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ABSTRACT.Qualitative coalitional games (QCGs) were introduced as abstract formal models of
goal-oriented cooperative systems. AQCG is a game in which each agent is assumed to have
some goal to achieve, and in which agents must typically cooperate with others in order to satisfy
their goals. In this paper, we show how it is possible to reason aboutQCGs using Coalition Logic
(CL), a formalism intended to facilitate reasoning about coalitional powers in game-like multi-
agent systems. We introduce a correspondence relation betweenQCGs and interpretations for
CL, which defines the circumstances under which aCL interpretation correctly characterises a
QCG. The complexity of deciding correspondence betweenQCGs and interpretations forCL is
shown to vary from being tractable up toΠp

2
-complete, depending on the representation chosen

for the QCG and interpretation. We then show how various properties andsolution concepts
of QCGs can be characterised asCL formula schemes. The ideas are illustrated via a detailed
worked example, in which we demonstrate how a model checker can be deployed to investigate
whether a particular system has the properties in question.

KEYWORDS:coalitional games, cooperative games, modal logic, coalition logic.

1. Introduction

One of the fundamental research objectives in the multi-agent systems commu-
nity is to build software agents that can cooperate with other such agents in order to
efficiently carry out tasks on behalf of some user or owner (Wooldridge 2002). It is
widely accepted that, in order for software agents to be ableto do this, they must
be able to represent and reason about the multi-agent encounters in which they find
themselves. This has motivated the development of knowledge representation and rea-
soning formalisms for multi-agent systems. Historically,such formalisms have fallen
into one of two categories: those that use modal logic to represent the dynamic infor-
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mational and motivational components of rational agents and their decision making
processes (Wooldridge et Jennings 1995, Hoek et Wooldridge2003c), and those that
are based on a game-theoretic analysis of the scenario at hand (Kraus 1997, Sandholm
1999).

The present paper is part of a burgeoning body of work that seeks to synthesise
modal logic and game theoretic approaches for reasoning about multi-agent systems.
We show how a particular type of modal logic can be used to reason about a partic-
ular type of cooperative game. In more detail, we show howCoalition Logic(Pauly
2002b, Pauly 2002a, Pauly 2001) can be used to reason aboutQualitative Coalitional
Games(Wooldridge et Dunne 2004).

Pauly’s Coalition Logic (hereafter,CL) is a formalism for reasoning about coali-
tional powers in game-like multi-agent systems (Pauly 2002b, Pauly 2002a, Pauly
2001). Pauly showed how the semantic structures underpinningCL could be formally
understood as games of various types; he gave correspondence results between prop-
erties of the games and axioms of the logic, gave complete axiomatizations of the
various resulting logics, determined the computational complexity of the satisfiability
and model checking problems for his logics, and in addition,demonstrated how these
logics could be applied to the formal specification and verification of social choice
procedures.

Qualitative Coalitional Games (QCGs) were introduced by Wooldridge and Dunne
as an abstract formal model of goal-oriented cooperative systems (Wooldridgeet al.
2004). In aQCG, each agent is assumed to have a set of goals: an agent is “satisfied”
with any outcome that accomplishes one of its goals, but is indifferent aboutwhichof
its goals should be achieved – all are considered equally good (cf. individual rational).
Each potential coalition is then modelled as having a set of choices available, intu-
itively corresponding to the different ways in which they could choose to cooperate.
Associated with each choice is a set of goals, which would be achieved if the coalition
chose to cooperate in this way.QCGs seem an appropriate abstract framework within
which to reason about goal-oriented multi-agent systems, where numeric utility val-
ues (as in conventional coalitional games (Osborne et Rubinstein 1994, pp. 255–312))
may be either inappropriate or else impossible to derive.

Our aim in this paper is to show howCL can be used to represent and reason about
QCGs. Specifically, the paper makes the following main contributions.

– First, we define acorrespondence relation, “≃” betweenQCGs and interpreta-
tions forCL. The idea is that this relation characterises the circumstances under which
a QCG and an interpretation forCL say the same things about coalitions, and hence are
“equivalent” at this level of analysis. (Correspondence can thus be loosely understood
as a kind of bisimulation between games and interpretations– cf. (Blackburn, de Rijke
et Venema 2001, pp. 64–73).)

– Second, we investigate and characterise the computational complexity of the
problem of deciding whether aQCG and an interpretation correspond to one-another
for two different representations ofQCGs and interpretations. We show that, with an
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extensive representation (in which we explicitly enumerate the components of the two
structures), the problem is decidable in time polynomial inthe size of the structures
– although the structures are in general unfeasibly large. We also show that, for a
symbolic representation (in which we represent the components of theQCG and inter-
pretation via logical formulae), the problem isΠp

2-complete. We argue that “practical”
representations for such a problem are much closer to the symbolic representation, and
therefore that the negativeΠp

2-completeness result is likely to be a better indication of
the practical complexity of deciding correspondence.

– Third, we show how the properties and solution concepts ofQCGs that were
introduced in (Wooldridgeet al. 2004) can be characterised as formulae ofCL. That
is, for each of the concepts we consider, we define aCL predicate, and we then prove
that this predicate corresponds to the claimed property, inthat it will be satisfied in an
interpretation corresponding to aQCG iff the QCG itself has the property. This gives
us a syntactic characterisation ofQCG properties, that is somewhat analogous to the
modal characterisation of first-order relational properties of Kripke structures in the
correspondence theory of modal logic (Benthem 1984)1.

– Fourth, and finally, we demonstrate how the ideas set out in the paper can be ap-
plied to the analysis of a concrete computational system by means of a model check-
ing system forCL (Alur, de Alfaro, Henzinger, Krishnan, Mang, Qadeer, Rajamani et
Taşiran 2000, Alur, Henzinger, Mang, Qadeer, Rajamani et Taşiran 1998).

We conclude with a brief discussion of related work, and givesome pointers to future
research directions.

2. Qualitative coalitional games

We give a brief introduction to Qualitative Coalitional Games (QCGs): details may
be found in (Wooldridgeet al. 2004). AQCG contains a (non-empty, finite) setA =
{1, . . . ,m} of agents. Each agenti ∈ A is assumed to have associated with it a
(finite) setGi of goals, drawn from a set of overall possible goalsG. The intended
interpretation is that the members ofGi represent all the individual rational outcomes
for i – intuitively, the outcomes that give it “better than zero utility”. That is, agenti
would be happy ifanymember ofGi were achieved – then it has “gained something”.
But, in QCGs, we are not concerned with preferences over individual goals. Thus, at
this level of modelling,i is indifferentamong the members ofGi: it will be satisfied
if at least onemember ofGi is achieved, andunsatisfiedotherwise. Note that cases
where more than one of an agent’s goals are satisfied are not anissue – an agent’s aim
will simply be to ensure that at least one of its goals is achieved, and there is no sense
of an agenti attempting to satisfy as many members ofGi as possible.

1. It is worth pointing out that we are unable to characterisethree of the properties ofQCGs
that were discussed in (Wooldridgeet al. 2004): unattainable goal set, global unattainability,
and incomplete game. The reason for omitting these is simply that the form of quantification
required to express these cannot be captured directly in Coalition Logic; possible extensions to
Coalition Logic to capture them would be an interesting future avenue for research.
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A coalition, typically denoted byC, is simply a set of agents,i.e., a subset ofA.
Thegrand coalitionis the set of all agents,A. We assume that each possible coalition
has available to it a set of possiblechoices, where each choice intuitively characterises
the outcome of one way that the coalition could cooperate. Wemodel the choices
available to coalitions via acharacteristic functionwith the signature

V : 2A → 22G

.

Thus, in saying thatG ∈ V(C) for some coalitionC ⊆ A, we are saying that one
choice available to the coalitionC is to bring aboutexactlythe goals inG. At this
point, the reader might expect to see some constraints placed on characteristic func-
tions. For example, at first sight the followingmonotonicityconstraint might seem
natural:

C ⊆ C′ impliesV(C) ⊆ V(C′)

Although such a constraint is entirely appropriate for manyscenarios, there are cases
where such a constraint is not appropriate2.

The only requirement that we put on aQCG-gameΓ is that if the empty coalition∅
is able to bring about a set of goalsG, thenanycoalition can bring them about:

∀G ⊆ G∀C ⊆ A : G ∈ V(∅) ⇒ G ∈ V(C) (1)

Formally, aQCG Γ is an(m+ 3)-tuple (Wooldridgeet al.2004, p.33):

Γ = 〈A,G,G1, . . . ,Gm,V〉

where:

– A = {1, . . . ,m} is a set ofagents;
– G = {g1, . . . , gn} is a set ofpossible goals;
– Gi ⊆ G is a set of goals for each agenti ∈ A, the intended interpretation being

that any of the goals inGi would satisfyi – but i is indifferent between the members
of Gi;

– V : 2A → 22G

is a characteristic function, which for every coalitionC ⊆ A
determines a setV(C) of choices, the intended interpretation being that ifG ∈ V(C),
then one of the choices available to coalitionC is to bring aboutall the goals inG
simultaneously. In this paper, we will assume that in anyQCG Γ, the characteristic
functionV satisfies (1).

