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ABSTRACT. In this paper we define two logics, K L,, and BL,,, and present

tableau-based decision procedures for both. K L,, is a temporal logic of knowl-

edge. Thus, in addition to the usual connectives of linear discrete temporal

logic, it contains a set of unary modal connectives for representing the knowl-

edge possessed by agents. The logic BL,, is somewhat similar; it is a temporal

logic that contains connectives for representing the beliefs of agents. In addition

to a complete formal definition of the two logics and their decision procedures,

the paper includes a brief review of their applications in AI and mainstream

computer science, correctness proofs for the decision procedures, a number of
worked examples illustrating the decision procedures, and some pointers to fur-

ther work.
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1 Introduction

This paper presents two logics, called KL, and BL,, respectively, and gives
tableau-based decision procedures for both. The logic K L,, is a temporal logic
of knowledge. That is, in addition to the usual connectives of linear discrete
temporal logic [5], KL, contains an indexed set of unary modal connectives
that allow us to represent the information possessed by a group of agents.

*This work was supported by EPSRC Research Grant GR/K57282.



These connectives satisfy analogues of the axioms of the modal system S5 [3],
which is widely recognised as a logic of idealised knowledge [6]. It is for this
reason that we call KL, a temporal logic of knowledge.

Syntactically, the logic BL,, is identical to K L,. It is also a temporal logic
that contains connectives for representing the information possessed by a group
of agents. However, the agent modalities in BL,, satisfy analogues of the modal
axioms KD45; this system is widely accepted as a logic of idealised belief [14].
For this reason, we say that BL,, is a temporal logic of belief.

Multi-modal logics like BL,, and KL, have a number of applications, in
both mainstream computer science and artificial intelligence (AI); these ap-
plications are briefly reviewed in the following subsection. Some notational
conventions are then introduced. In section 2, complete formal definitions of
the syntax and semantics of the two logics are presented. Tableau-based de-
cision procedures for both logics are presented in section 3. These decision
procedures represent generalisations of both the tableau method for the under-
lying temporal logic [12, 25], and for the modal systems associated with agent
modalities (S5 in the case of K L,, and KD45 in the case of BL,) [9, 14]. A
number of worked examples, illustrating the decision procedures, are presented
in section 4, and some possible improvements to the algorithm are discussed in
section 5. Areas for future work are identified in section 6.

Finally, a note about our intentions in this work. For the moment, our
primary concern is not computational efficiency. Instead, the algorithms we
develop emphasise conceptual simplicity. We leave efficiency considerations for
future work.

1.1 Applications and Related Work

Temporal logics of knowledge are becoming increasingly important in both
mainstream computer science and AI. For example, in distributed systems the-
ory, they are used for the specification and verification of knowledge-based pro-
tocols [13]. Briefly, the idea is that when designing a distributed system, one
often makes use of statements such as ‘if agent (process) a; knows that agent as
has received message m1, then a; should eventually send message m-’. Tempo-
ral logics of knowledge are used to formalise this kind of reasoning; knowledge
is given a precise interpretation, in terms of the states of a process. In Al, tem-
poral logics of belief are used as knowledge representation formalisms (cf. [21]),
and may be used in the specification and verification of distributed intelligent
systems [26].

Temporal logics of knowledge and belief have previously been studied by
many researchers, (e.g., [6, 15, 16, 18, 24]). In [15] the complexity of the validity
decision problem for ninety-six variants of the logic we call K L,, is examined,
and it is shown that for the simplest variant (corresponding exactly to our logic
KL,), the problem is PSPACE-complete. It is also shown that for some simple
variants of this logic, the validity decision problem is undecidable — even in
the propositional case. Although tableau methods for linear-time temporal



logics have been developed in [12, 25] and tableaux for modal logics have been
studied in, for example, [9, 10, 14] decision procedures for the logic K L,, and
its variant BL, have not, to the best of our knowledge, been studied. A
tableau-based decision procedure for a simple temporal belief logic is presented
in [27]. However, this result is achieved by greatly simplifying the semantics
of belief, and in particular, by separating out the semantics of belief from the
temporal dimension. Also, the decision procedure in [27] does not deal with
axioms 4 and 5, which are ultimately important for any belief logic, and it is
not obvious how the decision procedure could be extended in a deterministic
way to deal with these axioms. Tableau-based methods have been used for the
belief, desire, intention (BDI) logics of Rao and Georgeff in [20]. Finally, we
note that resolution based proof methods for temporal logics of knowledge and
belief are presented in [8].

1.2 Notation

If L is a logical language, then we write Form(L) for the set of well-formed
formulae of L. We use the lowercase Greek letters ¢, ¥, and x as meta-variables
ranging over formulae of the logical languages we consider, the uppercase Greek
letter A as a meta-variable ranging over sets of formulae, and the calligraphic
letter F to denote sets of sets of formulae. If R is a binary relation over some
set, then we write R* for the reflexive transitive closure of R, dom(R) for the
domain of R, and ran(R) for the range of R. If S is a set, then we write p(S)
for the powerset of S.

2 Temporal Logics of Knowledge and Belief

In this section, we formally present the syntax and semantics of two logics:
BL, is a temporal logic of belief, and KL, is a temporal logic of knowledge.
These logics actually share a common syntax, which we shall call the language

L.

2.1 Preliminaries

First, note that £ is not a quantified language. We shall thus build formulae
from a set ® = {p,q,r,...} of primitive propositions. In fact, the language
L generalises classical propositional logic, and thus it contains the standard
propositional connectives — (not) and V (or); the remaining connectives (A
(and), = (implies), and < (if, and only if)) are assumed to be introduced as
abbreviations in the usual way. With respect to temporal connectives, we take
as primitive just two: O (for ‘next’), and U (for ‘until’). We interpret these
connectives over a flow of time that is linear, discrete, bounded in the past,
and infinite in the future. An obvious choice for such a flow of time is (N, <),
that is, the natural numbers ordered by the usual ‘less than’ relation.



With respect to belief/knowledge connectives, we assume a set Ag =
{1,...,n} of agents. We then build an indexed set of unary modal connectives
{[i] | # € Ag}, where a formula [i]y is to be read (in BL,) as ‘agent i believes
that ¢’, or (in KL,) as ‘agent ¢ knows that ¢’. In both cases, ¢ € Form(L).
2.2 Syntax

In this section, we formally present the syntax of L.

Definition 1 The alphabet of language L contains the following symbols:
1. A set ® = {p,q,r,...} of primitive propositions;
2. The nullary connectives false and true;

3. The binary propositional connective V (or), and unary propositional con-
nective = (not);

4. A set Ag={1,...,n} of agents;

5. The open and close square bracket symbols 9|’ and {’, and open and close
parentheses ‘)’ and ‘(’;

6. The unary temporal connective O (next), and binary temporal connec-
tive U (until).

Definition 2 The set Form(L) of (well-formed) formulae of L is defined by
the following rules:

1. (Primitive propositions are formulae): if p € ® then p € Form(L);
2. (Nullary connectives are formulae): false € Form(L), true € Form(L);

3. (Unary connectives): if ¢ € Form(L) then —p € Form(L), Q¢ €
Form(L), and () € Form(L);

4. (Binary connectives): if ¢, € Form(L), then ¢ V¢ € Form(L) and
pUYp € Form(L);

5. (Agent modalities): if ¢ € Form(L) and i € Ag then [i]p € Form(L).

2.3 Semantics

Unfortunately, the semantics of £ are rather more complex than its syntax.
First, we introduce the notion of a state. It is assumed that the world may be
in any of a set S of states. We generally use s (with annotations, e.g., so, &',

..) to denote a state. The internal structure of states is not an issue in this
work, and will not be considered further; see [7, pp335-339] for a discussion.
As we interpret £ over linear temporal structures, it is natural to introduce
the idea of a timeline, representing the history of a system.



Definition 3 A timeline, [, is an infinitely long, linear, discrete sequence of
states, indexed by the natural numbers.

For convenience, we define a timeline [ to be a (total) function [ : N — S. Let
T Lines be the set of all timelines. We shall sometimes find it convenient to view
a timeline as an infinite sequence, rather than as a function — the two notions
are interchangeable. Note that timelines correspond to the runs of Halpern
and Vardi [15]. The idea is that we ultimately want to use temporal logics of
knowledge to be able to reason about programs. In this view, runs correspond
to the histories traced out by programs as they execute. It is for this reason
that we explicitly introduce timelines into our model structures. An alternative
would be to replace timelines by states together with a binary next-time relation
over them, though this would slightly complicate the semantics of our temporal
connectives. In any event, the two representations are interchangeable.

