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Abstract. One of the key problems in the design of belief-desire-intention (BDI)
agents is that of finding an appropriate policy for intention reconsideration. Crudely,
the idea is that at any given time, an agent will have a number of intentions, relating
to states of affairs that the agent has committed to bring about. An agent chooses
plans that are appropriate for bringing about these intentions; if a particular plan for
a given intention fails, then the agent will typically replan, to find an alternative
course of action for this intention. However, a rational agent’s intentions will not
be static. From time-to-time, it makes sense for such an agent to reconsider its
intentions, for example when the intention is doomed never to be realized, or else
when the agent would simply profit from adopting another, more fruitful goal. This
paper presents a detailed investigation of the properties of intention reconsideration.
The work builds on the foundational work of Kinny and Georgeff, who investigated
the properties of various intention reconsideration strategies in environments that
were to varying degrees dynamic, i.e. subject to unanticipated change. The present
paper broadly falls into two distinct parts. In the first part, the authors extend work
of Kinny and Georgeff, by investigating the properties of intention reconsideration
strategies in environments that are also to varying degrees (in)accessible and
(non-)deterministic. They then investigate two different models of intention
reconsideration. In the first model, intention reconsideration is modelled as a process
of discrete deliberation scheduling: intention reconsideration is modelled as an
action that may be performed by an agent, and so lends itself to analysis in
terms of conventional decision theoretic models of optimal action. In the second,
intention reconsideration is modelled as a partially observable Markov decision
process (POMDP): solving the POMDP means finding an optimal intention recon-
sideration policy.
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1. Introduction

Computation is a valuable resource for autonomous agents that are required to act
in complex environments (Russell and Norvig 1995). Such agents cannot reason
indefinitely, either about which goals to achieve, or what actions to perform in
furtherance of these goals (Bratman et al. 1988). Any implemented agent will operate
under very real resource bounds—in terms of computation power, memory and the
time available to make decisions. It follows that the effective control of reasoning is a
key factor in the success (or otherwise) of an agent system. Research on resource-
bounded decision making and the control of reasoning originated in economics and
the decision sciences (Good 1971, Simon 1982); in AI, such research falls under the
banner of meta-level reasoning (Russell and Wefald 1991b); and in the agent
literature, it falls under work on bounded optimality (Russell and Subramanian
1995).

1.1. Overview
Our chosen agent architecture for this study is the belief-desire-intention
(BDI) model (Georgeff and Lansky 1987, Bratman et al. 1988). In BDI agents,
decision-making is composed of two main activities: deliberation (deciding what
intentions to achieve) and means-ends reasoning (deciding how to achieve these
intentions) (Bratman et al. 1988). Deliberation is a computationally costly process,
and in order for a BDI agent to operate effectively, it should choose to deliber-
ate only when necessary; this requires an appropriate intention reconsideration
policy (Bratman et al. 1988, Kinny and Georgeff 1991, Wooldridge and Parsons
1999).

In this paper, we present a detailed investigation of two distinct issues related to
BDI agents. The first issue is that of the extent to which environmental factors
determine the need for intention reconsideration. Our work here builds on, and
extends that of Kinny and Georgeff, who studied the performance of different
intention reconsideration policies in environments with varying degrees of dynamism
(Kinny and Georgeff 1991). In our work, we investigate the performance of intention
reconsideration policies in environments where we vary the following parameters
(cf. Russell and Norvig 1995: p. 46): dynamism (the rate of change of the environment,
independent of the activities of the agent), accessibility (the extent to which an
agent has access to the state of the environment) and determinism (the degree of
predictability of the system behaviour for identical system inputs). The environ-
mental setting we use is the TILEWORLD (Pollack and Ringuette 1990), which was also
used as the basis of Kinny and Georgeff’s experiments.

