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Abstract

We develop a logic of normative ability, as an extension to the Alternating-time Temporal Logic

(ATL) of Alur, Henzinger, and Kupferman. While conventional ATL contains cooperation modalities

of the form 〈〈C〉〉ϕ, intended to express the fact that coalition C have the capability to bring about ϕ,

in Normative ATL* (NATL*), these expressions are replaced with constructs of the form 〈〈η : C〉〉ϕ,
with the intended interpretation that C have the ability to achieve ϕ within the context of the nor-

mative system η. A normative system is a set of constraints on the actions that may be performed

in any give state. We show how these normative ability constructs can be used to define obligations

and permissions: ϕ is said to be obligatory within the context of the normative system η if ϕ is a

necessary consequence of every agent in the system behaving according to the conventions of η.

After introducing NATL*, we investigate some of its axiomatic properties. To demonstrate its value

as a logic for reasoning about multi-agent systems, we show how NATL* can be used to formalise a

version of the social contract.
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1. Introduction

Over the past decade, there has been steadily increasing interest in the logical founda-

tions of multi-agent systems [17,37–39]. While the literature on this subject encompasses

a wide range of ideas and logical techniques, the Alternating-time Temporal Logic (ATL)

proposed by Alur, Henzinger, and Kupferman appears to be gaining popularity as a key sys-

tem in the area [1]. ATL is a logic of cooperative ability: it is intended to support reasoning

about the powers of agents and coalitions of agents in game-like multi-agent systems. Thus,

for example, in ATL it is possible to express properties of a system such as “the coalition

C1 can guarantee that the system will never enter an invalid state”, and “the coalition C2
can ensure that, eventually, the message will be received”.

From a language point of view, ATL represents an elegant generalisation of the well-

known branching time temporal logic CTL [11], while at the same time containing an

explicit notion of agency, which gives it the flavour of an action logic, in the sense of

dynamic logic and its relatives [14,29]; from a semantic point of view, ATL is based on

models that combine ideas from distributed computing systems and game theory, thus re-

flecting current thinking about the semantics of concurrent computation [27]; and from a

computational point of view, model checking and theorem proving in ATL appear to have

the same complexity as their counterpart problems in CTL [1,10], and in particular, ATL

has a tractable (deterministic polynomial time) model checking problem, for which effi-

cient software tools have been implemented [2].

The fact that ATL bears a close family resemblance to logics of action has prompted

several researchers to investigate this relationship in more detail. One obvious issue is the

link between ATL and deontic logic: the logic of obligation and permission [8,24]. Our

primary aim in this paper is to investigate the relationship between ability and obligations

in detail. More specifically, the paper makes three main contributions to this understanding.

First, we introduce a variant of ATL called Normative ATL* (NATL*).1 The logic NATL*

is based on cooperation modalities of the form 〈〈η : C〉〉ϕ, where η is a normative system,

C is a coalition, and ϕ is a sentence of the logic. The intended interpretation of 〈〈η : C〉〉ϕ
is that operating within the context of the normative system η, coalition C have the ability

to bring about ϕ; more precisely, that C have a winning strategy for ϕ, where this strategy

conforms to the strictures of the normative system η. A normative system in our framework

is a set of rules, which constrain the actions of the agents in the system in certain states.

Given these cooperation modalities, we can recover the cooperation modalities of ATL by

considering ability within the context of the “empty” normative system, i.e., the normative

system η⊥, which places no constraints on the actions of agents other than those imposed
by the system designer.

Second, we introduce an indexed collection of indexed unary modal operators Pη and

Oη, where Pηϕ is intended to mean that ϕ is permissible within the context of the normative

system η, and Oηϕ is intended to mean that ϕ is obligatory within the context of the nor-

mative system η. Perhaps the larger contribution we make here is to show how permission

1 Note that our logic is closer to ATL* than ATL, and hence we feel obliged to use a “*” in the name! We will

sometimes informally refer to “Normative ATL”, and it should be understood that when we do this, we in fact

mean NATL*.
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and obligation can be given a natural and compelling interpretation in terms of normative

ability. Crudely, we say that ϕ is obligatory in the context of normative system ϕ if ϕ will

necessarily result if every agent acts according to the norm η. Similarly, ϕ is permissible

in the context of η if there is some way that ϕ can be brought about by a coalition acting

in accordance with the conventions of η.

Third, and finally, we show how NATL* can be used for reasoning about multi-agent

systems, by developing a logical model of the social contract. Crudely, the term “social

contract” refers to the collection of norms or conventions that a society abides by. These

norms serve to regulate and restrict the behaviour of citizens within a society. The benefit

of a social contract is that it prevents mutually destructive behaviours. However, there are

many apparent paradoxes associated with the social contract, not the least being that of

why a rational, self-interested agent should choose to conform to the social contract, when

choosing to do otherwise might lead to a better individual outcome; the problem being that

if everyone reasons this way (and as rational agents, they should), then nobody conforms

to the social contract, and its benefits are lost. There have been several game theoretic

accounts of the social contract, which attempt to understand how a social contract can work

in a society of self-interested agents [6,7,33]; our work can be understood as a preliminary,

tentative attempt to give a logical account. Note that our focus on the social contract is

not prompted by a desire to shed light on issues of political or economic philosophy, but

by a desire to better understand how to engineer societies of self-interested autonomous

software agents [38]; we, along with other researchers [9], believe that the concept of the

social contract is potentially a useful one for understanding and engineering such artificial

societies.

This article is structured as follows. We shortly introduce Action-based Alternating

Transition Systems (AATSs), the structures used to give a semantics to NATL*. In Sec-

tion 3, we introduce our model of normative systems; we discuss the operations that may

be performed on them, as well as the possible relationships that exist between them. In

Section 4, we introduce the logic of Normative ATL itself, and briefly discuss some of its

properties. We define our deontic modalities for NATL* in Section 5, and briefly consider

some of their properties. In Section 6, we show how NATL* may be applied to an under-

standing of the social contract, and we conclude in Sections 7 and 8 with a discussion of

related work and some conclusions.

2. Action-based alternating transition systems

The semantic structures underpinning ATL are known as Action-based Alternating Tran-

sition Systems (AATSs) [34]. We need to be clear about the role that these structures are

intended to play. AATSs are structures for modelling game-like, dynamic, multi-agent sys-

tems. The main characteristics of such systems are that there are multiple agents, each of

which can perform actions in order to modify and attempt to control the system in some

way. Our intention in this paper is that an AATS should be used to model the physical prop-

erties of the system at hand—the actions that agents can perform in the empty normative

system, unfettered by any considerations of their legality or usefulness. However, many

of the systems of interest to us are not “physical world” systems in the obvious sense of
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the term, but consist of agents in virtual/software environments, and so we prefer the more

neutral term “natural”. We also note in passing that, inevitably, when we define an AATS,

this system will represent an abstraction of the “actual” system that we intend to model,

and interpreting an AATS as representing the physical characteristics may therefore not be

entirely appropriate.

We first assume that the systems of interest to us may be in any of a finite set Q of

possible states, with some q0 ∈ Q designated as the initial state. Systems are populated by

a set Ag of agents; a coalition of agents is simply a set C ⊆ Ag, and the set of all agents is

known as the grand coalition. Notice that this is all we mean by the term “coalition” in this

paper: our usage here does not imply any common purpose or shared goal—a coalition in

this paper is simply a set of agents.

