
Auton Agent Multi-Agent Sys (2006) 12: 239–256
DOI 10.1007/s10458-006-5955-7

Verifying multi-agent programs by model checking

Rafael H. Bordini · Michael Fisher ·
Willem Visser · Michael Wooldridge

Published online: 24 February 2006
Springer Science + Business Media, Inc. 2006

Abstract This paper gives an overview of our recent work on an approach to verifying
multi-agent programs. We automatically translate multi-agent systems programmed in the
logic-based agent-oriented programming language AgentSpeak into either Promela or Java,
and then use the associated Spin and JPF model checkers to verify the resulting systems. We
also describe the simplified BDI logical language that is used to write the properties we want
the systems to satisfy. The approach is illustrated by means of a simple case study.
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1. Introduction

As multi-agent systems come to the attention of a wider technical community, there is an
ever increasing requirement for tools supporting the design, implementation, and verification
of such systems. While such tools should be usable by a general computing audience, they
should also have a strong theoretical underpinning, so that formal methods can be used in the
design and implementation processes. In particular, the verification of multi-agent systems—
showing that a system is correct with respect to its stated requirements—is an increasingly
important issue, especially as agent systems start to be applied to safety-critical applications
such as autonomous spacecraft control [20,27].
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Currently, the most successful approach to the verification of computer systems against
formally expressed requirements is that of model checking [12]. Model checking is a technique
that was originally developed for verifying that finite state concurrent systems implement
specifications expressed in temporal logic. Although model checking techniques have been
most widely applied to the verification of hardware systems, they have increasingly been
used in the verification of software systems and protocols [22,36].

Our aim in this paper is to present an overview of our recent work on the use of model
checking techniques for the verification of systems implemented in AgentSpeak. Based on
the work on reactive planning systems and the BDI agent architecture, Rao introduced in [30]
an abstract agent-oriented programming language called originally AgentSpeak(L), which
was later developed into a more practical programming framework [9]. While the theoretical
foundations of AgentSpeak are increasingly well understood [10], there has been to date
little research on the verification of AgentSpeak systems (or indeed any other agent-oriented
programming language).

We begin by introducing AgentSpeak(F), a variant of AgentSpeak intended to permit its
algorithmic verification. We then show how AgentSpeak(F) programs can be automatically
transformed into Promela, the model specification language for the Spin model-checking
system [23,22]. The translation from AgentSpeak(F) to Promela was first introduced in [4].
We also present an alternative approach, based on the translation of AgentSpeak agents into
Java and verifying via JPF, a general purpose Java model checker [36]. Java models for the
verification of AgentSpeak agents were first discussed in [7]. We also give here an example
that illustrates our approach, and show results obtained using both alternative target model
checkers.

In verification based on model checking, we need to provide a model of the system
and also write down the properties that we require the system to satisfy. In the context of
agent-oriented programming, ideally such properties would make use of modalities such
as those of BDI logics [32,38]. In our approach, we use a simplified form of BDI logic
in which specifications can be written; although it is much simpler than usual BDI log-
ics, it is well suited for a (practical) agent programming language such as AgentSpeak.
Also, the property specification language is defined so as to make it possible to transform
specifications into Linear Temporal Logic (LTL) formulæ. In this way, we can verify auto-
matically whether or not multi-agent systems implemented in AgentSpeak(F) satisfy spec-
ifications expressed as BDI logic formulæ by using existing sophisticated model checkers
for LTL.

The set of tools derived from the work on both the Promela and Java alternatives is called
CASP, and was briefly described in [11]. Elsewhere [6], we introduced a property-based
slicing algorithm which can reduce the state space of the system’s model that will be model
checked without affecting the truth of the particular properties being verified. The whole
approach was summarised in [5], which uses an interesting case study based on a NASA
scenario (a autonomous Mars explorer).

Due to space limitations, we assume readers to be familiar with both AgentSpeak and
Promela. The paper is structured as follows. Section 2 introduces the AgentSpeak(F) variant of
AgentSpeak, and in the following sections we show how AgentSpeak(F) can be transformed
into Promela models (Section 3), as well as into Java models (Section 4). Section 5 describes
the BDI logical language used for specifications; that section also discusses how the BDI
modalities are interpreted in terms of AgentSpeak data structures. We then present a case
study in Section 6, discuss related work in Section 7, and finally we draw conclusions and
mention future work.
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2. AgentSpeak(F)

Our main goal in this research is to facilitate model checking of AgentSpeak systems. How-
ever, model checking as a paradigm is predominantly applied to finite state systems. A first
key step in our research was thus to restrict AgentSpeak to finite state systems: the result is
AgentSpeak(F), a finite state version of AgentSpeak.

In order to ensure that systems to be model-checked are finite state, the maximum size
of data structures and communication channels must be specified. In particular, Promela
models require explicit bounds for all such structures. This means that, for a translator from
AgentSpeak-like programs into a model checking system to work, a series of parameters stat-
ing the expected maximum number of occurrences of certain AgentSpeak constructs need to
be given. The list below describes all the parameters needed by our automatic translator.

