Semantic Issues in the Verification of Agent Communication
Languages

Michael Wooldridge (m. j.wooldridge@qmw.ac.uk)
Department of Electronic Engineering, Queen Mary and Westfield College, London
E1 4NS, United Kingdom

Abstract. This article examines the issue of developing semantics for agent com-
munication languages. In particular, it considers the problem of giving a verifiable
semantics for such languages — a semantics where conformance (or otherwise) to
the semantics could be determined by an independent observer. These problems
are precisely defined in an abstract formal framework. Using this framework, a
number of example agent communication frameworks are defined. A discussion is
then presented, of the various options open to designers of agent communication
languages, with respect the problem of verifying conformance.

1. Introduction

One of the main reasons why multi-agent systems are currently a major
area of research and development activity is that they are seen as a key
enabling technology for the Internet-wide electronic commerce systems
that are widely predicted to emerge in the near future [20]. If this
vision of large-scale, open multi-agent systems is to be realised, then the
fundamental problem of inter-operability must be addressed. It must be
possible for agents built by different organisations using different hard-
ware and software platforms to safely communicate with one-another
via a common language with a universally agreed semantics.

The inter-operability requirement has led to the development of
several standardised agent communication languages (AcLs) [30, 19].
However, to gain acceptance, particularly for sensitive applications such
as electronic commerce, it must be possible to determine whether or not
any system that claims to conform to an ACL standard actually does
so. We say that an ACL standard is verifiable if it enjoys this property.
Unfortunately, verifiability has to date received little attention by the
standards community (although it has been recognised as an issue [19,
p46]). In this article, we establish a simple formal framework that allows
us to precisely define what it means for an ACL to be verifiable. This
framework is defined in section 3, following a brief discussion of the
background to this work. We then formally define what it means for an
ACL to be verifiable in section 4. The basic idea is to show how demon-
strating conformance to an ACL semantics can be seen as a verification
problem in the standard software engineering sense [7]. Demonstrating
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that a program semantically complies to a standard involves showing
that the program satisfies the specification given by the semantics. If
the semantics are logical, then demonstrating compliance thus reduces
to a proof problem. We discuss the practical implications of these def-
initions in section 4.1. In section 5, we give examples of some ACLs,
and show that some of these are verifiable, while others are not. In
section 6, we discuss an alternative approach to verification, in which
verification is done via model checking rather than proof. Finally, in
section 7, we discuss the implications of our results, with emphasis on
future directions for work on verifiable ACLs.

2. Background

Current techniques for developing the semantics of ACLs trace their
origins to speech act theory. In this section, we give a brief overview of
this work.

2.1. SPEECH AcCTS

The theory of speech acts is generally recognised as having begun in the
work of the philosopher John Austin [4]. Austin noted that a certain
class of natural language utterances — hereafter referred to as speech
acts — had the characteristics of actions, in the sense that they change
the state of the world in a way analogous to physical actions. It may
seem strange to think of utterances changing the world in the way
that physical actions do. If we pick up a block from a table (to use
an overworked but traditional example), then the world has changed
in an obvious way. But how does speech change the world? Austin
gave as paradigm examples declaring war and saying “I now pronounce
you man and wife”. Stated in the appropriate circumstances, these
utterances clearly change the state of the world in a very tangible way'.

Austin identified a number of performative verbs, which correspond
to various different types of speech acts. Examples of such performative
verbs are request, inform, and promise. In addition, Austin distin-
guished three different aspects of speech acts: the locutionary act, or
act of making an utterance (e.g., saying “Please make some tea”), the
illocutionary act, or action performed in saying something (e.g., “He
requested me to make some tea”), and perlocution, or effect of the act
(e.g., “He got me to make tea”).

! Notice that when referring to the effects of communication, we are ignoring
“pathological” cases, such as shouting while on a ski run and causing an avalanche.

Similarly, we will ignore “microscopic” effects (such as the minute changes in pressure
or temperature in a room caused by speaking).

wooldridge.tex; 1/09/1999; 14:28; p.2



Semantic Issues in Agent Communication 3

Austin referred to the conditions required for the successful comple-
tion of performatives as felicity conditions. He recognized three impor-
tant felicity conditions:

1. a) There must be an accepted conventional procedure for the per-
formative.

b) The circumstances and persons must be as specified in the
procedure.

2. The procedure must be executed correctly and completely.

3. The act must be sincere, and any uptake required must be com-
pleted, insofar as is possible.

Austin’s work was refined and considerably extended by Searle, in
his 1969 book Speech Acts [38]. Searle identified several properties that
must hold for a speech act performed between a hearer and a speaker
to succeed, including normal I/O conditions, preparatory conditions,
and sincerity conditions. For example, consider a request by SPEAKER
to HEARER to perform ACTION:

1. Normal I/0 conditions. Normal I/O conditions state that HEARER
is able to hear the request, (thus must not be deaf, ...), the act
was performed in normal circumstances (not in a film or play, ... ),
etc.

2. Preparatory conditions. The preparatory conditions state what must
be true of the world in order that SPEAKER correctly choose the
speech act. In this case, HEARER must be able to perform ACTION,
and SPEAKER must believe that HEARER is able to perform ACTION.
Also, it must not be obvious that HEARER will do ACTION anyway.

3. Sincerity conditions. These conditions distinguish sincere perfor-
mances of the request; an insincere performance of the act might
occur if SPEAKER did not really want ACTION to be performed.

Searle also gave a five-point typology of speech acts:

1. Representatives. A representative act commits the speaker to the
truth of an expressed proposition. The paradigm case is informing.

2. Directives. A directive is an attempt on the part of the speaker to
get the hearer to do something. Paradigm case: requesting.