Each agent i ∈ Ag is associated with a set Aci of possible actions, and we assume that

these sets of actions are pairwise disjoint (i.e., actions are unique to agents). We denote the

set of actions associated with a coalition C ⊆ Ag by AcC , so AcC = ⋃
i∈C Aci .

A joint action jC for a coalition C is a tuple 〈α1, . . . ,αk〉, where for each αj (where

j ! k) there is some i ∈ C such that αj ∈ Aci . Moreover, there are no two different actions
αj and αj ′ in JC that belong to the same Aci . We denote the set of all joint actions for

coalition C by JC , so JC = ∏
i∈C Aci . Given an element j of JC and agent i ∈ C, we

denote i’s component of j by ji .

An Action-based Alternating Transition System—hereafter referred to simply as an

AATS—is an (n + 7)-tuple S = 〈Q,q0,Ag,Ac1, . . . ,Acn,ρ, τ,Φ,π〉, where:

• Q is a finite, non-empty set of states;

• q0 ∈ Q is the initial state;

• Ag= {1, . . . , n} is a finite, non-empty set of agents;
• Aci is a finite, non-empty set of actions, for each i ∈ Ag, where Aci ∩ Acj = ∅ for all

i *= j ∈ Ag;
• ρ :AcAg → 2Q is an action precondition function, which for each action α ∈ AcAg
defines the set of states ρ(α) from which α may be executed;

• τ :Q×JAg → Q is a partial system transition function, which defines the state τ (q, j)

that would result by the performance of j from state q—note that, as this function

is partial, not all joint actions are possible in all states (cf. the pre-condition function

above);

• Φ is a finite, non-empty set of atomic propositions; and

• π :Q → 2Φ is an interpretation function, which gives the set of primitive propositions

satisfied in each state: if p ∈ π(q), then this means that the propositional variable p is

satisfied (equivalently, true) in state q .

We require that AATSs satisfy the following two coherence constraints:

(1) Non-triviality [26]. Agents always have at least one action available:

∀q ∈ Q,∀i ∈ Ag,∃α ∈ Aci s.t. q ∈ ρ(α)
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Fig. 1. The train system S1.

(2) Consistency. The ρ and τ functions agree on actions that may be performed:

∀q,∀j ∈ JAg, (q, j) ∈ dom τ iff ∀i ∈ Ag, q ∈ ρ(ji)

We denote the set of sequences overQ byQ∗, and the set of non-empty sequences overQ
by Q+.

Example 1. There are two trains, one of which (E) is Eastbound, the other of which (W ) is

Westbound, each occupying their own circular track. At one point, both tracks pass through

a narrow tunnel—a crash will occur if both trains are in the tunnel at the same time. Unlike

the original versions of this scenario [1], we do not assume that there is a “controller” agent,

whose purpose is to ensure that collisions do not occur. Instead, we will be concerned with

social laws that achieve this end.

We model each train i ∈ Ag = {E,W } as an automaton that can be in one of three
states (see Fig. 1(b)): “awayi” (the initial state of the train); “waitingi” (waiting to enter

the tunnel); and “ini” (the train is in the tunnel). Each train i ∈ {E,W } has two actions
available: Aci = {movei , idlei}. The idlei action is the identity, which causes no change
in the train’s state (i.e., it stays where it is). If a train i executes a movei action while

it is awayi , then it goes to a waitingi state; executing a movei while waitingi causes a

transition to an ini state; and finally, executing a movei while ini causes a transition to

awayi as long as the other train was not in the tunnel, while if both trains are in the tun-

nel, then they have crashed, and are forced to idle indefinitely. Initially, both trains are

away.

The overall state of the system at any given time can be characterised in terms of

the propositional variables {awayE,awayW,waitingE,waitingW, inE, inW }, where these
variables have the obvious interpretation. The overall structure of the train system, and

the model of trains is illustrated in Fig. 1; a formal definition of the train system AATS

is given in Fig. 2 (the function ρ is left implicit, but can be read off from τ : e.g.,

ρ(moveW) = Q \ {q8}, etc.).
Of course, not all combinations of propositional variables correspond to reachable sys-

tem states (i.e., states that the system could possibly enter). For example, an agent i cannot
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States and Initial States:

Q = {q0, q1, q2, q3, q4, q5, q6, q7, q8}, initial state q0

Agents, Actions, and Joint Actions:

Ag = {E,W } AcE = {idleE,moveE} AcW = {idleW ,moveW }
JAg = {〈idleE, idleW 〉

︸ ︷︷ ︸
j0

, 〈idleE,moveW 〉
︸ ︷︷ ︸

j1

, 〈moveE, idleW 〉
︸ ︷︷ ︸

j2

, 〈moveE,moveW 〉
︸ ︷︷ ︸

j3

}

Propositional Variables:

Φ = {awayE,awayW ,waitingE,waitingW , inE, inW }
Transitions/Pre-conditions/Interpretation:

q\j j0 j1 j2 j3 π(q)

q0 q0 q1 q3 q5 {awayE,awayW }
q1 q1 q2 q5 q6 {awayE,waitingW }
q2 q2 q0 q6 q3 {awayE, inW }
q3 q3 q5 q4 q7 {waitingE,awayW }
q4 q4 q7 q0 q1 {inE,awayW }
q5 q5 q6 q7 q8 {waitingE,waitingW }
q6 q6 q3 q8 q4 {waitingE, inW }
q7 q7 q8 q1 q2 {inE,waitingW }
q8 q8 — — — {inE, inW }

Fig. 2. The AATS for the trains scenario.

be both waitingi and ini simultaneously. There are in fact just nine reachable states of the

system; see Fig. 2.

2.1. Strategies

Given an agent i ∈ Ag and a state q ∈ Q, we denote the options available to i in q—the

actions that i may perform in q—by options(i, q):

options(i, q) =
{
α | α ∈ Aci and q ∈ ρ(α)

}

We then say that a strategy for an agent i ∈ Ag is a function:

σi :Q → Aci

which must satisfy the legality constraint that σi (q) ∈ options(i, q) for all q ∈ Q.

A strategy profile for a coalition C = {a1, . . . , ak} ⊆ Ag is a tuple of strategies

〈σ1, . . . ,σk〉, one for each agent ai ∈ C. We denote by ΣC the set of all strategy pro-

files for coalition C ⊆ Ag; if σC ∈ ΣC and i ∈ C, then we denote i’s component of σC

by σ i
C . Given a strategy profile σC ∈ ΣC and state q ∈ Q, let out(σC,q) denote the set of

possible states that may result by the members of the coalition C acting as defined by their

components of σC for one step from q:

out(σC,q) =
{
q ′ | τ (q, j) = q ′ where (q, j) ∈ dom τ and σ i

C(q) = ji for i ∈ C
}

Notice that, for any grand coalition strategy profile σAg and state q , the set out(σAg, q) will

be a singleton.
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2.2. Computations

A computation is an infinite sequence of states λ = q0, q1, . . . . A computation λ ∈ Q+

starting in state q is referred to as a q-computation; if u ∈ N, then we denote by λ[u] the
component indexed by u in λ (thus λ[0] denotes the first element, λ[1] the second, and so
on). We denote by λ[0, u] and λ[u,∞] the finite prefix q0, . . . , qu and the infinite suffix

qu, qu+1, . . . of λ respectively.
Given a strategy profile σC for some coalition C, and a state q ∈ Q, we define

comp(σC,q) to be the set of possible runs that may occur if every agent ai ∈ C follows

the corresponding strategy σi , starting when the system is in state q ∈ Q. That is, the set

comp(σC,q) will contain all possible q-computations that the coalition C can “enforce”

by cooperating and following the strategies in σC .

comp(σC,q) =
{
λ | λ[0] = q and ∀u ∈ N: λ[u + 1] ∈ out

(
σC,λ[u]

)}

Again, note that for any state q ∈ Q and any grand coalition strategy σAg, the set

comp(σAg, q) will be a singleton, consisting of exactly one infinite computation.