MT erm : maximum number of terms in a predicate or an action (i.e., the maximum arity for
a predicate or action symbol);

MConj : maximum number of conjuncts (literals) in a plan’s context;
MV ar : maximum number of different variables used within a plan;
MI nst : maximum number of instances (entries) in the belief base of the same predicate

symbol at a time;
MBel : maximum number of beliefs an agent can have at any moment in time in its belief

base;
MEv : maximum number of pending events, i.e., the maximum number entries in the

event queue that an agent will store at a time; this should be set by considering how
dynamic the environment is expected to be;

MI nt : maximum number of intended means at a time; that is, the number of different
instances of plans in the set of intentions; note that this is the number of plan
instances rather than the number of intentions (each intention being a stack of
plans);

MAct : maximum number of actions requested by the agents that may have to wait to be
executed by the environment;

MMsg: maximum number of messages (generated by inter-agent communication) that an
agent can store at a time.

Note that the first three parameters (MT erm , MConj , and MV ar ) are currently given as input
to the automatic translator, but they could be determined by purely syntactic pre-processing.
The others are restrictions on the data structures used in an AgentSpeak interpreter, to be
explained in Section 3. Some of these parameters will be used in the syntax of AgentSpeak(F),
as seen below.

The grammar in Fig.1 gives the syntax of AgentSpeak(F). In that grammar, P stands
for a predicate symbol and A for an action symbol. Terms ti associated with them are
either constants or variables rather than first order terms (cf. Prolog structures), as usual
in AgentSpeak; the next section discusses this restriction further. As in Prolog, an upper-
case initial letter is used for variables and lowercase for constants and predicate symbols
(cf. Prolog atoms).

There are some special action symbols which are denoted by an initial ‘.’ character (in
extensions of the AgentSpeak language they have been referred to as internal actions).
The action ‘.send’ is used for inter-agent communication, and is interpreted as follows.
If an AgentSpeak(F) agent l1 executes .send(l2, ilf , at), a message will be inserted in the
mailbox of agent l2, having l1 as sender, illocutionary force ilf , and propositional content
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Fig. 1 The Syntax of AgentSpeak(F)

at (an atomic AgentSpeak(F) formula). At this stage, only three illocutionary forces can be
used: tell, untell, and achieve (unless others are defined by the user). They have the same
informal semantics as in the well-known KQML agent communication language [26]. In
particular, achieve corresponds to including at as a goal addition in the receiving agent’s
set of events; tell and untell change the belief base and the appropriate events are gener-
ated. These communicative acts only change an agent’s internal data structures after the
appropriate (user-defined) trust function determines that the change is (socially) acceptable.
There is one specific trust function for belief changes, and another for achievement goals.
The latter defines informally some sort of subordination relation (as other agents have power
over an agent’s goals), whereas the belief trust function simply defines the trustworthiness
of information sources.

Another internal action symbol is .print, which takes a string as parameter and is used
to display messages; it has no effect on the internal structures of agents. Other pre-defined
internal actions are, for example, used for conditional operators and arithmetic operations.
Of course, in case users decide to make use of those operators, it is up to them to ensure
finiteness of the models.

Syntactically, the main difference between AgentSpeak(F) and AgentSpeak(L) is that first
order terms are not allowed, and there are given limits on the number of beliefs, terms, and
conjuncts indicated by the use of MBel , MT erm , and MConj above. There is also the limit
on the number of variables in a plan (MV ar ), which was not made explicit in the grammar.
Note, however, that MBel is the maximum number of beliefs in the belief base at any moment
during the agent’s execution, not just the maximum number of initial beliefs.

The current implementation of the set of tools generated as part of our work imposes some
restrictions on certain features of AgentSpeak(L). In particular, it is presently not possible
to use:

1. uninstantiated variables in triggering events;
2. uninstantiated variables in negated literals in a plan’s context (as originally defined by

Rao [30]);
3. the same predicate symbol with different arities (this only applies to the Promela version,

not to the Java models);
4. first order terms (rather than just constants and variables).
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The first restriction means that an achievement goal cannot be called with an uninstan-
tiated variable (a usual means for a goal to return values to be used in the plan where it
was called). However, this restriction can be overcome by storing such values in the belief
base, and using test goals to retrieve them. Hence, syntactic mechanisms for dealing with
this restriction can be implemented (i.e., this problem can be solved by preprocessing).
Practical AgentSpeak interpreters allow for uninstantiated variables in negated literals. How-
ever, this was not allowed in Rao’s original definition of AgentSpeak(L), as it complicates
slightly the process of checking a plan’s context. Thus, the second restriction is not an
unreasonable one.

3. Promela models of AgentSpeak(F) systems

We now describe how AgentSpeak(F) programs can be translated into Promela, the model
specification language for the Spin model checker. Throughout this section, we presuppose
some familiarity with Promela [22], as space restrictions prevent a detailed account here. For
more detail on this translation, see [4].

A summary of the Promela model of an AgentSpeak(F) interpreter (i.e., for one agent)
is shown in Fig. 2. Each identifier used in the AgentSpeak(F) source code (i.e., identifi-
ers for predicate and action symbols and for constants) is defined in Promela as a macro
for an integer number which represents that symbol uniquely. This is necessary because

Fig. 2 Abstract Promela model for an AgentSpeak(F) agent
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Promela does not support strings. AgentSpeak(F) variables are declared as integer Promela
variables.1

3.1. Data structures

A number of Promela channels are used to handle most of the data structures needed by an
AgentSpeak(L) interpreter; the use of Promela channels as lists had already been pointed out
in [20]. All such channels are described below.

