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ABSTRACTQualitative coalitional gamesqccs) were introduced as abstract formal models of
goal-oriented cooperative systems.QAG is a game in which each agent is assumed to have
some goal to achieve, and in which agents must typicallye@e with others in order to satisfy
their goals. In this paper, we show how it is possible to reesooutQCc s using Coalition Logic
(cL), a formalism intended to facilitate reasoning about ctiafial powers in game-like multi-
agent systems. We introduce a correspondence relatioreketpcGs and interpretations for
cL, which defines the circumstances under whiatLanterpretation correctly characterises a
QCG. The complexity of deciding correspondence betwgeas and interpretations focL is
shown to vary from being tractable up ¥8,-complete, depending on the representation chosen
for the QcG and interpretation. We then show how various properties soidtion concepts

of Qces can be characterised as. formula schemes. The ideas are illustrated via a detailed
worked example, in which we demonstrate how a model cheakdre deployed to investigate
whether a particular system has the properties in question.

KEYWORDScoalitional games, cooperative games, modal logic, cimaitogic.

1. Introduction

One of the fundamental research objectives in the multirggstems commu-
nity is to build software agents that can cooperate with oglhieh agents in order to
efficiently carry out tasks on behalf of some user or ownerdMiadge 2002). It is
widely accepted that, in order for software agents to be &blkdo this, they must
be able to represent and reason about the multi-agent eteeeun which they find
themselves. This has motivated the development of knoweleejgresentation and rea-
soning formalisms for multi-agent systems. Historicadlych formalisms have fallen
into one of two categories: those that use modal logic toasgnt the dynamic infor-
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mational and motivational components of rational agentstarir decision making
processes (Wooldridge et Jennings 1995, Hoek et Woold28§8c), and those that
are based on a game-theoretic analysis of the scenario@{Keaus 1997, Sandholm
1999).

The present paper is part of a burgeoning body of work thdtsseesynthesise
modal logic and game theoretic approaches for reasoningt amalti-agent systems.
We show how a particular type of modal logic can be used tooreabout a partic-
ular type of cooperative game. In more detail, we show kkmalition Logic(Pauly
2002b, Pauly 2002a, Pauly 2001) can be used to reason @oealitative Coalitional
GamegWooldridge et Dunne 2004).

Pauly’s Coalition Logic (hereaftegL) is a formalism for reasoning about coali-
tional powers in game-like multi-agent systems (Pauly 2Q@2auly 2002a, Pauly
2001). Pauly showed how the semantic structures undergjiani could be formally
understood as games of various types; he gave correspancesudts between prop-
erties of the games and axioms of the logic, gave comple@n@tizations of the
various resulting logics, determined the computationatpiexity of the satisfiability
and model checking problems for his logics, and in additt@monstrated how these
logics could be applied to the formal specification and veatfon of social choice
procedures.

Qualitative Coalitional Game®(€cs) were introduced by Wooldridge and Dunne
as an abstract formal model of goal-oriented cooperatigtesys (Wooldridget al.
2004). In aQCg, each agent is assumed to have a set of goals: an agent sfieskiti
with any outcome that accomplishes one of its goals, butdéferent aboutwhich of
its goals should be achieved — all are considered equallgt ggfandividual rational).
Each potential coalition is then modelled as having a sethofoes available, intu-
itively corresponding to the different ways in which theyutsbchoose to cooperate.
Associated with each choice is a set of goals, which woulcchéeged if the coalition
chose to cooperate in this wagCcGs seem an appropriate abstract framework within
which to reason about goal-oriented multi-agent systenh&rg/numeric utility val-
ues (as in conventional coalitional games (Osborne et Rtdim1994, pp. 255-312))
may be either inappropriate or else impossible to derive.

Our aim in this paper is to show hogr can be used to represent and reason about
Qcas. Specifically, the paper makes the following main contidns.

— First, we define @orrespondence relatigri~" betweenQcacs and interpreta-
tions forcL. The idea is that this relation characterises the circumestmunder which
aQcaGand an interpretation farL say the same things about coalitions, and hence are
“equivalent” at this level of analysis. (Correspondenaetteus be loosely understood
as a kind of bisimulation between games and interpretati@hgBlackburn, de Rijke
et Venema 2001, pp. 64-73).)

— Second, we investigate and characterise the computhtonglexity of the
problem of deciding whether @cG and an interpretation correspond to one-another
for two different representations @fcGs and interpretations. We show that, with an
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extensive representation (in which we explicitly enumetheé components of the two
structures), the problem is decidable in time polynomiahia size of the structures
— although the structures are in general unfeasibly large. alsb show that, for a
symbolic representation (in which we represent the compisraf theQc and inter-
pretation via logical formulae), the problemlig-complete. We argue that “practical”
representations for such a problem are much closer to thbajomepresentation, and
therefore that the negatii&-completeness result is likely to be a better indication of
the practical complexity of deciding correspondence.

— Third, we show how the properties and solution concepte@és that were
introduced in (Wooldridget al. 2004) can be characterised as formulaeiof That
is, for each of the concepts we consider, we defiae predicate, and we then prove
that this predicate corresponds to the claimed propertianit will be satisfied in an
interpretation corresponding to@CG iff the QCG itself has the property. This gives
us a syntactic characterisation @€G properties, that is somewhat analogous to the
modal characterisation of first-order relational progerof Kripke structures in the
correspondence theory of modal logic (Benthem 1884)

— Fourth, and finally, we demonstrate how the ideas set oheipaper can be ap-
plied to the analysis of a concrete computational system égns of a model check-
ing system forcL (Alur, de Alfaro, Henzinger, Krishnan, Mang, Qadeer, Raairet
Tasiran 2000, Alur, Henzinger, Mang, Qadeer, Rajamanagirdn 1998).

We conclude with a brief discussion of related work, and givee pointers to future
research directions.

2. Qualitative coalitional games

We give a brief introduction to Qualitative Coalitional GesQcCas): details may
be found in (Wooldridgest al. 2004). AQCG contains a (non-empty, finite) sgt =
{1,...,m} of agents Each agent € A is assumed to have associated with it a
(finite) setG, of goals drawn from a set of overall possible go&ls The intended
interpretation is that the members@frepresent all the individual rational outcomes
for i — intuitively, the outcomes that give it “better than zerdityt. That is, agent;
would be happy ienymember ofG; were achieved — then it has “gained something”.
But, in Qcas, we are not concerned with preferences over individuakgdaus, at
this level of modelling; is indifferentamong the members &f;: it will be satisfied
if at least onemember ofG; is achieved, andnsatisfiedotherwise. Note that cases
where more than one of an agent’s goals are satisfied are isstsn— an agent’s aim
will simply be to ensure that at least one of its goals is agdeand there is no sense
of an agent attempting to satisfy as many membersjofs possible.

1. It is worth pointing out that we are unable to charactetisee of the properties ajccs
that were discussed in (Wooldridge al. 2004): unattainable goal seglobal unattainability
andincomplete gameThe reason for omitting these is simply that the form of djifi@ation
required to express these cannot be captured directly ifit@ad_ogic; possible extensions to
Coalition Logic to capture them would be an interesting fetavenue for research.
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A coalition, typically denoted by, is simply a set of agentsge., a subset ofA.
Thegrand coalitionis the set of all agentsd. We assume that each possible coalition
has available to it a set of possilzleciceswhere each choice intuitively characterises
the outcome of one way that the coalition could cooperate. "weel the choices
available to coalitions via eharacteristic functiorwith the signature

V24 02
Thus, in saying tha&? € V(C) for some coalitionC' C A, we are saying that one
choice available to the coalitiofi is to bring abouexactlythe goals inG. At this
point, the reader might expect to see some constraintsglateharacteristic func-

tions. For example, at first sight the followimgonotonicityconstraint might seem
natural:

C C ¢’ impliesV(C) C V(C")

Although such a constraint is entirely appropriate for macgnarios, there are cases
where such a constraint is not appropriate

The only requirement that we put omac-gamel’ is that if the empty coalitiofi
is able to bring about a set of godls thenanycoalition can bring them about:

VG CGYC C A:Ge V() = G eV(C) (1)

Formally, aQcG T is an(m + 3)-tuple (Wooldridgeet al. 2004, p.33):

I'=(A,6,G1,...,Gm, V)
where:

- A={1,...,m} is a set olagents

— G=A{g1,.-.,9n} IS aset opossible goals

— G, C Gis aset of goals for each agent A4, the intended interpretation being
that any of the goals ig; would satisfyi; — buti is indifferent between the members
of G;;

-V 24 - 229 is acharacteristic functionwhich for every coalitiorC' C A
determines a sét(C) of choicesthe intended interpretation being thatife V(C),
then one of the choices available to coalitionis to bring aboutll the goals inG
simultaneously. In this paper, we will assume that in aG I', the characteristic
functionV satisfies (1).