3. Normative systems

In this section, we introduce our model of normative systems, and briefly investigate

some of its properties. When we use the term “normative system” in this paper, it has a

technical meaning: we are much less concerned with the philosophical issues surrounding

normative systems and their role in human societies—although this will, of course, not

prevent us from borrowing ideas and terminology from the literature of norms, conventions,

and normative systems [20]. For us, a normative system is simply a set of constraints on

the behaviour of agents in a system. More precisely, a normative system defines, for every

possible system state and action, whether or not that action is considered to be legal or not,

in the context of the normative system. Different normative systems, of course, may differ

on whether or not a particular action is considered legal in a particular state.

We model a normative system, η, as a function

η :AcAg → 2Q

with the intended interpretation that q ∈ η(α) means the normative system η forbids action

α from being performed when the system is in state q .

Of course, our normative systems cannot be considered in a vacuum. They are designed

(or emerge [35], though we shall not consider this issue here), in the context of an AATS,

and AATSs have their own notion of legality: whether or not an action is naturally possible,

that is, whether or not it is “physically possible” in the context of the system. It makes no

sense, (in our framework at least), to consider normative systems that permit actions that

are naturally impossible to perform, and so we will place one requirement on normative

systems: that they forbid anything that is forbidden by “nature”. Formally, the requirement

is that:

∀α ∈ AcAg:
(
Q \ ρ(α)

)
⊆ η(α)
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As an aside, notice the duality between the pre-condition function ρ, and normative system

η: if q ∈ ρ(α), then α is naturally possible in q , whereas if q ∈ η(α), then α is forbidden

in q by the normative system η. We denote the set of all normative systems, with respect

to some implicit AATS, by N .

We say a strategy σi ∈ Σi is η-conformant if it never selects an action that is forbidden

by η. We denote the fact that σi conforms to η by conf (σi ,η).

conf (σi ,η) ⇔ ∀q: q /∈ η
(
σi (q)

)

Given a strategy profile σC ∈ ΣC , we will abuse notation and write conf (σC,η) to indicate

that all the strategies in σC conform to η.

conf (σC,η) ⇔ ∀i ∈ C: conf (σ i
C,η)

Finally, we denote the set of all η-conformant strategy profiles for C by Σ
η
C .

Σ
η
C =̂

{
σC ∈ ΣC | conf (σC,η)

}

Example 2. Recall the trains example, given earlier. We will define a normative system η1,

the primary purpose of which is to ensure that the trains never crash, i.e., that the system

never enters state q8. From examination of the state transition function τ (see Fig. 2), we

can see that τ (q5, j3) = τ (q6, j2) = τ (q7, j1) = q8, and there are no other transitions lead-

ing to q8 (apart from when the trains have already crashed, which we need not consider!).

So, consider the normative system η1, as follows.

η1(α) =






∅ if α = idleE
∅ if α = idleW
{q5, q6} if α =moveE
{q7} if α =moveW

This normative system ensures that:

• when both agents are waiting to enter the tunnel, the eastbound train is forbidden to

move;

• when the westbound train is already in the tunnel and the eastbound train is waiting to

enter the tunnel, then the eastbound train is not allowed to move;

• when the eastbound train is already in the tunnel and the westbound train is waiting to

enter the tunnel, then the westbound train is forbidden to move.

Notice that η1 is, in a sense, asymmetric, as it constrains the eastbound train rather than

the westbound train: we could equally well replace the first constraint with the requirement

that if both trains are waiting to enter the tunnel, then the westbound train is prevented from

moving, thus enabling the eastbound train to enter.

3.1. Operations on normative systems

We find it convenient to distinguish two particular normative systems. We denote the

empty normative system by η⊥. This system imposes no constraints on the actions that
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agents may perform other than those imposed by the underlying AATS: any action that is

physically/naturally feasible is legal according to η⊥.

∀α ∈ AcAg: η⊥(α) = Q \ ρ(α)

In the trivial normative system η1, every action is forbidden in every state.

∀α ∈ AcAg: η1(α) = Q

We can develop a kind of calculus of normative systems based on the standard set theoretic

operations of intersection and union, as follows.

η 2 η′(α) =̂ η(α) ∩ η(α′)

η 3 η′(α) =̂ η(α) ∪ η(α′)

Notice that the set N of normative systems over some AATS will be closed under these

operators. Having a calculus as sketched would allow one to reason about the composition

of normative systems, similar to the way that one constructs complex programs from sim-

pler ones in Dynamic Logic [14]. However, N would not be closed under difference and

complement operations, which is why we do not consider these.

The laws of these operators are analogous to properties of set theory: for example, η1—
the least liberal normative system—serves as the identity under 2, and η⊥—themost liberal
normative system—serves as the identity under 3. We will not exhaustively list these laws,
but simply give the following examples as a flavour.

η 3 η = η 3 η⊥ = η and η 3 η1 = η1
η 2 η = η 2 η1 = η and η 2 η⊥ = η⊥

3.2. Relationships between normative systems

Let us now consider the possible relationships between normative systems. Of the

relationships that we might consider, we argue that the most obvious—and the most

important—is that of when one normative system is less restrictive than another. Let us

introduce a binary relation 5 ⊆ N × N on normative systems, with the intended interpre-

tation that η 5 η′ means that η is less restrictive (equivalently, more liberal) than η′. (To be
precise, η 5 η′ will mean that η is “at most as restrictive as” η′, but where no confusion is
possible, we will ignore this distinction in the text.) Formally, we define the relation “5”
as follows.

η 5 η′ ⇔ ∀α ∈ AcAg: η(α) ⊆ η′(α)

Example 3. With respect to the trains system S1, and the normative systems η1 and η2
(where η2 is defined later), we have η1 5 η2. In other words, η1 is more liberal than η2.

The 5 relation defines a partial order over N : it is reflexive, transitive, and anti-

symmetric. Moreover, observe that for any normative system η ∈ N , we have η⊥ 5 η and

η 5 η1. Recalling the definitions of 2 and 3 from above, we immediately obtain the fol-
lowing.
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Proposition 1. Let N be the set of normative systems over some AATS, and let 5⊆ N ×N

be the associated “less restrictive” relation. Then the pair (N,5) forms a complete lattice,

with least upper bound η1 and greatest lower bound η⊥; the meet operation is 2 and the

join operation is 3.

Combining the 5 relation with the meet and join operations on normative systems, we get

the following properties.