Channel b represents the agent’s belief base. The type for the messages stored in this
channel is composed of MT erms + 1 integers (one to store the predicate symbol and at most
MT erms terms). The b channel is declared to store at most MBel messages. A similar channel
called p stores the percepts. This is changed by the environment and read by all agents for
belief revision. The format and number of messages is as for the b channel. Channel m is used
for inter-agent communication. Messages in it contain the identification of the sender agent,
the illocutionary force associated with the communication, and a predicate (as for beliefs).
It is bounded to at most MMsg messages.

Before we continue describing the channels used as data structures, we need to explain
how intentions are handled. The bodies of plans are translated into Promela inline proce-
dures. These are called whenever the interpreter requires an intended plan instance to execute
the next formula of its body. The data about each intended means is stored in an array called
i_data. Accordingly, intended means can be identified by an index to an entry in this data
structure. In fact, an AgentSpeak intention is represented here by the index to the entry in
i_data that is associated with the plan on top of it; this is explained in detail later on.

Next, a channel called e (of size MEv) is used to store events. The message type here is
formed by: (i) an integer to store an index to i_data (representing an AgentSpeak intention2);
(ii) a boolean defining whether the event is an addition or deletion; (iii) another boolean defin-
ing whether the event is (an addition or deletion of) a belief or a goal; and (iv) MT erms + 1
integers to store a predicate as before.

Channel i, used for scheduling intentions, stores messages of one integer, as only indices
(to i_data) of plan instances that are enabled for execution need to be stored there. This
corresponds to the plans on top of each of the stacks of plans in an agent’s set of intentions.
Both i and i_data have size MI nt . Given that we are using by default a ‘round-robin’ inten-
tion selection function, plan instances that are ready to be scheduled insert their indices (to
i_data) at the end of i. The first index in channel i specifies the next plan that will have a
given formula in its body chosen for execution. (More detail on intention selection is given
in the next section.)

Finally, the a channel (for actions) stores at most MAct messages of the same type as b
plus an identification of the agent requesting the action. Recall that an action has the same
format as a belief atom (the difference in practice is that they appear in the body of plans).

The whole multi-agent system code in Promela will have arrays of the channels described
above, one entry in an array for each agent in the system. Only channels p and a are unique.
They work as connection points with the environment, which is accessed by all agents. The
environment is implemented as a Promela process type called Environment, which is
defined by the user. It reads actions from channel a (which is written into by all agents) and
changes the percepts that are stored in channel p (which is read by all agents).

1 Name clash is avoided by having internal variables (i.e., the ones needed by the AgentSpeak(F) interpreter
code in Promela) being prefixed with ‘_’, which is not a valid initial character for AgentSpeak identifiers.
2 An AgentSpeak event is a tuple 〈te, i〉 where i is the intention that generated the triggering event te.
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We can now discuss the implementation of each part of the reasoning cycle of an
AgentSpeak(F) agent.

3.2. The interpretation cycle

The AgentSpeak(F) interpretation cycle is summarised in Fig. 2 (it shows the structure of the
code generated for one of the agents). When an interpretation cycle starts, the agent checks
its ‘mail box’, and processes the first message in channel m. The effects of the illocution-
ary forces that can be used, as mentioned in Section 2, are defined in an inline procedure
CheckMail in a header file. This can be altered by the user to change or extend the seman-
tics of communication acts, if necessary. Note that checking for messages is not explicitly
mentioned in the original definitions of the abstract interpreter for AgentSpeak [16,30]. We
here have separate stages in the interpretation cycle for considering inter-agent communi-
cation and perception of the environment, then belief revision takes care of both sources of
information (in the figure, perception of the environment is implicit within belief revision).
The trust functions (mentioned in Section 2) associated with this belief revision process are
read from a header file. Unless the inline procedures TrustTell and TrustAchieve
are redefined by the user, full trust between agents is assumed.

The agent then runs its belief revision function (‘BRF’ in the figure). The function used,
unless redefined by the user, is a simple piece of code composed of two Promela do loops.
The first one checks all percepts (in p) and adds to the belief base (channel b) all those that are
not currently there. This generates corresponding belief-addition events (of format 〈+at, T〉).
The second loop checks for current beliefs that are no longer in the percepts, and removes
them. This generates the appropriate belief-deletion events (i.e., 〈−at, T〉). It is, of course, a
comparatively simple belief revision function, but quite appropriate for ordinary AgentSpeak
programs. The belief revision function is in a header file generated by the translator, and may
be changed by the user if a more elaborate function is required.

Next, an event to be handled in this interpretation cycle has to be chosen. Events are cur-
rently handled via a FIFO policy. Thus, when new events are generated, they are appended
to channel e, and the first message in that channel is selected as the event to be handled in the
current cycle. The heads of all plans in an agent’s plan library are translated into a sequence
of attempts to find a relevant and applicable plan. Each such attempt is implemented by a
matching of the triggering event against the first event in e, and checking whether the context
is a logical consequence of the beliefs. This is implemented as nested loops based on MConj
auxiliary channels of size MI nst , storing the relevant predicates from the belief base; the
loops carries on until a unification is found (or none is possible).