3. Commissives. Commit the speaker to a course of action. Paradigm
case: promising.
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4. Ezpressives. Express some psychological state (e.g., gratitude). Paradig-
m case: thanking.

5. Declarations. Effect some changes in an institutional state of affairs.
Paradigm case: declaring war.

2.2. SPEECH ACTS IN ARTIFICIAL INTELLIGENCE

In the late 1960s and early 1970s, a number of researchers in artifi-
cial intelligence (AI) began to build systems that could plan how to
autonomously achieve goals [2]. Clearly, if such a system is required
to interact with humans or other autonomous agents, then such plan-
s must include speech actions. This introduced the question of how
the properties of speech acts could be represented such that planning
systems could reason about them. Cohen and Perrault [15] gave an
account of the semantics of speech acts by using techniques developed
in AI planning research [18]. The aim of their work was to develop a
theory of speech acts:

“[Bly modelling them in a planning system as operators defined
...1in terms of speakers and hearers beliefs and goals. Thus speech
acts are treated in the same way as physical actions”. [15]

The formalism chosen by Cohen and Perrault was the STRIPS nota-
tion, in which the properties of an action are characterised via pre-
and post-conditions [18]. The idea is very similar to Hoare logic [24].
Cohen and Perrault demonstrated how the pre- and post-conditions of
speech acts such as request could be represented in a multi-modal logic
containing operators for describing the beliefs, abilities, and wants of
the participants in the speech act.

Counsider the Request act. The aim of the Request act will be for a
speaker to get a hearer to perform some action. Figure 1 defines the
Request act. Two preconditions are stated: the “cando.pr” (can-do pre-
conditions), and “want.pr” (want pre-conditions). The cando.pr states
that for the successful completion of the Request, two conditions must
hold. First, the speaker must believe that the hearer of the Request
is able to perform the action. Second, the speaker must believe that
the hearer also believes it has the ability to perform the action. The
want.pr states that in order for the Request to be successful, the speaker
must also believe it actually wants the Request to be performed. If
the pre-conditions of the Request are fulfilled, then the Request will be
successful: the result (defined by the “effect” part of the definition) will
be that the hearer believes the speaker believes it wants some action
to be performed.
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Request(S, H, a)
PrREcCONDITIONS CANDO.PR

S BELIEVE (H CANDO «)) A

(
(S BELIEVE (H BELIEVE (H CANDO a)))
WANT.PR (S BELIEVE (S WANT requestInstance))

(

EFFECT H BELIEVE (S BELIEVE (S WANT «)))

CauseToWant(A1, As, @)
PRECONDITIONS CANDO.PR (A1 BELIEVE (Ay BELIEVE (A WANT «)))

WANT.PR X

EFFECT (A1 BELIEVE (A, WANT «))

Figure 1. Definitions from the Plan-Based Theory of Speech Acts

While the successful completion of the Request ensures that the
hearer is aware of the speaker’s desires, it is not enough in itself to
guarantee that the desired action is actually performed. This is because
the definition of Request only models the illocutionary force of the
act. It says nothing of the perlocutionary force. What is required is a
mediating act. Table 1 gives a definition of CauseToWant, which is an
example of such an act. By this definition, an agent will come to believe
it wants to do something if it believes that another agent believes it
wants to do it. This definition could clearly be extended by adding more
pre-conditions, perhaps to do with beliefs about social relationships or
power structures.

Using these ideas, and borrowing a formalism for representing the
mental state of agents that was developed by Robert Moore [31], Dou-
glas Appelt was able to implement a system that was capable of plan-
ning to perform speech acts [3].

2.3. SPEECH AcCTS AS RATIONAL ACTION

While the plan-based theory of speech acts was a major step forward,
it was recognised that a theory of speech acts should be rooted in
a more general theory of rational action. This observation led Cohen
and Levesque to develop a theory in which speech acts were modelled
as actions performed by rational agents in the furtherance of their
intentions [13]. The foundation upon which they built this model of
rational action was their theory of intention, described in [12]. The for-
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mal theory is too complex to describe here, but as a flavour, here is the
Cohen-Levesque definition of requesting, paraphrased in English [13,
p241]:

A request is an attempt on the part of spkr, by doing e, to bring
about a state where, ideally, (i) addr intends «, (relative to the
spkr still having that goal, and addr still being helpfully inclined to
spkr), and (ii) addr actually eventually does «, or at least brings
about a state where addr believes it is mutually believed that it
wants the ideal situation.

Actions in the Cohen-Levesque framework were modelled using tech-
niques adapted from dynamic logic [23].

2.4. AGENT COMMUNICATION LANGUAGES: KQML AND FIPA

Throughout the 1980s and 1990s, interest in multi-agent systems de-
veloped rapidly [6, 41]. An obvious problem in multi-agent systems
is how to get agents to communicate with one-another — the inter-
operability issue referred to in the introduction. To this end, in the early
1990s, the DARPA Knowledge Sharing Effort (KSE) began to develop
the Knowledge Query and Manipulation Language (KQML) and the
associated Knowledge Interchange Format (KIF) as a common frame-
work via which multiple expert systems (cf. agents) could exchange
knowledge [33, 30].

KQML is essentially an “outer” language for messages: it defines a
simple LisP-like format for messages, and 41 performatives, or message
types, that define the intended meaning of a message. Example KQML
performatives include ask-if and tell. The content of messages was
not considered part of the KQML standard, but KIF was also defined,
to express such content. KIF is essentially classical first-order predicate
logic, recast in a LISP-like syntax.