(1)η 2 η′ 5 η η 2 η′ 5 η′ η 5 η 3 η′ and η′ 5 η 3 η′

Thus taking the union of two normative systems yields a normative system that is more re-

strictive (less liberal) than either of its parent systems, while taking the intersection of two

normative systems yields a normative system which is less restrictive (more liberal). No-

tice that the 3 operation is intuitively the act of superposition, or composition of normative
systems: imposing one law on top of another. The 3 operation thus gives us (the beginnings
of) a calculus through which to understand the composition of normative systems.

The5 relation can also be characterised in terms of the strategies available to agents. Let
us call a normative system η to be non-trivial if it allows, everywhere, the grand coalition

Ag to perform an action: η is non-trivial iff

∀q ∈ Q∃j ∈ JAg ∀i ∈ Ag: q /∈ η(ji)

Proposition 2. Let S = 〈Q,q0,Ag,Ac1, . . . ,Acn,ρ, τ,Φ,π〉 be an AATS, and let η and η′

be non-trivial normative systems over S. Then:

η 5 η′ ⇔ ∀C ⊆ Ag: Σ
η′
C ⊆ Σ

η
C

Proof. The ⇒ is obvious: If η is less restrictive than η′, then any η′-conformant strategy
profile for C must also be η-conformant. For⇐, assume for purposes of contradiction that

∀C ⊆ Ag: Σ
η′
C ⊆ Σ

η
C but η ! η′. Since η ! η′, then for some agent i ∈ Ag and α ∈ Aci , we

have η(α) " η′(α). Hence for some q ′ ∈ Q, we have:

q ′ ∈ η(α) and q ′ /∈ η′(α)

Now, take any σi from Σ
η′
i (since η′ is non-trivial, we know that such a σi exists), and

define a new strategy σ ∗
i for i as follows:

σ ∗
i (q) =

{
α if q = q ′

σi (q) otherwise

Now by construction, σ ∗
i ∈ Σ

η′
i , but σ

∗
i /∈ Σ

η
i , and so Σ

η′
i " Σ

η
i : a contradiction. !

Although the ⇒-direction of Proposition 2 holds for arbitrary systems η and η′, the
other direction does not. Suppose that η′ is such that it forbids every action for every agent
i in a particular state q . Then, for any C, no strategy σC exists that is η′-conformant, so
Σ

η′
C = ∅. Would the ⇒-direction of Proposition 2 be true, then we would have η 5 η′ for

any η, which obviously need not be the case.
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4. Normative ATL

Alternating-time Temporal Logic (ATL), can be understood as a generalisation of the

well-known branching time temporal logic CTL [11], in which path quantifiers are replaced

by cooperation modalities. In NATL*, we contextualise cooperation modalities with nor-

mative systems. Thus cooperation modalities in NATL* have the general form 〈〈η : C〉〉ϕ,
which is intended to be read “the coalition C can achieve ϕ, even when it abides by the

rules of normative system η”. More precisely, 〈〈η : C〉〉ϕ means that there is a η-conformant

strategy profile σC for C such that, if the members of C follow their components of σC ,

then ϕ will result. Note that this assumes that, when reasoning about what a coalition C

can bring about within normative system η, we only assume that the agents from C, but

not necessarily the others, will conform to η. Variations on this assumptions are of course

possible and certainly interesting.

The syntax of NATL* closely resembles that of ATL*, the logic that bears the same

relationship to ATL as CTL* does to CTL [1,11,12]. Thus, we make the same distinction

between state formulae and path formulae that is made in branching time temporal logics

such as CTL* [12]. A state formula is interpreted with respect to an individual state within

an AATS, while a path formula is interpreted with respect to a path, or computation, within

an AATS. In the text, when we refer to “a formula of NATL*”, it should be understood that

we mean a state formula. The main difference between ATL* and NATL* is that NATL*

includes normative systems in the object language. The alphabet from which we construct

formulae of NATL*, with respect to AATS S thus contains a set of symbols corresponding

to normative systems over S. For convenience, we will use the same symbol to denote a

normative system in the object language and in the semantics. The formal syntax of NATL*

is given by the BNF grammar in Fig. 3.

We now define the semantics of NATL*. These are given with respect to two satisfac-

tion relations: “|=” (for state formulae), and “||=” (for path formulae). The state formula
satisfaction relation “|=” holds between pairs of the form S,q (where S is an AATS and q

is a state in S), and formulae of NATL*, while the path formula satisfaction relation “||=”
holds between pairs of the form S,λ (where λ is a computation in S):

〈state-fmla〉 ::= true (truth constant)

| p (primitive propositions)

| ¬〈state-fmla〉 (primitive propositions)

| 〈state-fmla〉 ∨ 〈state-fmla〉 (disjunction)

| 〈〈η : C〉〉〈path-fmla〉 (cooperative ability)

〈path-fmla〉 ::= 〈state-fmla〉 (state formulae are path formula)

| ¬〈path-fmla〉 (negation)

| 〈path-fmla〉 ∨ 〈path-fmla〉 (disjunction)

| E〈path-fmla〉 (eventually)

| 1〈path-fmla〉 (always)

| 〈path-fmla〉U 〈path-fmla〉 (until)

Fig. 3. The Syntax of NATL*: p ∈ Φ is a propositional variable, η is a symbol denoting a normative system, and

C ⊆ Ag is a set of agents.
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S,q |= true;
S,q |= p iff p ∈ π(q) (wherep ∈ Φ);

S,q |= ¬ϕ iff S,q # ϕ;

S,q |= ϕ ∨ ψ iff S,q |= ϕ or S,q |= ψ ; and

S,q |= 〈〈η : C〉〉ϕ iff ∃σC ∈ Σ
η
C , such that ∀λ ∈ comp(σC,q), we have S,λ||= ϕ.

The rules defining the path formula satisfaction relation “||=” are as follows.

S,λ||= ϕ iff S,λ[0] |= ϕ (where ϕ is a state formula);

S,λ||= ¬ϕ iff S,λ $;ϕ;
S,λ||= ϕ ∨ ψ iff S,λ||= ϕ or S,λ||= ψ ;

S,λ||= !ϕ iff S,λ[1,∞]||= ϕ;

S,λ||= Eϕ iff ∃u ∈ N, we have S,λ[u,∞]||= ϕ;

S,λ||= 1ϕ iff ∀u ∈ N we have S,λ[u,∞]||= ϕ; and

S,λ||= ϕUψ iff ∃u ∈ N s.t. S,λ[u,∞]||= ψ , and ∀v s.t. 0! v < u: S,λ[v,∞]||= ϕ.

The remaining classical logic connectives (“∧”, “→”, “↔”) are assumed to be defined as

abbreviations in terms of ¬,∨, in the conventional manner. Note that we use the classical
connectives for both path and state formulae.

We omit set brackets in cooperation modalities for singleton coalitions, writing 〈〈η : 1〉〉
instead of 〈〈η : {1}〉〉. Note that we can recover the cooperation modality of ATL as fol-
lows: 〈〈C〉〉ϕ =̂ 〈〈η⊥ : C〉〉ϕ. Given these definitions, it is useful to define the universal and
existential path quantifiers of CTL [11].

Aϕ =̂ 〈〈∅〉〉ϕ Eϕ =̂ 〈〈Ag〉〉ϕ
Note that these are indeed two extreme cases: Aϕ saying that even if no agents make a

choice, the system will evolve such that ϕ, whereas Eϕ denotes that when all agents make

up their mind and perform an action, the system will evolve such that ϕ. Whereas these are

the only two modalities in CTL, the expressive power of ATL, with 2|Ag| coalitional modali-
ties gives it a real notion of agency, and, indeed, coalition. Here, the latter refers just to any

subset of the grand coalition Ag: ATL does not assume any pre-defined structure between

certain agents, which would qualify them to more likely form a “team” than others.