If the attempt for a plan p j is successful, then it is considered as the intended means for
the selected event. (Note that the SO selection function is implicitly defined as the order in
which plans are written in the code.) At this point, a free space in i_data, the array storing
intention data, is needed (see FindFreeSpace in the figure). This space is initialised with
the data of that intended means, which states that: it is an instance of plan p j ; the formula in
the body of the plan to be executed next is the first one (by initialising a ‘formula counter’ fc);
the triggering event3 with which this plan is associated; the index in this array of the intention
which generated the present event (if it was an internal one); and the binding of variables for
that plan instance (this is stored in an array of size MV ar ).

There are some issues that have to be considered in relation to event selection and the
creation of new intentions. The first message in channel e is always removed. This means

3 This is needed for retrieving information on the desired and intended formulæ of an agent.
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that the event is discarded if no applicable plan was found for it. Also, recall that the user
defines MI nt , specifying the maximum expected number of intentions an agent will have at
any given time. This corresponds to the maximum number of plan instances in an agent’s
set of intentions (not the number of stacks of plans allowed in it). If any agent requires more
than MI nt intended means, a Promela assertion will fail, interrupting the verification process
(and similarly for the other translation parameters).

Finally, channel i is used for scheduling the execution of the various intentions an agent
may have. As a round-robin scheduler is used unless an application-specific scheduler is
given, it is straightforward to use a channel for this. Indices of the i_data array currently in i
are used as a reference for the present intended means. When an intended means is enabled
for execution, its index is sent to channel i. The integer value idx in the first message in that
channel is used as an index to access the intention data that is necessary for executing its
next formula. This is done by calling an inline procedure according to the plan type stated in
i_data[idx] (and idx is sent as a parameter to that inline procedure).

Plan bodies given in AgentSpeak are translated into Promela inline procedures. Whenever
these procedures are called, they only run the code that corresponds to the next formula to be
executed (by checking the formula counter in the intention data). After executing the code
for the current formula, the formula counter is incremented. Then the index in i_data for this
intended means (idx received as parameter) is inserted again in channel i, meaning that it is
ready to be scheduled again. However, this is not done when the corresponding formula was
an achievement goal; this is explained further below. When the last formula is executed, idx
is no longer sent to i, and the space in i_data for that plan instance is freed.

The translation of each type of formula that can appear in a plan body is relatively simple.
Basic actions are simply appended to the a channel, with the added information of which
agent is requesting it. The user-defined environment should take care of the execution of the
action. Addition and deletion of beliefs is simply translated as adding or removing messages
to/from the b channel, and including the appropriate events in e. Test goals are simply an
attempt to match the associated predicate with any message from channel b. The results in
the Promela variables representing uninstantiated variables in the test goal are then stored
in i_data, so that these values can be retrieved when necessary in processing subsequent
formulæ. Achievement goals, however, work in a slightly different way from other types of
formula.

When an achievement goal appears in the body of a plan in a running intention, all that
happens is the generation of the appropriate internal event. Suppose the index in i_data of the
plan instance on top of that intention is i1. The intention that generated the event is suspended
until that event is selected in a reasoning cycle. In the Promela model, this means that we
have to send a message to channel e, but the formula counter is not incremented, and index i1
is not sent to i. This means that the plan instance in i1 is not enabled for scheduling. However,
the generated event will have i1 to mark the intention that generated it. When an intended
means is created for that event, i1 will be annotated in i_data as the index of the intention
that created it. All inline procedures generated as translation of plan bodies check, after the
last formula is selected to run, whether there is an intention index associated with the entry in
i_data they receive as parameter. If there is, that index should now be sent to i, thus allowing
the previously suspended intended means to be scheduled again.

This completes an agent’s reasoning cycle, i.e., a cycle of interpretation of an AgentSpeak
program. Each of the four main parts in the cycle (as seen in Fig. 2), namely belief revi-
sion , checking inter-agent communication messages, event selection (and generating a new
intended means for it), and intention selection (and executing one formula of it), are atomic
steps in Promela. This means that, during model checking, Spin will consider all possible
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interleavings of such atomic operations being executed by all agents in the multi-agent sys-
tem. This captures the different possible execution speeds of the agents.

The event selection and intention selection parts of the interpretation cycle always use the
first messages in channels e and i, respectively. However, before those parts of the cycle, two
inline procedures are called. These procedures, named Select Event and SelectIn-
tention are initially defined as empty, so channel e is used as a queue of events, and i
provides a round-robin scheduler. Users can have control over event and intention selection
by including code in the definition of those procedures. Such code would change the order
of the messages in e or i (in particular the first one in each of these channel) thus determining
the event or intention that is going to be selected next.

The whole multi-agent system is initialised in the Promela init process. It runs the
user-defined Environment process and waits for it to initialise channel p with the percepts
that will be used in the first reasoning cycle of all agents. It then creates one process for each
agent listed in the translation process.

4. Java models of AgentSpeak(F) systems

In addition to the AgentSpeak(F)-to-Promela translation approach, we have also developed
an AgentSpeak(F)-to-Java translator; see [7] for more detail. The translation from AgentS-
peak(F) to Java is fully automated; that is, it does not require any manual work from the
users. Note, however, that this is for AgentSpeak(F) only, the restricted version of AgentS-
peak presented in the Section 2.