If we were dealing with a linear temporal logic, with no agent modalities,
then timelines would be our key underlying semantic structures. However, our
language includes such modalities, with semantics given in terms of possible
worlds. We want to use these semantics to capture the idea that an agent not
only does not know what the state of the world currently is, but in addition
does not know which timeline it is in. The obvious way to define an agent’s
accessibility relation R; is thus over timelines, i.e., R; C T Lines X T Lines.
However, this would not allow us to capture an agent’s temporal uncertainty —
intuitively, uncertainty about ‘what the time is’. For this reason, we introduce
points.

Definition 4 A point, p, is a pair p = (I,u), where | € T Lines is a timeline
and u € N is a temporal index into .

Any point (I, u) will uniquely identify a state I(u); however, the same state may
occur in many different timelines. Let the set of all points (over S) be Points.
We then let an agent’s knowledge or belief accessibility relation R; hold over
Points, i.e., R; C Points x Points, for all i € Ag. This captures the idea of
an agent being uncertain both about which timeline it is in, and how far along
that timeline it is. A wvaluation for £ is a function that takes a point and a
proposition, and says whether that proposition is true (T') or false (F) at that
point.

Definition 5 A valuation, m, is a function 7 : Points x ® — {T, F'}.
We can now define models for L.

Definition 6 A model, M, for L is a structure M = (TL,Rs,...,R,,m),
where:

e TL C TLines is a set of timelines;

e R;, for all i € Ag, is an agent accessibility relation over Points, i.e.,
R; C Points x Points; and



o 71 : Points x ® — {T, F} is a valuation.

As usual, we define the semantics of the language via the satisfaction relation
‘=’. For L, this relation holds between pairs of the form (M, (l,u)) (where
M is a model and (I,u) € Points), and £ formulae. The rules defining the
satisfaction relation are given in Figure 1. Satisfiability and validity in £ are

(M, (I, w))

(M, (Lu) Ep iff w((l,u),p) =T (where p € ®)

(M, (1, u)) |~ iff (M, (I,u)) o

M, (@uw) Eevy it (M, (,u) E ¢ or (M,(,u) ¢

(M, (I, w)) | [i]e if  WI'eTL,VweN, if (I,u), (I',v)) € R;,
then (M, (I',v)) E ¢

»(Lu) | Op iff (M, (Lu+1) o

,(Lw) E Uy iff Jv € N such that (v > u)

and (M, (I,v)) E ¢¥,and Yw € N,
if (u <w <w) then (M, (l,w)) E¢

Figure 1: Semantics of £

defined in the usual way.

Definition 7 An £ formula ¢ is satisfiable iff there is some (M, (l,u)) such
that (M, (l,u)) E ¢, and unsatisfiable otherwise. An L formula ¢ is valid in
a model M iff (M, (l,u)) = ¢ for every point (l,u) in M. If C is a class of
models, then ¢ is C valid iff ¢ is valid in every model in C (notation: =¢ ¢).
The notion of satisfiability with respect to a class of models is defined in a
similar way. Finally, ¢ is valid simpliciter iff it is valid in the class of all models

(notation: = ).

We state without proof that the tautologies of propositional logic are valid,
as are those formulae that are valid in the underlying propositional temporal
logic, and the underlying normal modal logic of agent modalities; see, e.g., [5].

Derived Temporal Connectives

Other standard temporal connectives are introduced as abbreviations, in terms
of U:
S € truellp
D QD d:ef _'O_'(P
def
eWy = (pUy)V Ue



We now informally consider the meaning of the temporal connectives. First,
consider the two basic connectives: O and U . The O connective means ‘at the
next time’. Thus Q¢ will be satisfied at some time if ¢ is satisfied at the next
time. The U connective means ‘until’. Thus U ¢ will be satisfied at some
time if ¢ is satisfied at that time or some time in the future, and ¢ is satisfied
at all times until the time that ¢ is satisfied. Of the derived connectives, {»
means ‘either now, or at some time in the future’. Thus >y will be satisfied
at some time if either ¢ is satisfied at that time, or some later time. The []
connective means ‘now, and at all future times’. Thus [ ]y will be satisfied at
some time if ¢ is satisfied at that time and at all later times. The binary W
connective means ‘unless’. Thus ¢ W will be satisfied at some time if either
 is satisfied until such time as v is satisfied, or else @ is always satisfied. Note
that W is similar to, but weaker than, the U/ connective; for this reason it is
sometimes called ‘weak until’.

Models for Knowledge and Belief

We shall now define two classes of £ models: K L,, models are models of knowl-
edge, and BL,, models are models of belief.

Definition 8 An £ model M = (TL,Ry,...,Ry,,n) is a KL, model iff R; is
an equivalence relation, for all i € Ag.

It should be clear that as agent accessibility relations in K L,, models are equiv-
alence relations, the axioms of the normal modal system S5 are valid in the
class of K L,, models.

Theorem 1

—

Exr, [il(e =) = (lilp = [[]Y)
Exr, lilp = i

Exr, [i(Je=¢

Exr, [ = [{[]e

FxL, iy = [i]-[ide

Proof: Standard; see, e.g., [3, p98]. 1

)

N N N N/
= W
~— ~— — ' ~—

(S

These axioms are called K, D, T, 4, and 5, respectively. The system S5 is
widely recognised as the logic of idealised knowledge, and for this reason we
say KL, is a temporal logic of knowledge. (Our logic K L,, in fact corresponds
exactly to Halpern and Vardi’s logic K L(,,) [15].) We now define belief models.

Definition 9 An £ model M = (TL,R,,...,R,,n) is a BL, model iff for all
1 € Ag, R; is Euclidean, serial, and transitive.



It is well-known that the axioms K, D, 4, and 5 from normal modal logic
are valid in models whose accessibility relations satisfy properties (1)—(3) of
Definition 9; however, axiom T is not. Axiom T is generally taken to be the
axiom that distinguishes knowledge from belief: it says that if an agent knows
, then ¢ is true. As this axiom is not BL,, valid, we say that BL,, is a temporal
logic of belief.

3 Tableau-Based Proof Methods for KL, and BL,

In this section, we present tableau-based decision procedures for the logics K L,
and BL,. More precisely, we present two algorithms that are guaranteed to
determine whether or not an £ formula is K L,, satisfiable or BL,, satisfiable,
respectively. These procedures then form refutation-based decision procedures
for KL, and BL, validity: to show that a formula ¢ is KL, (respectively,
BL,) valid, i.e., that =k, ¢ (respectively, =pr, ¢), show that -y is KL,
(respectively, BL,) unsatisfiable. In what follows, we assume that the reader
is familiar with the fundamentals of tableau-based theorem proving [23].

The two procedures are actually very similar. The basic idea in both cases
is to systematically search for a model of the input formula. As both KL,
and BL, are, in a sense, two-dimensional modal logics, this search must be
carried out in two dimensions — to generate the temporal dimension, and
to generate the agent accessibility relations. Expansion along the temporal
dimension involves unwinding a next time relation, 5. Although the model of
time we use in K L,, and BL,, is linear, n will not be, as nodes in 7 correspond
to states, and states in K L,, and BL,, can have many possible predecessors and
successors. We interleave unwinding of the next-time relation n with unwinding
of the agent accessibility relations R;. Once we have fully unwound a structure
corresponding to these two modal dimensions, we can begin to systematically
remove “inconsistent” states. Once this is done, a simple check is all that is
required to see whether our original input formula is satisfied.

We begin by defining certain types of formula.

Definition 10 If ¢ € Form(L), then:
1. If ¢ is of the form [i]y) or —[i]y then ¢ is an agent atom;

2. If ¢ is an atomic proposition or the negation of an atomic proposition,
then @ is a literal;

3. If ¢ is an agent atom or a literal, then ¢ is an atom;
4. If ¢ is of the form O, then ¢ is a next-time formula.
If A C Form(L), then define next(A) by:

next(A) = {p | Oy € A}.



In the following, ——y is always identified with ¢ so that the sets of formulae
we deal with are finite.