With 〈〈C〉〉ϕ meaning that “coalition C has a strategy to enforce that, no matter what

the agents not in C will do, ϕ holds”, ATL enables to reason about powers or abilities of

coalitions: one can reason about who can bring it about, in the same way as Dynamic Logic

(with its basic modality [α]ϕ) is meant to reason about how to achieve it [14].

5. Obligations and permissions

Our aim in this section is to show how we can use NATL* to give what we believe is a

natural, compelling, and—we hope—useful interpretation to the deontic notions of oblig-

ation and permission. We define a derived set of indexed unary modal operators Pη and

Oη, where Pηϕ is intended to mean “ϕ is permitted within the context of the normative

system η”, and Oηϕ is intended to mean “ϕ is obligatory in the context of the normative
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system η”. To better understand our approach, recall the “standard” approach to a modal
interpretation of deontic logic (see [24, p. 6]). In this approach, we give the semantics of

permission and obligation modalities via a standard Kripke semantics, with permission in-

terpreted as a modal diamond, and obligation as a modal box. The deontic accessibility

relation is generally accepted to be serial, yielding the modal system KD. The possible

worlds in the Kripke structures of standard deontic logic are interpreted as “perfect alter-

native worlds”:

The idea behind this formal set-up is that being in some possible world (the current

world) one may associate a set of perfect alternative worlds, in which all norms are

fulfilled. [24, p. 6]

The main distinction between our system and this standard view is that we will consider

deontic notions not relative to some absolute standard of norms, but with respect to a

particular normative system. Thus one cannot simply ask whether ϕ is “obligatory”; one
must ask whether ϕ is obligatory in the context of some normative system. So, how should

one interpret the notion of a world in which “all norms are fulfilled” in the context of a

normative system η? The natural answer to this question is to interpret a perfect world as a
computation of the system in which every agent acts in respect of the normative system η.

So, our definition of obligations and permissions is as follows:

• ϕ is said to be permissible within the context of normative system η iff the grand

coalition of agents can cooperate to achieve ϕ within the context of η—that is, if there
is some way that the grand coalition of all agents can cause ϕ by behaving legally,

according to the normative system η; and
• ϕ is said to be obligatory within the context of normative system η iff ϕ is inevitable

if the grand coalition conforms to η.

This leads immediately to the following definition of permission and obligation.

Pηϕ =̂ 〈〈η : Ag〉〉ϕ Oηϕ =̂¬Pη¬ϕ

Example 4. Recall the trains scenario S1 introduced earlier, and the associated normative
system η1 introduced in Example 2. We have:

S1, q0 |=Oη11¬(inE ∧ inW)

To see this, simply observe that a crash state is not permissible within the context of nor-

mative system η1: if both trains conform to η1, then the trains can never crash. Similarly,
we can capture some permissible properties of η1: in particular, it is permissible for the
trains to progress.

S1, q0 |=
∧

i∈{E,W }

∧

X∈{away,waiting,in}
Pη1EXi

Now, consider normative system η2, which prevents the trains from moving [34].

η2(α) =
{

Q if α =moveE or α =moveW
∅ otherwise
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We have the following.

S1, q0 |=Oη21¬(inE ∧ inW)

But of course, we also have the following—undesirable—side effect.

S1, q0 |=Oη21(awayE ∧ awayW)

Note that only the grand coalition Ag plays a role in our definition of permission Pη , im-

plying that there is space for a much more refined analysis of permissions and obligations

in the coalitional framework of ATL. The most obvious way to do this, for any coalition

C, seems to be to define PC,ηϕ =̂〈〈η : C〉〉ϕ, saying that C has a η-conformant strategy to

guarantee ϕ. This does not put any constraint on the agents outside coalition C, they don’t

necessarily need to behave according to η. In the train example, we would for instance have

S1, q0 |= PW,η1EinW ∧ ¬PE,η1EinE (train W does not need social behaviour of E to go

into the tunnel, whereas train E does need W ’s social behaviour!). We would also have

S1, q4 |= ¬PW,η1!(inW ∧ ¬inE) (when both trains are waiting, W cannot, by executing

only socially acceptable strategies, enforce that in the next state he is in the tunnel without

being in a crash situation).

However, we could also define a notion of permission, say pC,η , where pC,ηϕ means

that, if it is given that all agents behave in accordance to η (i.e., both those in C and the

others), C can enforce ϕ. In the trains example wewould then have S1, q4 |= pW,η1!(inW ∧
¬inE) (if both trains behave according to η1, W is permitted to enter the tunnel safely,

when both are waiting). We leave a thorough investigation addressing these options for

later work, in this paper restricting ourselves to the definition of permissions that refer to

the grand coalition only.

We leave a full axiomatization of NATL* and even NATL for future work, but mention

here some validities. Note that Example 4 deals with NATL-formulas, in which the object of

obligation and permission are temporal. Indeed, these seem natural candidates for specific

study, since it makes little sense to reason about an agent’s deontic status if the world is

not subject to change anymore. Indeed, for any objective formula σ , we have:

(2)|= (σ ↔ Pησ ) ∧ (σ ↔Oησ )

This is not to say, of course, that agents do not have responsibilities to change states of

affairs (the following claim is also true for objective formulas):

(3)#Oηϕ →Oη1ϕ and # PηEϕ →Oηϕ

From a (modal) logic point of view, Pη can be conceived of as a diamond, and Oη as a

box-like operator. Thus we have:

|= Pη(ϕ ∨ ψ) ↔ (Pηϕ ∨ Pηψ) and |=Oη(ϕ ∧ ψ) ↔ (Oηϕ ∧Oηψ)

If something is naturally, or physically inevitable, then it is obligatory in any normative

system; if something is an obligation within a given normative system η, then it is permis-

sible in η; and if something is permissible in a given normative system, then it is naturally

(physically) possible. Thus we have the following chain of implications (where η is an
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arbitrary non-trivial normative system).

|= (Aϕ →Oηϕ) |= (Oηϕ → Pηϕ) |= (Pηϕ → Eϕ)

Note that the second of these properties does not hold for arbitrary normative systems η:

If η = η1 for example, we have Oηϕ (= ¬Pη¬ϕ) for any ϕ, but at the same time, Pηψ for

no ψ .

Notice that we would not expect physical ability to imply ability within a normative

system, and indeed in NATL*, it does not.

# 〈〈C〉〉ϕ → 〈〈η : C〉〉ϕ
If the LHS of this implication were true, then the witness to its truth would be a strategy

profile for C; but this strategy profile would not necessarily be η-conformant.

Moreover, the fact that something is obligatory does not imply that any individual coali-

tion can achieve it, either within or outside the context of a normative system.