We say a set of goal§ satisfiesagenti if G N G; # 0); we say that7 satisfiesC C A
if it satisfies every member af’. Also, we say thats is feasiblefor coalition C' if
G e V().

2. For example, consider a legal scenario in which certaititoans are forbidden by monopoly
or anti-trust laws.



Characterising coalitional games 481

3. Coalition logic

The logic we use throughout the remainder of this paper isvknas Coalition
Logic (Pauly 2002b, Pauly 2002a, Pauly 2001). It was introduce@dnly as a frame-
work for representing and reasoning about the powers oftmoed in game-like multi-
agent encounters.L may be regarded as the “next time” fragment of the Altermatin
time Temporal Logic ATL) of Alur, Henzinger, and Kupferman (Alur, Henzinger et
Kupferman 2002); see (Goranko 2001) for a discussion of éfegionship between
cL andATL. In this section, we will give a complete definition of the iogalthough
of necessity, our presentation will be somewhat simplified @ccasionally somewhat
terse; see the references above for details.

Informally, cL is a propositional modal logic, containing an indexed adite of
unary modal operatorg’], whereC' is a set of agents. The intended interpretation
of a formula[C]y is that the set of agents (coalitio6) are effectivefor ¢. That is,
the agents” could cooperate to ensure that, in the next state of the @mwvient,p
was true. We refer to an expression of the fdiffjy as acoalition or cooperation
modality.

3.1. Syntax and semantics

Syntactically, formulae of cL are defined over a set of agents and a séf, of
atomic formulae by the following grammar:

pu=T|p|l@|leVel|[Clp

wherep € ®g is an atomic proposition an@ C A is a set of agents. We usually
omit set brackets in coalition modalities, for example bytiwg [1, 2, 3] instead of
[{1,2,3}]. As usual, we use parentheses to disambiguate formulaewleeessary,
and define the remaining connectives of classical logic &seaiations: L = —T,
p— = () Vipandp o 9 = (9 — P)A (1 — @)

Semantically, anode] M, for CL is a quintuple:

M = <A,S,5,@0,’U>

where:
- A={1,...,m} is afixed, finite, non-empty set afjentgas inQCcacs);
- S={s1,...,80} Is afixed, finite, non-empty set sfates

—£:24%x S8 2% s aneffectivity functionwhereS € £(C, s) is intended to
mean that from state the coalitionC' can cooperate to ensure that the next state will
be a member of — note that they cannot determindich of the members of' will
occur —they can only be sure that it will Bememember ofS;

— ®q is the set of propositional variables fa1; and
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— v : S — 2% is a valuation function, which for every statec S gives the set
v(s) of propositional variables that are satisfied at

It is possible to define a number of constraints on effegtifuinctions, depending
upon exactly which kinds of scenario they are intended toeh(®auly 2001, pp. 24—
39). For the purposes of this paper, we shall assume just mpery of effectivity
functions: that the empty coalition is ineffectual. We eaptthis by requiring that
the empty coalition has no power to do anything other thamurenthat the model
is closed, in the sense that the next state will be one of tfiaetepossible states.
Formally:£(0, s) = {S}, forall s.

An interpretationfor cL is a pairM, s, where M is a model and is a state in
M. The satisfaction relation=" for cL holds between interpretations and formulae
of cL. The satisfaction relation is defined by the following intiue rules:

M,;sET

M, s = piff p € v(s) (wherep € &)

M, s |E—piff M, s @

M;sEeVyiff M,sEgporM,sE

M, s | [Cleiff 3S € £(C, s) such that's’ € S, we haveM, s' = .

Sometimes, when we fix the root of the interpretation, we allowrite (M, p), in
which cases it is implicitly assumed thatc S. Note that, sinc€ (0, s) = {S}, the
emptyset coalition modality[f}]” acts as a “global” or “universal” modality (Black-
burnet al.2001, p.367):

M,sk=[0lp iff M,s =pforalls’. )

3.2. Satisfiability and model checking

If we aim to formally reason about a particular systém(where X is, for ex-
ample, a computer program), using a lodicthen there are, broadly speaking, two
possible approaches we can adopt. Withttheorem provingapproach, we derive a
theoryT'h(X) using the logid_, whereT'h(X') encodes properties &f using the lan-
guageL. Checking whetheX has some property then reduces to a proof problem
in L: we simply check whethéFh(X) I, ¢, i.e, whetherp is a theorem of 'h(X).

In contrast, thanodel checkingpproach depends upon interpreting a syskémms a
modelM x for alogic L: checking thatX has property (wherep is again expressed
as a formula of.) then reduces to the problem of checking th&t satisfiesp under
the semantics of,, i.e, that Mx [ ¢ (Clarke, Grumberg et Peled 2000). There
is an ongoing debate with respect to the relative merits ebrtbm proving versus
model checking as an approach to the automatic verificafispstem properties, and
it is not our intent to add to this debate here. We choose tptaalonodel checking
approach for two reasons. First, this approach has prdyipusved useful for veri-
fying cooperation properties of multi-agent systems (HeeWooldridge 2002, Hoek



Characterising coalitional games 483

et Wooldridge 2003b, Hoek et Wooldridge 2003a); and secbeadause reliable and
well-documented model checking tools exist for cooperdtgics (Aluret al. 1998).

GivenamodeM = (A, S, &, @, v), we denote thsizeof M by | M|, and define
this as follows (Pauly 2001, pp. 50-51):

Ml =181+ Y Y > s

{s]s€S} {C|CC A} {S|SEE(C,s)}

The size of a formulg, as usual, is denoted By| and is defined as the number of
sub-formulae thap contains.

Now, the model checking problem far is as follows.
MODEL CHECKING:

Given Formulayp, model M, and states from M.
Answer “Yes” if M, s = ¢, “no” otherwise.

PrROPOSITION1 (COMPLEXITY OF CL MODEL CHECKING (PauLy 2001, RuULY
20028)). — TheMODEL CHECKING problem for Coalition Logic can be solved in
time O(|M| x |¢]), where| M| is the size of the model to be checked, &plds the
size of formula to be checked.

The satisfiability decision problem fan is as follows.

SATISFIABILITY :
Given Formulagp.
Answer “Yes” if for some M, s we haveM, s = ¢, “no” otherwise.

PROPOSITION 2 (COMPLEXITY OF CL SATISFIABILITY (PauLy 2001, RuLY
20028)). — In the general case, theATISFIABILITY problem for Coalition Logic
is PSPACECOMplete.

Notice that while the model checking problem for is no easier than the model
checking problem for its more expressive counterpatrt (Alur et al. 2002), there
does appear to be a difference in complexity with respedttisf@bility. TheaTL sat-
isfiability problem is complete foexPTIME, and is hence provably intractable (Drim-
melen 2003). In contrast, as noted above, the satisfialpitiiplem forcL is “only”
pPsPACEcomplete in general (reducing ka>-complete in certain special cases).

4. Basic correspondence definitions

As was noted in (Wooldridget al. 2004, p.71), there is a close relationship be-
tween the effectivity functions of Coalition Models amtGs In this section, we
make this relationship precise. We define@respondenceelation, “~", between
QcCGs and interpretations. The idea is that, fop@G I and an interpretatioiM, s,
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if ' ~ M, s, then theQcG I' and the interpretationM, s are “equivalent” with re-
spect to what they say about the way in which coalitions capemate. Before we
define the correspondence relation, however, we need toleémbay when &cG
and an interpretatiop, s arecomparable that is, the circumstances under which it
is meaningful to ask whether they correspond.

Now, we say thaQcG I' and modelM arecomparableff:

1) The sets of agents in both structures are the same.