To make the presentation easier we use the following table of equivalences
for temporal formulae to push negations through until they precede atoms. In
particular, when adding the formula — to a set of formulae, or performing
membership tests such as =9 € A we will actually add an equivalent formula
with the negation pushed as far as possible, or perform the membership test
using a formula equivalent to —) with the negation pushed through until it
precedes an atom. The relevant rules for classical connectives are assumed, see
for example [12].

formula formula with
negation pushed
-y Qg
Qv [y
—Op O-p
(W) || U (—p A—y)
—(pUy) || W (—p A )

Figure 2: Negation Equivalences

As with all tableau-based decision procedures, our procedure relies upon
alpha and beta equivalences; these equivalences are defined in Figure 3. (We
omit the rules for classical connectives, as these are standard [23].) The only

L B8 18] o |
Lo o] o [Ty [ o ¢ AO%yp
[ Oe ¢ [OO¢ || eUd | ¢ | vApAOlplUy)
oWy | b | AN O(eWY)

Figure 3: Alpha and Beta Equivalences

difference between the K L,, and BL,, algorithms is that the following additional
alpha rule is required for the K L,, procedure; this rule is not used by the BL,,
procedure.

La [loa] oo |
Lo || ¢ [ lie |

Intuitively, this rule corresponds to the reflexivity condition placed on KL,
models: if agent ¢ knows ¢, then ¢ must be true in the current state. Note



that we must be careful when using this rule not to apply it more than once to
the same formula, or else our algorithm will not terminate.

Next, we give the definitions related to the construction of propositional
subformula complete tableauz (PC-tableaux), which involve the application of
alpha and beta formula and adding particular subformulae or their negations
in the case of agent atoms. The latter is required for KL formulae to ensure
that we can construct models from the structure resulting from applying the
tableau algorithm.

Definition 11 A propositional tableau is a set of formulae where no further
alpha and beta rules may be applied.

Definition 12 If ¢ € Form(L) then sub(y) is the set of all subformulae of :

{¢} if o € ® or ¢ = true or p = false
{-¥} U sub(y) if o =)
sub(y) = {9V x} U sub($) Usub(x) ifo=1Vx
P A9} U sub(y) if o = [i}y
{O9} U sub(y) ifo=0%

{YU X} U sub(y) Usub(x) ifp=1Ux

Definition 13 A set of formulae A is said to be subformula complete iff for
every [i]p € A for all [i]yp € sub(yp) either [i]Y € A or =iy € A.

Definition 14 A propositional subformula complete tableau or PC-tableau
is a set of formulae A that is both a propositional tableau and subformula
complete.

The internal consistency of states during tableau generation is established by
checking whether they are proper.

Definition 15 If A C Form(L) then A is proper, (notation proper(A)) iff:
1. false ¢ A;
2. If p € A, then ~p & A.

Improper sets have the following obvious property.
Lemma 1 If A C Form(L) and —proper(A) then A is unsatisfiable.

We can now describe how to construct the set of PC-tableauz for a set of
formulae A. These sets are so-called as they are essentially the structures
generated by tableau methods in classical logics. However we have extra alpha
and beta rules for dealing with the additional temporal operators, and require
the sets to be subformula complete. Note, we only apply a rule if it modifies
the structure. Thus, for example, we don’t keep applying the alpha rule for []
to the same [ ] formula.



Constructing the set of PC-tableaux. Given a set of formulae A, the set
of PC-tableaux can be constructed by applying the following rules (1) and (2)
to F = {A} until they cannot be applied any further.

1. Forming a propositional tableau.

For any A’ € F such that proper(A'), take any formula ¢ € A’ on which
alpha or beta rules have not been applied. If ¢ is an alpha formula with
components a; and as replace A’ by A'U{aq,a2}. If ¢ is a beta formula
with beta components 3; and (2 then let

F=F-ANU{A'U{B}}IU{A U{B}}.

2. Forming a subformula complete tableau.

For any A’ € F such that proper(A'), if [ijp € A’ and [i]¢) € sub(y) such
that neither [i]yp € A’ nor —[i]Jy) € A’ then let

F=F—ANU{A U{[i]J9}} U{A U {=[i]$}).

3. Deleting improper sets.
Delete any A’ € F such that —proper(A’).

Step 2 corresponds to the use of the analytic cut rule [22, 9, 11], that is for-
mulae are added to the sets being constructed that are subformulae of existing
formulae.

Lemma 2 If the set of PC-tableaux for {¢} is empty then ¢ is unsatisfiable.

Proof: The algorithm constructing the set of PC-tableaux for ¢ generates
(almost) a classical tableau for ¢ (recall we have extra alpha and beta rules
for the temporal connectives and an extra alpha rule for K'L,). We therefore
simply note that the alpha and beta rules are sound and that a set will only
be deleted if it is labelled with an improper set. Such sets, (by Lemma 1) are
unsatisfiable. Construction of the algorithm terminates either when the empty
set is obtained or when no other rule can be applied — the procedure will
therefore terminate. 1

We now move on to the model-like structures that will be generated by the
tableau algorithm. Note that State = {s,s’,...} is the set of all states.

Definition 16 A structure, H, is a tuple H = (S,n, R1,..., Ry, L), where:

e S C State is a set of states;
e 1) C S x S is a binary next-time relation on S;

e R; C S x S represents an accessibility relation over S for agent i € Ag;



o L:S — p(Form(L)) labels each state with a set of L formulae.

Definition 17 If ¢ € Form(L) is of the form xUvy or {1 then ¢ is
said to have eventuality . If (S,n,Ri,...,R,,L) is a structure, s € S
is a state, n* is the reflexive transitive closure of 1, and ¢ € Form(L),
then ¢ is said to be resolvable in (S,n,Ri,...,R,,L) from s, (notation
resolvable(y, s, (S,n, Ry, ..., Ry, L))), iff if ¢ has eventuality 1, then 3s' € S
such that (s, s') € n* and ¢ € L(s").

The tableau algorithm first expands the structure and then contracts it. We
try to construct a structure from which a model may possibly be extracted, and
then delete states in this structure that are labelled with formulae such as {p
or —[i]p which are not satisfied in the structure. Expansion uses the formulae
in the labels of each state to build  and R; successors. The alpha and beta
rules that have been previously applied split formulae into those relating to the
current moment, those relating to the next moment in time, and agent atoms.
Temporal successors (7-successors) to a state s are constructed by taking the
set of formulae in the label of s whose main connective is O, removing the
outermost O operator, labelling a new state s’ by this set if one does not
already exist and adding (s, s’) to 5. This corresponds to part 3 of Wolper’s
graph construction algorithm [25, page 124].

R; successors are slightly more complicated. Recall that for K L,, the axioms
for the normal modal logic S5 are valid, and for BL,, the axioms for the normal
modal logic KD45 are valid. If the label for a state s contains the formula —[i]¢
then for this formula to be satisfied we must build an R; successor s’ containing
). If s also contains [i]x formulae then the label of s’ must also contain
and [i]x, as all R; successors of s must contain x, to satisfy the semantics of
the modal logic, and [i]x to satisfy axiom 4. Further, for all formulae —[i]x in
s, in order to satisfy axiom 5 the label of s’ must also contain —[i]x. These
conditions correspond with step 2(c”") in Halpern and Moses [14, page 368].
Note that if s contains no formulae of the form —[{]x but does contain [i]x
formulae we must build an R; successor containing x and [i]x, as above, to
satisfy the seriality conditions imposed by axiom D. For KL, tableau the T
axiom is incorporated by an extra alpha rule (see above).

Having built a structure, states must be deleted that can never be part
of a model. Considering the temporal dimension, states with unresolveable
eventualities are deleted. Also, states containing next-time formulae without 7
successors are deleted (corresponding to Wolper’s elimination rules E3 and E2
respectively [25, page 124]). For the modal dimension we must ensure that any
state labelled by a formula of the form —[i]x has an R; successor containing =y,
and also that every modal state containing [i]x has at least one R; successor
and all its R; successors contain x. This corresponds to the opposite of marking
nodes satisfiable in Halpern and Moses [14, page 362] part (d)(iii).



3.1 The Tableau Algorithm

Given the £ formulae ¢g to be shown unsatisfiable, perform the following steps.

1. Initialisation.

First, set

Construct F, the set of PC-tableaux for {(o}. For each A; € F create
a new state s; and let L(s;) = A; and S = SU {s;}. For each A; € F
repeat steps (2)—(3) below, until none apply and then apply step 4.