We say a set of goalsG satisfiesagenti if G ∩ Gi 6= ∅; we say thatG satisfiesC ⊆ A
if it satisfies every member ofC. Also, we say thatG is feasiblefor coalitionC if
G ∈ V(C).

2. For example, consider a legal scenario in which certain coalitions are forbidden by monopoly
or anti-trust laws.
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3. Coalition logic

The logic we use throughout the remainder of this paper is known asCoalition
Logic (Pauly 2002b, Pauly 2002a, Pauly 2001). It was introduced byPauly as a frame-
work for representing and reasoning about the powers of coalitions in game-like multi-
agent encounters.CL may be regarded as the “next time” fragment of the Alternating-
time Temporal Logic (ATL ) of Alur, Henzinger, and Kupferman (Alur, Henzinger et
Kupferman 2002); see (Goranko 2001) for a discussion of the relationship between
CL andATL . In this section, we will give a complete definition of the logic, although
of necessity, our presentation will be somewhat simplified and occasionally somewhat
terse; see the references above for details.

Informally, CL is a propositional modal logic, containing an indexed collection of
unary modal operators[C], whereC is a set of agents. The intended interpretation
of a formula[C]ϕ is that the set of agents (coalition)C areeffectivefor ϕ. That is,
the agentsC could cooperate to ensure that, in the next state of the environment,ϕ
was true. We refer to an expression of the form[C]ϕ as acoalition or cooperation
modality.

3.1. Syntax and semantics

Syntactically, formulaeϕ of CL are defined over a setA of agents and a setΦ0 of
atomic formulae by the following grammar:

ϕ ::= ⊤ | p | ¬ϕ | ϕ ∨ ϕ | [C]ϕ

wherep ∈ Φ0 is an atomic proposition andC ⊆ A is a set of agents. We usually
omit set brackets in coalition modalities, for example by writing [1, 2, 3] instead of
[{1, 2, 3}]. As usual, we use parentheses to disambiguate formulae where necessary,
and define the remaining connectives of classical logic as abbreviations:⊥ =̂ ¬⊤,
ϕ→ ψ =̂ (¬ϕ) ∨ ψ andϕ↔ ψ =̂ (ϕ→ ψ)∧ (ψ → ϕ).

Semantically, amodel, M, for CL is a quintuple:

M = 〈A,S, E ,Φ0, υ〉

where:

– A = {1, . . . ,m} is a fixed, finite, non-empty set ofagents(as inQCGs);
– S = {s1, . . . , so} is a fixed, finite, non-empty set ofstates;
– E : 2A × S → 22S

is aneffectivity function, whereS ∈ E(C, s) is intended to
mean that from states, the coalitionC can cooperate to ensure that the next state will
be a member ofS – note that they cannot determinewhichof the members ofS will
occur – they can only be sure that it will besomemember ofS;

– Φ0 is the set of propositional variables forM; and
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– υ : S → 2Φ0 is a valuation function, which for every states ∈ S gives the set
υ(s) of propositional variables that are satisfied ats.

It is possible to define a number of constraints on effectivity functions, depending
upon exactly which kinds of scenario they are intended to model (Pauly 2001, pp. 24–
39). For the purposes of this paper, we shall assume just one property of effectivity
functions: that the empty coalition is ineffectual. We capture this by requiring that
the empty coalition has no power to do anything other than ensure that the model
is closed, in the sense that the next state will be one of the defined possible states.
Formally:E(∅, s) = {S}, for all s.

An interpretationfor CL is a pairM, s, whereM is a model ands is a state in
M. The satisfaction relation “|=” for CL holds between interpretations and formulae
of CL. The satisfaction relation is defined by the following inductive rules:

M, s |= ⊤
M, s |= p iff p ∈ υ(s) (wherep ∈ Φ0)
M, s |= ¬ϕ iff M, s 6|= ϕ

M, s |= ϕ ∨ ψ iff M, s |= ϕ orM, s |= ψ

M, s |= [C]ϕ iff ∃S ∈ E(C, s) such that∀s′ ∈ S, we haveM, s′ |= ϕ.

Sometimes, when we fix the root of the interpretation, we alsowill write (M, ρ), in
which cases it is implicitly assumed thatρ ∈ S. Note that, sinceE(∅, s) = {S}, the
emptyset coalition modality “[∅]” acts as a “global” or “universal” modality (Black-
burnet al.2001, p.367):

M, s |= [∅]ϕ iff M, s′ |= ϕ for all s′. (2)

3.2. Satisfiability and model checking

If we aim to formally reason about a particular systemX (whereX is, for ex-
ample, a computer program), using a logicL, then there are, broadly speaking, two
possible approaches we can adopt. With thetheorem provingapproach, we derive a
theoryTh(X) using the logicL, whereTh(X) encodes properties ofX using the lan-
guageL. Checking whetherX has some propertyϕ then reduces to a proof problem
in L: we simply check whetherTh(X) ⊢L ϕ, i.e., whetherϕ is a theorem ofTh(X).
In contrast, themodel checkingapproach depends upon interpreting a systemX as a
modelMX for a logicL: checking thatX has propertyϕ (whereϕ is again expressed
as a formula ofL) then reduces to the problem of checking thatMX satisfiesϕ under
the semantics ofL, i.e., thatMX |=L ϕ (Clarke, Grumberg et Peled 2000). There
is an ongoing debate with respect to the relative merits of theorem proving versus
model checking as an approach to the automatic verification of system properties, and
it is not our intent to add to this debate here. We choose to adopt a model checking
approach for two reasons. First, this approach has previously proved useful for veri-
fying cooperation properties of multi-agent systems (Hoeket Wooldridge 2002, Hoek
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et Wooldridge 2003b, Hoek et Wooldridge 2003a); and second,because reliable and
well-documented model checking tools exist for cooperation logics (Aluret al.1998).

Given a modelM = 〈A,S, E ,Φ0, υ〉, we denote thesizeof M by |M|, and define
this as follows (Pauly 2001, pp. 50–51):

|M| = |S| +
∑

{s|s∈S}

∑

{C|C⊆A}

∑

{S|S∈E(C,s)}

|S|

The size of a formulaϕ, as usual, is denoted by|ϕ| and is defined as the number of
sub-formulae thatϕ contains.

Now, the model checking problem forCL is as follows.

MODEL CHECKING:
Given: Formulaϕ, modelM, and states fromM.
Answer: “Yes” if M, s |= ϕ, “no” otherwise.

PROPOSITION 1 (COMPLEXITY OF CL MODEL CHECKING (PAULY 2001, PAULY

2002B)). — TheMODEL CHECKING problem for Coalition Logic can be solved in
timeO(|M| × |ϕ|), where|M| is the size of the model to be checked, and|ϕ| is the
size of formula to be checked.

The satisfiability decision problem forCL is as follows.

SATISFIABILITY :
Given: Formulaϕ.
Answer: “Yes” if for someM, s we haveM, s |= ϕ, “no” otherwise.

PROPOSITION 2 (COMPLEXITY OF CL SATISFIABILITY (PAULY 2001, PAULY

2002B)). — In the general case, theSATISFIABILITY problem for Coalition Logic
is PSPACE-complete.

Notice that while the model checking problem forCL is no easier than the model
checking problem for its more expressive counterpartATL (Alur et al. 2002), there
does appear to be a difference in complexity with respect to satisfiability. TheATL sat-
isfiability problem is complete forEXPTIME, and is hence provably intractable (Drim-
melen 2003). In contrast, as noted above, the satisfiabilityproblem forCL is “only”
PSPACE-complete in general (reducing toNP-complete in certain special cases).

4. Basic correspondence definitions

As was noted in (Wooldridgeet al. 2004, p.71), there is a close relationship be-
tween the effectivity functions of Coalition Models andQCGS. In this section, we
make this relationship precise. We define acorrespondencerelation, “≃”, between
QCGs and interpretations. The idea is that, for aQCG Γ and an interpretationM, s,
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if Γ ≃ M, s, then theQCG Γ and the interpretationM, s are “equivalent” with re-
spect to what they say about the way in which coalitions can cooperate. Before we
define the correspondence relation, however, we need to be able to say when aQCG

and an interpretationM, s arecomparable: that is, the circumstances under which it
is meaningful to ask whether they correspond.

Now, we say thatQCG Γ and modelM arecomparableiff:

1) The sets of agents in both structures are the same.
2) There is a propositional variable in the modelM for every possible goal inΓ,

andM contains no other propositional variables. For convenience, if g is a possible
goal inΓ, then we will also writeg for the propositional variable inM corresponding
to this goal.

Hence, if a modelM = 〈A,S, E ,Φ0, υ〉 and a gameΓ = 〈A′,G,G1, . . .Gn,V〉 are
comparable, thenA = A′ andΦ0 = G. As the reader may now be able to guess,
the truth of a propositional variableg in a states will be intended to mean that the
corresponding goalg is achieved in states.

Before formally defining the correspondence relation, let us fix some notation. In
what follows,G is assumed to be a set of possible goals,i.e.,G ⊆ G.