2) There is a propositional variable in the model for every possible goal iir,
and. M contains no other propositional variables. For convergeiig is a possible
goal inT", then we will also writgy for the propositional variable in corresponding
to this goal.

Hence, if a modeM = (A4,S,&, Py, v) and a gamé& = (A", G,G,...G,, V) are
comparable, ther = A" and®, = G. As the reader may now be able to guess,
the truth of a propositional variablgin a states will be intended to mean that the
corresponding goaj is achieved in state.

Before formally defining the correspondence relation, fefixisome notation. In
what follows,G is assumed to be a set of possible goas,G C G.

o = /\ﬂg o = \/ﬂg

geG geG

N\ g ol \ g

geG geG

+
TG

>
>

So, if M, s |= 7, then this will mean thatogoal inG is achieved in state, whereas
if M,s wg, theneverygoal inG is achieved in state. In contrast,M, s |= o
means thasomemember ofG is notachieved ins, while M, s = o/, will mean that
some member of7 is achieved irs.

Next, we define a formula that characterises exactly whenengiet of goals is
achieved in a given state — as above, it is assumedihatg.

R
XG =Tg /\7Tg\G

The following property is obvious. Lett andI’ be a comparable model and game,
(so that the propositional variables.m are exactly the goals i), and letG C G;
then:

M,sExa & v(s)=G 3)

The following result states some useful propertiegofind r-formulae, which are
straightforwardly established.

PrROPOSITION3. — LetI" be aQccand M be a comparableL model. Then:
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1) If 3sin M: M, s = (xa A7) thenG’ C G.
2) If G’ C GthenVsin M: M, s = (xa — 7).

We can now define the correspondence relation.ILet (A4,G,G1,...,G,, V)
be aQcG game. Rather than relating it to@a model M, we will compare it with
a cL-interpretation Hence, from now on, if we writéM, p), we assume that1 =
(A,S,E, g, v) with p € S. Then, we writel’ ~ (M, p) iff:

1) M andI" are comparable; and
2) ForallC C AandG C G, we have:

GeV(C) & 3I9e€&(Cp)stVseS:v(s)=G
N—_——
QCG interpretation

The first condition essentially says that the game and madehi the same agents
and goals, while the second says that a game indicates thatissible for a coalition
to get some outcome iff the interpretation indicates trgs al

4.1. The structure of our correspondence results

Consider thecL predicateFEAS(- - - ), defined as follows:

FEAS(G,C) = [Clxa

The following property follows from (3) and the semanticstoé coalition modality
“I]". Let M andI" be a comparable model and game; then:

(M,p) EFEAS(G,C) & 3S€&(C,s)stVseS:v(s)=G  (4)

Now, it is not hard to see from this that.if1, s is a cL interpretation that cor-
responds to somecG T, thenM, s = FEAS(G, C) iff the goal setG represents a
feasible choice for the coalitio@ in T'. In this way, the predicatEEAS(---) can
be said tocharacterisefeasible choices in correspondigGs. The motivation for
this terminology should be clear to readers who are famililr modal logic (Chellas
1980, Blackburret al.2001). Our correspondence results give @3 éhased syntac-
tic characterisation afcG properties, in much the same way that the correspondence
theory of conventional modal logic provides a syntacticrahterisation of first-order
relational properties of Kripke structures (Benthem 1984)

In the remainder of this paper, we define a number of similadicates, and show
that the truth of such a predicate in an interpretation spwading to a particulaygcc
characterises a certain property of theG. In this section, we present some notation
that is intended to render these results somewhat mordigjitié.
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WhereD(ayq, . . ., ay) is acL predicate parameterised byargumentsqy, . . ., ax,
andP(as,. .., o) is aproperty ofhcGs parameterised in the same way, then we write

D(ai,...,ax) = P(ag,...,ak)

as a general abbreviation for the following:

LetI" be aQcg, and let(M, p) be an interpretation such tHat~ (M, p).
Then(M, p) = D(au, ..., o) iff P(ay,..., o) is true ofT.

In the text, we refer to results of the forb(a;,...,ar) = P(as,...,qr) @s
correspondence resujtand say thab(«;, . .., «y) characterise (o, . . ., ax).

Expressed using this terminology, the key property ofRB&S(- - - ) predicate,
which we defined above, is as follows.

PROPOSITION4. —FEAS(G, C) = goal setG is feasible forC, i.e., G € V(C).

~

QCG interpretation
r correspond M, s

satisfied under
certain interpretations

holds of certain
QCGS

formula
solution concep§ or
characterises

Figure 1. The overall structure of our correspondence results

The overall structure of our correspondence results istithted in Figure 1.

4.2. The complexity of deciding correspondence

There is an obvious decision problem associated with theespondence relation

CORRESPONDENCE
Given QcG I and comparable interpretationm, p).
Answer “Yes” if ' ~ (M, p), “no” otherwise.
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The complexity of this problem depends on tepresentatiorthat is assumed for
theQca and interpretation, and in particular, the representdtiahis chosen for the
characteristic functiol¥ in theQcg, and the effectivity functio in the model.

Perhaps the simplest representation for any given fungtiemthe obvious set-
theoretic one, in which we explicitly enumerate it as a setrofered pairq (z,y) :
y = f(x)}. We refer to such a representationegensive There is an obvious
problem with extensive representations. Consider theaciernistic functionV: the
size of an extensive representationlofwill clearly be O(2/4%91). It was argued
in (Wooldridgeet al. 2004, p.34) that such a representation)aufterly infeasible in
practice; andi{) so large that it renders comparisons to this input size imgéass,
since stating that we have an algorithm that runs in (sayg fimear in the size of
such a representation only actually means that it runs ie #xponential in the size
of AUG.

In (Wooldridgeet al. 2004, p.35), an alternative representation was suggested,
whereby the function is characterised as a formula of pritipaal logic. The idea
is that any finite functiory : X — Y can be represented as a formia of propo-
sitional logic, over propositional variables correspargio the input and output sets
X andY: for ¥, to correctly capturef, we simply require that ¢[z,y] = T iff
y=f(z).

So, given a characteristic functidh we representit as a formuwla, whose vocab-
ulary of propositional variables id UG (i.e., there is a propositional variable for each
agent and each possible goal). For a formiia(over variables4, G) to represent a
characteristic functiot¥, we require that for al’ C A andG C G we have:

U[C,Gl =T & GeVO).

There are two observations to make about this represemtafioe first is that given
any U, (representing a characteristic functivh, C C A, andG C G, determining
whether®,[C, G] = T (and hence wheth&¥ € V(C)) can be done in deterministic
polynomial time (it just requires evaluating the truth ofrapositional logic formula
under a given valuation). The second observation is thatewths possible to prove
that there exist “pathological” characteristic functionswhich require exponential
length formulasVy, to characterise them (Wooldridgs al. 2004, p.37), the repre-
sentation is nevertheless extremely succinct in many éoigumost) naturally arising
cases. And this is, of course, exactly why propositionaidag such a widely used
representational formalism in artificial intelligence acmmputer science generally.
We refer to the propositional logic representation of fimtd assymbolic following
the usage of this term in the model checking literature (@&at al. 2000, pp. 61-95).

For a symbolic representation of effectivity functions, ean use the same idea,
although we need to work a little harder. We use a formula oppsitional logic, in
much the same way, but since we have states appearing asnpotisand outputs
to the function, we need extra notation.8f= {si,...,s,} is the set of states in a
model M, then we will denote byf? = {$1,...,$,} a new set containing a member
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s for every membes of S (note that we intend ands to correspond directly to one-
another). A formulal ¢ capturing an effectivity functioéi then takes as its vocabulary
of propositional variables the sets S, andS. For a formulals (over variables4,

S, S) to represent an effectivity functiafy, we require that for al’ C A, s € S, and

S C S, we have:

Ue[C,5,S] =T & Se&C,s).

As above, the key point with this representation is that reiteing whetherS ¢
E(C, s) for any givenS C S, C C A, ands € S can be done in polynomial time: it
requires evaluating wheth&@r:[C, §,S] = T.