2. Creating R; successors.

For any state s labelled by formulae L(s), where L(s) is proper and a
PC-tableau, for each formula of the form —[iJ¢y € L(s) create a set of
formula

A = {9} u{x | [i]x € L(s) }U{[i]x | [i]x € L(s)}U{-[i]x | —[i]x € L(s)}-

If s contains no such formulae but there exists [i]¢) € L(s) then construct
the set of formulae

A ={x|[i]x € L(s)} U{[i]x | [i]x € L(s)}.

For each A above construct F, the set of PC-tableaux for A, and for each
member A’ € F if 3s” € S such that A’ = L(s") then add (s,s") to R;,
otherwise add a new state s’ to .S, labelled by L(s') = A’, and add (s, s')
to R,

3. Creating 1 successors.

For any state s labelled by formulae L(s), where L(s) is proper and a
PC-tableau, if O € L(s) create the set of formulae A = next(L(s)) For
each A construct F the set of PC-tableaux for A, and for each member
A" € Fif 35" € S such that A’ = L(s") then add (s, s"”) to n, otherwise
add a state s’ to the set of states, labelled by L(s') = A’ and add (s, s')
to 7.

4. Contraction.

Continue deleting any state s where

(a) I € L(s) such that —resolvable(, s, (S,n, R1,..., Ry, L)); or

(b) 3¢ € L(s) such that ¢ is of the form Ox and Zs’ € S such that
(s,s') €m; or

(¢) F € L(s) such that ¢ is of the form —[i]x and As’ € S such that
(s,s') € R; and —x € L(s"); or



(d) F € L(s) such that ¢ is of the form [i]x and Zs’ € S such that
(s,s') € R; and x € L(s')

until no further deletions are possible.

Note we cannot interleave expansion steps with deletion steps. For example
to determine whether an eventuality is resolveable, the structure must be fully
expanded, otherwise states may be wrongly deleted.

If po € Form(L), then we say the tableau algorithm is successful iff the
structure returned contains a state s such that ¢o € L(s). We claim that
a formula g is BL,, satisfiable iff the tableau algorithm performed on g is
successful without using the extra K L,, alpha rule, and K L,, satisfiable iff the
tableau algorithm performed on g is successful using the extra KL, alpha
rule. We shall now prove this claim.

3.2 Correctness

We are now obliged to show that the algorithms we have presented for deter-
mining K L,, and BL,, satisfiability are totally correct. (In fact, we prove total
correctness only for the K L,, algorithm — the BL,, case is very similar.) Total
correctness requires that

e the algorithm claims a formula is satisfiable if, and only if, that formula
is indeed satisfiable; and

e the algorithm is guaranteed to terminate, for any acceptable input.

We begin by defining what it means for a structure to be a KL,, tableau for
some formula.

Definition 18 If ¢y € Form(L), and H = (S,n, Ry, ..., Ry, L) is a structure,
then H is said to be a K L,, tableau for g iff:

1. ds € S such that ¢o € L(s);

and, Vs € S, we have:

2. proper(L(s));

3. If ¢ € L(s) and v is and alpha formula with alpha components oy and
aw, then ay € L(s) and as € L(s);

4. If ¢ € L(s) and v is a beta formula with beta components (31 and (s,
then either 81 € L(s) or B2 € L(s);

5. If [i]y € L(s) or —[i]y € L(s) and [i]p € sub(v)), then either [ilp € L(s)
or —[ip € L(s);

6. If [i]Y € L(s) then Vs' € S if (s,s') € R; then ¢ € L(s");



7. If =il € L(s) then 3s' € S such that (s,s') € R; and ) € L(s');
8. If [i]) € L(s) then ¢ € L(s);
9. Vs' €S, if (s,s") € R; then [i|¢ € L(s) iff [i]Y € L(s');

10. If O € L(s), then 3s' € S such that (s,s") € n;

11. If Oy € L(s), then Vs' € S, if (s,s") € ) then ¢ € L(s");

12. If ¢ € L(s), then resolvable(v, s, (S,n, Ri,- .., Ry, L)).

Note that for BL,, tableau, we remove clauses (8) and (9), and replace them
with the following [14, p359]:

e (BL,1): if (s,s"),(s,s") € R; and [i]¢ € L(s") then {[i]¢, ¥} C L(s");
e (BL,2): if [i] € L(s), then 3s' such that (s,s’) € R;;
e (BLy3): if [i]Y € L(s) and (s, s") € R; then [i]y € L(s").

Condition (BL,1) corresponds to the Euclidean property; condition (BL,2)
correponds to seriality, and condition (BL,3) corresponds to transitivity.

The first (and longest) part of the proof for partial correctness involves
showing that if formula has a K L,, tableau, then that formula is K L,, satisfi-
able.

Theorem 2 If ¢y € Form(L) and H = (S,n, R1,..., Ry, L) is a KL, tableau
for g, then g is K L, satisfiable.

Proof: Our proof is constructive. We show that if H = (S,n, R1,...,Rp, L)
is a KL, tableau for a formula ¢o € Form(L), then we can extract a model
M= (TL,R,,...,R.,,n) from H in which ¢y is satisfied.

First, we show how to construct the set T'L of timelines. The basic idea is to
unwind paths through 7, the next-time relation on S. However, we cannot do
this in an arbitrary way, as loops in 7 could lead to paths (and hence timelines)
containing unresolved eventualities. We must therefore unwind only fulfilling
paths: those in which all eventualities are resolved. These paths will be our
timelines. We now formally define fulfilling paths, and prove a lemma that
shows how fulfilling paths may be constructed.

Definition 19 A path, p, through a next-time relation 7 is a connected linear
relation p C 1.

Definition 20 Let (S,n, R1,...,Ry,, L) be a structure, and p C n be a path
through n. Then p is fulfilling iff Vs € (dom(p) U ran(p)), and Yy € L(s), we
have resolvable(y, s, (S, p, R1,...,Rn, L)).



Lemma 3 Suppose (S,n, Ry, ..., Ry, L) is a (non-empty) structure returned
by the tableau algorithm, and s € S is a state. Then there is a fulfilling path
through n rooted at s.

Proof: Starting from s, we unwind a path through 7, systematically fulfilling
eventualities as we go. Start by creating a list of unfulfilled eventualities, Eorp,
initialised to those that occur, unsatisfied, in L(s) and an empty list Exgw to
contain new eventualities encountered along the way whilst satisfying those in
Eorp- Then take the first eventuality ¢ from Eorp, and find a state s’ € S
such that (s,s') € p* and v € L(s'). Note that there must be such a state,
or else s would have been deleted by condition 4(a) of the tableau algorithm.
Then remove all eventualities encountered on the path from s to s’ through 7
from the list of unfulfilled eventualities in either Eorp or Exygw, and add any
that occur on the way to Enygw. Then repeat the whole process, by taking
the next unfulfilled eventuality x € Eorp, picking another state s” such that
(s',8") € p* and x € L(s"), and so on. Repeat this process until the list of
unfulfilled eventualities in Eorp is empty. If Engw is empty then this is a
fulfilling path. If Exgw is not empty call the state where this occurs sq, set
Eorp = Engw, Engw = 0 and begin fulfilling each eventuality in Eorp as
before. As the structure is finite then eventually we reach a node, s;, (where
we have just fulfilled all the eventualities in Eorp) we’ve reached before, i.e.
s; = s; for some ¢ > j. So by infinitely unwinding through the path constructed
between nodes s; and s; we fulfill all the eventualities we encounter. The path
that we trace out from s by this process gives us a fulfilling path rooted at s. 1

The set of paths that we obtain from H by this method are almost the
set of timelines that we require; however, they may be finite, and timelines
are infinite. To turn such a finite fulfilling path into a timeline, we simply
continue unwinding through 5. If ever we come across another eventuality, then
we simply generate and append another fulfilling path, using the procedure
described above. If ever we reach the end of the 7 relation, we append an
infinite sequence of states containing just true. In this way, we will generate
an infinite timeline in which all eventualities are fulfilled, and in which, by
construction, all next-time constraints are realised. We let T'L be the set of
sequences we obtain in this way.