π−
G =̂

∧

g∈G

¬g σ−
G =̂

∨

g∈G

¬g

π+
G =̂

∧

g∈G

g σ+
G =̂

∨

g∈G

g

So, ifM, s |= π−
G , then this will mean thatnogoal inG is achieved in states, whereas

if M, s |= π+
G, theneverygoal inG is achieved in states. In contrast,M, s |= σ−

G

means thatsomemember ofG is not achieved ins, whileM, s |= σ+
G will mean that

some member ofG is achieved ins.

Next, we define a formula that characterises exactly when a given set of goals is
achieved in a given state – as above, it is assumed thatG ⊆ G.

χG =̂ π+
G ∧ π−

G\G

The following property is obvious. LetM andΓ be a comparable model and game,
(so that the propositional variables inM are exactly the goals inΓ), and letG ⊆ G;
then:

M, s |= χG ⇔ υ(s) = G (3)

The following result states some useful properties ofχ- andπ-formulae, which are
straightforwardly established.

PROPOSITION3. — LetΓ be aQCG andM be a comparableCL model. Then:
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1) If ∃s in M: M, s |= (χG ∧ π+
G′) thenG′ ⊆ G.

2) If G′ ⊆ G then∀s in M: M, s |= (χG → π+
G′).

We can now define the correspondence relation. LetΓ = 〈A,G,G1, . . . ,Gn,V〉
be aQCG game. Rather than relating it to aCL modelM, we will compare it with
a CL-interpretation. Hence, from now on, if we write(M, ρ), we assume thatM =
〈A,S, E ,Φ0, υ〉 with ρ ∈ S. Then, we writeΓ ≃ (M, ρ) iff:

1) M andΓ are comparable; and
2) For allC ⊆ A andG ⊆ G, we have:

G ∈ V(C)
︸ ︷︷ ︸

QCG

⇔ ∃S ∈ E(C, ρ) s.t.∀s ∈ S : υ(s) = G
︸ ︷︷ ︸

interpretation

The first condition essentially says that the game and model contain the same agents
and goals, while the second says that a game indicates that itis possible for a coalition
to get some outcome iff the interpretation indicates this also.

4.1. The structure of our correspondence results

Consider theCL predicateFEAS(· · · ), defined as follows:

FEAS(G,C) =̂ [C]χG

The following property follows from (3) and the semantics ofthe coalition modality
“ [_]”. Let M andΓ be a comparable model and game; then:

(M, ρ) |= FEAS(G,C) ⇔ ∃S ∈ E(C, s) s.t.∀s ∈ S : υ(s) = G (4)

Now, it is not hard to see from this that ifM, s is a CL interpretation that cor-
responds to someQCG Γ, thenM, s |= FEAS(G,C) iff the goal setG represents a
feasible choice for the coalitionC in Γ. In this way, the predicateFEAS(· · · ) can
be said tocharacterisefeasible choices in correspondingQCGs. The motivation for
this terminology should be clear to readers who are familiarwith modal logic (Chellas
1980, Blackburnet al.2001). Our correspondence results give us aCL-based syntac-
tic characterisation ofQCG properties, in much the same way that the correspondence
theory of conventional modal logic provides a syntactic characterisation of first-order
relational properties of Kripke structures (Benthem 1984).

In the remainder of this paper, we define a number of similar predicates, and show
that the truth of such a predicate in an interpretation corresponding to a particularQCG

characterises a certain property of theQCG. In this section, we present some notation
that is intended to render these results somewhat more intelligible.
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WhereD(α1, . . . , αk) is aCL predicate parameterised byk arguments,α1, . . . , αk,
andP (α1, . . . , αk) is a property ofQCGs parameterised in the same way, then we write

D(α1, . . . , αk) ≡ P (α1, . . . , αk)

as a general abbreviation for the following:

LetΓ be aQCG, and let(M, ρ) be an interpretation such thatΓ ≃ (M, ρ).
Then(M, ρ) |= D(α1, . . . , αk) iff P (α1, . . . , αk) is true ofΓ.

In the text, we refer to results of the formD(α1, . . . , αk) ≡ P (α1, . . . , αk) as
correspondence results, and say thatD(α1, . . . , αk) characterisesP (α1, . . . , αk).

Expressed using this terminology, the key property of theFEAS(· · · ) predicate,
which we defined above, is as follows.

PROPOSITION4. — FEAS(G,C) ≡ goal setG is feasible forC, i.e.,G ∈ V(C).

QCGs

66

�

M, s

interpretationQCG

Γ correspond

≃

formula
ϕξ

satisfied under
certain interpretations

characterises
solution conceptξ

holds of certain

� -

Figure 1. The overall structure of our correspondence results

The overall structure of our correspondence results is illustrated in Figure 1.

4.2. The complexity of deciding correspondence

There is an obvious decision problem associated with the correspondence relation
“≃”.

CORRESPONDENCE:
Given: QCG Γ and comparable interpretation(M, ρ).
Answer: “Yes” if Γ ≃ (M, ρ), “no” otherwise.
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The complexity of this problem depends on therepresentationthat is assumed for
theQCG and interpretation, and in particular, the representationthat is chosen for the
characteristic functionV in theQCG, and the effectivity functionE in the model.

Perhaps the simplest representation for any given functionf is the obvious set-
theoretic one, in which we explicitly enumerate it as a set ofordered pairs{(x, y) :
y = f(x)}. We refer to such a representation asextensive. There is an obvious
problem with extensive representations. Consider the characteristic functionV : the
size of an extensive representation ofV will clearly beO(2|A∪G|). It was argued
in (Wooldridgeet al. 2004, p.34) that such a representation is (i) utterly infeasible in
practice; and (ii ) so large that it renders comparisons to this input size meaningless,
since stating that we have an algorithm that runs in (say) time linear in the size of
such a representation only actually means that it runs in time exponential in the size
of A ∪ G.

In (Wooldridgeet al. 2004, p.35), an alternative representation was suggested,
whereby the function is characterised as a formula of propositional logic. The idea
is that any finite functionf : X → Y can be represented as a formulaΨf of propo-
sitional logic, over propositional variables corresponding to the input and output sets
X andY : for Ψf to correctly capturef , we simply require thatΨf [x, y] = ⊤ iff
y = f(x).

So, given a characteristic functionV , we represent it as a formulaΨV whose vocab-
ulary of propositional variables isA∪G (i.e., there is a propositional variable for each
agent and each possible goal). For a formulaΨV (over variablesA, G) to represent a
characteristic functionV , we require that for allC ⊆ A andG ⊆ G we have:

ΨV [C,G] = ⊤ ⇔ G ∈ V(C).

There are two observations to make about this representation. The first is that given
anyΨV (representing a characteristic functionV), C ⊆ A, andG ⊆ G, determining
whetherΨV [C,G] = ⊤ (and hence whetherG ∈ V(C)) can be done in deterministic
polynomial time (it just requires evaluating the truth of a propositional logic formula
under a given valuation). The second observation is that, while it is possible to prove
that there exist “pathological” characteristic functionsV , which require exponential
length formulasΨV to characterise them (Wooldridgeet al. 2004, p.37), the repre-
sentation is nevertheless extremely succinct in many (arguably, most) naturally arising
cases. And this is, of course, exactly why propositional logic is such a widely used
representational formalism in artificial intelligence andcomputer science generally.
We refer to the propositional logic representation of functions assymbolic, following
the usage of this term in the model checking literature (Clarkeet al.2000, pp. 61–95).

For a symbolic representation of effectivity functions, wecan use the same idea,
although we need to work a little harder. We use a formula of propositional logic, in
much the same way, but since we have states appearing as both inputsand outputs
to the function, we need extra notation. IfS = {s1, . . . , sn} is the set of states in a
modelM, then we will denote bŷS = {ŝ1, . . . , ŝn} a new set containing a member
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ŝ for every members of S (note that we intends andŝ to correspond directly to one-
another). A formulaΨE capturing an effectivity functionE then takes as its vocabulary
of propositional variables the setsA, S, andŜ. For a formulaΨE (over variablesA,
S, Ŝ) to represent an effectivity functionE , we require that for allC ⊆ A, s ∈ S, and
S ⊆ S, we have:

ΨE [C, ŝ, S] = ⊤ ⇔ S ∈ E(C, s).

As above, the key point with this representation is that determining whetherS ∈
E(C, s) for any givenS ⊆ S, C ⊆ A, ands ∈ S can be done in polynomial time: it
requires evaluating whetherΨE [C, ŝ, S] = ⊤.

In sum, this gives us two alternative representations for the CORRESPONDENCE

problem: an extensive one (in which we explicitly enumeratethe functional compo-
nents of the structures), and a symbolic one (in which we represent the characteristic
function and effectivity function as propositional logic formulae). Given these two
representations, we can now ask how hard the correspondencedecision problem is.
It is trivial to see that assuming an extensive representation, correspondence can be
checked in polynomial time by exhaustive search; but of course this is not terribly
useful, since, as we already argued, extensive representations are infeasibly large. It is
no surprise thatCORRESPONDENCEis harder under the assumption of a symbolic rep-
resentation for effectivity functions. Before we investigate exactly how much harder it
is, consider the (simpler) problem of checking whether a particular goal set is feasible
for a given coalition.