In sum, this gives us two alternative representations foerdbRRESPONDENCE
problem: an extensive one (in which we explicitly enumethgefunctional compo-
nents of the structures), and a symbolic one (in which weasst the characteristic
function and effectivity function as propositional logiarinulae). Given these two
representations, we can now ask how hard the correspondeccston problem is.
It is trivial to see that assuming an extensive represamatiorrespondence can be
checked in polynomial time by exhaustive search; but of seuhis is not terribly
useful, since, as we already argued, extensive represergtate infeasibly large. Itis
no surprise that ORRESPONDENCES harder under the assumption of a symbolic rep-
resentation for effectivity functions. Before we investig exactly how much harder it
is, consider the (simpler) problem of checking whether éi@aar goal set is feasible
for a given coalition.

FEASIBILITY:
Given Interpretation .M, p), goal set, and coalitionC' C A.
Answer “Yes” if (M, p) = FEAS(G, C), “no” otherwise.

It turns out that even this problem — which is trivially seerbe tractable for the
extensive representation — is hard for symbolic repretienta

PROPOSITIONS. — For the symbolic representatioREASIBILITY is NP-complete.

PROOF6. — By the semantics afL and the definition oFEAS(- - - ), checking that
(M, p) E FEAS(G, C) amounts to checking whether the following holds:

IS CS:Ve[Cp,S]=T&Vs e S,u(s) =G.
()

Guessing a subsét of S can clearly be done in polynomial time, and the condition
(%) can easily by checked in polynomial time.

For NP-hardness, we reduce frosaT (Papadimitriou 1994, p.171). Given an in-
stance®(x1, ..., xy) of SAT, we must show how to construct — in polynomial time
— an interpretatiofM ¢, p, goal setg, and coalitionC' C A such thatMe,p =
FEAS(G, C) iff ®(x1,...,xy) is satisfiable. To construct the interpretatidis, p,
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we define a single agemts = {a1}, define a state for each propositional variable,
i.e, So = {x1,..., 2}, and define the interpretation statéo be any member oy .

We define a single goafjs = {¢1}, with the formula for the effectivity function be
given by the propositional formula

k
Ve, = (nar A N\ @) Vo (ar A(D(x1,. .. 20) V (a1, .., —an) )
1=1

The first clause in this definition captures the case whereaditiom is empty (the
empty coalition cannot choose between any of the stateseirsybtem), while the
second deals with non-empty coalitions.

We observe tha¥ ¢, [0, p, S] = T if and only if S = S. We then defineg so that
ve(s) = G for all s € Sg. Finally, we must exhibit a coalition and goal set to check
against: we defin€ = {a, } andG = Gs. We now claim thaiM ¢, p = FEAS(G, C)
iff ®(z1,...,x,) s satisfiable.

(=) AssumeMg,p = FEAS(G,C). Then3S C S such that¥e,[C,p,S] =

T. But since by constructioWg, = ®(x1,...,2x) V ®(-xy,...,xy), then
O(xq,...,xy) is satisfiable.
(<) Assume ®(zq,...,x) is satisfiable.  Since by constructiods, =

O(zq,...,25) V ®(—21,...,~7), then this impliesdS C S such thatS # () and
Ve [C, p, S] = T. Moreover, since by constructian, (s) = Go forall s € S, then
by definition we haveM s, p = FEAS(G, C).

Since the construction can clearly be done in time polynbimitne size of the input
instance, it follows thaFEASIBILITY for symbolically represented games and inter-
pretations isnp-hard. |

This result suggests that checking correspondence unelasgumption of a sym-
bolic representation is going to be rather hard, and thisdeéd the case

PROPOSITION7. — For the symbolic representatiolGORRESPONDENCES II5-
complete.

PROOF8. — For membership off%, first note that checking wheth&r ~ (M, p)
amounts to checking the following.

VG C G,YC C A, (Ty[G,C] = T & (M, p) = FEAS(G, C)) .

(%)
We can determine the truth of this expression by universalgcting eaclts C G
andC C A, and then checking that conditign«) holds. (We make use of awp-
oracle when checking whetheM, p) = FEAS(G, C') — see Proposition 5.) Hence
the problem is ifI5.

3. Recall thaf I is the class of languages/problems that are ine@ssuming the availability
of an oracle for languages/problemsnin (Papadimitriou 1994, p.426).
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To show that the problem iHS hard, we reduc®sAT, v, the quintessentidlly
complete problem (Johnson 1990, p.96). An instanc@sAT; v is given by a quanti-
fied Boolean formulg with the following structure:

§=Vz 3y o(,7)
wherez = z1,...,2, andy = y1,...,ys are sets of propositional variables. The
formula¢ is true iff for all assignments that we can give to Booleanalalesz, there

is some assignment we can give to Boolean variapsch thatp(z, i) is true. Here
is a concrete example of such a formula.

leﬂxg[(xl V 1‘2) A\ (351 V _wg)] (5)

Formula (5) in fact evaluates to false. {if is false, there is no value we can give to
xo that will make the body of the formula true.)

To reduce an instan@eof QSAT, v to0 CORRESPONDENCEWe must exhibit @cG
I'¢ and an interpretatioM, pe such thal’c ~ M, p¢ iff £ is true. Consider first the
Qca I'e. We define an agent for each propositional variable end one “dummy”
agentz, 1, soA¢ = {z1,...,2,,z,41}. We define a single go&dl: = {g}. For
each agent < i < r + 1, we defineGe, = G¢ (although in fact, th&, components
play no subsequent part in the proof, and could be any sulbsgt)o Finally, we
defineV, = T. With respect to the interpretatioW¢, s, the agents and propositional
variables are the same. We define a state for each propaditianable iny, so
S = {y1,...,ys}, and defineve(s) = G¢ forall s € S. The formula¥e, for the
effectivity function is given by

S
Ve, = (w1 AN@(T,9)) V (02rg1 A /\yi>
=1

As before we observe thate,[(),5,S] = T if and only if S = S. Finally, the
interpretation state, is defined to be any member 6f Now, we claim thaf’s ~
Me, pe iff £ is true. To see this, observe thaf ~ Mg, p¢ is equivalent to the
following:

VG C Ge, VO C Ag - (‘I’g[C,G] =T &35C S \1155[0,/3,5] =T).

Since by constructio, = T, this simplifies to the following.

VG g gg,VC Q Ag,HS Q Sg : (\Pgi[c,ﬁ, S] = T).

Moreover, since no member Gf appears ink¢, this further simplifies to the follow-
ing.
VO C A, 48 C Se - ‘I/gs[c, S]=T.
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Noting that this is satisfied by any C A for whichz,,, ¢ C, without loss of
generality, we need consider only th@Sevith z,..; € C. Now, sinced¢ \ z,1 = Z,
Se¢ = y, from the definition of¥¢, , this further reduces to the following.

VX Cz,3Y Cy: &z, 9)X,Y]=T.

And this is exactly the condition for the truth of tlesAT, v formulag.

Since the construction can clearly be done in time polynbinithe size of the
input instance, it follows thatoORRESPONDENCHoOr symbolically represented games
and interpretations iH5-hard. |

It is worth remarking that implemented software tools fagening about coali-
tional games (such as theocHA model checking system fayrL (Alur et al. 2000,
Alur et al. 1998)) do not use an extensive representation (and indeedractical
tool could use such a representation). Instead, they useaseorepresentation for
games/models, that is much more akin to our symbolic reptagen. In thevocHA
example, for instance, a structured, compositional laggualled RACTIVE MOD-
ULES is used to specify games/models, which makes for extrentglgise represen-
tations of large state spaces (Alur et Henzinger 1999). 3ihggests (to us at least)
that thell5-completeness result of Proposition 7 is a more “realisti€asure of the
cost of checking correspondence.

5. Characterising qualitative coalitional games

In this section, we present our correspondence resultst, e define a formula
7¢: (whereC C A) such thaty/, will be satisfied in a stateif everyagent is satisfied
in that statei.e., if every agent has at least one of its goals satisfied Bimilarly, v,
will mean thatno member ofC is satisfied.

v = Nod, e = N
ieC ieC

The following properties of-formulae are useful subsequently. (They are straight-
forward to establish.)
PROPOSITION9. — LetI" be aQccand M be a comparableL model. Then:

1) If G C G satisfiesC C AthenVsin M: M, s = (xa — 7&).