Given the higher expressive power of Java, this translation is much simpler than the
Promela translation. Translating to Java allows Java-based model checkers to be used to
analyse the AgentSpeak(F) programs. We have used the JPF [24,36] Java model checker
for analysis, but in future work we may also consider investigating the use of Bandera [14]
and Bogor [33]. Furthermore, there is an efficient interpreter for an extended version of
AgentSpeak called Jason [9] which allows the use of legacy code in Java within AgentSpeak
programs. Using the translation to Java rather than Promela allows, in principle, systems that
include code written in Java as well as AgentSpeak to be fully verified. Given the widespread
use of Java in real-world applications, this approach is likely to be applied more generally than
that based on Promela (which requires, e.g., Promela modelling skills, at least for defining a
model of the environment).

Java PathFinder (JPF) [24,36] is an explicit state on-the-fly model checker that takes com-
piled Java programs (i.e., bytecode class-files) and analyses all paths through the program the
bytecodes represent. The analysis includes checking for deadlocks, assertion violations, and
linear time temporal logic (LTL) properties. An earlier version of JPF translated Java source
code to Promela to allow model checking with Spin, whereas JPF analyses Java bytecodes
directly with the aid of a special purpose Java Virtual Machine (JVM). JPF can therefore
analyse any Java program, even one making heavy use of Java libraries—as is the case for
the AgentSpeak(F) models used in the work described in this paper. However, because JPF
works on the bytecode level, rather than an abstract model specification (as is the case with
Promela), it is considerably slower than Spin.

In defining Java models of AgentSpeak(F) agents, we followed the main ideas used in
generating a Promela model of the system. However, the Java model is far more elegant, as
we can use instances of objects for various tasks such as creating instances of plans to be
included in the set of intentions (an intention is a stack of partially instantiated plans). Also,
in Java, we can handle such things as unification of logical terms in a much simpler way, and
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even manage a clear ‘plan library’ which was not possible in Promela (where the resulting
part of the model accounting for the plan library was very cumbersome).

Such flexibility in our Java models of AgentSpeak is possible partly because JPF works
directly on Java bytecodes rather than, e.g., translating a subset of Java as in earlier versions
of Bandera [14]. Therefore, in practice, any Java library (indeed anything in Java except
native methods), including all the available classes for manipulating complex data structures
(on which our AgentSpeak(F) models rely heavily), can be used in a systems to be model
checked with JPF. As in ordinary Java programs, uses of such data structures do not require a
static size given at compile time as for Promela. Of course, it is the responsibility of JPF users
to ensure that the data structures never grow too much in size during execution otherwise
the state space generated by the system will be too big for practical model checking. Still,
not having to give specific bounds for the data structures in advance means that most of the
translation parameters that we require in the translation to Promela are not necessary here,
which also makes it significantly more practical for the users.

5. The property specification language

Ideally, we would like to be able to verify that systems implemented in AgentSpeak satisfy
(or do not satisfy) properties expressed in a BDI-like logic. In this section, we show how
BDI logic properties can be mapped down into Linear Temporal Logic (LTL) formulæ and
associated predicates over the data structures in the Promela or Java models. This allows us
to use existing LTL model checkers which have had continued development for many years,
thus incorporating very sophisticated techniques to support the task of model checking, rather
than developing a purpose-built model checker.

In [10], a way of interpreting the informational, motivational, and deliberative modalities
of BDI logics for AgentSpeak agents was given, as part of a framework for proving properties
of AgentSpeak based on its operational semantics. In this work, we use that same framework
for interpreting the B-D-I modalities in terms of data structures within the Promela model of
an AgentSpeak(F) agent in order to translate (temporal) BDI properties into plain LTL. The
particular logical language that is used for specifying such properties is given towards the
end of this section.

The configurations of transition system giving such operational semantics are defined as
a pair 〈ag, C〉, where an agent ag = 〈bs, ps〉 is defined as a set of beliefs bs and a set of
plans ps (see Section AgentSpeak(F)), and C is the agent’s present circumstance defined as
a tuple 〈I, E, A, R, Ap, ι, ρ, ε〉. In a circumstance C , I is the set of intentions; E is the set
of events that are yet to be handled by the agent; and A is a set of actions (it contains the
actions that the agent decided to execute); the other components are not relevant here.

We here give only the main definitions from [10]; some of the motivations for the proposed
interpretation is omitted. In particular, that paper discusses is more detail the interpretation
of intentions and desires, as the belief modality is clearly defined in AgentSpeak. We say
that an AgentSpeak agent ag, regardless of its circumstance C , believes a formula ϕ if, and
only if, it is included in the agent’s belief base; that is, for an agent ag = 〈bs, ps〉:
BEL〈ag,C〉(ϕ) ≡ ϕ ∈ bs.

Note that a ‘closed world’ is assumed, so BEL〈ag,C〉(ϕ) is true if ϕ is included in the
agent’s belief base, and BEL〈ag,C〉(¬ϕ) is true otherwise, where ϕ is an AgentSpeak atomic
formula (i.e., at in Section 2). We next discuss the notion of intention, as it will be used in
the definition of desire given later.
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Before giving the formal definition for the intention modality, we first define an auxiliary
function agls : I → P(%), where I is the domain of all individual intentions and % is the
domain of all atomic formulæ (as mentioned above). Recall that an intention is a stack of
partially instantiated plans, so the definition of I is as follows. The empty intention (or true
intention) is denoted by T, and T ∈ I. If p is a plan and i ∈ I, then also i[p] ∈ I. The
notation i[p] is used to denote the intention that has plan p on top of another intention i ,
and CE denotes the E component of C (and similarly for the other components). Recall that
a plan is syntactically defined as ‘te : ct<-h.’ (see Section 2). The agls function below
returns all the achievement goals that appear within the triggering events of the plans in the
intention given as argument:

agls(T) = {}
agls(i[p]) =

{ {at} ∪ agls(i) if p = +!at : ct<-h.
agls(i) otherwise.