FEASIBILITY :
Given: Interpretation(M, ρ), goal setG, and coalitionC ⊆ A.
Answer: “Yes” if (M, ρ) |= FEAS(G,C), “no” otherwise.

It turns out that even this problem – which is trivially seen to be tractable for the
extensive representation – is hard for symbolic representations.

PROPOSITION5. — For the symbolic representation,FEASIBILITY is NP-complete.

PROOF 6. — By the semantics ofCL and the definition ofFEAS(· · · ), checking that
(M, ρ) |= FEAS(G,C) amounts to checking whether the following holds:

∃S ⊆ S : ΨE [C, ρ̂, S] = ⊤ & ∀s ∈ S, υ(s) = G
︸ ︷︷ ︸

(∗)

.

Guessing a subsetS of S can clearly be done in polynomial time, and the condition
(∗) can easily by checked in polynomial time.

For NP-hardness, we reduce fromSAT (Papadimitriou 1994, p.171). Given an in-
stanceΦ(x1, . . . , xk) of SAT, we must show how to construct – in polynomial time
– an interpretationMΦ, ρ, goal setG, and coalitionC ⊆ A such thatMΦ, ρ |=
FEAS(G,C) iff Φ(x1, . . . , xk) is satisfiable. To construct the interpretationMΦ, ρ,
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we define a single agentAΦ = {a1}, define a state for each propositional variable,
i.e., SΦ = {x1, . . . , xk}, and define the interpretation stateρ to be any member ofSΦ.
We define a single goal,GΦ = {g1}, with the formula for the effectivity function be
given by the propositional formula

ΨEΦ
= (¬a1 ∧

k∧

i=1

xi) ∨ (a1 ∧ ( Φ(x1, . . . , xk) ∨ Φ(¬x1, . . . ,¬xk) ))

The first clause in this definition captures the case where a coalition is empty (the
empty coalition cannot choose between any of the states in the system), while the
second deals with non-empty coalitions.

We observe thatΨEΦ
[∅, ρ̂, S] = ⊤ if and only ifS = S. We then defineυΦ so that

υΦ(s) = GΦ for all s ∈ SΦ. Finally, we must exhibit a coalition and goal set to check
against: we defineC = {a1} andG = GΦ. We now claim thatMΦ, ρ |= FEAS(G,C)
iff Φ(x1, . . . , xn) is satisfiable.

(⇒) AssumeMΦ, ρ |= FEAS(G,C). Then∃S ⊆ S such thatΨEΦ
[C, ρ̂, S] =

⊤. But since by constructionΨEΦ
= Φ(x1, . . . , xk) ∨ Φ(¬x1, . . . ,¬xk), then

Φ(x1, . . . , xk) is satisfiable.
(⇐) Assume Φ(x1, . . . , xk) is satisfiable. Since by constructionΨEΦ

=
Φ(x1, . . . , xk) ∨ Φ(¬x1, . . . ,¬xk), then this implies∃S ⊆ S such thatS 6= ∅ and
ΨEΦ

[C, ρ̂, S] = ⊤. Moreover, since by constructionυΦ(s) = GΦ for all s ∈ S, then
by definition we haveMΦ, ρ |= FEAS(G,C).

Since the construction can clearly be done in time polynomial in the size of the input
instance, it follows thatFEASIBILITY for symbolically represented games and inter-
pretations isNP-hard. �

This result suggests that checking correspondence under the assumption of a sym-
bolic representation is going to be rather hard, and this is indeed the case3.

PROPOSITION7. — For the symbolic representation,CORRESPONDENCEis Πp
2-

complete.

PROOF 8. — For membership ofΠp
2, first note that checking whetherΓ ≃ (M, ρ)

amounts to checking the following.

∀G ⊆ G, ∀C ⊆ A, (ΨV [G,C] = ⊤ ⇔ (M, ρ) |= FEAS(G,C))
︸ ︷︷ ︸

(∗∗)

.

We can determine the truth of this expression by universallyselecting eachG ⊆ G
andC ⊆ A, and then checking that condition(∗∗) holds. (We make use of anNP-
oracle when checking whether(M, ρ) |= FEAS(G,C) – see Proposition 5.) Hence
the problem is inΠp

2.

3. Recall thatΠp

2
is the class of languages/problems that are in co-NP assuming the availability

of an oracle for languages/problems inNP (Papadimitriou 1994, p.426).
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To show that the problem isΠp
2 hard, we reduceQSAT2,∀, the quintessentialΠp

2

complete problem (Johnson 1990, p.96). An instance ofQSAT2,∀ is given by a quanti-
fied Boolean formulaξ with the following structure:

ξ = ∀x̄ ∃ȳ ϕ(x̄, ȳ)

wherex̄ = x1, . . . , xr and ȳ = y1, . . . , ys are sets of propositional variables. The
formulaξ is true iff for all assignments that we can give to Boolean variablesx̄, there
is some assignment we can give to Boolean variablesȳ such thatϕ(x̄, ȳ) is true. Here
is a concrete example of such a formula.

∀x1∃x2[(x1 ∨ x2) ∧ (x1 ∨ ¬x2)] (5)

Formula (5) in fact evaluates to false. (Ifx1 is false, there is no value we can give to
x2 that will make the body of the formula true.)

To reduce an instanceξ of QSAT2,∀ to CORRESPONDENCE, we must exhibit aQCG

Γξ and an interpretationMξ, ρξ such thatΓξ ≃ Mξ, ρξ iff ξ is true. Consider first the
QCG Γξ. We define an agent for each propositional variable inx̄ and one “dummy”
agentxr+1, soAξ = {x1, . . . , xr, xr+1}. We define a single goalGξ = {g}. For
each agent1 ≤ i ≤ r + 1, we defineGξi

= Gξ (although in fact, theGξi
components

play no subsequent part in the proof, and could be any subset of Gξ). Finally, we
defineΨξ = ⊤. With respect to the interpretationMξ, s, the agents and propositional
variables are the same. We define a state for each propositional variable inȳ, so
S = {y1, . . . , ys}, and defineυξ(s) = Gξ for all s ∈ S. The formulaΨEξ

for the
effectivity function is given by

ΨEξ
= (xr+1 ∧ ϕ(x̄, ȳ)) ∨ (¬xr+1 ∧

s∧

i=1

yi)

As before we observe thatΨEξ
[∅, ŝ, S] = ⊤ if and only if S = S. Finally, the

interpretation stateρξ is defined to be any member ofS. Now, we claim thatΓξ ≃
Mξ, ρξ iff ξ is true. To see this, observe thatΓξ ≃ Mξ, ρξ is equivalent to the
following:

∀G ⊆ Gξ, ∀C ⊆ Aξ : (Ψξ[C,G] = ⊤ ⇔ ∃S ⊆ Sξ : ΨEξ
[C, ρ̂, S] = ⊤).

Since by constructionΨξ = ⊤, this simplifies to the following.

∀G ⊆ Gξ, ∀C ⊆ Aξ, ∃S ⊆ Sξ : (ΨEξ
[C, ρ̂, S] = ⊤).

Moreover, since no member ofGξ appears inΨEξ
, this further simplifies to the follow-

ing.
∀C ⊆ Aξ, ∃S ⊆ Sξ : ΨEξ

[C, S] = ⊤.
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Noting that this is satisfied by anyC ⊆ Aξ for which xr+1 6∈ C, without loss of
generality, we need consider only thoseC with xr+1 ∈ C. Now, sinceAξ \xr+1 = x̄,
Sξ = ȳ, from the definition ofΨEξ

, this further reduces to the following.

∀X ⊆ x̄, ∃Y ⊆ ȳ : Φ(x̄, ȳ)[X,Y ] = ⊤.

And this is exactly the condition for the truth of theQSAT2,∀ formulaξ.

Since the construction can clearly be done in time polynomial in the size of the
input instance, it follows thatCORRESPONDENCEfor symbolically represented games
and interpretations isΠp

2-hard. �

It is worth remarking that implemented software tools for reasoning about coali-
tional games (such as theMOCHA model checking system forATL (Alur et al. 2000,
Alur et al. 1998)) do not use an extensive representation (and indeed, no practical
tool could use such a representation). Instead, they use a concise representation for
games/models, that is much more akin to our symbolic representation. In theMOCHA

example, for instance, a structured, compositional language called REACTIVE MOD-
ULES is used to specify games/models, which makes for extremely concise represen-
tations of large state spaces (Alur et Henzinger 1999). Thissuggests (to us at least)
that theΠp

2-completeness result of Proposition 7 is a more “realistic”measure of the
cost of checking correspondence.

5. Characterising qualitative coalitional games

In this section, we present our correspondence results. First, we define a formula
γ+

C (whereC ⊆ A) such thatγ+
C will be satisfied in a states if everyagent is satisfied

in that state,i.e., if every agent has at least one of its goals satisfied ins. Similarly,γ−C
will mean thatnomember ofC is satisfied.

γ+
C =̂

∧

i∈C

σ+
Gi

γ−C =̂
∧

i∈C

π−
Gi

The following properties ofγ-formulae are useful subsequently. (They are straight-
forward to establish.)