To better understand the KQML language, consider the following
example [30, p354]:

(ask-one
:content (PRICE IBM ?price)
:receiver stock-server
:language LPROLOG
:ontology NYSE-TICKS

)

The intuitive interpretation of this message is that the sender is asking
about the price of IBM stock. The performative is ask-one, which an
agent will use to ask a question of another agent where exactly one reply
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is needed. The various other components of this message represent its
attributes. The most important of these is the :content field, which
specifies the message content. In this case, the content simply asks for
the price of IBM shares. The :receiver attribute specifies the intended
recipient of the message, the :language attribute specifies that the
language in which the content is expressed is called LPROLOG (the re-
cipient is assumed to “understand” LPROLOG), and the final :ontology
attribute defines the terminology used in the message.

Formal definitions of the syntax of KQML and KIF were developed
by the KSE, but KQML lacked any formal semantics until Labrou and
Finin’s [26]. These semantics were presented using a pre- and post-
condition notation, closely related to Cohen and Perrault’s plan-based
theory of speech acts [15]. These pre- and post-conditions were specified
by Labrou and Finin using a logical language containing modalities
for belief, knowledge, wanting, and intending. However, Labrou and
Finin recognised that any commitment to a particular semantics for
this logic itself would be contentious, and so they refrained from giving
it a semantics. However, this rather begs the question of whether their
semantics are actually well-founded. We return to this issue later.

The take-up of KQML by the multi-agent systems community was
significant. However, Cohen and Levesque (among others) criticized
KQML on a number of grounds [14], the most important of which be-
ing that, the language was missing an entire class of performatives —
commissives, by which one agent makes a commitment to another. As
Cohen and Levesque point out, it is difficult to see how many multi-
agent scenarios could be implemented without commissives, which ap-
pear to be important if agents are to coordinate their actions with
one-another [25].

In 1995, the Foundation for Intelligent Physical Agents (FIPA) began
its work on developing standards for agent systems. The centrepiece of
this initiative is the development of an AcCL [19]2. This ACL is super-
ficially similar to KQML: it defines an “outer” language for messages,
it defines 20 performatives (such as inform) for defining the intended
interpretation of messages, and it does not mandate any specific lan-
guage for message content. In addition, the concrete syntax for FIPA
ACL messages closely resembles that of KQML. Here is an example of a
FIPA ACL message (from [19, p10]):

(inform
:sender  agentl

2 FIPA simply refer to their ACL as “ACL”, which can result in confusion when

discussing ACLs in general. To avoid ambiguity, we will always refer to “the FIpa
ACL”.
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:receiver agent2
:content (price good2 150)
:language sl
:ontology hpl-auction
)

Even a superficial glance confirms that the FIPA ACL is similar to KQML;
the relationship is discussed in [19, pp68—69].

The FIPA ACL has been given a formal semantics, in terms of a Se-
mantic Language (SL). The approach adopted for defining these seman-
tics draws heavily on [13], but in particular on Sadek’s enhancements to
this work [9]. SL is a quantified multi-modal logic, which contains modal
operators for referring to the beliefs, desires, and uncertain beliefs of a-
gents, as well as a simple dynamic logic-style apparatus for representing
agent’s actions. The semantics of the FIPA ACL map each ACL message
to a formula of SL, which defines a constraint that the sender of the
message must satisfy if it is to be considered as conforming to the FIPA
ACL standard. FIPA refer to this constraint as the feasibility condition.
The semantics also map each message to an SL-formula which defines
the rational effect of the action. The rational effect of a messages is its
purpose: what an agent will be attempting to achieve in sending the
message (cf. perlocutionary act). However, in a society of autonomous
agents, the rational effect of a message cannot (and should not) be
guaranteed. Hence conformance does not require the recipient of a
message to respect the rational effect part of the ACL semantics —
only the feasibility condition.

To illustrate the FIPA approach, we give an example of the semantics
of the FIPA inform performative [19, p25]:

(i, inform(j, ¢))
FP: Bjp A -B;i(Bifje V Ujp) (1)
RE: Bjyp

The B; is a modal connective for referring to the beliefs of agents (see
e.g., [21]); Bif is a modal connective that allows us to express whether
an agent has a definite opinion one way or the other about the truth
or falsity of its parameter; and U is a modal connective that allows us
to represent the fact that an agent is “uncertain” about its parameter.
Thus an agent ¢ sending an inform message with content ¢ to agent j
will be respecting the semantics of the FIPA ACL if it believes ¢, and it
it not the case that it believes of j either that j believes whether ¢ is
true or false, or that 7 is uncertain of the truth or falsity of ¢.

FIPA recognise that “demonstrating in an unambiguous way that a
given agent implementation is correct with respect to [the semantics]

wooldridge.tex; 1/09/1999; 14:28; p.8



Semantic Issues in Agent Communication 9

is not a problem which has been solved” [19, p46], and identify it as
an area of future work. (Checking that an implementation respects the
syntaz of an ACL like KQML or FIPA is, of course, trivial.) If an agent
communication language such as FIPA’s ACL is ever to be widely used
— particularly for such sensitive applications as electronic commerce
— then such conformance testing is obviously crucial. However, the
problem of conformance testing (verification) is not actually given a
concrete definition in [19], and no indication is given of how it might
be done. In short, the aim of the remainder of this article is to unam-
biguously define what it means for an agent communication language
such as that defined by FIPA to be verifiable, and then to investigate
the issues surrounding such verification.

3. Agent Communication Frameworks

In this section, we present an abstract framework that allows us to
precisely define the verifiable ACL semantics problem. First, we will
assume that we have a set Ag = {1,..., n} of agent names — these are
the unique identifiers of agents that will be sending messages to one
another in a system.