Next, we must recover each agent’s accessibility relation R}. To do this, we
must map the state-based relations of tableau structures into the point-based
ones required by models. First, if s is a state and T'L is a set of timelines, then
let points(s,TL) denote the set of points in T'L whose state is s:

points(s,TL) = {(l,u) | | € TL and I(u) = s}

(Recall that we can view a timeline [ either as an infinite sequence or else as a
function I : N — S.) The actual transformation from state-based accessibility
relations R; to point-based accessibility relations R} is achieved as follows:



R = {((hw),v) | (s,) € Ry, (l,u) € points(s, TL),
and (I',v) € points(s',TL)}.

Equivalently,
((l,u),(I',v)) € R} iff l(u) = s,1'(v) = &, and (s,5') € R;.

The relation R will be empty iff R; is empty. Note that R} will not be an
equivalence relation; we thus take the reflexive symmetric transitive closure of
R} to get the accessibility relations as required.

As an aside, note that the BL,, case is slightly different. To ensure that
R; is serial, we proceed as follows. First, if L(s) contains any formulae of the
form [i]y) or —[i]y, then we know s must have an R; successor, or else s would
have been deleted during the contraction stage. If L(s) contains no formulae
of this type, then we can ensure that R} is serial by creating a state s', setting
L(s") to {true}, and adding (s,s’) and (s',s') to to R;. We then take the
euclidean transitive closure and do the conversion to point-based models to
obtain R}. Note that this procedure preserves properties (BL,1)—(BLy3). As
a corollary note that if (s,s’) is an arc added during the generation of the
Euclidean closure, and [i]t) € L(s), then {[i]y, ¢} C L(s").

Henceforth, we write R} for the point-based relations that we obtain from
the state-based relations R; in this way.

Recovering the valuation function 7 is straightforward. For every point
(I,u) in TL, and for every p € @, define 7 by:

def T if EL(l( ))
m((l,u),p) = { Ja ifgpeL(?(U))

This completes our recovery of the model M = (TL,R,...,R!,, 7). We must
now show that our original input formula ¢q is satisfied in M. In fact, we
prove something slightly more general than this: we show that if ¢ € L(s),
(respectively, 1 € L(s)), and (I,u) is a point in M = (TL,R},..., R}, m)
such that I(u) = s, then (M, (I,u)) = ¢ (respectively, (M, (I,u)) E ).

The proof is by induction on the structure of 1.

1. The base case.
This is where ¢ = p is a primitive proposition or ¢ = —p is the negation
of a primitive proposition. In the first case, we know by construction of 7
that w((l,u),p) = T, and hence (by semantic rules) (M, (I,u)) = p. In the
second case, we know, again by construction of 7, that 7 ((l,u),p) = F,
and so (M, (I,u)) & p, and hence (by semantic rules), (M, (I,u)) = —p.

2. Inductive assumption.

Assume that if ¢ € L(s) (respectively, -1 € (s)), and (I, ) is a point in M
such that I(u) = s, then (M, (I,u)) = ¢ (respectively, (M, (I,u)) E —¢).



3. Inductive step.

We should consider all the forms that ¢ may take; however, we shall
only do proofs for the main forms, and leave the remainder (including all
derived temporal connectives) as an exercise for the reader.

(a) % is of the form x A x'.
By clause (3) of the definition of KL, tableaux, it must be that
X € L(s) and x' € L(s). By the inductive assumption, therefore,
(M, (l,u)) E x and (M, (l,u)) E x' and hence (by semantic rules)
(M, (I,u)) E xAX'-

(b) % is of the form x V x'.
By clause (4) of the definition of K L,, tableaux, it must be that ei-
ther x € L(s) or x' € L(s). By the inductive assumption, therefore,
either (M, (l,u)) E x or (M, (l,u)) E x' and hence (by semantic
rules) (M, (I,u)) = x V x'.

(¢) % is of the form —[i]x.
By the semantic rule for [i], for (M, (l,u)) E —[i]x, there must be
some (I',v) such that (({,u),(',v)) € R} and (M,(l',v)) = —x.
Now, by clause (7) of the definition of KL, tableaux, there must
be some state s’ € S such that (s,s') € R; and —x € L(s). Let
(I',v) be any member of points(s’,TL). Clearly, ((I,u), (',v)) € R;.
Moreover, by the induction hypothesis, (M, (I',v)) | —x. Hence
(M, (1, u))  —[i]x.

(d) 4 is of the form []x.
We need to show that if (M, (I,w)) = [i]x, then (M, (l',v)) | x for
all (I',v) such that ((I,u), (',v)) € R}.
The proof for KL, is as follows. There must have been some se-
quence (Sg, . . ., S ) of states, such that so = s and (I',v) € points(sg, TL),
such that Vm € {0,...,k — 1}, either (sm,Sm+1) € R; or else
(Sm+1,8m) € R;. From clause (9) of the definition of K L,, tableaux,
it is easy to see that [i]x € L(sy,), forallm € {0,...,k}. From clause
(8) of the definition of K L,, tableaux, it must be that x € L(s.,),
for all m € {0,...,k}. By the induction hypothesis, therefore,
(M, (I',v)) E x, and we are done.
The proof for BL,, is as follows. Let s be the state from which the
point (I,u) was created, and s’ be the state from which (I',v) was
created. There must exist a sequence (8o, .- ., k) such that s = s,
sp = ', and Ym € {0,...,k — 1}, either (s, Sm+1) € R; or else
(8m, 8m+1) was created by the Euclidean closure procedure. We
want to show that ¥ € L(sy). An easy induction on m achieves this.
For the inductive step, assume [i]) € L(s;), and consider (s, Si41)-
If (si,8141) € R;, then ¢ € L(s;41) by construction. Otherwise,
(s1,5141) was added when generating the Euclidean closure of R;.



But in this case, we know from (BL,1) that {[i]¢, ¥} C L(si41)-
Hence 9 € L(sg), and so (M, (I',v)) = 9, and we are done.

(e) v is of the form Qx.
We must show that (M, (I,u + 1)) = x. This follows easily from
clauses (10) and (11) of the definition of KL,, tableaux, together
with the induction hypothesis.

(f) 1 is of the form x U x'.
To show that (M, (I,u)) E xU x', we must show that Jv > u such
that (M, (l,v)) E x' and Vw € {u,...,v}, we have (M, (l,w)) E
x- The first part follows easily from the fact that all eventualities
must be resolved (clause (12) of the definition of KL, tableaux,
together with the induction hypothesis). For the second, note that
the beta rule for U formulae requires that if xU x' € L(s), then
either x' € L(s) or {-x'}U{x} U{OXxUX')} C L(s). In the first
case, by the induction hypothesis, we have (M, (l,u)) E x' (and
hence (M, (I,u)) = xU x'). In the second, we have (M, (l,u)) E x
and (M, (l,u+ 1)) = xUx'. After a finite number of steps of this
reasoning, are guaranteed to reach a situation where (M, (I,v)) | x’'
with (M, (I,w)) | x for all w € {u,...,w}, and hence (M, (l,u))
xXUX'-

This concludes the proof of Theorem 2. 1

Next, we claim that the structures returned by successful invocations of the
tableau algorithm are in fact K L,, tableau structures for the input.

Lemma 4 If g9 € Form(L), the output from the tableau algorithm on g is
T = (Syn,Ri,...,R,,L), and 3s € S such that po € L(s), then
(S,m,R1,...,Rn, L) is a KL, tableau for yq.

Proof: Assume that the tableau algorithm constructs the structure T' =
(S,n,R1,...,R,, L) where ds € S such that @9 € L(s). We check that each
part of Definition 18 holds for 7.

1. ds € S such that g € L(s) — holds by assumption.

2. For all states s € S we have proper(L(s)) as improper states are deleted
at step (3) of the construction of the set of PC-tableaux.

3. For all states s € Sif ¢ € L(s) is an alpha formula with alpha components
aq and as then the construction of the set of PC-tableaux for L(s), step
(1), ensures that ay,as € L(s).

4. For all states s € S if 1) € L(s) is an beta formula with beta components
B1 and [, then during the construction of the set of PC-tableaux for L(s)
step (1), ensures that either 8, € L(s) or 82 € L(s).



10.

11.

12.

For all states s € S if [i]Jyp € L(s) or —[i]yp € L(s) then step (2) of the
construction of the set of PC-tableaux for L(s) ensures that for [i]p €
sub(vp) either [i]p € L(s) or —[i]p € L(s).

For all states s € S if [i]¢p € L(s) then step (2) of the tableau algorithm
ensures that for all s’ such that (s,s’) € R;, we have ¢ € s.