PROPOSITION9. — LetΓ be aQCG andM be a comparableCL model. Then:

1) If G ⊆ G satisfiesC ⊆ A then∀s in M: M, s |= (χG → γ+
C ).

2) If ∃s in M: M, s |= (χG ∧ γ+
C ) thenG ⊆ G satisfiesC ⊆ A.

5.1. Empty sets of goals

Let us first look at some extreme cases regarding the goals sets in QGL, i.e., those
in which a set of goals can be empty. We have the following possibilities:
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(i) V(C) = ∅

(ii) ∅ ∈ V(C)

(iii) V(C) = {∅}

In the first case, coalitionC has no choice, in the second,C can make a choice
such that no goal (of anybody, whatsoever) is achieved, and,finally, in case(iii), the
only available choice ofC leads to “nothing”: no goal is satisfied.

How do these cases find their corresponding counterparts inCL? We provide them
in Table 1, together with their characterisingCL-properties. In other words, for every
row in Table 1, the entry in the second column corresponds to the entry in the fourth
column.

Table 1. Empty goals: extreme cases

Property of Property of Characteristic
QCG structure CL interpretation CL-formula

(i) V(C) = ∅ E(C, s) = ∅ ¬[C]⊤

(ii) ∅ ∈ V(C) ∃S ∈ E(C, s)s.t.∀s ∈ S : υ(s) = ∅ [C]
∧

g∈G ¬g
(iii) V(C) = {∅} ∀S ∈ E(C, s)∀s ∈ S : υ(s) = ∅ [C]⊤ ∧ ¬

∨

g∈G[C]g

5.2. Successful coalitions

In many ways, the idea of a successful coalition incorporates the most basic ques-
tion that is of interest with respect to any givenQCG (Wooldridgeet al. 2004, p.47).
A coalition issuccessfulif that coalition has a feasible choice satisfying all members
of the coalition. Formally, given aQCG Γ = 〈A,G,G1, . . . ,Gn,V〉 and a coalition
C ⊆ A, we say thatC is successful iff:

∃G ∈ V(C) s.t.∀i ∈ C, we haveG ∩ Gi 6= ∅.

Given that a particular coalition is successful in this sense, we cannot be certain that
this coalitionwill form; but wecanbe certain that anunsuccessfulcoalition will not
form – because, by definition, the formation of such a coalition would leave at least one
member unsatisfied. In this sense, success is a necessary, but not sufficient condition
for coalition formation inQCGs. We can easily characterise successful coalitions, via
the defined predicateSC(· · · ).

SC(C) =̂
∨

G⊆G

[C](χG ∧ γ+
C )

PROPOSITION10. — SC(C) ≡ coalitionC is successful.

PROOF 11. —
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(⇒) AssumeM, s |= SC(C): we need to show that this implies there is a goal
set that is both feasible for and satisfiesC. SinceM, s |= SC(C), then by definition,
∃G ⊆ G such thatM, s |= [C](χG∧γ+

C ). SinceM, s |= [C]χG, then by the definition
of ≃, G is feasible forC, i.e., G ∈ V(C). Moreover, sinceM, s |= [C](χG ∧ γ+

C ),
then∃S ∈ E(C, s) such that∀s′ ∈ S, M, s′ |= (χG ∧ γ+

C ). Then by Proposition 9(2),
G satisfiesC.
(⇐) Assume thatC is successful. Then∃G ⊆ G such that (i) G is feasible forC,
and (ii ) G satisfies every member ofC. From (i), we haveM, s |= [C]χG and from
(ii ) by Proposition 9(1), we haveM, s′ |= χG → γ+

C for all s′. Hence∃G ⊆ G such
thatM, s |= [C](χG ∧ γ+

C ), and so by definitionM, s |= SC(C). �

At first sight, the reader may suspect that the definition ofSC(· · · ) is over engi-
neered: would the following, simpler definition not suffice to characterise successful
coalitions?

SC?(C) =̂ [C]γ+
C

The answer is no. To see why, consider the fragment of modelM illustrated in Fig-
ure 2, whereΓ ≃ M, s1 for someΓ. In this model fragment, states in the model are
drawn as circles, and the arrows labelled withi indicate the choices available to agent
i according to the effectivity functionE ; hence one choice fori is {s2, s3, s4}. Inside
each state, we write the propositions that are satisfied in this state. Now, suppose that
agenti’s goal set isGi = {g5, g9, g10}. Then clearly, according to the definition of
SC?(· · · ), we would have thati is successful, sinceM, s1 |= [i]γ+

i . (To see this, sim-
ply note that{s2, s3, s4} ∈ E({i}, s1) and∀s′ ∈ {s2, s3, s4}, we haveM, s′ |= γ+

i .)
But this does not imply that any non-empty subset of{g5, g9, g10} represents a fea-
sible choice fori in Γ. This is because there is no non-empty goal setG such that
M, s′ |= χG for all s′ ∈ {s2, s3, s4}, and hence this set of states does not characterise
a set of goals that is feasible for and satisfies agenti.

i

s1

g5

g10

g9s2 s3

s4

...etc..

i

Figure 2. Why the simpler definition ofSC(· · · ) does not work
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A few words about this counterexample are in place here. Whether such an ex-
ample tells us something interesting about what coalitionscan achieve, depends on
the object language under consideration. If our main emphasis is on[C]χG formulas,
describing what a coalition canexactlybring about, the example of Figure 2 is in some
sense harmless: one can show that the balloon consisting of statess2, s3 ands4 can be
removed without affecting the truth of any[C]χG-like property (ins1). However, on a
finer level of granularity, the situation in the counterexample demonstrates an interest-
ing difference betweenQCG-games andCL-interpretations,i.e., that in the latter, is it
possible to express that a coalition can achieve a goal,withouthaving to specify which
set of goals itexactlycan bring about. In this paper, we choose to not analyse the
subtleties that different object languages can express, but rather to directly relate the
notion of aQCG-gameΓ with that of aCL-interpretation(M, ρ), thereby respecting
the reading of the characteristic functionV as given in Section 2 (“C can bring about
exactly. . . ”).

5.3. Selfish successful coalitions

The fact thatC are successful does not preclude agents outsideC having goals
satisfied by a subsetG attesting to the success ofC. This suggests the notion of a
successfulselfishcoalition, as a coalitionC for which there is someG ∈ V(C) that
satisfiesonly the members ofC (Wooldridgeet al.2004, pp. 48–49). Formally, coali-
tionC is a selfish successful coalition if∃G ⊆ G s.t.G ∈ V(C) and for which∀i ∈ A,
Gi ∩G 6= ∅ if and only if i ∈ C. Of course, assuming that an agent’s (principal) aim is
to enlist in a coalition with whose support it can realise a goal it wishes to be satisfied,
it may not necessarily be concerned with the status of agentsoutside the coalition, and
in particular, whether such might be satisfied with a particular feasible goal set. In
many scenarios, an agent will be indifferent to the level of satisfaction achieved by
non-members: our contention, however, is that such scenarios do not encompass all
settings that might usefully be modelled within aQCG environment – see (Wooldridge
et al.2004, pp. 48–49) for further discussion. (Note that we do notmean to say that a
selfishly successful coalition will choose to be selfish in practice: it simply means that
the possibility is there.)

We characterise selfish successful coalitions via the predicateSSC(· · · ), as fol-
lows.

SSC(C) =̂
∨

G⊆G

[C](χG ∧ γ+
C ∧ γ−A\C

)

PROPOSITION12. — SSC(C) ≡ coalitionC is selfishly successful.

PROOF 13. — Similar to that of Proposition 10: the point to note is that if (M, ρ) |=
χG ∧ γ+

C ∧ γ−A\C
, thenG must satisfy an agenti iff i ∈ C. �
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5.4. Goal realisability

We say a set of goalsG is realisable if there isanycoalition for whichG is both
feasible and satisfies every member (Wooldridgeet al.2004, p.50). Thus, the fact that
a set of goals is realisable implies that there is at least some chance of this goal set
being achieved, as it would satisfy at least one coalition. Of course, it does not imply
that this goal set will be theactual choice of any coalition. Thus realisability is a
necessary condition for the achievement of any set of goals –although it is of course
not sufficient.

We characterise realisability via the predicateGR(· · · ).

GR(G) =̂
∨

C⊆A

∨

G′⊆G

[C](χG′ ∧ π+
G ∧ γ+

C )

We have:

PROPOSITION14. — GR(G) ≡ goal setG is realisable.