We shall assume that agents communicate using a communication
language L¢. This ACL may be KQML together with KIF [26], it may be
the FIPA-97 communication language [19], or some other proprietary
language. The exact nature of L¢ is not important for our purposes.
The only requirements that we place on L¢ are that it has a well-
defined syntar and a well-defined semantics. The syntax identifies a
set wff (L¢) of well-formed formulae of Lo — syntactically acceptable
constructions of L¢. Since we usually think of formulae of £¢ as being
messages, we use y (with annotations: u/, y1,...) to stand for members
of wff (Lc).

The semantics of L are assumed to be defined in terms of a second
language Ls, which we shall call the semantic language. The idea is that
if an agent sends a message, then the meaning of sending this message
is defined by a formula of Ls. This formula defines what FIPA [19,
p48] refer to as the feasibility pre-condition — essentially, a constraint
that the sender of the message must satisfy in order to be regarded
as being “sincere” in sending the message. For example, the feasibility
pre-condition for an inform act would typically state that the sender
of an inform must believe the content of the message, otherwise the
sender is not being sincere.
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The idea of defining the semantics of one language in terms of an-
other might seem strange, but the technique is common in computer
science:

— when Hoare-logic style semantics are given for programming lan-
guages, the semantics of a program written in, for example, PASCAL
or C are defined in terms of a second language — that of classical
first-order logic [24];

— an increasingly common approach to defining the semantics of
many programming languages is to give them a temporal seman-
tics, whereby the semantics of a program in a language such as C
or PASCAL are defined as a formula of temporal logic [28].

Note that in this article we are not concerned with the effects that
messages have on recipients. This is because although the “rational
effect” of a message on its recipient is the reason that the sender will
send a message (e.g., agent i informs agent j of ¢ because i wants j
to believe ¢), the sender can have no guarantee that the recipient will
even receive the message, still less that it will have the intended effect.
The key to our notion of semantics is therefore what properties must
hold of the sender of a message, in order that it can be considered to
be sincere in sending it.
Formally, the semantics of the ACL L¢ are given by a function

[ec : wif (Le) = wff (Ls)

which maps a single message p of L¢ to a single formula [u]e of Ls,
which represents the semantics of y. Note that the “sincerity condition”
[u]c for message p acts in effect like a specification (in the software
engineering sense), which must be satisfied by any agent that claims to
conform to the semantics. Verifying that an agent program conforms to
the semantics is thus a process of checking that the program satisfies
this specification.

To make the idea concrete, recall the FIPA semantics of inform
messages, given in (1), above. In our framework, we can express the
FIPA semantics as

[(3, inform(j,¢))]c = Bip A =Bi(Bifjp vV Ujyp)

It should be obvious how this corresponds to the FIPA definition.

In order that the semantics of L; be well-defined, we must also
have a semantics for our semantic language Ls itself. While there is
no reason in principle why we should not define the semantics of Ls in
terms of a further language Lg, (and so on), we assume without loss
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of generality that the semantics of Ls are given with respect to a class
mod(Ls) of logical models for Lg. More precisely, the semantics of Lg
will be defined via a satisfaction relation “F=g”, where

Fs C wff (Ls) x mod(Ls).

By convention, if M € mod(Ls) and ¢ € wff (Ls) then we write M =g
¢ to indicate that (¢, M) € =s. If M =5 ¢, then we read this as “p
is satisfied (or equivalently, is true) in M”. The meaning of a formula
@ of Lg is then the set of models in which ¢ is satisfied. We define a
function

[s : wff (Ls) = p(mod(Ls))

such that if ¢ € wff(Ls), then [p]s is the set of models in which ¢ is
satisfied:

[els ={M | M € mod(Ls) and M =5 p}.

Agents are assumed to be implemented by programs, and we let 11
stand for the set of all such agent programs. For each agent i € Ag,
we assume that w; € II is the program that implements it. For our
purposes, the contents of II are not important — they may be JAVA, C,
or C++ programs, for example. At any given moment, we assume that
a program m; may be in any of a set L; of local states. The local state
of a program is essentially just a snapshot of the agent’s memory at
some instant in time. As an agent program 7; executes, it will perform
operations (such as assignment statements) that modify its state. Let
L =U;ca, Li be the set of all local states. We use ! (with annotations:
I',1,...) to stand for members of L.

One of the key activities of agent programs is communication: they
send and receive messages, which are formulae of the communication
language L. We assume that we can identify when an agent emits
such a message, and write send(m;, p, 1) to indicate the fact that agent
i € Ag, implemented by program 7; € II, sends a message u € L¢ when
in state [ € L;.

We now define what we mean by the semantics of an agent program.
Intuitively, the idea is that when an agent program =; is in state [, we
must be able to characterise the properties of the program as a formula
of the semantic language Ls. This formula is the theory of the program.
In theoretical computer science, the derivation of a program’s theory is
the first step to reasoning about its behaviour. In particular, a program
theory is the basis upon which we can verify that the program satisfies
its specification. Formally, a program semantics is a function that maps
a pair consisting of an agent program and a local state to a formula
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Programs/state — II x L Communication language — L¢

1 1
[n [-e
1 1
Semantic language — Lg
1

[]s

n
Model structures for Ls — mod(Ls)

Figure 2. The components of an agent communication framework.

Ls of the semantic language. Note that the semantics of II must be
defined in terms of the same semantic language that was used to define
the semantics of Lz — otherwise there is no point of reference between
the two. Formally then, a semantics for agent program/state pairs is a
function

[[—]]II :IIxL— ’wﬁ(ﬁ‘g)

The relationships between the various formal components introduced
above are summarised in Figure 2. We now collect these various com-
ponents together and define what we mean by an agent communication
framewortk.