Formally, we say an AgentSpeak agent ag intends ϕ in circumstance C if, and only if,
it has ϕ as an achievement goal that currently appears in its set of intentions CI , or ϕ is an
achievement goal that appears in the (suspended) intentions associated with events in CE .
For an agent ag and circumstance C , we have:

INTEND〈ag,C〉(ϕ) ≡ ϕ ∈
⋃

i∈CI

agls(i) ∨ ϕ ∈
⋃

〈te,i〉∈CE

agls(i).

Note that we are only interested in atomic formulæ at in triggering events that have the
form of additions of achievement goals, and ignore all other types of triggering events. These
are the formulæ that represent (symbolically) properties of the states of the world that the
agent is trying to achieve (i.e., the intended states). However, taking such formulæ from the
agent’s set of intentions does not suffice for defining intentions, as there can be suspended
intentions. In the AgentSpeak interpreter, intentions may be suspended when they are waiting
for an appropriate subplan to be chosen (in the form of an internal event, which is an event
associated with an existing intention). Suspended intentions are, therefore, precisely those
that appear in the set of events (for more detail on suspended intentions, see [16].

Now we can define the interpretation of the desire modality for AgentSpeak agents. An
agent in circumstance C desires a formula ϕ if, and only if, ϕ is an achievement goal in C’s
set of events CE (associated with any intention i), or ϕ is a current intention of the agent;
more formally:

DES〈ag,C〉(ϕ) ≡ 〈+!ϕ, i〉 ∈ CE ∨ INTEND〈ag,C〉(ϕ).

Although this is not discussed in the original literature on AgentSpeak(L), it was argued
in [10] that the desire modality in an AgentSpeak agent is best represented by additions of
achievement goals presently in the set of events, as well as its present intentions. Internal
events in the form of achievement goals are clearly desires: traditionally, goals are defined as
subset of desires which are mutually consistent [35]; in the simplified version of the architec-
ture used for AgentSpeak, consistency of goals is taken for granted. Accordingly, the events
in E that have the form of additions of achievement goals are desires; that is, the agent has
not yet committed to a course of action to achieve that desire, but they represent states that
the agent wishes to achieve. These desires may eventually become intentions as well, when
the agent chooses a plan for handling that event; note that we here see intentions as a subset
of an agent’s desires.

The definitions above tell us precisely how the BDI modalities that are used in specifi-
cations of the system can be mapped onto the AgentSpeak(F) structures implemented as a
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Promela model. We next present, in full, the logical language that is used to specify properties
of the BDI multi-agent systems written in AgentSpeak(F) that we can model-check follow-
ing the approach in this paper. The logical language we use here is a simplified version of
LORA [39], which is based on modal logics of intentionality [13,32] dynamic logic, [19],
and CTL* [1]. In the restricted version used here, we limit the underlying temporal logics
to LTL rather than CTL*, given that LTL formulæ (excluding the ‘next’ operator ©) are
automatically translated into Promela never-claims by Spin. We describe later some other
restrictions aimed at making the logic directly translatable into LTL formulæ.

Let pe be any valid Promela boolean expression, l be any agent label, x be a variable rang-
ing over agent labels, and at and a be atomic and action formulæ defined in the AgentSpeak(F)
syntax (see Section 2), except with no variables allowed. Then the set of well-formed formulæ
(wff ) of this logical language is defined inductively as follows:

1. pe is a wff ;
2. at is a wff ;
3. (Bel l at), (Des l at), and (Int l at) are wff ;
4. ∀x .(M x at) and ∃x .(M x at) are wff, where M ∈ {Bel, Des, Int} and x ranges over a

finite set of agent labels;
5. (Does l a) is a wff ;
6. if ϕ and ψ are wff, so are (¬ϕ), (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ ⇒ ψ), (ϕ ⇔ ψ), always (!ϕ),

eventually (♦ϕ), until (ϕ U ψ), and ‘release’, the dual of until (ϕ R ψ);
7. nothing else is a wff.

In the syntax above, agent labels denoted by l, and over which variable x ranges, are the
ones associated with each AgentSpeak(F) program during the translation process. That is,
the labels given as input to the translator form the finite set of agent labels over which the
quantifiers are defined. The only unusual operator in this language is (Does l a), which holds
if the agent denoted by l has requested action a and that is the next action to be executed by
the environment. An AgentSpeak(F) atomic formula at is used to refer to what is actually true
of the environment. In practical terms, it comes down to checking whether the predicate is in
channel p where the percepts are stored by the (user-defined) environment. We do not give
semantics (even informally) to the other operators above, as they have been extensively used in
the multi-agent systems literature, and formal semantics can be found in the references given
above. Note, however, that the BDI modalities can only be used with AgentSpeak atomic
propositions.