PROOF 15. —

(⇒) (M, ρ) |= GR(G). Then∃C ⊆ A, ∃G′ ⊆ G such that(M, ρ) |= [C](χG′ ∧
π+

G ∧ γ+
C ). Since(M, ρ) |= [C]χG′ , then by the definition of≃,G′ is feasible forC,

i.e., G′ ∈ V(C). From(M, ρ) |= [C]χG′ ∧ γ+
C , and Proposition 9, we know thatG′

satisfiesC. From Proposition 3(1), and the fact that(M, ρ) |= [C](χG′ ∧ π+
G), we

know thatG ⊆ G′. HenceG is both feasible for and satisfiesC, and soG is realisable.
(⇐) AssumeG is realisable. Then∃C ⊆ A andG′ ⊆ G such thatG is both feasible
for and satisfiesC, andG ⊆ G′. From Proposition 10 and the fact thatG′ is both
feasible for and satisfiesC, we have(M, ρ) |= [C](χG′ ∧ γ+

C ), and from this and the
fact thatG ⊆ G′ together with Proposition 3(2), we then have(M, ρ) |= [C](χG′ ∧
γ+

C ∧ π+
G). Hence(M, ρ) |= GR(G) by definition. �

5.5. Minimal coalitions

We say a coalition isminimal if no strict subset of this coalition is successful.
The notion of minimality is important because it implies a kind of internal stability
for a coalition (cf. (Osborneet al. 1994, p.281)). That is, in a minimal coalition,
there is no incentive for subsets of the coalition to defect away from the coalition,
as, by definition, such sub-coalitions cannot be successful. Formally, a coalitionC is
minimal iff ∀C′ ⊂ C, ∀G ⊆ G, if ∀i ∈ C′,G ∩ Gi 6= ∅, thenG 6∈ V(C′). Minimality
is easily captured in the predicateMC(· · · ).

MC(C) =̂
∧

C′⊂C

¬SC(C′)

The correspondence result is obvious, and we therefore omitthe proof.

PROPOSITION16. — MC(C) ≡ coalitionC is minimal.
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5.6. Core membership and core non-emptiness

Perhaps the most widely studied issue in cooperative game theory is that of coali-
tional stability, and the tool used most widely to analyse this issue is the core (Os-
borneet al.1994, pp. 257–274). Intuitively, the core of a coalition is the set of feasible
choices for that coalition from which the members of that coalition have no incentive
to deviate. In theQCG setting, a parallel notion was introduced in (Wooldridgeet al.
2004, p.54). Formally, we say a set of goalsG is in the core of a coalitionC iff: ( i) C
is minimal; (ii ) G is feasible forC; and in addition (iii ) G satisfies every member of
C. Formally,G is in the core if (i) G ∈ V(C); (ii ) ∀C′ ⊂ C, ∀G′ ⊆ G if ∀i ∈ C′,
Gi ∩ G′ 6= ∅ thenG′ 6∈ V(C); and (iii ) ∀i ∈ C Gi ∩ G 6= ∅. We define the predicate
CNE(· · · ) to capture core membership.

CM(G,C) =̂ MC(C) ∧ [C](χG ∧ γ+
C )

The correspondence result is now obvious.

PROPOSITION17. — CM(G,C) ≡ goal setG is in the core ofC.

The core of a coalition will thus be non-empty if that coalition is both minimal and
successful, which easily leads to the following predicate definition.

CNE(C) =̂ MC(C) ∧ SC(C)

PROPOSITION18. — CNE(C) ≡ the core ofC is non-empty.

Observe that, by this definition,CNE(C) ↔
∨

G⊆G CM(G,C).

Notice that this definition of the core, when applied to the grand coalition, im-
plies that the grand coalition is theuniquelysuccessful coalition, and thus is the only
coalition that a rational agent would choose to join.

5.7. Veto players

The notion of a veto player is generally defined in cooperative game theory with
respect tosimplecoalitional games: those where every coalition simply either wins
or loses. A veto player is said to be one that is a member of every winning coalition.
Veto players are important because their cooperation is essential for every coalition
that aspires to win: by definition, without their support, a coalition cannot win. In our
framework, we use a related notion of veto power, in which we talk of an agent as
being a veto playerfor some particular state of affairs. We sayi is a veto player for
ϕ (whereϕ is a formula which characterises some state of affairs) ifi is a member of
every coalition that can chooseϕ.

VETO(i, ϕ) =̂
∧

C⊆A

(([C]ϕ) → ¬[C \ {i}]ϕ)
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Note thati being a veto player forϕ doesnot imply thati can bring aboutϕ, and thus
VETO(i, ϕ) → [i]ϕ is not a valid formula scheme.

Let us now return toQCGs. In (Wooldridgeet al.2004, p56–57), a notion of veto
player was defined that generalised that of conventional coalitional games (Osborneet
al. 1994, p.261). This definition related to the circumstances under which one agent
is a veto player for another agent: that is, whether one agenti is a member of every
coalition that is capable of satisfyingj.

Formally,i is a veto player forj iff for all C ⊆ A andG ∈ V(C), if G ∩ Gj 6= ∅
theni ∈ C. It should be noted thatj need not be a member ofC.

VP(i, j) =̂
∧

C⊆A

∧

G⊆G

(([C](χG ∧ γ+
j )) → ¬[C \ {i}]χG)

PROPOSITION19. — VP(i, j) ≡ agenti is a veto player for agentj.

PROOF 20. —

(⇒) Suppose for purposes of contradiction that(M, ρ) |= VP(i, j) but thati is not
a veto player forj. Then∃C ⊆ A such thati 6∈ C and for someG ⊆ G: (M, ρ) |=
[C](χG ∧ γ+

j ). Sincei 6∈ C, thenC \ {i} = C, hence(M, ρ) |= [C \ {i}](χG ∧ γ+
j ).

But by the definition ofVP(· · · ), we know that∀C ⊆ A, ∀G ⊆ G, if (M, ρ) |=
[C](χG∧γ+

j ) then(M, ρ) 6|= [C \{i}]χG, and in particular,(M, ρ) 6|= [C \{i}](χG∧

γ+
j ). Contradiction.
(⇐) Supposei is a veto player forj. Then∀C ⊆ A, ∀G ⊆ G, if G ∈ V(C) and
G ∩ Gj 6= ∅ then i ∈ C. Hence∀C ⊆ A, ∀G ⊆ G, if (M, ρ) |= [C](χG ∧ γ+

j )
theni ∈ C. We now claim that this implies(M, ρ) 6|= [C \ {i}]χG. For suppose that
(M, ρ) |= [C \ {i}]χG: then sincei is a veto player forj, we havei ∈ (C \ {i}),
which is a contradiction. So if(M, ρ) |= [C](χG∧γ+

j ) then(M, ρ) |= ¬[C \{i}]χG,
and so by definition(M, ρ) |= VP(i, j). �

5.8. Necessary goal sets

The notion of anecessary goalwas introduced in (Wooldridgeet al.2004, p.57) as
a natural counterpart to that of veto players. The idea is that a goal set is necessary if
this goal set is a “side effect” of any coalition achieving their goals. More formally,G
is necessary if for every coalitionC ⊆ A and goal setG′ ⊆ G: if ∀i ∈ C, Gi ∩G′ 6= ∅
andG′ ∈ V(C) thenG ⊆ G′. We characterise necessary goal sets via the predicate
NG(· · · ).

NG(G) =̂
∧

C⊆A

∧

G′⊆G

(([C](χG′ ∧ γ+
C )) → [∅](χG′ → π+

G))

PROPOSITION21. — NG(G) ≡ goal setG is necessary.
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PROOF 22. —

(⇒) Assume(M, ρ) |= NG(G) and(M, ρ) |= [C](χG′ ∧ γ+
C ) for someC ⊆ A and

G′ ⊆ G. ThusG′ is both feasible for and satisfiesC. We need to show that this implies
G ⊆ G′. By the definition ofNG(· · · ), we have that if(M, ρ) |= [C](χG′ ∧ γ+

C ) then
(M, ρ) |= [∅](χG′ → π+

G). So(M, ρ)′ |= (χG′ ∧ π+
G) for some states′ in M. By

Proposition 3(1), therefore,G ⊆ G′.
(⇐) AssumeG is a necessary goal set. Then∀C ⊆ A and∀G′ ⊆ G: if ∀i ∈ C,
Gi ∩ G′ 6= ∅ andG′ ∈ V(C) thenG ⊆ G′. We need to show that this implies that
if (M, ρ) |= [C](χG′ ∧ γ+

C ) then(M, ρ) |= [∅](χG′ → π+
G). So, assume(M, ρ) |=

[C](χG′ ∧ γ+
C ); thenG′ both satisfies and is feasible forC, and sinceG is a necessary

goal set,G ⊆ G′. Thus by Proposition 3(2),∀s′ in M: (M, ρ)′ |= (χG′ → π+
G), and

so(M, ρ) |= [∅](χG′ → π+
G′), and we are done. �

5.9. Mutual dependence

If you are a veto player for me, then this might appear to put mein a weak position
with respect to you – because I am absolutely reliant upon youfor the satisfaction of
my goals. Unless, of course, the situation is reciprocal: that is, unlessyou are also
dependent uponmein return. This consideration gave rise in (Wooldridgeet al.2004,
p.59) to the notion of amutually dependentcoalition, in which everybody is dependent
upon everybody else. Formally, coalitionC will be mutually dependent if:

∀C′ ⊆ A, ∀G ∈ V(C′) if G satisfies at least one member ofC thenC ⊆ C′

Notice that saying thatC are mutually dependent implies thatC are a necessary com-
ponent of any coalition to achieve their goals; but it does not say that they are asuc-
cessfulcoalition. They may not be able to cooperate so as to satisfy their goals jointly,
or they may require the cooperation of other agents to achieve all their goals.