DEFINITION 1. An agent communication framework is a (2n + 4)-
tuple:

<Ag,7T1;--- 77Tn’L17"' 5L1’L7£07£Sa |[—]]H)

where Ag = {1,...,n} is a non-empty set of agents, m; € Il is an agent
program, L; is the set of local states of mi, Lc = (wff(Le),[-]c) is a
communication language, Ls = (wff (Ls), [-]s) is a semantic language,
and [-Ju is a semantics for II.

We let F' be the set of all such agent communication frameworks, and
use f (with annotations: f', f1,...) to stand for members of F.
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4. Verifiability Defined

We are now in a position to define what it means for an agent program,
in sending a message while in some particular state, to be respecting
the semantics of a communication framework. Recall that a commu-
nication language semantics defines, for each message, a constraint, or
specification, which must be satisfied by the sender of the message if
it is to be considered as satisfying the semantics of the communication
language. The properties of a program when in some particular state
are given by the program semantics, [_Ji. This leads to the following
definition.

DEFINITION 2. Suppose
f = <Aga7T17 -5 T, L17 IRRN Ln,£C,£S> II—]]H>

is an agent communication framework, and that send(m;, p,1) for some
i € Ag, u € wff (Le), and l € L;. Then i is said to respect the semantics

of framework f (written (m;,1) =r p) iff
[[7i, Quls € [lrlels-

Note that the problem could equivalently have been phrased in terms
of logical consequence: (7;,1) |=; p iff [u]c is an Ls-logical consequence
of [mi, . If we had a sound and complete proof system g for Lg,
then we could similarly have phrased it as a proof problem: (7, 1) =¢ p
iff [n;,1] Fs [u]c. The first approach, however, is probably the most
general.

Using this definition, we can define what it means for a communi-
cation framework to have a verifiable semantics.

DEFINITION 3. An agent communication framework

f = <Aga7T17"'77Tn7L17"'7LTLa£Ca‘CS7II—]]H>

is verifiable iff it is a decidable question whether (m;,l) =y p for
arbitrary m;, 1, p.

The intuition behind verifiability is as follows: if an agent communica-
tion framework enjoys this property, then we can determine whether
or not an agent is respecting the framework’s communication language
semantics whenever it sends a message.

If a framework is verifiable, then we know that it is possible in prin-
ciple to determine whether or not an agent is respecting the semantics
of the framework. But a framework that is verifiable in principle is
not necessarily verifiable in practice. This is the motivation behind the
following definition.
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DEFINITION 4. An agent communication framework f € F is said to
be practically verifiable iff it is decidable whether (m;,1) |=p p in time
polynomial in |f| % |7| x |p| x |I].

If we have a practically verifiable framework, then we can do the
verification in polynomial time, which implies that we have at least
some hope of doing automatic verification using computers that we can
envisage today. Our ideal, when setting out an agent communication
framework f, should clearly be to construct f such that it is practically
verifiable. However, practical verifiability is quite a demanding proper-
ty, as we shall see in section 5. In the following subsection, we examine
the implications of these definitions.

4.1. WHAT DOES IT MEAN TO BE VERIFIABLE?

If we had a verifiable agent communication framework, what would it
look like? Let us take each of the components of such a framework in
turn. First, our set Ag of agents, implemented by programs 7;, (where
these programs are written in an arbitrary programming language).
This is straightforward: we obviously have such components today.
Next, we need a communication language L¢, with a well-defined syntax
and semantics, where the semantics are given in terms of Lg, a semantic
language. Again, this is not problematic: we have such a language L¢
in both KQML and the FIPA-97 language. Taking the FIPA case, the
semantic language is SL, a quantified multi-modal logic with equality.
This language in turn has a well defined syntax and semantics, and
so next, we must look for a program semantics [_]i. At this point, we
encounter problems.

Put simply, the FIPA semantics are given in terms of mental states,
and since we do not understand how such states can be systematically
attributed to programs, we cannot verify that such programs respect
the semantics. More precisely, the semantics of SL are given in the
normal modal logic tradition of Kripke (possible worlds) semantics,
where each agent’s “attitudes” (belief, desire, ...) are characterised as
relations holding between different states of affairs. Although Kripke
semantics are attractive from a mathematical perspective, it is impor-
tant to note that they are not connected in any principled way with
computational systems. That is, for any given m; € II, (where 7; is, say,
a JAVA program), there is no known way of attributing to that program
an SL formula (or, equivalently, a set of SL models), which characterises
it in terms of beliefs, desires, and so on. Because of this, we say that SL
(and most similar logics with Kripke semantics) are ungrounded — they
have no concrete computational interpretation. In other words, if the
semantics of Ls are ungrounded (as they are in the FIPA-97 SL case),
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then we have no semantics for programs — and hence an unverifiable
communication framework. Although work is going on to investigate
how arbitrary programs can be ascribed attitudes such as beliefs and
desires, the state of the art ([8]) is considerably behind what would be
required for ACL verification. Other researchers have also recognised
this difficulty [39, 34].

Note that it is possible to choose a semantic language Ls such
that a principled program semantics [_]i can be derived. For example,
temporal logic has long been used to define the semantics of program-
ming languages [29]. A temporal semantics for a programming language
defines for every program a temporal logic formula characterising the
meaning of that program. Temporal logic, although ultimately based
on Kripke semantics, is firmly grounded in the histories traced out by
programs as they execute — though of course, standard temporal logic
makes no reference to attitudes such as belief and desire. Also note that
work in knowledge theory has shown how knowledge can be attributed
to computational processes in a systematic way [17]. However, this
work gives no indication of how attitudes such as desiring or intending
might be attributed to arbitrary programs. (We use techniques from
knowledge theory to show how a grounded semantics can be given to a
communication language in Example 2 of section 5.)