The concrete syntax used in the system for writing formulæ of the language above is
also dependent on the underlying model checker. Before we pass the LTL formula on to
the model checker, we translate Bel, Des, and Int into code that checks the AgentSpeak
data structures modelled in the model checker’s input language (following to the defi-
nitions above). The Does modality is implemented by checking the first action in the
environment’s data structure where agents insert the actions they want to see executed by
the process simulating the environment. That first item in such data structure is the ac-
tion that is going to be executed next by the environment (as soon as it is scheduled for
execution).

6. A case study

There have been three case studies illustrating the approach to verification of multi-agent sys-
tems described in this paper. In [4] we presented a case study based on a simplified auction
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scenario. In [6], we used an interesting scenario based on typical situations in one day of
activity of Mars autonomous rovers such as Sojourner (in the Mars Pathfinder mission) [3,37].
The development of autonomous rovers for planetary exploration is an important aim of the
research on ‘remote agents’ carried out at space agencies [28].

In this paper, in order to illustrate our approach and to give an example of model check-
ing statistics (time and memory used) generated when using Spin and JPF as target model
checkers, we shall summarise the scenario and results reported in [17]. The scenario used
is that of cleaning robots, which appears frequently in the Agents literature. Please refer to
that paper for detailed explanations of the AgentSpeak code and BDI properties used in the
examples below.

There are two robots in this scenario. Robot r1 searches for pieces of garbage and when
one is found, the robot picks it up, takes it to the location of r2, drops the garbage there,
and returns to the location where it found the garbage and continues its search from that
position. Robot r2 is situated at an incinerator; whenever garbage is taken to its location
by r1, r2 just puts it in the incinerator. One or two pieces of garbage are randomly scat-
tered on the grid. Another source of non-determinism is a certain imprecision of the robot’s
arm that grabs the pieces of garbage. The action of picking up garbage may fail, but it is
assumed that the mechanism is good enough so that it never fails more than twice; that is,
in the worst case robot r1 has to attempt to pick up a piece of garbage three times, but by
then r1 will definitely have grabbed it. The territory to be cleared of pieces of garbage is
abstractly represented here as a finite 2D grid. The AgentSpeak(F) code for r1 is given in
Fig. 3.

Agent r2 is defined by a very simple AgentSpeak(F) program. All it does is to burn the
pieces of garbage (action burn(garb)) when it senses that there is garbage on its location.
A belief +garbage(r2) is added to the agent’s belief base by belief revision (from the
perception of the environment) when that is case. The only plan in r2’s program is therefore
+garbage(r2) : true <- burn(garb).

The environment simulating the territory to be cleaned was written both as a Promela pro-
cess and a Java class. A matrix of size 5 × 5 is used for that purpose. Two pieces of garbage
were scattered randomly in the territory (using non-determinism in the model). Whenever the
environment changes (due to an agent performing an action), the percepts are updated with
the agents’ positions and corresponding facts about the presence of garbage in the current
position of each agent.

When programming an agent’s practical reasoning, it is difficult to ensure that such an
agent will behave as expected in all circumstances, hence the importance of verification in the
context of agent-oriented programming. In the first implemented version of this scenario, we
did not skip r2’s position when the basic action next(slot) was requested by r1. This
created a series of inconsistent behaviours when the robot was passing by r2’s position while
searching for garbage to be collected. As usual, ordinary programming errors can be detected
too. For example, in an earlier version of the AgentSpeak(F) code, plan p2 had an empty
context, which made the agent again act inconsistently when passing by a slot with garbage
in it, while on its way to deliver a piece of garbage to r1 and back (i.e., when there was
garbage in its trajectory between another dirty slot and r2). Of course, such configuration of
the Mars territory was considered by the model-checker, which showed the problem clearly.
In our experience, it also happens that specifications that seem to be correct, turn out not to
be, shedding light on the details of the application scenario. An example of such situation is
given below. Below, we list six specifications that were used in the verification of the system
used in this case study.
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Fig. 3 AgentSpeak(F) code for robot r1

!((Bel r1 garbage(r1)) ⇒ ♦garbage(r2)) (1)

!((pos(r1,2,2) ∧ (Does r1 drop(garb))) ⇒ ♦(Des r1 go(back))) (2)

♦((Int r1 take(garb,r2)) ∧ ♦(Does r1 drop(garb))) (3)

♦((Int r1 continue(check)) ∧ (Bel r1 checking(slots))) (4)

!((Des r1 continue(check)) ⇒ ♦(Does r1 next(slot))) (5)

!((Does r1 next(slot)) ⇒ (¬pos(r1,2,2)∧
(Bel r1 checking(slots))))

(6)

Specification (1) says that it is always the case that, if r1 perceives garbage on its location,
then eventually it will be true of the environment that there is garbage in r2’s location.
Although specification (1) appeared to us as a valid specification of the system, unforeseen
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situations could happen in which that property would not hold. It is possible that r2 incin-
erates the garbage in its position while r1 is still there. Before r1 proceeds with belief
revision, it still believes there is garbage in its position (the same position as r2, where r1
itself took the piece of garbage it encountered). However, if that was the last piece of garbage
in the whole territory, at that point it is true that r1 believes garbage(r1), yet it is not
true that eventually there will be garbage in r2’s position (as that one still believed by r1
no longer exists). Apart from property (1), all other specifications were fully verified by both
model-checkers and are thus valid properties of the system.