2) If 3sin M: M, s = (xe A7) thenG C G satisfiesC C A.
5.1. Empty sets of goals

Let us first look at some extreme cases regarding the goalénsetl, i.e., those
in which a set of goals can be empty. We have the following ipdgies:
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(@) V() =10
(it) 0 e V(O)
(iii) V(C) = {0}
In the first case, coalitiod’ has no choice, in the second,can make a choice

such that no goal (of anybody, whatsoever) is achieved, farally, in case(iii), the
only available choice of' leads to “nothing”: no goal is satisfied.

How do these cases find their corresponding counterpactisinNe provide them
in Table 1, together with their characterisiag-properties. In other words, for every
row in Table 1, the entry in the second column correspondsda@ntry in the fourth
column.

Table 1. Empty goals: extreme cases

Property of Property of Characteristic
QCGstructure CL interpretation cL-formula
(7) V(C) =10 E(C,s)=10 -[C]T

(i1) 0eV) IS € E(Cs)stVs € S:u(s) =0 [CIA,eq 9
(i) V(O)={0} VSe&(C,s)Vse S:v(s)=10 [CIT A=V, eclCly

5.2. Successful coalitions

In many ways, the idea of a successful coalition incorpartite most basic ques-
tion that is of interest with respect to any giveaG (Wooldridgeet al. 2004, p.47).
A coalition is successfuif that coalition has a feasible choice satisfying all mensbe
of the coalition. Formally, given accT = (A,G,G,...,G,, V) and a coalition
C C A, we say that is successful iff:

3G € V(O) s.t.Vi € C, we haveG N G; # (.

Given that a particular coalition is successful in this ggenge cannot be certain that
this coalitionwill form; but wecanbe certain that annsuccessfutoalition will not
form —because, by definition, the formation of such a caatitiould leave at least one
member unsatisfied. In this sense, success is a necessamgt lsufficient condition

for coalition formation inQcGs. We can easily characterise successful coalitions, via
the defined predicatgC(- - - ).

sc(@)= \/ [Cllxe Avé)
GCg

PROPOSITION10. — SC(C') = coalitionC'is successful.
PrROOF11. —
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(=) AssumeM,s | SC(C): we need to show that this implies there is a goal
set that is both feasible for and satisf@&sSince M, s = SC(C'), then by definition,
3G C GsuchthatM, s = [C](xaAve). SinceM, s = [Clxq, then by the definition
of ~, G is feasible forC, i.e, G € V(C). Moreover, sinceM, s = [Cl(xa A 7d),
then3S € £(C, s) such that's’ € S, M, s’ = (xa A75). Then by Proposition 9(2),
G satisfieC.

(<) Assume that is successful. TheAG C G such thati) G is feasible forC,
and (i) G satisfies every member ¢f. From (), we haveM, s = [C]xc and from
(i) by Proposition 9(1), we hav#1, s’ = xg — 7¢; for all s'. Hence3G C G such
thatM, s = [Cl(xe A (), and so by definition\, s = SC(C). [ |

At first sight, the reader may suspect that the definitios®f- - - ) is over engi-
neered: would the following, simpler definition not sufficedharacterise successful
coalitions?

sC2(C) = [Chvd:

The answer is no. To see why, consider the fragment of médélustrated in Fig-
ure 2, wherd” ~ M, s; for somel". In this model fragment, states in the model are
drawn as circles, and the arrows labelled withdicate the choices available to agent
i according to the effectivity functioéi; hence one choice faris { sz, s3, s4}. Inside
each state, we write the propositions that are satisfiedsrsthte. Now, suppose that
agenti's goal set isG; = {gs5,99,910}- Then clearly, according to the definition of
Sc?(---), we would have thatis successful, sinc#1, s, |= [i]y;". (To see this, sim-
ply note that{ss, s3,s4} € E({i}, s1) andVs’ € {sa, 53,54}, we haveM, s = ~;'.)

But this does not imply that any non-empty subse{@f, g9, 910} represents a fea-
sible choice fori in I'. This is because there is no non-empty goal(setuch that

M, s | xgforall s’ € {sa, s3, 54}, and hence this set of states does not characterise
a set of goals that is feasible for and satisfies agent

...etc..

Figure 2. Why the simpler definition &fC(- - - ) does not work
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A few words about this counterexample are in place here. Wénetuch an ex-
ample tells us something interesting about what coaliticars achieve, depends on
the object language under consideration. If our main enipl@en|C]x formulas,
describing what a coalition caxactlybring about, the example of Figure 2 is in some
sense harmless: one can show that the balloon consistitgte$s,, s3; ands, can be
removed without affecting the truth of afi§/] x-like property (ins;). However, on a
finer level of granularity, the situation in the counterexderdemonstrates an interest-
ing difference betweencac-games ancaL-interpretationsi.e., that in the latter, is it
possible to express that a coalition can achieve a gdlputhaving to specify which
set of goals itexactlycan bring about. In this paper, we choose to not analyse the
subtleties that different object languages can expressather to directly relate the
notion of aQcc-gamel with that of acL-interpretation M, p), thereby respecting
the reading of the characteristic functidras given in Section 2 ' can bring about
exactly...”).

5.3. Selfish successful coalitions

The fact thatC' are successful does not preclude agents outSiteving goals
satisfied by a subset attesting to the success 6f. This suggests the notion of a
successfuselfishcoalition, as a coalitior for which there is somé& € V(C) that
satisfieonly the members of’ (Wooldridgeet al. 2004, pp. 48-49). Formally, coali-
tion C'is a selfish successful coalitiordtz C G s.t. G € V(C) and for whichvi € A,
G;NG # (ifand only ifi € C. Of course, assuming that an agent’s (principal) aim is
to enlist in a coalition with whose support it can realise algowishes to be satisfied,
it may not necessarily be concerned with the status of agemssle the coalition, and
in particular, whether such might be satisfied with a palticteasible goal set. In
many scenarios, an agent will be indifferent to the levelaifsgaction achieved by
non-members: our contention, however, is that such sadd not encompass all
settings that might usefully be modelled withiwa environment — see (Wooldridge
et al.2004, pp. 48-49) for further discussion. (Note that we donmedn to say that a
selfishly successful coalition will choose to be selfish iagpice: it simply means that
the possibility is there.)

We characterise selfish successful coalitions via the pagelsSC(-- - ), as fol-
lows.

ssc(C) = \/ [Clxa AME M)
GCg
PROPOSITION12. — SSC(C) = coalitionC'is selfishly successful.

ProOOF 13. — Similar to that of Proposition 10: the point to note iattli (M, p) &=
xXe Avd A 7a\c» thenG must satisfy an agentff ¢ € C. [ |
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5.4. Goal realisability

We say a set of goal§ is realisable if there isny coalition for whichG is both
feasible and satisfies every member (Wooldridgal. 2004, p.50). Thus, the fact that
a set of goals is realisable implies that there is at leasesdmance of this goal set
being achieved, as it would satisfy at least one coalitioihcdDrse, it does not imply
that this goal set will be thactual choice of any coalition. Thus realisability is a
necessary condition for the achievement of any set of goaltheugh it is of course
not sufficient.

We characterise realisability via the predicar(: - - ).

GR(G) = \/ V [Cllxer Amd A
CCAG'CG

We have:
PrRoOPOSITION14. —GR(G) = goal setG is realisable.
PROOF15. —

(=) (M,p) = GR(G). Then3dC C A, 3G’ C G such that M, p) = [Cl(xe A
& Avd). Since(M, p) = [Clxe, then by the definition of-, G is feasible forC,
i.e, G’ € V(C). From(M, p) = [Clxa' A ¢, and Proposition 9, we know that
satisfiesC. From Proposition 3(1), and the fact tha¥1, p) = [C](xar A 7). we
know thatG C G’. HenceG is both feasible for and satisfi€s and saG is realisable.
(<) AssumeG is realisable. TheAC' C A andG’ C G such thatG is both feasible
for and satisfies”, andG C G’. From Proposition 10 and the fact that is both
feasible for and satisfieS, we have(M, p) |= [C](xer A7), and from this and the
fact thatG' C G’ together with Proposition 3(2), we then havet, p) = [Cl(x¢ A
& ATl). Hence(M, p) = GR(G) by definition. [ |

5.5. Minimal coalitions

We say a coalition isninimal if no strict subset of this coalition is successful.
The notion of minimality is important because it implies adkiof internal stability
for a coalition €f. (Osborneet al. 1994, p.281)). That is, in a minimal coalition,
there is no incentive for subsets of the coalition to defeziyafrom the coalition,
as, by definition, such sub-coalitions cannot be successtumally, a coalitiorC' is
minimal iff VC' c C,VG C G, if Vi € C', GN G; # 0, thenG ¢ V(C”). Minimality
is easily captured in the predicate(- - - ).