#Oηϕ → 〈〈η : C〉〉ϕ and #Oηϕ → 〈〈C〉〉ϕ
Considering the distinguished normative systems η⊥ and η1, we get the following.

|=Oη⊥! true

|=Oη1! false

If we look at properties with respect to the 5 relation over normative systems, we obtain:

Proposition 3. Let S be an AATS, and let η,η′ be arbitrary non-trivial normative systems
over S such that η 5 η′ (i.e., η is less restrictive than η′). Then:

(1) S |= 〈〈η′ : C〉〉ϕ → 〈〈η : C〉〉ϕ
(2) S |= Pη′ϕ → Pηϕ

(3) S |=Oηϕ →Oη′ϕ

Proof. For (1), assume S,q |= 〈〈η′ : C〉〉ϕ. Then ∃σC ∈ Σ
η′
C such that ∀λ ∈ out(σC,q),

we have S,λ||= ϕ. But since by Proposition 2, we have that ∀C ⊆ Ag : Σ
η′
C ⊆ Σ

η
C , then

σC ∈ Σ
η
C , and hence S,q |= 〈〈η : C〉〉ϕ. Part (2) is the special case of (1) where C is the

grand coalition; part (3) is the contrapositive of (2). !

We combine this result with (1), as follows.

Proposition 4. Let S be an AATS, and let η,η′ be arbitrary non-trivial normative systems
over S. Then:

(1) S |= 〈〈η 3 η′ : C〉〉ϕ → 〈〈η : C〉〉ϕ
(2) S |= 〈〈η : C〉〉ϕ → 〈〈η 2 η′ : C〉〉ϕ
(3) S |= Pη3η′ϕ → Pηϕ

(4) S |= Pηϕ → Pη2η′ϕ
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(5) S |=Oηϕ →Oη3η′ϕ
(6) S |=Oη2ηϕ →Oηϕ

Proof. Part (1) follows from Proposition 3 and the fact that η 5 η 3 η′. The remaining
cases are identical to these. !

Finally, we briefly look at iterative behaviour of obligations and permissions: it is inter-

esting to note that imposing several norms does not have a cumulative effect

(4)# Pη1Pη2ϕ → Pη1ϕ and #Oη1ϕ →Oη1Oη2ϕ

(4) should be clear from the truth definition: when unfolding the definition for 〈〈η1 : Ag〉〉
〈〈η2 : Ag〉〉ϕ for instance, the, the search for η1-conformant strategies is completely ‘over-

ruled’ by a search for strategies that are η2-conformant. This even holds when we insert

a number of temporal operators, i.e., we also have # Oη1ϕ → Oη1!Oη2ϕ. If one wants to

impose a normative system η2 on top of another η1, the union operator 3 seems to be the
most appropriate way to do it.

6. Multi-agent systems, social laws, and social contracts

In this section, we demonstrate how the apparatus of NATL* may be used to analyse the

properties of multi-agent systems. We present a formal analysis of the social contract, a

well-known concept from political and economic philosophy. The idea of the social con-

tract is generally attributed in its original form to Thomas Hobbes (1588–1679) and his

concept of a society as a “Leviathan”, with substantial subsequent refinements and contri-

butions to the theory by John Locke (1632–1704), Jean-Jacques Rousseau (1712–1778),

and most notably in the present era, John Rawls. The term “social contract” is usually

understood as referring to the set of rules, norms, or conventions that a society implicitly

accepts in order to coordinate and manage its behaviour. Ken Binmore, a game theorist and

recent commentator on the social contract [6,7], understands the term as follows:

We are all players in the game of life, with divergent aims and aspirations that make

conflict inevitable. In a healthy society, a balance between these differing aims and aspi-

rations is achieved so that the benefits of cooperation are not entirely lost in internecine

strife. Game theorists call such a balance an equilibrium. Sustaining such equilibria re-

quires the existence of commonly understood conventions about how behaviour is to be

coordinated. It is such a system of coordinating conventions that I shall identify with a

social contract. [5, p. 6]

Notice that the term social contract does not only refer to the formalised laws that a society

imposes upon itself, but also to the informally accepted norms and conventions that are

part and parcel of everyday life.

Understanding how a social contract works is of great interest to political philosophers

and economists. Apart from anything else, much of the function of government can be

understood as attempting to engineer a society’s social contract. And yet there are many
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paradoxes associated with the social contract, not the least of which is why a rational agent

should comply with such a contract. A rational agent, seeking to maximise its own welfare,

may well observe that the best outcome would be if it chose to ignore the rules, while

allowing other agents to conform to them; and yet if every agent reasons the same way, then

everyone ignores the social contract, and its benefits are lost. A game theoretic analysis of

such a scenario leads to a model resembling the well known “prisoner’s dilemma” scenario

(or perhaps more accurately, the iterated prisoner’s dilemma), which accounts in no small

measure for the interest this scenario has attracted [3,6,7].

In this section, we will use NATL*, our logic of normative ability, to formalise a model

of the social contract, and begin a preliminary analysis of its properties. To do this, we will

work with three different types of structure, as follows:

A Multi-Agent System consists of an AATS (which specifies the underlying behaviour

of the system, and the effect that agent’s actions have on the system), together with a set

of goals, one for each agent. Thus a multi-agent system determines what agents want to

achieve (their aspirations), and the fundamental—physical or natural—rules within which

they must operate.

A Social Law is a structure that is developed and manipulated by the overseer, designer,

or manager of a system. Following [34], we define a social law to consist of a normative

system (i.e., a set of rules) together with some objective, or goal. The idea is that the de-

signer, overseer, or manager of the system will develop the normative system so that, if the

norms are followed, then the objective will be achieved (in which case we say the norma-

tive system is globally effective). If one thinks about the social contract in the conventional

sense, then we can think of the “designer” as the politician, who is trying to modify or

replace an existing social contract. The designer will try to construct a set of rules so that,

if they are followed, the objective will inevitably follow. Of course, the designer cannot

ignore the agents within the system, which will typically be self-interested, with their own

goals and objectives to achieve.

A Social Contract consists of a multi-agent system together with a social law. That is, a

social contract defines (i) the natural or physical properties of a system; (ii) the aspirations

of the agents within the system; (iii) a set of normative rules, in addition to those inherent

within the physical structure of the system, which are intended to restrict the behaviour

of the agents in the system in certain desirable ways; and (iv) a system-level objective, or

goal, which it is hoped will be achieved if the agents within the system conform to the

normative rules.

The main relationships between the concepts in our structures are described by the

entity-relationship diagram in Fig. 4. In what follows, we will formalise each type of struc-

ture, give examples to illustrate them, and investigate some of their properties. Note that,

throughout this section, when we refer to a normative system, it should be understood that

we mean a non-trivial normative system.

A multi-agent systemM is an (n + 1)-tuple:M = 〈S,γ1, . . . ,γn〉 where:

• S = 〈Q,q0,Ag,Ac1, . . . ,Acn,ρ, τ,Φ,π〉 is an AATS, intended to represent the physi-
cal properties of the system in question; and

• for all i ∈ Ag, γi is a path formula of NATL*, intended to represent the goal of agent i.
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Fig. 4. The main structures and concepts in our logic-based model of social contracts.

Example 5. In the trains scenario, consider the following goals for the two agents:

γE = 1EinE γW = 1EinW

That is, the goal of each train is to enter the tunnel infinitely often. (In the terminology of

the reactive systems literature, these are liveness properties [11,22].)

Following [34], we take a teleological view of social laws. That is, we consider social

laws with respect to the goal, or objective that they are intended to achieve. Formally, we

define a social law over an AATS S to be a pair: L= 〈Ψ,η〉 where:

• Ψ is a path formula of ATL representing the objective of the law; and

• η :AcAg → 2Q is a normative system over S.

