

1. Remove all notifications concerning resources containing instances of a concept,
for instanceOrganisation Applicant in the Fund Finder ontology;

2. Add a new notification for the conceptSME, subsumed byOrganisation
Applicant;

3. Build SERSE: this consists of starting theRouter Platform agent for the
platforms, loading the ontology model and the notifications, and the dynamic gen-
eration of the network of routers from the notifications;

4. Run query no. 1, an atomic query with subjectSME;
5. Notify one resource with instances ofOrganisation Application;
6. Run query no. 2, an atomic query with subjectSME;
7. Notify one resource with instances ofCompany;
8. Run query no. 3, an atomic query with subjectSME;

Figure 7 illustrates the relations existing between the concepts in the ontology that are
used in the notifications and queries of Scenario 1. Scenario2 aims to test how the sys-
tem responds to an increase in the workload due to introducing agents in the semantic
neighbourhood, and hence to the increase in the number of semantic similarity (and re-
latedness) calculations that need to be performed during the semantic routing process.
The process followed to set up the experiment mirrors the process followed in Sce-
nario 1, but it uses different parts of the ontologies, and receives notifications related to
five concepts.
Figure 8 shows the response times for the queries posed to thesystem in both scenar-
ios. The experimental data concerning the round trip response time to different queries



Fig. 7. The Fund Finder concepts used in the experiments of Scenario1
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Fig. 8.Response times in relation to the queries in Scenario 1 and Scenario 2

shows that the query management process implemented inSERSEtakes a longer time to
answer the queries when compared with Jena. This result is quite predictable because
SERSEadds the overhead of the messages exchanged in order to enable the seman-
tic routing and the system’s self management . However,SERSEis still quite efficient,
keeping the response time generally under the second. In that respect the results ob-
tained are very promising. However, there some anomalies with queries number 14, 15,
18, and 19 in the Cultural Tour ontology. We have identified a number of reasons that
contribute to these anomalies:

1. Number of instances returned by each atomic query: For each query we match large
sets of instances by URI, and then we match them with the corresponding resources
by URL.

2. The time that RDQL takes to process the RDF model: This timevaries considerably,
as it can be seen by the values in Figure 3, and it is proportional to the number of
statements in the RDF model.

3. Large sets of instances and resources returned: the resulting query result messages
are quite large and the transmission time increases.

4. Time necessary to check for duplicates when large number of resources are returned
as results of complex queries.

5. Number of semantic calculations performed: that is the length of the routing path
and the number of neighbours for each of the agents in the path. The effect of the
increase in the number of calculations is, however, negligible, as confirmed by the
experiments for Scenario 1 and Scenario 2.



With respect to the results obtained when testing the autonomic behaviour, we can
see thatSERSEis able to dynamically adjust its network of routers in orderto cope with
the notification of new content and with the addition of new agents to the neighbour-
hood, without degrading the performance in terms of response time. Figure 8 shows
how the increase in response time remains controlled despite the introduction of new
content and new agents in the neighbourhood.

7 Related work

Autonomic computing is a new engineering paradigm that aimsat building computing
systems that areself managing[7]. Usually, self managing systems are expected to
exhibit four main properties:

1. self configuration: the ability to configure itself according to high level goals;
2. self optimisation: the ability to optimise the use of resources;
3. self healing: the ability toreact to the signs of a possible problem, by detecting it,

and, if possible, fixing it;
4. self protection: the ability to defend itself from malicious attacks as wellas from

human error.

These characteristics remind of those defining the notion ofagencyand in [7] the au-
thors claim that “autonomy, proactivity, and goal-directed interactivity with their envi-
ronment are distinguishing characteristics of software agents [13]. Viewing autonomic
elements as agents and autonomic systems as multiagent systems makes it clear that
agent-oriented architectural concepts will be criticallyimportant”. Hence, it is not sur-
prising that many notions of autonomic computing are found in multi-agent systems
(MAS) literature. An example is the use of anhearbeatmessage broadcasted regularly
in a MAS, organised as in peers or as a network, in order to monitor the status of the
other agents [14].

Self healing has been analysed in [15], where the authors present a team of broker
agents, which share global knowledge about the system. Thisglobal knowledge is used
to discover that a broker has been disconnected from the restof the system and to in-
form the other brokers of the event. IBM has developed theABLE agent platform [16]
that reduces the workload of the system administrator by supporting autonomic agents.
Finally, [17] provides a review of the various architectural issues in autonomic comput-
ing.

As mentioned in Section 1, P2P systems have been recently used to reduce the
complexity of distributed knowledge management applications. A typical example of
such an application isEDUTELLA [2], a hybrid P2P architecture for sharing metadata,
that implements an RDF-based metadata infrastructure for JXTA [23]. However, the
emphasis is more on RDF repositories of metadata rather thanon the representation of
semantic information in possibly heavy-weight ontologies.

An aspect of peer-to-peer networks that needs to be especially analysed isscalabil-
ity. The way in which queries are propagated in the network determines how the net-
work itself will scale. Networks where queries are broadcasted to all peers will hardly
scale, unlike those networks implementing intelligent mechanisms for narrowcasting



the queries only to those few selected peers that are able to answer the queries. At this
end several routing protocols have been developed that manage distributed indices used
to handle complex queries. Examples of such protocols are CAN [24] and Chord [25].

Other approaches emphasise the use of semantics represented in ontologies. Among
these there is the SWAP approach [26], and its applications,such as Bibster[21]. In
SWAP, each node is responsible for a single ontology: ontologies might represent dif-
ferent views of a same domain, multiple domains with overlapping concepts, or might
be obtained by partitioning an upper level ontology. Knowledge sharing is obtained
through ontology mapping and alignment, however mappings are not dynamically ob-
tained.

8 Conclusion

In this paper we presentedSERSE– SEmantic Routing SystEm– a distributed multi-
agent system composed of specialised agents that provides robust and efficient gath-
ering and aggregation of digital content from diverse resources. The agents compos-
ing SERSEuse ontological descriptions to search and retrieve semantically annotated
knowledge sources, by maintaining asemantic indexof the instances of the annotation
ontology. The efficient retrieval is made possible through the semantic routing mecha-
nism, that permits to identify the agent indexing the resources requested by a user query
without having to maintain a central index, and by minimising the number of mes-
sages broadcasted to the system. The system is also capable of exhibiting autonomic
behaviour. Autonomic behaviour is characterised by self-management and self-healing
capabilities, aimed at permitting the system to manage the failure of one or more of its
agents and ensure continuous functioning.

We tested the performance search and retrieval capabilities of the system, and the
experimental data shows thatSERSEgenerally maintains the response times under a
second, showing that the overhead produced by the indexing and routing mechanisms
does not impact the system performance. We also tested the autonomic behaviour, and
the experimental results show how the system is able to efficiently self configure.
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