Mc(C) = /\ -sc(C’)
crco
The correspondence result is obvious, and we thereforetbenfiroof.

PROPOSITION16. —MC(C) = coalitionC'is minimal.
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5.6. Core membership and core non-emptiness

Perhaps the most widely studied issue in cooperative gaem\tts that of coali-
tional stability, and the tool used most widely to analyss thsue is the core (Os-
borneet al.1994, pp. 257-274). Intuitively, the core of a coalitiontis et of feasible
choices for that coalition from which the members of thatlitioa have no incentive
to deviate. In theQCa setting, a parallel notion was introduced in (Wooldridgel.
2004, p.54). Formally, we say a set of goélss in the core of a coalitiod’ iff: (i) C
is minimal; (i) G is feasible forC'; and in additionifi) G satisfies every member of
C. Formally,G is in the core if ) G € V(C); (i) VC' C C,VG' C Gif Vi € (',
G:NG" #PthenG ¢ V(C); and (i) Vi € C G; NG # 0. We define the predicate
CNE(- - - ) to capture core membership.

CM(G, C) =MC(C) A [Cl(xa A )
The correspondence result is now obvious.
PROPOSITION17. —CM(G, C) = goal setG is in the core olC.

The core of a coalition will thus be non-empty if that coalitiis both minimal and
successful, which easily leads to the following predicatinition.

CNE(C) =MC(C) ASC(C)

PROPOSITION18. —CNE(C) = the core ofC is non-empty.
Observe that, by this definitio@NE(C) < \/ ;g CM(G, O).

Notice that this definition of the core, when applied to thangt coalition, im-
plies that the grand coalition is thumiquelysuccessful coalition, and thus is the only
coalition that a rational agent would choose to join.

5.7. Veto players

The notion of a veto player is generally defined in coopeeagiame theory with
respect tassimplecoalitional games: those where every coalition simplyegitivins
or loses. A veto player is said to be one that is a member of/eviening coalition.
Veto players are important because their cooperation snéiss for every coalition
that aspires to win: by definition, without their supportaalition cannot win. In our
framework, we use a related notion of veto power, in which alk bf an agent as
being a veto playefor some particular state of affairaMe sayi is a veto player for
v (Wherey is a formula which characterises some state of affairsjsifa member of
every coalition that can choose

VETO(i, ) = A (([Cle) — —[C\ {i}lw)

CCA
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Note thati being a veto player fop doesnotimply that: can bring aboup, and thus
VETO(i, ) — [i]g is not a valid formula scheme.

Let us now return ta@cas. In (Wooldridgeet al. 2004, p56-57), a notion of veto
player was defined that generalised that of conventionditicoeal games (Osbornet
al. 1994, p.261). This definition related to the circumstanaegen which one agent
is a veto player for another agent: that is, whether one agierda member of every
coalition that is capable of satisfying

Formally,i is a veto player foy iff for all C' C AandG € V(C),if GNG; # 0
theni € C. It should be noted thgtneed not be a member 6f.

ve@i )= A\ (Clixe A = =0\ {idxe)

CCAGCG

PROPOSITION19. —VP(i,j) = agenti is a veto player for agent
PrROOF20. —

(=) Suppose for purposes of contradiction that, p) = VP(4, j) but thati is not
a veto player forj. Then3C' C A such that ¢ C and for some= C G: (M, p) E
[C](xa A7})- Sincei ¢ C, thenC'\ {i} = C, hence(M, p) = [C\ {i}](xc A7}).
But by the definition ofvP(---), we know thatvC' C A, VG C g, if (M,p) =
[Cl(xc Av;) then(M, p) [~ [C\{i}]xc, and in particulartM, p) F= [C\ {i}](xa A
~;). Contradiction.

(<) Suppose is a veto player foyj. ThenVC C A, VG C G, if G € V(C) and
GNG; # Dtheni € C. HenceVC C A, VG C G, if (M,p) E [Cl(xe A7)
theni € C'. We now claim that this implie6M, p) - [C \ {i}]xc. For suppose that
(M, p) E [C\ {i}]xe: then since is a veto player forj, we havei € (C'\ {i}),
which is a contradiction. So {tM, p) = [C](xe A ) then(M, p) |= =[C\ {i}]xe,
and so by definitioff M, p) = VP(i, j). [ |

5.8. Necessary goal sets

The notion of anecessary goakas introduced in (Wooldridget al.2004, p.57) as
a natural counterpart to that of veto players. The idea isdlgmpal set is necessary if
this goal set is a “side effect” of any coalition achievingittgoals. More formally
is necessary if for every coalitiofl C A and goalset’ C G:if Vi e C,G;NG' #
andG’ € V(C) thenG C G'. We characterise necessary goal sets via the predicate
NG(- ).

>

NG(G) = A\ A ([Cllxer M) = Bl(xer — 7))

CCAG'CG

PROPOSITION21. —NG(G) = goal setG is necessary.
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PROOF22. —

(=) Assume(M, p) = NG(G) and(M, p) = [Cl(xa A ) for someC C A and
G' C G. ThusG' is both feasible for and satisfiés We need to show that this implies
G C G'. By the definition ofNG(- - - ), we have that if M, p) = [C](xer A7) then
(M, p) E [0](xer — 7). So(M,p)' E (xar A ;) for some state’ in M. By
Proposition 3(1), thereforé; C G'.

(<) AssumeG is a necessary goal set. Thed' C A andvVG’' C G: if Vi € C,
G NG # PandG € V(C) thenG C G'. We need to show that this implies that
if (M. ) | [Cl(xe A7e) then(M, p) E [0](xer — ;). So, assumeM, p)
[Cl(xa AvE); thenG' both satisfies and is feasible 6% and since? is a necessary
goal setG C G'. Thus by Proposition 3(2)/s’ in M: (M, p)' | (xer — (), and
so(M, p) E [0](xe' — 7). and we are done. [ |

5.9. Mutual dependence

If you are a veto player for me, then this might appear to puimaeweak position
with respect to you — because | am absolutely reliant upornfgothe satisfaction of
my goals. Unless, of course, the situation is reciprocadt th, unless/ouare also
dependent upomein return. This consideration gave rise in (Wooldridgel. 2004,
p.59) to the notion of enutually dependemoalition, in which everybody is dependent
upon everybody else. Formally, coalitichwill be mutually dependent if:

vC' C A, VG € V(') if G satisfies at least one member@thenC C ¢’

Notice that saying that’ are mutually dependent implies th@tare a necessary com-
ponent of any coalition to achieve their goals; but it doessay that they are suc-
cessfukoalition. They may not be able to cooperate so as to satisiy goals jointly,
or they may require the cooperation of other agents to aelaivheir goals.

Mp(C) = A\ VPG, J)
ie€C jeC
PrROPOSITION23. —MD(C) = coalition C' are mutually dependent.

PrROOF24. — By definition,C' are mutually dependent iffC" C A,VG € V(C”)
if G satisfies at least one member@fthenC' C C’. It suffices to note that this is
equivalent to saying that, j € C, i is a veto player foj and vice versa. |

5.10. Empty and trivial games
We conclude with by characterising two general propertie@©Gs. We say a

QCG is emptyif no coalition is successful, antlivial if every coalition is success-
ful (Wooldridgeet al. 2004, pp. 59-60). Although these two types of games represen
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extremes in the spectrum of possildecs it seems inevitable that coalitions will not
form in either type ofQcG. Coalitions will not form in the first type because to do
so would serve no rational purpose: as we argued above,ssuseems a hecessary
condition for rational agents to form a coalition, and in ampéy game, no coalition
is successful. There is also no point in coalitions formimgrivial games, but this
time because every agent can achieve its goals in isoldtiote that in this sense, the
concept of a trivial game is rather like that of imessential gami cooperative game
theory: recall that a conventional coalitional gafpg v : 24 — R) is inessential if
forallC C A, we haver(C) = 3, .~ v({i}).