Another issue is the high computational complexity of the verifi-
cation process itself [32]. Ultimately, determining whether an agent
implementation is respecting the semantics of a communication frame-
work reduces to a logical proof problem, and the complexity of such
problems is well-known. If the semantic language Ls of a framework f
is equal in expressive power to first-order logic, then f is of course not
verifiable. For quantified multi-modal logics, (such as that used by F1pA
to define the semantics of their ACL), the proof problem is often much
harder than this — proof methods for quantified multi-modal logics
are very much at the frontiers of theorem-proving research (cf. [1]). In
the short term, at least, this complexity issue is likely to be another
significant obstacle in the way of ACL verification.

To sum up, it is entirely possible to define a communication lan-
guage Lo with semantics in terms of a language Ls. However, giving
a program semantics for a semantic language (such as that of FIPA-97)
with ungrounded semantics is a serious unsolved problem.

5. Example Frameworks

To illustrate the idea of verification, as introduced above, in this section
we will consider a number of progressively richer agent communica-
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tion frameworks. For each of these frameworks, we discuss the issue
of verifiability, and where possible, characterise the complexity of the
verification problem.

5.1. EXAMPLE 1: CLASSICAL PROPOSITIONAL LOGIC.

For our first example, we define a simple agent communication frame-
work f; in which agents communicate by exchanging formulae of clas-
sical propositional logic. The intuitive semantics of sending a message
@ is that the sender is informing other agents of the truth of ¢. An
agent sending out a message ¢ will be respecting the semantics of the
language if it “believes” (in a sense that we precisely define below)
that ¢ is true. An agent will not be respecting the semantics if it
sends a message that it “believes” to be false. We also assume that
agent programs exhibit a simple behaviour of sending out all messages
that they believe to be true. We show that framework f; is verifiable,
and that in fact every agent program in this framework respects the
semantics of f;.
Formally, we must define the components of a framework f:

f1 = <Ag,7l'1,... ,7'('”,[11,. . .,Ln,EC,LS, |[_]]1'[>

These components are as follows. First, Ag is some arbitrary non-empty
set — the contents are not significant. Second, since agents commu-
nicate by simply exchanging messages that are simply formulae of
classical propositional logic, Ly, we have L¢ = L. Thus the set wff (Lo)
contains formulae made up of the proposition symbols ® = {p, ¢, r,...}
combined into formulae using the classical connectives “=” (not), “A”
(and), “V” (or), and so on.

We let the semantic language Lg also be classical propositional logic,
and define the £¢ semantic function [_]¢ simply as the identity function:
[ele = o, for all ¢ € L¢. The semantic function []s for L is then
the usual propositional denotation function — the definition is entirely
standard, and so we omit it in the interests of brevity.

An agent i’s state [; is defined to be a set of formulae of propositional
logic, hence L; = p(wff(Ly)). An agent i’s program m; is assumed to
simply implement the following rule:

Vo € wff (Lc),VI € L, send(mi, @,1) iff o €1 (2)

In other words, an agent program m; sends a message u when in state [
iff 4 is present in [. The semantics of agent programs are then defined
as follows:

ﬂﬂi’{(PO’(Pla'--a(Pk}]]H:(100/\(;01/\"'/\@]9-
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In other words, the meaning of a program in state [ is just the conjunc-
tion of formulae in /. The following theorem sums up the key properties
of this simple agent communication framework.

THEOREM 1.
1. Framework fi is verifiable.

2. Fwvery agent in fi does indeed respect the semantics of fi.
Proof. For (1), suppose that send(m;,u,l) for arbitrary m;, p, | =
{00, ¢1,---,9k}- Then m; is respecting the semantics for f iff

[[7i; { @0, 1, - o Huls < [[elels
which by the fi definitions of [Ju and []c reduces to

[wo A1 A=+ ANprls C [uls.

But this is equivalent to showing that p is an Lo-logical consequence
of wo N1 N+ A g. Since Ly logical consequence is obuviously a de-
cidable problem, we are done. For (2), we know from equation (2) that
send(mi, pu, 1) iff p € 1. Since p is clearly a logical consequence of 1 if
u € l, we are done.

An obvious next question is whether f; is practically verifiable, i.e.,
whether verification can be done in polynomial time. Here, observe that
verification reduces to a problem of determining logical consequence in
Lo, which reduces to a test for Ly-validity, and hence in turn to Ly-
unsatisfiability. Since the Ly-satisfiability problem is well-known to be
NP-complete, we can immediately conclude the following.

THEOREM 2. The fi verification problem is co-NP-complete.

Note that co-NP-complete problems are ostensibly harder than mere-
ly NP-complete problems, from which we can conclude that practical
verification of f; is highly unlikely to be possible®.

5.2. EXAMPLE 2: GROUNDED SEMANTICS FOR PROPOSITIONAL
LogIc.

One could argue that Example 1 worked because we made the assump-
tion that agents explicitly maintain databases of £y formulae: checking
whether an agent was respecting the semantics in sending a message ¢

3 In fact, f» will be practically verifiable if and only if P = NP, which is regarded
as extremely unlikely [32].

wooldridge.tex; 1/09/1999; 14:28; p.17



18 Michael Wooldridge

amounted to determining whether ¢ was a logical consequence of this
database. This was a convenient, but, as the following example illus-
trates, unnecessary assumption. For this example, we will again assume
that agents communicate by exchanging formulae of classical proposi-
tional logic Ly, but we make no assumptions about their programs or
internal state. We show that despite this, we can still obtain a verifiable
semantics, because we can ground the semantics of the communication
language in the states of the program. There is an impartial, objective
procedure we can apply to obtain a declarative representation of the
“knowledge” implicit within an arbitrary program, in the form of Fagin-
Halpern-Moses-Vardi knowledge theory [17]. To check whether an agent
is respecting the semantics of the communication language, we simply
check whether the information in the message sent by the agent is a
logical consequence of the knowledge implicit within the agent’s state,
which we obtain using the tools of knowledge theory.