MD(C) =̂
∧

i∈C

∧

j∈C

VP(i, j)

PROPOSITION23. — MD(C) ≡ coalitionC are mutually dependent.

PROOF 24. — By definition,C are mutually dependent iff∀C′ ⊆ A, ∀G ∈ V(C′)
if G satisfies at least one member ofC thenC ⊆ C′. It suffices to note that this is
equivalent to saying that,∀i, j ∈ C, i is a veto player forj and vice versa. �

5.10. Empty and trivial games

We conclude with by characterising two general properties of QCGs. We say a
QCG is emptyif no coalition is successful, andtrivial if every coalition is success-
ful (Wooldridgeet al.2004, pp. 59–60). Although these two types of games represent
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extremes in the spectrum of possibleQCGs it seems inevitable that coalitions will not
form in either type ofQCG. Coalitions will not form in the first type because to do
so would serve no rational purpose: as we argued above, success seems a necessary
condition for rational agents to form a coalition, and in an empty game, no coalition
is successful. There is also no point in coalitions forming in trivial games, but this
time because every agent can achieve its goals in isolation.Note that in this sense, the
concept of a trivial game is rather like that of aninessential gamein cooperative game
theory: recall that a conventional coalitional game〈A, ν : 2A → R〉 is inessential if
for all C ⊆ A, we haveν(C) =

∑

i∈C ν({i}).

The nullary predicatesEG andTG may be easily seen to characterise empty and
trivial games, respectively. (We will not give formal proofs, as the results are obvious.)

EG =̂
∧

C⊆A ¬SC(C) TG =̂
∧

C⊆A SC(C)

6. A case study: political voting games

We now present a case study, to illustrate how the ideas and definitions introduced
above might be applied in practice to reasoning about multi-agent systems. More
precisely, we proceed as follows. We represent a system whose properties we wish
to check using theREACTIVE MODULES language of Alur and Henzinger (Aluret al.
1999). This language is well-suited to expressing the structure and behaviour of game-
like multi-agent systems. We then express the properties ofthe system that we wish to
check (e.g., whether one player is a veto player for another)usingATL , the temporal
extension ofCL developed by Alur, Henzinger, and Kupferman (Aluret al.2002). In
order to do this, we express each agenti’s goalsGi as a formulaγi of ATL , the idea
being thatγi is satisfied in a states of the system iff one of the goals inGi is achieved
in states. We can then useMOCHA, a model checker forATL , to check properties of
the system in question. We begin with an introduction to the scenario we will study.

Our case study is adapted from (Pauly 2001, pp. 99–101) and (Pauly et Wooldridge
2003), and is concerned with the following voting game:

A political bodyA = {1, 2, 3, 4} has to decide on passing a new law.
There are two versions of the law,law1 andlaw2, and the process be-
gins by a single agent, agent 2, proposing which of these versions should
be adopted. Once agent 2 has selected a version, the entire body votes
on whether to accept the proposal; if there is a majority in favour of
acceptance, then the proposed version is accepted; if thereis a majority
against, then there is deadlock, and the process begins again, with agent 2
selecting a version of the law to propose; if there is no majority one way
or the other, then the vote of the chairman, agent 1, is decisive, in either
accepting the proposed law or returning it to agent 2.
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type law : {law1, law2, deadlock}

module Agent1
external scchosen : law
interface agree1 : bool
atom controls agree1 reads scchosen
update

[] true -> agree1’ := true
[] true -> agree1’ := false

endatom
endmodule – Agent1

module Agent2
external subCommittee : bool
interface agree2 : bool;

scchosen : law
atom controls scchosen reads subCommittee
update

[] subCommittee -> scchosen’ := law1
[] subCommittee -> scchosen’ := law2

endatom

atom controls agree2 reads scchosen
update

[] true -> agree2’ := true
[] true -> agree2’ := false

endatom
endmodule – Agent2

...
module Outcome

external
scchosen : law;
agree1, agree2, agree3, agree4, subCommittee : bool

interface
outcome : law;
subCommittee : bool

atom controls subCommittee reads outcome awaits outcome
init

[] true -> subCommittee’ := true
update

[] outcome’ = deadlock -> subCommittee’ := true

[] (̃outcome’ = deadlock) -> subCommittee’ := false
endatom
atom controls outcome

reads scchosen, agree1, agree2, agree3, agree4
awaits scchosen, agree1, agree2, agree3, agree4

init
[] true -> outcome’ := deadlock

update
[] NoConsensusFmla -> outcome’ :=

if (agree1’) then scchosen’ else deadlock fi
[] MajorityInFavourFmla -> outcome’ := scchosen’
[] MajorityAgainstFmla -> outcome’ := deadlock

endatom
endmodule – Outcome

System := (Agent1 || Agent2 || Agent3 || Agent4 || Outcome)

Figure 3. The voting scenario, represented inREACTIVE MODULES, theMOCHA mod-
elling language.

We begin by modelling the game in a form suitable forMOCHA — the code is
given in Figure 3 (a brief introduction toREACTIVE MODULES, the language used to
express the case study, is presented in Appendix A).
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– Agent1 is the “generic” agent in this scenario, which simply has to decide
whether to accept or reject the proposed law. The vote ofAgent1 is held in a variable
agree1. (Agents 3 and 4 are essentially identical, and for this reason we do not give
their code.)

– Agent2 is composed of two separate “update threads”. The first of these is re-
sponsible for proposing a law when the mechanism is in the “subcommittee” phase
(i.e., at the start, and whenever a proposal has been rejected by the whole political
body). The variablesubCommittee keeps track of when the mechanism is in sub-
committee phase. The proposal made by agent 2 is carried in the variablescchosen.
The second update thread is responsible for deciding whether to accept a proposal, as
with the other agents in the system. (Of course, it would in some sense be nonsen-
sical for agent 2 to vote against accepting a proposal that ithad put forward, but the
mechanism does not preclude it.)

– TheOutcome module is responsible for determining the outcome, based onthe
votes of the agents in the system. It is also composed of two update threads. The
first is responsible for keeping track of whether the mechanism is in sub-committee
phase (this will be initially, and whenever the overall outcome is deadlock). The sec-
ond update thread decides what the outcome is: the three rules defining this thread
correspond to (a) whether there is an equal number of agents for and against accepting
the proposal, in which case the mechanism looks to the vote ofagent 1, and if this
was positive (i.e., agent 1 voted to accept), then the proposal is accepted; otherwise it
is rejected; (b) a majority agree on accepting the proposal,in which case the overall
outcome is that in the variablescchosen; and (c) there is a majority against accepting
the proposal, in which case the outcome isdeadlock. Note that the overall outcome
(i.e., law1, law2, or deadlock) is recorded in variableoutcome. Note that:

- MajorityInFavourFmla,
- MajorityAgainstFmla, and
- NoConsensusFmla

are abbreviations we are using here forMOCHA expressions which capture whether
or not there is a majority for or against acceptance, or whether there is a deadlock,
respectively.

Let us call the mechanism, as defined by theREACTIVE MODULES code above,M1.

For each agenti, there are three relevant goal formulae that we might consider for
this scenario:

γi = (outcome = law1)
γi = (outcome = law2)
γi = (outcome = deadlock)

Thus, an agent might have a goal that the outcome is thatlaw1 is chosen, thatlaw2

is chosen, or that no law is chosen (i.e., there is a deadlock). In the remainder of this
section, we shall assume that each agent is assigned one of these three goals.

We can now start to investigate some properties of the mechanism. First, note that
for any coalitionC, if SC(C) then∀i, j ∈ C, γi = γj : that is, a coalition can only
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be successful in this scenario if they share a common goal. (This is straightforward to
see from the fact that the three relevant goals are mutually exclusive.)

The first property we can check is that, if they share a common goal, the coalition
{1, 2} is all-powerful: this coalition can bring about any outcome, including deadlock.

PROPOSITION25. — If γ1 = γ2, thenM1 |= SC({1, 2}).

This property can be checked directly. In contrast to the coalition {1, 2}, the coali-
tion {3, 4} is unsuccessful:

PROPOSITION26. —M1 6|= SC({3, 4}), irrespective of the goals of agents3 or 4.

Again, this property is trivial to check usingMOCHA. With respect to the success
(or failure) of other coalitions, first note that any coalition of cardinality three with a
shared goal containing agent 2 is successful (because agent2 can propose the law, and
the coalition being of majority size can then enforce it).

PROPOSITION27. —For all C ⊆ A, we haveM1 |= SC(C) if all of (1) - (3) hold:

(1) 2 ∈ C;
(2) |C| ≥ 3; and
(3) ∀i, j ∈ C, γi = γj .

Turning to minimal coalitions and the core, we have the following.

PROPOSITION28. —

1) M1 |= MC({1, 2}), and hence ifγ1 = γ2, thenM1 |= CNE({1, 2}).
2) For all C ⊆ A, we haveM1 |= CNE(C) (and henceM1 |= MC(C)) if the

following four conditions simultaneously hold:
a) 2 ∈ C;
b) |C| = 3;
c) ∀i, j ∈ C, γi = γj ; and
d) 1 6∈ C.