For all states s € S if —[i]i) € L(s) then step (2) of the tableau algorithm
ensures that we construct a R; successor s’ to s such that ~¢ € L(s").
If s’ happens to be deleted during the contraction phase of the tableau
algorithm then step (4d) ensures that s is also deleted.

For all states s € S if [iJ¢y € L(s) then the additional alpha rule for
KL, applied during the construction of the set of PC-tableau means
that ¢ € s.

For all states s € S if [i]¢p € L(s) then applying step (2) of the tableau
algorithm ensures that for all states s’ such that s’ € R;, [i]¢p € L(s').
If [i]yp € L(s") either [i]¢p was added to s’ as [iJ¢y € L(s) and we are
done or [i]¢) must be a subformula of ¢ such that either [i]Jo € L(s)
or —[i]¢ € L(s). From step (2) of the construction of PC-tableau either
[i] € L(s) or —[i]y € L(s). The latter is not possible as by step (2) of the
tableau algorithm —[i]y € L(s') and as [i]Jy) € L(s") by assumption state
s' is not proper. For the former we have if [i]¢) € L(s") then [i]¢) € L(s)
and are done.

For all states s € S if O« € L(s) then by applying step (3) of the tableau
algorithm we construct an 7 successor state to s that contains .

For all states s € S if Qv € L(s) then by applying step (3) of the tableau
algorithm all 5 successors we construct to s contain .If for some reason
all such states are deleted then s is also deleted during step (4b).

If there exists a state s € S such that ¢ € L(s) and
—resolvable(1), s, (S,n, R1,- .., Rn, L)) then step (4a) of the tableau al-
gorithm would delete s so that for all states s € S such that 1 € L(s),
resolvable(y, s, (S,n, Ry, ..., Ry, L)).

For BL,, the conditions (BLy1)-(BL,3) are as follows. To see that (BL,1)
holds, observe that if (s,s’), (s,s") € R;, then both s’ and s” must have been
created from s by step (2) of the tableau algorithm. In particular, it must have
been the case that [i]y € L(s). The state that would have been created would
contain both v and [i]y). Hence both {[i]¢, v} C L(s") and {[i]y, v} C L(s").
To see that (BL,2) holds, observe that if [{]Jy) € L(s), then there must be some
(s,8') € R; or else s would have been deleted during contraction. To see that
(BL,3) holds, observe that if (s,s") € R;, then s’ must have been created by
an application of the step (2) (creating R; successors) of the tableau algorithm.
But in this case, by construction, [i]¢ € L(s). 1



Lemma 4, when taken together with Theorem 2, has the following important
corollary, for which the proof is immediate.

Theorem 3 If pg € Form(L), and tableau algorithm on ¢y returns a struc-
ture (S,n, Ri, ..., Ry, L) such that o € L(s), then ¢q is K L,, satisfiable.

Next, we must show that if an invocation of the tableau algorithm is unsuc-
cessful, then the input formula to the invocation is K L,, unsatisfiable.

Theorem 4 If pg € Form(L), the tableau algorithm ¢y returns a structure
(S,m,R1,...,Rn, L), and Fs € S such that @y € L(s), then g is K L,, unsatis-
fiable.

Proof: There are two possibilities:

1. No such state was ever created.

But the algorithm will attempt to create such a state, and will only fail if
the set of PC-tableaux is empty meaning, by Lemma 2, ¢ is unsatisfiable.

2. Such a state was created, but was subsequently deleted by step (4), the
contraction part of the tableau algorithm.

In this case, let the state that was created be s. There must have been
some sequence of states (so, .. ., Sk) such that so was first deleted, leading
to the removal of s1, and so on, until finally s, = s was deleted. An easy
induction on this sequence shows that in this case o must have been
unsatisfiable also.

Theorems 3 and 4 lead immediately to partial correctness.

Theorem 5 If ¢g € Form(L), then o is KL, satisfiable if, and only if,
the tableau algorithm applied to g returns a structure (S,n, R1,..., Ry, L) in
which s € S such that g € L(s).

All that remains for total correctness is to show termination.

Theorem 6 If ¢y € Form(L), then the tableau algorithm applied to g ter-
minates.

Proof: First note that the PC-tableau algorithm generates sets of formulae
by applying alpha and beta rules and filling out these sets with subformulae
or their negations where necessary. After a certain number of applications of
these rules, we will generate a set of sets of formulae that is either empty, or
else contains only atoms and next-time formulae. (We must be careful when
applying the alpha, beta and subformula rules, not to apply the rule to a
formula more than once, or else we will not terminate.)
Now consider the three stages of the tableau algorithm:



e The first stage builds the set of PC-tableau. As described above this step
will terminate.

e It is not immediately obvious that steps (2) and (3) of the tableau al-
gorithm, the creation of R; and n successors, terminates, as the states
that we introduce do not appear to be ‘smaller’ than those from which
they were spawned. However the input formula ¢ is finite and the set
of formulae that may appear in a state is also finite. Thus we do not
duplicate states labelled by the same formula, and hence the algorithm
terminates. (This is know as the analytic superformula property in [11].)

e The final part of the algorithm involves the removal of states from the
structure. Eventually, we will either remove all states or reach a point at
which no more states will be removed, and hence this step terminates.

Theorems 5 and 6 together imply complete correctness.

4 Worked Examples

In this section, we demonstrate the K L,, and BL,, algorithms via a number of
worked examples.

Example 1

For the first example, we shall use the decision procedure to show that the
formula

(11 0Op) A O-p (6)

is BL,, satisfiable, but K L,, unsatisfiable. Starting with the BL,, construction,
we construct the set of PC-tableaux for (6). We apply the alpha rule for
conjunction to ([1] Op) A [J—p obtaining the formulae [1] (p and [J—p. Then
the alpha rule for []is applied to [J—p giving =p and O [J—p. No other alpha,
beta, or subformula rules can be applied and we obtain the state, s1, labelled
as follows.

L(sl) = {([1] Dp) A D_'p7 [1] Dp? D—‘p) -p, O D_'p}

Next, belief and temporal successors to s; are constructed. First considering
belief successors, as L(s;) contains [1] []p, a state sy is constructed containing
the PC-tableau expansion of {[1] (Jp, (Ip}. The alpha rule for [ is applied
to [p giving p and O [Jp and as no other rules can be applied the state s is

L(s2) = {[1] Clp, [Ip,p, O [p}.

As L(s1) contains O []-p temporal expansion of s; then begins, resulting in
a state s3 being created containing the PC-tableau of { [ ]-p}. Applying the
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Figure 4: The Structure Returned for Example 1

alpha rule for [ ] to []-p we obtain —p and O [ |-p giving the set s3 labelled
as follows:

L(s3) = { [1-p,—p, O [1-p}.

The arc (s1,82) is added to the Ry relation and (s1,s3) is then added to 7, the
next-time relation.

Next, considering L(sy) it again contains the agent atom [1] []p. We try
construct the Ry successor to state s2. This is formed by constructing the PC-
tableau for {[1] [lp, [1p}. Applying the alpha rule for [] to [Jp we obtain
p and O [Jp. No other rules can be applied so the PC-tableau for the R;
successor to ss is {[1] Op, p,p, O Cp}, i.e. sy itself. We add (sa, s2) to R;.
For the temporal successors of s we construct the PC-tableau expansion of
next(L(s2)) = { [Ip}. Applying the alpha rule to []p we obtain p and O [p.
No other rules can be applied so we have a new set s4 where

L(s4) ={ Up,p, O [p}.

An arc (s2,s4) is added to 1. There are no belief successors for s3 as L(s3)
doesn’t contain any formulae of the form [i]¢) or —[i]y). As next(L(s3)) is the
same as next(L(s1)) (= { [J-p}) we add (ss3,s3) to 7.

Looking at L(ss) as it contains no agent atoms, so no states or arcs are
created. The PC-tableau expansion of next(L(s4)) = { [Ip} turns out to be
the same as L(s4), and so an arc (s4,s4) is added to n. No further states
are available for processing, and so structure expansion ends, and contraction
begins. However, no states are deleted and the following structure is returned
(see Figure 4).