In what follows, we assume all sets are finite. As in Example 1, we
set both the communication language L¢ and the semantic language
Ls to be classical propositional logic £y. We require some additional
definitions (see [17, pp103-114] for more details). Let the set G of global
states of a system be defined by G = Ly X --- X L,. We use g (with
annotations: g1, ¢’,...) to stand for members of G. We assume that we
have a vocabulary ® = {p, q,...} of primitive propositions to express
the properties of a system. In addition, we assume it is possible to
determine whether or not any primitive proposition p € @ is true of
a particular global state or not. We write g = p to indicate that p is
true in state g. Next, we define a relation ~; C G x L; for each agent
i € Ag to capture the idea of indistinguishability. The idea is that if
an agent 7 is in state [ € L;, then a global state ¢ = (I{,...,1}) is
indistinguishable from the state [ that 7 is currently in (written g ~; [)
iff I = I]. Now, for any given agent program 7; in local state I, we define
the positive knowledge set of m; in [, (written ks (m;, 1)) to be the set of
propositions that are true in all global states that are indistinguishable
from [, and the negative knowledge set of m; in [, (written ks~ (m;, 1))
to be the set of propositions that are false in all global states that are
indistinguishable from [. Formally,

kst(mi, 1) ={p|p € ®and Vg € G,g ~; | implies g |= p}
ks™(mi,l) ={p|p € ®and Vg € G,g ~; I implies g [~ p}
Readers familiar with epistemic logic [17] will immediately recognise
that this construction is based on the definition of knowledge in dis-
tributed systems. The idea is that if p € kst (m;, 1), (respectively,

p € ks (m;,l)), then given the information that i has available in
state I, p must necessarily be true (respectively, false). Thus ks™ (m;, ()
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represents the set of propositions that the agent i knows are true when
it is in state [; and ks~ (m;,[) represents the set of propositions that i
knows are false when it is in state [.

The L¢ semantic function [_]¢ is defined to be the identity function
again, so [¢]c = ¢. For the program semantics, we define

[ri,llu= N\ o A N\ -pe

p;Ekst(m;,l) pr€ks— (m;,l)

The formula [7;, []i; thus encodes the knowledge that the program m;
has about the truth or falsity of propositions ® when in state [. The Lg
semantic function [_]s is assumed to be the standard £, semantic func-
tion, as in Example 1. An agent will thus be respecting the semantics
of the communication framework if it sends a message such that this
message is guaranteed to be true in all states indistinguishable from
the one the agent is currently in. This framework has the following

property.

THEOREM 3. Framework fo is verifiable.
Proof. Suppose that send(m;, p,1) for arbitrary m;, u, l. Then ; is
respecting the semantics for fo iff

[[7i; uls € [Mulels
which by the fo definitions of []Ju and []c reduces to
[ A »mA A -pels Cluls.
pj€kst(mi,l) pr€ks™ (mi,l)

Computing G can be done in time O(|Ly X --- X Ly|); computing ~;
can be done in time O(|L;| X |G|); and given G and ~;, computing
kst (ms, 1) and ks~ (mi, 1) can be done in time O(|®| x |G|). Once given
kst (m,1) and ks~ (m,1), determining whether

[ /\ pj A /\ —pils C [uls
p;€kst(m;,l) prE€ks— (mi,l)
reduces to the Lgy logical consequence problem
AN win N e Euls
p; Ekst(mi,l) pr€ks™ (mi,l)
This problem is obviously decidable.
Since f, verification reduces to Lg logical consequence checking, we can

use a similar argument to that used for Theorem 2 to show the problem
is in general no more complex than f; verification:
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THEOREM 4. The f, verification problem is co-NP-complete.

Note that the main point about this example is the way that the
semantics for programs were grounded in the states of programs. In
this example, the communication language was simple enough to make
the grounding easy. More complex communication languages with a
similarly grounded semantics are possible. We note in closing that
it is straightforward to extend framework fo to allow a much richer
agent communication language (including requesting, informing, and
commissives) [40].

5.3. EXAMPLE 3: THE FIPA-97 ACL.

For the final example, consider a framework f; in which we use the
FIPA-97 ACL, and the semantics for this language defined in [19]. Fol-
lowing the discussion in section 4.1, it should come as no surprise that
such a framework is not verifiable. It is worth spelling out the reasons
for this. First, since the semantic language SL is a quantified multi-
modal logic, with greater expressive power than classical first order
logic, it is clearly undecidable. (As we noted above, the complexity of
the decision problem for quantified modal logics is often much harder
than for classical predicate logic [1].) So the f3 verification problem is
obviously undecidable. But of course the problem is worse than this,
since as the discussion in section 4.1 showed, we do not have any idea
of how to assign a program semantics for semantic languages like SL,
because these languages have an ungrounded, mentalistic semantics.

6. Verification via Model Checking

The problem of verifying whether an agent implements the semantics
of a communication language has thus far been presented as one of
determining logical consequence, or, equivalently, as a proof problem.
Readers familiar with verification from theoretical computer science
will recognise that this corresponds to the “traditional” approach to
verifying that a program satisfies a specification. Other considerations
aside, a significant drawback to proof theoretic verification is the prob-
lem of computational complexity. As we saw above, even if the semantic
language is as impoverished as classical propositional logic, verifica-
tion will be co-NP-complete. In reality, logics for verification must be
considerably more expressive than this.