The nullary predicateEG and TG may be easily seen to characterise empty and
trivial games, respectively. (We will not give formal prepés the results are obvious.)

EG = Agcy—SC(O) TG = AccaSC(O)

6. A case study: political voting games

We now present a case study, to illustrate how the ideas dimdtims introduced
above might be applied in practice to reasoning about nagkint systems. More
precisely, we proceed as follows. We represent a systemeyhiagperties we wish
to check using th@EACTIVE MODULES language of Alur and Henzinger (Alet al.
1999). This language is well-suited to expressing the sirea@and behaviour of game-
like multi-agent systems. We then express the propertiteeafystem that we wish to
check (e.g., whether one player is a veto player for anoti@ngATL, the temporal
extension ofcL developed by Alur, Henzinger, and Kupferman (Aétral. 2002). In
order to do this, we express each agengoalsg; as a formulay; of ATL, the idea
being thaty; is satisfied in a state of the system iff one of the goals @ is achieved
in states. We can then useOCHA, a model checker fokTL, to check properties of
the system in question. We begin with an introduction to trenario we will study.

Our case study is adapted from (Pauly 2001, pp. 99-101) andy(EBt Wooldridge
2003), and is concerned with the following voting game:

A political body A = {1,2,3,4} has to decide on passing a new law.
There are two versions of the ladawl and law2, and the process be-
gins by a single agent, agent 2, proposing which of thesearesshould
be adopted. Once agent 2 has selected a version, the entie \lmies
on whether to accept the proposal; if there is a majority indar of
acceptance, then the proposed version is accepted; if ibexanajority
against, then there is deadlock, and the process beginsagéh agent 2
selecting a version of the law to propose; if there is no majane way
or the other, then the vote of the chairman, agent 1, is dezish either
accepting the proposed law or returning it to agent 2.
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type law : {lawl, law2, deadlock}
module Agentl

external scchosen : law
interface agreel : bool
atom controls agreel reads scchosen
update

[] true -> agreel’ := true

[] true -> agreel’ := false
endatom

endmodule - Agentl
module Agent2

external subCommittee : bool
interface agree2 : bool;
scchosen : law
atom controls scchosen reads subCommittee
update
[] subCommittee -> scchosen’ := lawl
[] subCommittee -> scchosen’ := law2
endatom
atom controls agree2 reads scchosen
update
[] true -> agree2’ := true
[1 true -> agree2’ := false
endatom

endmodule - Agent2

module Outcome

external

scchosen : law;

agreel, agree2, agree3, agree4, subCommittee : bool
interface

outcome : law;

subCommittee : bool
atom controls subCommittee reads outcome awaits outcome
init

[1 true -> subCommittee’ := true
update

[1 outcome’ = deadlock -> subCommittee’ := true

[] Coutcome’ = deadlock) -> subCommittee’ := false
endatom

atom controls outcome

reads scchosen, agreel, agree2, agree3, agree4

awaits scchosen, agreel, agree2, agree3, agree4
init

[1 true -> outcome’ := deadlock
update

[] NoConsensusFmla -> outcome’ :=

if (agreel’) then scchosen’ else deadlock fi

[ MajorityInFavourFmla -> outcome’ := scchosen’
[] MajorityAgainstFmla -> outcome’ := deadlock
endatom

endmodule - Outcome
System := (Agentl || Agent2 || Agent3 || Agent4 || Outcome)

Figure 3. The voting scenario, representedREACTIVE MODULES, theMOCHA mod-
elling language.

We begin by modelling the game in a form suitable foocHA — the code is
given in Figure 3 (a brief introduction REACTIVE MODULES, the language used to
express the case study, is presented in Appendix A).
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— Agent1 is the “generic” agent in this scenario, which simply has &zide
whether to accept or reject the proposed law. The votgefit1 is held in a variable
agreel. (Agents 3 and 4 are essentially identical, and for thisaeage do not give
their code.)

— Agent?2 is composed of two separate “update threads”. The first cktliere-
sponsible for proposing a law when the mechanism is in thecsmmittee” phase
(i.e. at the start, and whenever a proposal has been rejectecelwhible political
body). The variablesubCommittee keeps track of when the mechanism is in sub-
committee phase. The proposal made by agent 2 is carrieé vatfiablescchosen.
The second update thread is responsible for deciding whetteecept a proposal, as
with the other agents in the system. (Of course, it would imes@ense be nonsen-
sical for agent 2 to vote against accepting a proposal thedtput forward, but the
mechanism does not preclude it.)

— TheOutcome module is responsible for determining the outcome, baseti®n
votes of the agents in the system. It is also composed of tvdatepthreads. The
first is responsible for keeping track of whether the mecsraris in sub-committee
phase (this will be initially, and whenever the overall @rte is deadlock). The sec-
ond update thread decides what the outcome is: the threg defaning this thread
correspond to (a) whether there is an equal number of agemasél against accepting
the proposal, in which case the mechanism looks to the vosgeiit 1, and if this
was positive i(e., agent 1 voted to accept), then the proposal is accepteehvaite it
is rejected; (b) a majority agree on accepting the propasalhich case the overall
outcome is that in the variabiechosen; and (c) there is a majority against accepting
the proposal, in which case the outcomééadlock. Note that the overall outcome
(i.e, lawl, law2, ordeadlock) is recorded in variableut come. Note that:

- MajorityInFavourFmla,

- MajorityAgainstFmla, and

- NoConsensusFmla
are abbreviations we are using here faoCHA expressions which capture whether
or not there is a majority for or against acceptance, or wdretiiiere is a deadlock,
respectively.

Let us call the mechanism, as defined by #EaCTIVE MODULES code aboveM ;.

For each agent there are three relevant goal formulae that we might censat
this scenario:

vi = (outcome = law)
vi = (outcome = laws)
vi = (outcome = deadlock)

Thus, an agent might have a goal that the outcome isithat is chosen, thataw,
is chosen, or that no law is chosere( there is a deadlock). In the remainder of this
section, we shall assume that each agent is assigned oresefttiree goals.

We can now start to investigate some properties of the méstaifrirst, note that
for any coalitionC, if SC(C') thenVi, j € C, v; = v;: thatis, a coalition can only
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be successful in this scenario if they share a common gohis (3 straightforward to
see from the fact that the three relevant goals are mutuatlyisive.)

The first property we can check is that, if they share a comnoah, ¢he coalition
{1, 2} is all-powerful: this coalition can bring about any outcgnneluding deadlock.

PROPOSITION25. —If 71 = 7o, thenM; = SC({1,2}).

This property can be checked directly. In contrast to thédittma { 1, 2}, the coali-
tion {3, 4} is unsuccessful:

PROPOSITION26. — M [~ SC({3,4}), irrespective of the goals of agerg®r 4.

Again, this property is trivial to check usingocHA. With respect to the success
(or failure) of other coalitions, first note that any coalitiof cardinality three with a
shared goal containing agent 2 is successful (because2agantpropose the law, and
the coalition being of majority size can then enforce it).

ProPOSITION27. —Forall C C A, we haveM; | SC(C) if all of (1) - (3) hold:

1) 2€eC;
(2) |C] > 3;and

Turning to minimal coalitions and the core, we have the foif.
PROPOSITION28. —

1) My = MC({1,2}), and hence if; = 2, thenM; = CNE({1, 2}).
2) Forall C C A, we haveM; = CNE(C) (and henceM; = MC(()) if the
following four conditions simultaneously hold:
a) 2€C,
b) |C| = 3;
c) Vi,j € C,vy; =;,and
d 1¢C.

To see why the second result cannot be strengthened to dndbkerve that
adding an agent would mean that the coalition was no longaimmai, and hence
no longer be stable (because a strict subset would be sfiigess

Let us now consider all possible goals: we can easily cheak dh goals are
individually achievable but mutually exclusive. Goal iigability in the voting setting
maps more or less directly to strategic ability in the seriskedcooperation modality
[C]e, and so (with a small abuse of notation), we have the follgwin

PROPOSITION29. —

1) M, = GR(v) for each of the three relevant goajdisted above; but

2) For any combinationy A v/ of the three goals listed above; & +), we have
M = GR(y AY).

With respect to veto players, since agent 2 always propdeektv upon which
the committee votes, we have the following.
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PropPOSITION30. —For any allocations of the three relevant goals to agents, we
have:

1) M, = VETO(2, (outcome = lawn);
2) M, = VETO(2, (outcome = laws); and
3) M = VETO(2, (outcome = deadlock)).