Some statistics produced by Spin and JPF when verifying Specification (4), using the
current (preliminary) version of the Promela and Java models, are as follows. In Spin, the
state space had 333,413 states, verification used 210.51 MB of memory, and took nearly
65.78 seconds to complete. In JPF, there were 236,946 states, verification used 366.68 MB
of memory, and took 18:49:16 hours to complete. However, in another setting of the scenario,
where garbage is placed at fixed positions (1, 1) and (3, 3), the verification took JPF 76.63
seconds to finish, and 5.25 seconds for Spin. Although from this results it appears that JPF
is not scaling as well as Spin, it must be said that these experiments were run using an older
version of JPF than the latest one now available open source [24]. Besides, we are currently
in the process of making some of the Java classes used AgentSpeak models native to the
JPF model checker; effectively, this corresponds to developing a specialised version of JPF
for model checking AgentSpeak systems in particular. Preliminary experiments indicate that
such specialised version of JPF will increase the efficiency of model checking our agent
programs by at least an order of magnitude.

7. Related work

Since Rao’s original proposal [30], a number of authors have investigated a range of different
aspects of AgentSpeak. In [16], a complete abstract interpreter for AgentSpeak was formally
specified using the Z specification language. Most of the elements in that formalisation had
already appeared in [15]; this highlights the fact that AgentSpeak is strongly based on the
experience with the BDI-inspired dMARS system [25]. Various extensions of AgentSpeak
have been appeared in the literature, and an interpreter for the extended language is available
[9].

In [10], an operational semantics for AgentSpeak was given following Plotkin’s [29] struc-
tural approach; this is a more familiar notation than Z for giving semantics to programming
languages. The operational semantics was used in the specification of a framework for car-
rying out proofs of BDI properties of AgentSpeak; that work was used in Section 5 to show
precisely how the BDI modalities used in specifications to be verified against models of
AgentSpeak-like agents are interpreted here.

Model checking techniques have only recently begun to find a significant audience in
the multi-agent systems community. Rao and Georgeff [31] developed basic algorithms for
model-checking BDI logics, but the authors proposed no method for generating BDI mod-
els from programs. In [2], a general approach for model-checking multi-agent systems was
proposed, based on the branching temporal logic CTL together with modalities for BDI-
like attitudes. However, once again no method was given for generating models from actual
systems, and so the techniques given there could not easily be applied to verifying real
multi-agent systems. In [21], techniques were given for model-checking temporal episte-
mic properties of multi-agent systems; the target of that work was the Spin model checker.



254 Auton Agent Multi-Agent Sys (2006) 12: 239–256

However, that work did not consider an agent’s motivational attitudes, such as desires and
intentions.

Perhaps the closest work to ours is that in [39] on the MABLE multi-agent program-
ming language and model-checking framework. MABLE is a regular imperative language
(an impoverished version of C), extended with some features from Shoham’s agent-oriented
programming framework [34]. Thus, agents in MABLE have data structures corresponding
to beliefs, desires, and intentions, and can communicate using KQML-like performatives.
MABLE is automatically translated into Promela, much like AgentSpeak(F) in this work.
Claims about the system are also written in a LORA-like language, which is also translated
into Spin’s LTL framework for model checking. The key difference is that MABLE is an
imperative language, rather than a logic programming language inspired by PRS-like reactive
planning systems, which is the case of AgentSpeak(F).

8. Conclusions

We have introduced a framework for the verification of agent programs written in an expres-
sive logic programming language against BDI specifications. We do so by transforming
AgentSpeak(F) code into either Promela or Java, and transforming BDI specifications into
LTL formulæ, then using either Spin or JPF to model check the resulting system. AgentSpeak
is a practical BDI programming language with a well-defined theoretical foundation, and our
work contributes to the (as yet missing) aspect of practical verification of AgentSpeak multi-
agent system, an aspect that is increasingly important as multi-agent systems start to be used
for the development of dependable applications.

In future work, we plan to improve the efficiency of the models by optimisations on the
Promela and Java code that is automatically generated. We may also consider the implementa-
tion of a custom-made model checker for AgentSpeak(F), or more particularly in customising
JPF for the use of models generated from AgentSpeak (as mentioned earlier, by making some
of the Java classes used in AgentSpeak(F) models native to JPF). Further, it would be inter-
esting to add extra features to the languages we use for agent verification (e.g., handling plan
failure and allowing first order terms), although we need to consider the effects that these
will have in the state space of the generated models.

Another line of work we plan continue in the future is on further state-space reduction
techniques for AgentSpeak, a line of work we started in [6]. That paper introduced a prop-
erty-based slicing algorithm for AgentSpeak. Property-basedslicing is a precise form of under
approximation, which means that we can do model checking more efficiently yet knowing that
the reduced state-space will not affect the properties being verified; the experiments reported
in that paper included doing model checking for the original system and the sliced version
of the system, showing a significant reduction of the state space. With the use of state-space
reduction techniques, much larger applications can be verified. We also plan as future work
to verify real-world applications, particularly in the area of autonomous spacecraft control,
on the lines of [18].

It is still far from clear whether we will be able to address satisfactorily issues such as
openness of multi-agent systems (i.e., when any number of heterogeneous agents may inter-
act at a given time) and evolving agents (i.e., coping with emergent phenomena). Although it
is early days, our view is that combining deductive [17] and algorithmic techniques (as those
presented here), as well as continued work on state-space reduction techniques suitable for
multi-agent systems in particular, will have an important role in the verification of such types
of multi-agent systems in the future.
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