Problems with the computational complexity of verification logics
led researchers in theoretical computer science to investigate other ap-
proaches to formal verification. The most successful of these is model
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checking [27, 22, 10]. The idea behind model checking is as follows.
Recall that in proof theoretic verification, to verify that a program m;
has some property ¢ when in state I, we derive the theory of that
program [m;, ] and attempt to establish [m;, ] - ¢, i.e., that prop-
erty ¢ is a theorem of the theory [m;,/]i. In temporal semantics, for
example [28, 29], [m;,{]n is a temporal logic formula such that the
models of this formula correspond to all possible runs of the program
-

In contrast, model checking approaches work as follows. To deter-
mine whether or not 7; has property ¢ when in state [, we proceed as
follows:

— Take m;, [, and from them generate a model M, ; that encodes all
the possible computations of .

— Determine whether or not My ; |= ¢, i.e., whether the formula ¢
is valid in My, ;; the program 7; has property ¢ in state [ just in
case the answer is “yes”.

In order to encode all computations of the program, the model gener-
ated in the first stage will be a branching time temporal model [16].
Intuitively, each branch, (or path), through this model will correspond
to one possible execution of the program. Such a model can be gener-
ated automatically from the text of a program in a typical imperative
programming language.

The main advantage of model checking over proof theoretic ver-
ification is in complexity: model checking using the branching time
temporal logic CTL [11] can be done in time O(|p| x |M]), where |¢| is
the size of the formula to be checked, and |M| is the size of the model
(i.e., the number of states it contains) [16]. Model-checking approaches
have recently been used to verify finite-state systems with up to 1020
states [10].

Using a model checking approach to conformance testing for ACLs,
we would define the program semantics as a function

[l : II x L — mod(Ls)

which assigns to every program/state pair an Ls-model, which encodes
the properties of that program/state pair. Verifying that (m;,1) |=¢
p would involve checking whether [7;, [Jn Es [¢]c, i-e., whether the
sincerity condition [u]c was valid in model [, [].

The comparative efficiency of model checking is a powerful argu-
ment in favour of the approach. Algorithms have been developed for
(propositional) belief-desire-intention logics that will take a model and
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a formula and will efficiently determine whether or not the formula is
satisfied in that model [35, 5]. These belief-desire-intention logics are
closely related to those used to give a semantics to the FIPA-97 ACL.
However, there are two unsolved problems with such an approach.

The first problem is that of developing the program semantics [_]i.
We have procedures that, given a program, will generate a branching
temporal model that encode all computations of that program. Howev-
er, these are not the same as models for belief-desire-intention logics.
Put simply, the problem is that we do not yet have any techniques for
systematically assigning beliefs, desires, intentions, and uncertainties
(as in the FIPA-97 SL case [19]) to arbitrary programs. This is again
the problem of grounding that we referred to above. As a consequence,
we cannot do the first stage of the model checking process for ACLs
that have (ungrounded) FIPA-like semantics.

The second problem is that model checking approaches have been
shown to be useful for systems that can be represented as finite state
models using propositional temporal logics. If the verification logic al-
lows arbitrary quantification, (or the system to be verified is not finite
state), then a model checking approach is unlikely to be practicable.

To summarise, model checking approaches appear to have consider-
able advantages over proof-theoretic approaches to verification with
respect to their much reduced computational complexity. However,
as with proof-theoretic approaches, the problem of ungrounded ACL
semantics remains a major problem, with no apparent route of attack.
Also, the problem of model checking with quantified logics is an as-
yet untested area. Nevertheless, model checking seems a promising
direction for ACL conformance testing.

7. Discussion

If agents are to be as widely deployed as some observers predict, then
the issue of inter-operation — in the form of standards for commu-
nication languages — must be addressed. Moreover, the problem of
determining conformance to these standards must also be seriously
considered, for if there is no way of determining whether or not a system
that claims to conform to a standard does indeed conform to it, then the
value of the standard itself must be questioned. This article has given
the first precise definition of what it means for an agent communication
framework to be verifiable, and has identified some problematic issues
for verifiable communication language semantics, the most important
of which being that:
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— We must be able to characterise the properties of an agent pro-
gram as a formula of the language Ls used to give a semantics
to the communication language. Lg is often a multi-modal logic,
referring to (in the FIPA-97 case, for example) the beliefs, desires,
and uncertainties of agents. We currently have very little idea
about systematic ways of attributing such mentalistic descriptions
to programs — the state of the art is considerably behind what
would be needed for anything like practical verification, and this
situation is not likely to change in the near future.

— The computational complexity of logical verification, (particularly
using quantified multi-modal languages), is likely to prove a major
obstacle in the path of practical agent communication language
verification. Model checking approaches appear to be a promising
alternative.

In addition, the article has given examples of agent communication
frameworks, some of which are verifiable by this definition, others of
which, (including the FIPA-97 ACL [19]), are not.

The results of this article could be interpreted as negative, in that
they imply that verification of conformance to ACLs using current tech-
niques is not likely to be possible. However, the article should emphat-
ically not be interpreted as suggesting that standards — particularly,
standardised ACLs — are unnecessary or a waste of time. If agent tech-
nology is to achieve its much vaunted potential as a new paradigm for
software construction, then such standards are important. However, it
may well be that we need new ways of thinking about the semantics
and verification of such standards. A number of promising approaches
have recently appeared in the literature [39, 34, 40]. One approach
that can work effectively in certain cases is mechanism design [36].
The basic idea is that in certain multi-agent scenarios (auctions are a
well-known example), it is possible to design an interaction protocol
so that the dominant strategy for any participating agent is to tell
the truth. Vickrey’s mechanism is probably the best-known example of
such a technique [37]. In application domains where such techniques are
feasible, they can be used to great effect. However, most current multi-
agent applications do not lend themselves to such techniques. While
there is therefore great potential for the application of mechanism de-
sign in the long term, in the short term it is unlikely to play a major
role in agent communication standards.
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