We say a social law 〈Ψ,η〉 (over a MAS M = 〈S,γ1, . . . ,γn〉) is:
globally effective if S,q0 |=OηΨ ;
weakly globally effective if S,q0 |= PηΨ ; and
globally ineffective if S,q0 |=Oη¬Ψ

Example 6. In the trains system, perhaps the main goal of a designer will be to prevent

negative interactions between agents, and in particular, to prevent the trains from crashing

in the tunnel. We denote this objective as Ψ1:

Ψ1 = 1¬(inE ∧ inW)
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The following are globally effective social laws:

〈Ψ1,η1〉 〈Ψ1,η2〉
Thus, if the designer of the system is only concerned about preventing the trains from

crashing, then either η1 or η2 would appear to be satisfactory.

Of course, the designer of a normative system will not only be concerned about whether

it will be globally effective, i.e., whether or not it would “succeed” if everyone adhered to

the constraints it imposed. The designer must also consider whether or not these constraints

will be adhered to. This question cannot be answered without reference to the goals that

agents have. This motivates the introduction of the next structure: a social contract.

Formally, we model a social contract Ω as a pair: Ω = 〈M,L〉 where:

• M = 〈S,γ1, . . . ,γn〉 is a multi-agent system; and
• L= 〈Ψ,η〉 is a social law over S.

Now, the basic question we ask of a social contract is whether or not it is successful. The

overall success of a social contract hinges on two distinct issues. The first, and in some

sense easier, issue is that of whether the social law component L = 〈Ψ,η〉 is globally
effective, as defined above. Thus, this means asking whether or not it is the case that, if

every agent in the system adhered to the normative system η, the corresponding objective

Ψ would be achieved.

However, there is a second issue in determining whether a social contract is successful,

which is arguably more troublesome. We must determine whether or not the agents in the

system will actually conform to the rules of the normative system η. We assume agents are

autonomous (we cannot impose decisions upon them), and self-interested (they will choose

to perform a particular action if they believe it is in their best interests, and not otherwise).

So, let us say that a social contract is

locally effective for agent i if S,q0 |=Oηγi;
partially locally effective for agent i if S,q0 |= 〈〈η : i〉〉γi;
weakly locally effective for agent i if S,q0 |= Pηγi; and
locally ineffective for agent i if S,q0 |=Oη¬γi

We will say a social contract is simply “locally effective” if it is locally effective for all

agents in the system, and similarly for weakly locally effective and locally ineffective.

Example 7. Let us return to the train system S1: consider the system with goals γE and

γW , as defined earlier, and normative system η3 defined as follows.

η3(α) =






Q if α = idleE
Q \ {q0} if α = idleW
∅ if α =moveE
{q0} if α =moveW
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Thus on the first time step, this social law forces the east bound train to move while forc-

ing the westbound train to stay still, and thereafter prevents either train from idling: they

move in lock-step. It is not hard to see that, thus defined, the trains do not crash (and

hence 〈Ψ1,η3〉 is a globally effective social law), and moreover, the trains are in the tunnel
infinitely often, hence η3 is locally effective.

The disadvantage of the normative system η3 is that it completely constrains the actions

of the trains. That is, neither train has any choice about what to do: they only ever have

one action available to them. Thus this normative system would not be effective if the

trains were ever to desire to stop (e.g., to pick up passengers!) So, consider the following

normative system, which works by forbidding trains from lingering in the tunnel, but is

otherwise the same as η1.

η4(α) =






{q4, q7} if α = idleE

{q2, q6} if α = idleW

{q5, q6} if α =moveE

{q7} if α =moveW

Moreover, let us weaken the goals of the agents somewhat.

γ ′
E = 1Pη4EinE, γ ′

W = 1Pη4EinW

The idea is that the agent’s goals are not necessarily to enter the tunnel infinitely often, but

that it is permissible for them to enter the tunnel infinitely often.

Then we have:

S,q0 |=Oη4Ψ1 & S,q0 |=Oη4γ
′
E & S,q0 |=Oη4γ

′
W

In sum, considering the social contract

Ω ′ =
〈
〈S1,γ ′

E,γ ′
W 〉, 〈Ψ1,η4〉

〉

we see that Ω ′ is both globally and locally effective. It is globally effective because the
objective Ψ1 is obligatory in the context of η4, and it is locally effective because the goals

γ ′
E and γ ′

W of the two agents are obligatory in the context of η4.

For completeness, let us see how some of the other social contracts that arise from our

discussion stack up. Consider:

Ω1 =
〈
〈S1,γE,γW 〉, 〈Ψ1,η1〉

〉

Ω2 =
〈
〈S1,γE,γW 〉, 〈Ψ1,η2〉

〉

Ω3 =
〈
〈S1,γE,γW 〉, 〈Ψ1,η3〉

〉

The social contracts Ω1 and Ω2 are globally effective but not locally effective, while

Ω3 is both globally and locally effective.

Given the preceding discussion, Table 1 summarises the possible types of social con-

tracts, with respect to their properties at the social law level (are they effective?) and the

individual agents in the system (will they help or hinder agents in achieving their goals?).
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Table 1

Social contract types

Objective

status

Agent

status

Comment Globally

effective?

Locally

effective?

1. OηΨ
∧

i∈AgOηγi strongest yes yes

2. OηΨ
∧

i∈Ag 〈〈η : i〉〉γi yes partially

3. OηΨ
∧

i∈Ag Pηγi yes weakly

4. OηΨ
∨

i∈AgOη¬γi yes no

5. OηΨ
∧

i∈AgOη¬γi yes no!

6. PηΨ
∧

i∈AgOηγi weakly yes

7. PηΨ
∧

i∈Ag 〈〈η : i〉〉γi weakly partially

8. PηΨ
∧

i∈Ag Pηγi weakly weakly

9. PηΨ
∨

i∈AgOη¬γi weakly no

10. PηΨ
∧

i∈AgOη¬γi weakly no!

11. Oη¬Ψ
∧

i∈AgOηγi ineffective yes

12. Oη¬Ψ
∧

i∈Ag 〈〈η : i〉〉γi ineffective partially

13. Oη¬Ψ
∧

i∈Ag Pηγi ineffective weakly

14. Oη¬Ψ
∨

i∈AgOη¬γi ineffective no

15. Oη¬Ψ
∧

i∈AgOη¬γi weakest ineffective no!

• Social contracts of type (11)–(15) will be unacceptable to the designers of a system,

since these contracts ensure that the global objective will not be achieved. Of the

remaining social contract types, (1)–(5) will be preferred over (6)–(10), since these

guarantee the achievement of the global objective.

• Social contracts of types (5), (10), and (15) will be unacceptable to all agents within

the system (the “population”), since such social contracts will prevent their goals being

achieved.

• Social contracts of types (4), (9), and (14) will disenfranchise some agents within the

system, by preventing them from achieving their goals. It is hard to see why these

agents would accept such a social contract, since by definition to do so would prevent

them from achieving their goals. One might comment that social contract types (4) and

(9) reflect the situation in “underclass” communities, where society requires members

of such a disadvantaged community to respect the laws of the society, while at the

same time effectively preventing them from advancement if they do respect the laws

of the society.