= {([1] Dp) A D_'pa []-] Dp; D_'pa -p, O D_'p}
{[1] Op, Clp,p, O Lp}

S
/-\A;c’?/\
I

s3) = {[-p,—p, O [-p}
S4 = { Dpap) O ‘:\p}
Ry = {(s1,52),(s2,52)}
n = {(s1,83),(52,84),(83,53),(84,54) }

As there is a state (s1) labelled with (6), we know that (6) must be satisfiable.
For the K L,, construction, the PC-tableau expansion of (6) is the set:

{((110p) A O-p,[1] Op, O-p, Op,p, © Op, -p, O O-p}.

The formulae [1] OJp and [J-p have been generated by applying the alpha
rule for conjunction to ([1] CIp) A (J—p. The formula [Jp is generated when
applying the K L,, alpha rule for knowledge modalities to [1] [Jp. The formulae
p and O [ ]p are generated when the alpha rule for [] is applied to [ 1p. The
formulae —p and O []—p are generated when the alpha rule for [] is applied
to the formula [J-p. This set is obviously improper (as it contains p and —p),
and so construction proceeds no further. The structure returned is empty, and
thus (6) is K L,, unsatisfiable.

Example 2

For this example, we use the decision procedure to prove that the schema

[i{] e = Olily (7)

is neither BL,, valid nor BL,, unsatisfiable. To do this, we take an instance of
the schema, viz.

[11Op= Ol]p (8)

and show by refutation that it is not valid, and then show directly that it is
satisfiable. We begin by showing that (8) is not valid. Negating (8) gives

[1] Cp A= T [1p. 9)

We now generate sets of PC-tableaux for (9). Applying the alpha rule for
conjunction to [1] Op A = [J[1]p and pushing the negation through the []
operator in the second formula we obtain [1] []p and {>—[1]p. Next applying
the beta rule to {)—[1]p we generate two sets: one containing —[1]p, the other
containing [L]p A O{—[1]p. To the latter we can apply the alpha rule for
conjunction to obtain [1]p and O{~[1]p. As no more alpha or beta rules can
be applied to either set we obtain the following two states.



L(s1) = {[1] CIp A = CI[1]p, [1] Clp, $-[1]p, —[1]p}
L(s2) = {[1] Op A - O1lp, [1] Op, $-[1]p, [1lp A OO -[1p, [1]p, O -[1]p}

We apply the tableau algorithm to each of these states. We begin with state
s1. It contains the agent atoms {[1] Tp, —[1]p}, and so to construct the R;
successors of s; we construct the PC-tableau for {[1] Op, —[1]p, Op, -p}. Ap-
plying the alpha rule for [ ] to [Jp we obtain p and O []p and thus obtain
the following set of formulae.

Il
o

{[1] Op, -[1]p, Op, —p,p, O Clp}

As this set of formulae is not proper it is deleted. Next, considering the tem-
poral expansion of s; as there are no next-time formulae no n-successors are
created. Thus state s; is the result of the expansion phase. During contrac-
tion we see that —[1]p is a member of L(s1) but there is no Ry successor of s1
containing —p. Thus s; is deleted and an empty structure is returned.

Next we apply the tableau algorithm to s2. First we attempt to construct
belief successors for sp. As L(s2) contains the agent modalities {[1] [Ip,[1]p}
we construct the PC-tableau for {[1] [[1p, [1]p, [Ip, p}. Applying the alpha rule
for [] to [Jp we obtain the state s3 labelled as follows

L(s3) = {[1] COlp, [1]p, Clp, p, O [p}

and add (s2,s3) to Ry. During temporal expansion, a PC-tableau is generated
for the set next(L(s3)) = {{-[1]p}. There are two proper PC-tableaux, and
thus two states are created, s4 and ss:

L(s4) {O-[1]p, —[1]p}
L(ss) {O-M1p, [1lp A OO-[1]p, [1]p, OO-[1]p}

The arcs (s2,54) and (s2, s5) are added to n. Continuing processing with s3 we
have s3 as an R; successor of itself and add (ss3, s3) to Ry. The 5 successor of
s3 is PC tableau formed from next(L(s3)) = { (p} that is the state sq

so we add (s3,s6) to 7. Next we process s4. It contains a negated agent
modality, and so a PC-tableau is generated for the set {—[1]p, —p} which results
in a single PC-tableau. A state s7 is created, labelled:

L(s7) = {-[1]p, —p}.

The arc (s4, s7) is added to R;. Temporal expansion begins but next(L(s4)) = 0
S0 s4 has no 7 successors. State sy is then processed; it contains the agent atom
[1]p so the PC-tableau is constructed for {[1]p, p}, and a new state ss is created

L(ss) = {[1]p, p}



s2
(mnpﬂﬂn[l]p, [1]0p, <>[1]p, [1]p"0<>-[1]p, [1]p, o<>ﬂ[1]9
s4 n s3 R1
<>=[1]p, -[1]p [1]0p. [1]p, [Ip, p, o]
( ) ( 9@ ,
R1 n n
s7 N s6
—|[1]p' —|p []p! p! 0[]p ) n
s5
[<>ﬂ[1]p, [1]p"o<>-[1]p, [1]p, o<>ﬂ[11pj
R1
R1 n
s8

Figure 5: The Structure Returned for Example 2

and (ss, sg) is added to R;. Temporal expansion begins, but next(L(s5)) turns
out to be the same as next(L(s2)), and so arcs (s5,84) and (s5, s5) are added
ton.

State sg is then processed. It contains no agent modalities so no edges are
added to Ry. As for temporal successors next(L(sq)) = next(L(ss)) = { Op}
so the 1 successor to sg is the same as for s3, i.e. itself and (sg, s¢) is added to 7.
States s7 and sg each are belief successors of themselves and have no temporal
successors so (s7,s7) and (sg, sg) are added to R; There are no further states
to be processed, and so the structure expansion stage finishes, and contraction
begins: no states can be deleted so the structure returned is as follows (see
Figure 5).

L(ss) = {[1]0pA-U[1p,[1] Cp, $-(1p, [Lp A OO-[1]p, [1]p, OO-[1]p}
L(s3) = {[1]Clp,[1]p, [p,p, O [p}

L(ss) = {O-[1p,—[1p}

L(ss) = {O-[Up, [1]p A OO, [1p, OO-[1p}

L(SG) = { Dpap7 O ‘:\p}

L(s7) = {-[llp,—p}

L(ss) = {[llp,p}

R, = {(32583)5 (335 33)7 (845 37)7 (85:58)5 (375 57): (885 58)}
= {(32;35)7(32;54)7(33;56)7(35734)7(55;55)7(36;56)}



As there is a state (s3) such that (9) € L(sz2), it must be that (9) is BL,
satisfiable, implying that (8) is not BL, valid, and thus the schema (7) is not
BL,, valid.

To show that (7) is BL,, satisfiable, we prove that (8) is BL,, satisfiable. In
the interests of brevity, we shall not give details of the construction. Instead,
we shall simply note that the expansion stage of one of the PC-tableaux of (8)
terminates after generating the following structure.

L(s1) = {[1]0p= [[1]p,-[1] CIp}

L(ss) = {=[1] Cp,$-p,-p}

L(s3) = {=[1]Op,$-p,p A O$-p,p, OO-p}

L(ss) = {O-p,-p}

L(ss) = {O-p,pA OO-p,p, OO—p}
R, = {(s1,82),(s1,83),(52,52), (52, 83), (53, 52), (53,3) }
n = {(33534)7(33535)7(35734)5(35585)}

No states in the structure are removed during contraction, and as there is at
least one state (s1) containing (8) (recall that we have not expanded all PC-
tableaux generated from (8)), it must be that (8) is BL,, satisfiable, and hence
(7) is BL,, satisfiable.

Example 3

In the spirit of Example 2, we shall use the decision procedure to show that
schema (10) is neither BL,, valid nor BL,, unsatisfiable.

Olide = [i] Oy (10)

We proceed as before, by showing in turn that an instance of the schema, viz.

Cf]p = [1] Cp (11)

is neither BL,, valid nor BL,, unsatisfiable. To show that (11) is not BL,, valid,
we negate it, and show that the resultant formula, (12), is BL,, satisfiable.

Clp A—[1] Cp (12)
We start by generating the set of PC-tableaux for (12). There is one state,

leading to the creation of state s;:
L(s1) = {0O0]pA-[1]0p, Oflp, 1] Op, [1]p, O O[1]p}

We begin processing with state s;. As this set contains the agent modalities
{=[1] Op, [1]p}, we construct a PC-tableau for the following set:

{=[1] Op, [1]p, O, p}-



This leads to one set, and the creation of state s, labelled:

L(s2) = {~[1] Up, [1]p, O-p,p A OO-p,p, OO-p}.