There is also a veto player that can avoid deadlock:

PrRoPOSITION31. —For any allocations of the three relevant goals to agents, we
have:

1) M, = VETO(1, (outcome = deadlock);

Finally, note that there are no necessary goals in this sicerzad moreover, the
scenario is neither trivial nor empty (and is hence “tygical

7. Related work

Although logical formalisms for knowledge representaiiomulti-agent systems
have been studied for decades, until recently the domirgprbach was to adopt a
“mentalistic” stance, whereby logics — usually, modal si— were used to charac-
terise the mental states (beliefs, desires, intentiortstfa like) of agents: see, e.g.,
the work of Halpern et al (Halpern et Moses 1992, Fagin, Halpkloses et Vardi
1995), Shoham (Shoham 1993), Cohen and Levesque (Cohenvesdue 1990),
Meyer and colleagues (Meyer, Hoek et Linder 1999) and RaoGeuatgeff (Rao et
Georgeff 1998, Wooldridge 2000) (see (Wooldridgal. 1995, Hoelet al.2003c) for
surveys of this work).

More recently, however, game theory has come to be seen d&eamaéve foun-
dation upon which to develop logic-based knowledge remtasien formalisms for
multi-agent systems. It has been recognised for severaldégscthat there are close
links between modal logics of rational agency and the fortimebry of games: see,
for example, Ladner and Reif’s Church/Turing-like thesis distributed computing,
and the conclusions they draw from this (Ladner et Reif 1986208—209). Recently,
a number of formalisms have been proposed which attemptrtihasgise logical and
game-theoretic approachesin a single system, in whiclintkebetween the game and
the logic are explicitly defined. One example is the work ofrdastein et al (Har-
renstein, van der Hoek, Meyer et Witteveen 2002), in whiclyradhic logic is used
to give a modal characterisation of Nash equilibria — argyudiie most important and
powerful analytical weapon in the game theory arsenal (@sbet al. 1994, pp. 14—
15). Those characterisation results of (Harrenstead. 2002) are phrased in a format
not unlike our correspondence results: on the one hanc ther solution concept in
games, which, on the other hand, are in a formal way connect&dths or validi-
ties in an interpretation. In a similar spirit, but more gely, de Bruin (de Bruin
2004) has developed a logical framework in which many sofutioncepts in games,
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especially those involving an epistemic component, candpéaged, compared or
justified.

Other examples of frameworks that combine logical and gdraeretic ideas in-
clude the closely related work of Baltag (Baltag 2002), aitbarse Pauly’s Coalition
Logic, which we have used in this paper (Pauly 2002b, PaudapPauly 2001). One
of Pauly’s main concerns was to explore the links betweenatlodics (in particular,
modal logics with a “neighbourhood” semantics) and formahgs. Similar explo-
rations have been undertaken by van Benthem, whose stpdingis that the labelled
transition systems/Kripke structures, which are candiyioged to give a semantics to
modal logics, can be interpreted as extensive form gamelsthaat as a consequence
modal operators of various kinds can be used to express piepef games (Ben-
them 2001, Benthem 2002). Agotnes, van der Hoek et Wooldr{@d§06a) develop a
logic specifically intended for reasoning about coalitiayeanes, and Agotnes, van der
Hoek et Wooldridge (2006b) investigate the use of tempowgitk for representing it-
erated coalitional games. However, in both of these worlspegial purpose logic is
developed; in the present paper, we specifically focus argusgeneral purpose logic
for characterising games.

Finally, one issue that our work raises relates todizeof formulae that are nec-
essary to characterise propertiesqufGs. We have used conjunctions to represent
universal quantification and disjunctions to represerdtexitial quantification. Since
many properties require quantifying over goals and/oritioak, we have as a conse-
guence some formulae that are exponential in the numbeeotagnd/or goals. Such
formulae are clearly not realistic in practice. The obvisalsition to this problem s to
extend Coalition Logic with quantification over both agestsl coalitions. However,
such quantification is clearly dangerous from a computatipaint of view. Recently,
Agotnes, van der Hoek et Wooldridge (2007) proposed a fortimifed quantifica-
tion over coalitions via modal quantifiers. It was shown thé Quantified Coalition
Logic was exponentially more succinct than Coalition Logic, whileing no more
complex with respect to the key problem of model checkingvdtild be interesting
to investigate the class of solution concepts that mightuzeiactly expressed using
Quantified Coalition Logic.

8. Conclusions

We have given a systematic logical characterisation oftgmluconcepts from
Qualitative Coalitional Game€Gs), using as our language of expression Pauly’s
Coalition Logic — the next-time fragment of the Alternatitime Temporal Logic of
Alur, Henzinger, and Kupferman. Starting from a notion ofemtaQcéG and a model
for Coalition Logic could be said to “correspond’d, when they agreed on what
coalitions could bring about), we went on to investigatarfally the computational
complexity of deciding correspondence betweeQas and a model for Coalition
Logic, and then systematically showed how theG solution concepts developed
in (Wooldridgeet al. 2004) could be characterised via formula schemesLof We
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then showed how model checkers fan. could be used to check whether these solu-
tion concepts held of particular games; to the best of ounkedge, this is the first
time that model checking has actually been used to checkmogerties of games.

There are, as ever, many possible avenues for future résé@ne is to investigate
the effect thatmperfect informatiorfFaginet al. 1995) might have i@cas, and how
epistemic extensions toL andATL might then be used to express appropriate solution
concepts (Hoekt al. 2003b). Another possible avenue for further work is to coesi
temporally extended.g., iterated)QcGs and cooperative games, and to investigate
appropriate solution concepts for such games. Here, tHE téuporal language of
ATL might be appropriate, rather than just the next-time fragmepresented bgL.
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A. A very brief introduction to reactive modules

Agents inMOCHA are known asnodules Each module consist of anterface
and a number oftoms, which define the behaviour of the corresponding agent. The
interface part of a module defines two key classes of vaiséble

— interface variables are those variables which the module “owns” ankema
use of, but which may be observed by other modules;

— external variables are those which the module sees, but which areé¢divn
by another module (thus a variable that is declareeagrnal in one module must
be declared as atnterface variable in another module).

Within each module are a number @afoms, which may be thought of agpdate
threads Atoms are rather like “micro modules” — in much the same wayegular
modules, they have an interface part, and an action componbich defines their
behaviour. The interface of an atom defines the variabissids (i.e., the variables it
observes and makes use of in deciding what to do), and thesetitols. If a variable
is controlled by an atom, then no other atom is permitted ther@any changes to this
variable. A further class of variables may be accessed byoan are those itwaits.
An “awaited” variable is one whose value is read by the atdter it has been defined
for the next stateln short, an atom may view the value of an awaited variaktker af
it has been set, before it needs to make its choices. Clearg,needs to be taken to
ensure that circular chains of awaiting are not established

The behaviour of an atom is defined by a numbegwirded commandsvhich
have the following syntactic form.

[1 guard -> command

Here,guard is a predicate over the variables accessible to the atorsdtit@eads
andcontrols), andcommand is a list of assignment statements. The idea is that if
the guard part evaluates to true, then the correspondingneord part is “enabled
for execution”. At any given time, a number of guards in amatoay be true, and
so a humber of commands within the atom may be enabled fouggec However,
only one command within an atom may actually be selecteddecion: the various
alternatives represent tlchoicesavailable to the agent.

Assignment statements have the following syntactic form.
var’ := expression

On the right-hand side of the assignment statempiyession is an expression over
the variables that the atom observes. On the left-hand sidevariable which must

4. MOCHA also allows an additional class pfivate (local) variables, which are internal to a
module, and which may not be seen by other modules. Howewemake no use of these in
our model.
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be controlled by the atom. The prime symbol on this varialal@e means “the value
of the variableafter this set of updates are carried out”; an un-primed variatdams
“the value of this variabl®eforeupdating is carried out”. Thus the prime symbol is
used to distinguish between the value of variables befodeadtler updating has been
carried out.

There are two classes of guarded commands that may be dbiclam®atom:init
andupdate. An init guarded command is only used in the first round of updating,
and as the name suggests, these commands are thus usedligarie values of
variables.