Since a social contract designer would reject social contract types (11)–(15), and agents

within the system would reject types (5), (10), and probably (4) and (9) also, this leaves us

with types (1)–(3) and (6)–(8) as potentially successful social contract types. Given that the

designer would prefer all of (1)–(3) over all of (6)–(8), and an agent would prefer (1)–(2)

over (3), it seems that the most viable social contracts are those of types (1) or (2).

Clearly, the “strongest” type of social contract is type (1). Here, every agent will benefit

from conforming to the contract (if everyone conforms to the social contract, then everyone

will have their goals achieved), while society also benefits (if everyone conforms to the
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social contract then the global objective is achieved). However, from an individual agent’s

point of view, there is perhaps not too much to distinguish type (1) and (2), except the

guarantee of success in (1).

Clearly, there is much more that can be done with respect to the analysis of social

contracts and how they work than we have attempted to do here. For example, the issue of

how a society deals with violation of a social contract by an agent is not addressed. One

might therefore consider modelling sanctions within the formal framework. Similarly, one

might try to develop a more fine-grained model of preferences and utilities than the simple

logical specification of goals that we have adopted here.

7. Related work

With respect to the models and intuitions underpinning our framework, the closest

approach in the literature to ours is the social laws framework of Moses, Shoham, and

Tennenholtz. Shoham and Tennenholtz were the first to precisely articulate the notion of

social laws for multiagent systems, and set up a basic formal framework within which

computational questions about social laws could be formulated [30–32]. The particular

application domain was that of traffic laws for robotic agents. The basic framework was

extended by Fitoussi and Tennenholtz, to consider simple social laws—essentially, social

laws that could not be any simpler without failing [13].

Moses and Tennenholtz developed a deontic epistemic logic for representing proper-

ties of multiagent systems with normative structures [26]. Although semantically similar

to NATL* (and ATEL [16]), their logic was quite different to ATL in terms of the syntac-

tic constructs it provided, and the emphasis was primarily on deriving axioms capturing

static aspects of artificial social systems and social laws. The logic did contain notions of

“socially reachable” states of affairs, which roughly corresponds to our normative ability

operators, the normative system was fixed in the semantics of the logic—normative sys-

tems were not first-class components of the language. Nevertheless, much of the intuition

underpinning this logic is similar to our own, and this system was, apart from ATL, the

largest single inspiration for the present paper.

Deontic logic originally arose in the context of formal philosophy, but has recently

found increasing application in computer science and multi-agent systems research [36].

Deontic logic is usually formulated as a normal modal logic with Kripke semantics, con-

taining unary modal operatorsO and P, whereOϕ is intended to be read as “ϕ is obligatory”

and Pϕ as “ϕ is permissible”. Although there is broad agreement that the modal system KD

serves as a “standard” deontic logic, there are many “paradoxes” that arise when a naive

modal approach to reasoning about deontic notions is adopted, and much of the deontic

logic literature is concerned both with trying to understand whether these apparent para-

doxes really are problematic, and if so, how they can be fixed.

A prominent discussion in deontic logic concerns “contrary-to-duty’ (CTD) obligations,

in which there is a “primary” obligation together with a “secondary” one, which comes

into effect when the first obligation is violated. Prakken and Sergot [28] convincingly argue

that many of the paradoxes with CTD can be solved by adding a temporal component to

the language. This would make NATL also an appropriate framework to at least deal with
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those CTD obligations. However, although this remains for further investigation, we feel

the applicability of NATL* is even broader here, since in NATL* we can explicitly refer to

different norms. A standard example of a CTD obligation (from [28]) is obtained by the

following triple: (i) there must be no fence; (ii) if there is a fence, it must be a white fence;

and (iii) there is a fence. It might be well possible, in NATL, to model (i) as an obligation

with respect to a system η1, whereas (ii) then is an obligation with respect to a “fall-back”

normative system η2, which gives a recipe for the available choices if the agents cannot be

obedient to the “default” system η1.

A preliminary investigation of the relationship between ATL and deontic logic was pre-

sented in [19]: this work took the obvious route of enriching ATL directly with deontic

accessibility relations and modalities, and tentatively exploring the space of possible sys-

tems that result.

The work in this paper can perhaps be understood as developing a computationally

grounded semantics for obligation, and in this sense, we are following Lomuscio and Ser-

got with their development of deontic interpreted systems [21]. The basic idea in their

logic was to interpret the deontic accessibility relation as linking states where the system

is correctly functioning: thus q |=Oϕ in their system if ϕ is true in all states q ′ that can be
reached from state q such that the system is correctly functioning in q ′. Lomuscio and Ser-
got gave an axiomatization of their logic, and also investigated the epistemic properties of

their system—in particular, what a “correctly functioning” agent would know. Although,

as we noted above, epistemic extensions to ATL have been developed [16], and Moses and

Tennenholtz made use of such notions in their logic of artificial social systems, we are not

aware of any attempt to analyse the knowledge implicit in normative systems, and it may

be that some combination of Lomuscio and Sergot’s approach with our own would yield

some insights in this direction.

We should also make mention of Meyer’s reduction of deontic logic to dynamic logic

[23]. Meyer’s insight was to see how an account of obligation could be given in dynamic

logic by introducing a primitive proposition V , whose satisfaction in some state q would

indicate that a violation of the normative system had occurred. We could then say that

an action α was forbidden if that action lead to the V being satisfied. Building on this

notion of “forbidden”, Meyer went on to show how obligation and permission could be

defined. Some articles examining the relationship between deontic logic and action logic,

in a similar vein to that of Meyer, were presented in [25].

The abilities in ATL refer to “physical” abilities of agents, and are identified with

choices; this is similar, but not the same as the notion of “responsibilities” that is ascribed

to agents in the so-called STIT (Seeing To It That) theory [4]. The exact relation between

ATL abilities and STIT responsibilities is an interesting issue, and deserves further analy-

ses. This is a prerequisite to be able to compare NATL* with STIT plus obligations [18].

Although the two frameworks look semantically rather similar, there are notable difference

in validities (in STIT for instance, one has that if it is obligatory that i sees to it that ϕ, then

if follows that ϕ is obligatory).

Finally, we should mention our own work on social laws, which introduced the AATS

structures, and investigated issues of feasibility and effectiveness of social laws in this set-

ting [34]. The main difference is that in the present paper, we attempt to bring the reasoning
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in [34] into the object language, rather than carrying out operations such as implementing

social laws at the meta-language level.

8. Conclusions

In this paper, we have developed a logic of normative ability, as an extension to ATL,

the logic of cooperative ability developed by Alur, Henzinger, and Kupferman. We have

demonstrated how this logic can be used for defining deontic notions such as obligation

and permission, illustrated these ideas with a running example, and applied the logic to a

preliminary formal analysis of the social contract.

There are many possible routes for future investigation. One obvious question is the

extent to which other notions such as knowledge can be incorporated into the framework

[15,16]. Another question is the computational properties (model checking, satisfiability)

of NATL*: syntactically, NATL* is closer to the “full” branching time logic CTL* than its

computationally better behaved cousin CTL, and hence model checking and satisfiability

are likely to be complex for NATL*. However, restricted forms of NATL* may well have

more desirable computational properties, and so the extent to which such restrictions might

be usable in practice is surely worth studying.

Finally, the twin issues of violation and sanction are also surely worth investigating, and

a refinement of the social contract types in Table 1 would be a first step in this direction.
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