To see why the second result cannot be strengthened to an “iff”, observe that
adding an agent would mean that the coalition was no longer minimal, and hence
no longer be stable (because a strict subset would be successful).

Let us now consider all possible goals: we can easily check that all goals are
individually achievable but mutually exclusive. Goal realisability in the voting setting
maps more or less directly to strategic ability in the sense of the cooperation modality
[C]ϕ, and so (with a small abuse of notation), we have the following.

PROPOSITION29. —

1) M1 |= GR(γ) for each of the three relevant goalsγ listed above; but
2) For any combinationγ ∧ γ′ of the three goals listed above, (γ 6= γ′), we have

M1 6|= GR(γ ∧ γ′).

With respect to veto players, since agent 2 always proposes the law upon which
the committee votes, we have the following.
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PROPOSITION30. —For any allocations of the three relevant goals to agents, we
have:

1) M1 |= VETO(2, (outcome = law1);
2) M1 |= VETO(2, (outcome = law2); and
3) M1 6|= VETO(2, (outcome = deadlock)).

There is also a veto player that can avoid deadlock:

PROPOSITION31. —For any allocations of the three relevant goals to agents, we
have:

1) M1 |= VETO(1, (outcome = deadlock);

Finally, note that there are no necessary goals in this scenario; and moreover, the
scenario is neither trivial nor empty (and is hence “typical”).

7. Related work

Although logical formalisms for knowledge representationin multi-agent systems
have been studied for decades, until recently the dominant approach was to adopt a
“mentalistic” stance, whereby logics — usually, modal logics — were used to charac-
terise the mental states (beliefs, desires, intentions, and the like) of agents: see, e.g.,
the work of Halpern et al (Halpern et Moses 1992, Fagin, Halpern, Moses et Vardi
1995), Shoham (Shoham 1993), Cohen and Levesque (Cohen et Levesque 1990),
Meyer and colleagues (Meyer, Hoek et Linder 1999) and Rao andGeorgeff (Rao et
Georgeff 1998, Wooldridge 2000) (see (Wooldridgeet al.1995, Hoeket al.2003c) for
surveys of this work).

More recently, however, game theory has come to be seen as an alternative foun-
dation upon which to develop logic-based knowledge representation formalisms for
multi-agent systems. It has been recognised for several decades that there are close
links between modal logics of rational agency and the formaltheory of games: see,
for example, Ladner and Reif’s Church/Turing-like thesis for distributed computing,
and the conclusions they draw from this (Ladner et Reif 1986,pp. 208–209). Recently,
a number of formalisms have been proposed which attempt to synthesise logical and
game-theoretic approaches in a single system, in which the links between the game and
the logic are explicitly defined. One example is the work of Harrenstein et al (Har-
renstein, van der Hoek, Meyer et Witteveen 2002), in which a dynamic logic is used
to give a modal characterisation of Nash equilibria – arguably the most important and
powerful analytical weapon in the game theory arsenal (Osborneet al.1994, pp. 14–
15). Those characterisation results of (Harrensteinet al.2002) are phrased in a format
not unlike our correspondence results: on the one hand, there is a solution concept in
games, which, on the other hand, are in a formal way connectedto truths or validi-
ties in an interpretation. In a similar spirit, but more generally, de Bruin (de Bruin
2004) has developed a logical framework in which many solution concepts in games,
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especially those involving an epistemic component, can be explained, compared or
justified.

Other examples of frameworks that combine logical and game-theoretic ideas in-
clude the closely related work of Baltag (Baltag 2002), and of course Pauly’s Coalition
Logic, which we have used in this paper (Pauly 2002b, Pauly 2002a, Pauly 2001). One
of Pauly’s main concerns was to explore the links between modal logics (in particular,
modal logics with a “neighbourhood” semantics) and formal games. Similar explo-
rations have been undertaken by van Benthem, whose startingpoint is that the labelled
transition systems/Kripke structures, which are canonically used to give a semantics to
modal logics, can be interpreted as extensive form games, and that as a consequence
modal operators of various kinds can be used to express properties of games (Ben-
them 2001, Benthem 2002). Agotnes, van der Hoek et Wooldridge (2006a) develop a
logic specifically intended for reasoning about coalitional games, and Agotnes, van der
Hoek et Wooldridge (2006b) investigate the use of temporal logics for representing it-
erated coalitional games. However, in both of these works, aspecial purpose logic is
developed; in the present paper, we specifically focus on using a general purpose logic
for characterising games.

Finally, one issue that our work raises relates to thesizeof formulae that are nec-
essary to characterise properties ofQCGs. We have used conjunctions to represent
universal quantification and disjunctions to represent existential quantification. Since
many properties require quantifying over goals and/or coalitions, we have as a conse-
quence some formulae that are exponential in the number of agents and/or goals. Such
formulae are clearly not realistic in practice. The obvioussolution to this problem is to
extend Coalition Logic with quantification over both agentsand coalitions. However,
such quantification is clearly dangerous from a computational point of view. Recently,
Agotnes, van der Hoek et Wooldridge (2007) proposed a form oflimited quantifica-
tion over coalitions via modal quantifiers. It was shown thatthis Quantified Coalition
Logic was exponentially more succinct than Coalition Logic, while being no more
complex with respect to the key problem of model checking. Itwould be interesting
to investigate the class of solution concepts that might be succinctly expressed using
Quantified Coalition Logic.

8. Conclusions

We have given a systematic logical characterisation of solution concepts from
Qualitative Coalitional Games (QCGs), using as our language of expression Pauly’s
Coalition Logic – the next-time fragment of the Alternating-time Temporal Logic of
Alur, Henzinger, and Kupferman. Starting from a notion of when aQCG and a model
for Coalition Logic could be said to “correspond” (i.e., when they agreed on what
coalitions could bring about), we went on to investigate formally the computational
complexity of deciding correspondence between aQCG and a model for Coalition
Logic, and then systematically showed how theQCG solution concepts developed
in (Wooldridgeet al. 2004) could be characterised via formula schemes ofCL. We
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then showed how model checkers forATL could be used to check whether these solu-
tion concepts held of particular games; to the best of our knowledge, this is the first
time that model checking has actually been used to check suchproperties of games.

There are, as ever, many possible avenues for future research. One is to investigate
the effect thatimperfect information(Faginet al.1995) might have inQCGs, and how
epistemic extensions toCL andATL might then be used to express appropriate solution
concepts (Hoeket al.2003b). Another possible avenue for further work is to consider
temporally extended (i.e., iterated)QCGs and cooperative games, and to investigate
appropriate solution concepts for such games. Here, the “full” temporal language of
ATL might be appropriate, rather than just the next-time fragment represented byCL.
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A. A very brief introduction to reactive modules

Agents inMOCHA are known asmodules. Each module consist of aninterface
and a number ofatoms, which define the behaviour of the corresponding agent. The
interface part of a module defines two key classes of variables4:

– interface variables are those variables which the module “owns” and makes
use of, but which may be observed by other modules;

– external variables are those which the module sees, but which are “owned”
by another module (thus a variable that is declared asexternal in one module must
be declared as aninterface variable in another module).

Within each module are a number ofatoms, which may be thought of asupdate
threads. Atoms are rather like “micro modules” — in much the same way to regular
modules, they have an interface part, and an action component, which defines their
behaviour. The interface of an atom defines the variables itreads (i.e., the variables it
observes and makes use of in deciding what to do), and those itcontrols. If a variable
is controlled by an atom, then no other atom is permitted to make any changes to this
variable. A further class of variables may be accessed by an atom are those itawaits.
An “awaited” variable is one whose value is read by the atomafter it has been defined
for the next state. In short, an atom may view the value of an awaited variable after
it has been set, before it needs to make its choices. Clearly,care needs to be taken to
ensure that circular chains of awaiting are not established!

The behaviour of an atom is defined by a number ofguarded commands, which
have the following syntactic form.

[] guard -> command

Here,guard is a predicate over the variables accessible to the atom (those itreads
andcontrols), andcommand is a list of assignment statements. The idea is that if
the guard part evaluates to true, then the corresponding command part is “enabled
for execution”. At any given time, a number of guards in an atom may be true, and
so a number of commands within the atom may be enabled for execution. However,
only one command within an atom may actually be selected for execution: the various
alternatives represent thechoicesavailable to the agent.

Assignment statements have the following syntactic form.

var’ := expression

On the right-hand side of the assignment statement,expression is an expression over
the variables that the atom observes. On the left-hand side is a variable which must

4. MOCHA also allows an additional class ofprivate (local) variables, which are internal to a
module, and which may not be seen by other modules. However, we make no use of these in
our model.
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be controlled by the atom. The prime symbol on this variable name means “the value
of the variableafter this set of updates are carried out”; an un-primed variable means
“the value of this variablebeforeupdating is carried out”. Thus the prime symbol is
used to distinguish between the value of variables before and after updating has been
carried out.

There are two classes of guarded commands that may be declared in an atom:init
andupdate. An init guarded command is only used in the first round of updating,
and as the name suggests, these commands are thus used to initialise the values of
variables.