The arc (s1, $2) is added to R;. During temporal expansion, we have

newt(L(s1)) = { C[1]p}.

This leads to a single PC-tableau, and a new state ss:

L(s3) = { C)[1]p, [1]p, O [I[1]p}-

The arc (s1,s3) is added to 7. State s is then processed; as it contains the
agent modalities —[1] [ ]p and [1]p we construct the PC-tableau for the following
set:

{_'[1] Dpa [l]pa O_'pap}

However, we end up with the PC-tableau being the same as that for L(sz), so
we do not create any new states, but simply add the arc (s2, s2) to R;. For the
temporal expansion of sz, we have

next(L(s2)) = {O-p}

and so we construct a PC-tableau for this set. This gives two sets, leading to
the creation of states s4 and ss:

L(ss) = {{¢-w,-p}
L(ss) = {O-p,pA OO-p,p, OO0}

Arcs (s2,84) and (s2,s5) are added to 7. State sz is then processed; as it
contains the agent modality [1]p we create a new state

L(s¢) = {[1]p, p}

and add (s3,se) to R;. During the temporal expansion stage, the only PC-
tableau generated for the set next(L(s3)) is found to be labelled with L(s3),
and so an arc (ss,s3) is added to . During the processing of state s4, no
arcs are made or states created. State s; is then processed; it contains no
agent atoms, so temporal expansion begins. During this stage, it is found that
next(L(ss)) = next(L(s2)), and so arcs (s5,s4) and (ss5,s5) are added to 7.
State sg is then processed. As it contains [1]p it has itself as an R; successor
and we add (sg, s6) to R1. As next(L(sg)) = 0 there are no 7 successors to sg.
Structure contraction then begins, but no states are removed. The final state
of the structure built from s; is as follows (see Figure 6).



sl
[n[l]pﬂﬂ[lmp, 0[4Ip. ~[110p. [4]p. o[Lp ]

g R1 R1
s3 s2 O
[nmp, [1]p, ofliLlp ] [ 40, [1]p, <>p, po<>-p. p, o<>ﬂpJ
R1 N\ ; n n
s6 n s4 s5

l [1p. p l i ) <>-p, =P n <>-p, pro<>-p, p, o<>—|pJ
R1

n

Figure 6: The Structure Returned for Example 3

L(si) = {O[lpA-[1]Op, O[1lp, -[1] Op, [1lp, O O[1]p}
L(sy) = {=[1]p,[1]p, O-p,p A O$-p,p, OO-p}
L(ss) = {L[I[i]p,[1]p, O [I[1]p}
L(ss) = {Q-p,-p}
L(ss) = {¢-p,pAOO-p,p, OO—p}
L(ss) = {[llp,p}

Ry = {(s1,82),(52,52),(83,56), (56, 86) }

n = {(517 33)5 (525 54): (32, 35); (33a 33); (35; 34)a (35, 35)}

As (12) € L(s1), it must be that (12) is satisfiable, so (11) is not valid, and
thus (10) is not valid.

To show that (10) is satisfiable, we show that (11) is satisfiable. The set
of PC-tableaux generated from (11) has several states one of which is shown
below, as state s .

L(s1) = { O[1]p = [1] Olp, [1] Clp}

State s1 is processed; as it contains agent atoms we construct a PC-tableau
for the set {[1] Op, [1p}, which results in a state s2 being created, labelled as
follows:

L(s2) = {[1] Clp, (p,p, O [lp}

The arc (s1,s2) is added to R;. The temporal expansion of s; begins. As
next(L(s1)) = ( there are no temporal successors to s;. State sy is then



processed. It contains the same agent atoms as state s; so has itself as an R
successor and (sa, s3) is added to Ry. As next(L(s2)) = { Op} we construct
the PC-tableau for this set creating state

L(s3) = { Op,p, O Op}

and add (s2, s3) to 7.

State s3 is then processed. It contains no agent atoms so no new states are
added or arcs to Ri. As next(L(s3)) = next(L(s2)), the n successor for s3 is
the same as that for sy so we add (s3, s3) to . This concludes the expansion
stage of the algorithm, leaving the following structure.

L(s1) = {O[p=[1]0p,[1] Op,}
L(S3) = { Dp7p7 O ‘:\p}

R, = {(81782)5(82532)}
n {(s2,83), (s3,83)}

No states are deleted during contraction, and as L(s1) contains (11), it must
be that (11) is satisfiable.

5 Refinements

The algorithm we have presented above is naive, in the sense that it is computa-
tionally greedy. However, there are several obvious ways in which the algorithm
could be improved in this respect. Here, we identify some of the more obvious
of these.

5.1 Deleting non-minimal sets

The number of sets of PC-tableau can be reduced by adding the following step
at the end of that algorithm. Doing some ‘pre-processing’ of the sets generated
at this stage can subsequently reduce the overall amount of computational
effort required by the algorithm.

4. Deleting non-minimal sets. Delete any A’ € F such that there exists
A" € Fand A" C A"

The justification for this step is outlined below. Let the tableau algorithm
including this step be called the reduced tableau algorithm.

Lemma 5 The tableau algorithm for the formula ¢y returns a non-empty
tableau structure T' if and only if the reduced tableau algorithm for the formula
o returns a non-empty tableau structure T'.



Proof: Let ¢ be a satisfiable formula, then the tableau algorithm constructs
a tableau structure 7. Let s; for ¢ = 1,...,m for m > 2 be the set of PC-
tableaux constructed for g and s2 C s1. As the tableau algorithm returns a
non-empty structure then some s; must be in this structure. If s; is not in the
structure then its deletion makes no difference as the algorithm still returns
a non-empty structure. However if s; is in the structure returned then this
means that the conjunction of the set of formulae contained in s; is satisfiable
so the conjunction of any subset of formulae in s; is satisfiable, in particular
the subset that makes up ss. So a tableau constructed from s, must also be in
the structure and the deletion of s; makes no difference.

Conversely, let ¢y be an unsatisfiable formula. Then the tableau algorithm
returns an empty structure. That is, all the sets s; above must have been
deleted, in particular sy has been deleted so that the conjunction of formulae
in so must be unsatisfiable. Thus as ss is a subset of s; the conjunction of
subformulae in s; must also be unsatisfiable so its deletion makes no difference.
|

5.2 Counstructing R; successors for the KL, tableau

In the tableau algorithm when constructing R; successors we state that if s
contains no such formulae but [i]yp € L(s) then construct the set of formulae
A ={x|[{]x € L(s)} U {[ilx | [{]x € L(s)}. We only really need to do this
for BL,, tableau because we need to ensure seriality. With KL, tableau the
reflexivity requirement on models of K L,, formula is captured by the additional
alpha formula. When constructing a model from the tableau we take the reflex-
ive transitive closure of R; thus ensuring that every state containing formulae
of the form [¢]x has itself as a successor. Note that if this refinement is adopted
for K L,, tableau we must also delete step (4d) of the tableau algorithm.

5.3 The creation of PC-tableaux

The algorithm for the creation of sets of PC-tableaux for a set of formulae
allows the application of steps (1) and (2) in any order. However if we first
apply any alpha rules, then any beta rules and finally fill out with subformulae
or their negations where necessary fewer sets will be created before deletions.

The number of possible states constructed in the algorithm is at worst of the
order of the number of propositionally consistent subsets of sub(p). The large
number of states constructed in this type of verification has been considered for
example in [17] and has led to work considering on-the-fly verification [1, 19].
The number of states created may be able to be reduced in many cases by the
application of this type of on-the-fly verification.



6 Closing Remarks

In this paper, we have defined K'L,,, a temporal logic of knowledge, and BL,,,
a temporal logic of belief, and have presented and proved correct basic tableau-
based decision procedures for both of these logics. An implementation of these
decision procedures, written in Eiffel, is described in [4]. There are many ways
in which we hope to extend this work in the future: (i) undertake a systematic
analysis of interaction arioms, which characterise interactions between time
and knowledge/belief (cf. [2]), and extend the decision procedure to deal with
these axioms; (ii) use the implementation developed to further investigate the
efficiency of the method; (iii) extend the decision procedures to the first-order
case; (iv) develop different proof techniques for K L,, and BL,, (such as trans-
lation methods); and finally, (v) compare the different methods.
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