The second issue we address is that of implementing intention reconsideration
strategies. We evaluate two models of intention reconsideration, both of which
appear a priori to have something to offer as a mechanism for understanding how to
reconsider intentions. In the first model, we take seriously the idea that intention
reconsideration is action, and this leads us to the discrete deliberation scheduling
model of Russell and Wefald (1991b). In this model, deliberation actions—such as
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intention reconsideration—are evaluated as possible candidates for action in a
decision-theoretic framework in just the same way that ‘regular’ actions are. In
the second model, we investigate the idea of modelling intention reconsideration as a
partially observable Markov decision process (POMDP) (Kaelbling et al. 1998):
solving the POMDP means finding an optimal intention reconsideration policy.
For both of these models, we present a detailed experimental analysis of the
effectiveness of the approach, again using the TILEWORLD as an experimental
platform. We begin with a more detailed look at the problem of intention
reconsideration.

1.2. Intention reconsideration in BDI agents
Research in the design of autonomous agents throughout the 1970s and early 1980s
was dominated by STRIPS-style classical planning approaches (Allen et al. 1990).
These approaches focussed on algorithms for automatic plan generation, that would
take as input a specification of the current world state, a goal to be achieved and the
actions available to an agent, and would produce as output a plan to achieve the goal
state. This style of planning, it was believed, is a central component in rational
action. By the mid 1980s, a number of researchers, (of whom Rodney Brooks is
probably the best known (Brooks 1999)), began to claim that such approaches were
fundamentally flawed, for both pragmatic and philosophical reasons. From a
pragmatic point of view, STRIPS-style planning algorithms tend to be computation-
ally intractable, rendering them of limited value to agents that must operate in
anything like real-time environments (Chapman 1987, Bylander 1994). From a
philosophical point of view, it was argued that much of what we regard as everyday
intelligence does not arise from abstract deliberation of the kind involved in STRIPS-
style planning, but from the interaction between comparatively simple agent
behaviours and the agent’s environment.

The challenge posed by behaviour-based AI research has arguably led to some
fundamental changes in the agenda of the AI community. First, it has become widely
accepted that intelligent behaviour in an autonomous agent is more closely coupled
to the environment occupied by the agent than was perhaps hitherto acknowledged.
Consequently, there has been renewed interest in the use of more realistic
environmental settings for the evaluation of agent control architectures. Second, it
has become accepted that while reasoning is an important resource for intelligent
decision-making, it is not the only such resource. As a consequence, there has been
much interest in hybrid approaches to agent design, which attempt to combine
reasoning and behavioural decision-making (Wooldridge and Jennings 1995,
Mueller 1997).

One popular approach to the design of autonomous agents that emerged in the
late 1980s is the belief-desire-intention (BDI) model (Georgeff and Lansky 1987,
Bratman et al. 1988). The BDI model gets its name from the fact that it recognises
the primacy of beliefs, desires, and intentions in rational action. Intuitively, an
agent’s beliefs correspond to information the agent has about the world. These
beliefs may be incomplete or incorrect. An agent’s desires are states of affairs that the
agent would, in an ideal world, wish to bring about. Finally, an agent’s intentions
represent desires that it has committed to achieving. The idea is that an agent will
not be able to deliberate indefinitely over which states of affairs to bring about;
ultimately, it must fix upon some subset of its desires and commit to achieving them.
These chosen desires are intentions.
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A more formal description of the control loop of a BDI agent is shown in figure 1,
which is based on the BDI agent control loop presented in Rao and Georgeff (1992)
and Wooldridge (2000: 38). The idea is that an agent has beliefs B about the world,
intentions I to achieve and a plan p to achieve intentions. In lines 2–4, the beliefs,
intentions and plan are initialized. The main control loop is then in lines 5–20. In
lines 6–7, the agent perceives and updates its beliefs; in line 8, it decides whether to
reconsider or not; in lines 9–13 the agent deliberates, by generating new options and
deliberating over these; in line 12, the agent generates a plan for achieving its
intentions; and in lines 15–18 an action of the current plan is executed. Because the
purpose of the functions used in this loop can be easily derived from their names, we
omit the actual formalizations here for reasons of space, but direct the reader to
Wooldridge (2000: ch. 2).

It is necessary for a BDI agent to reconsider its intentions from time to time
(Bratman et al. 1988, Kinny and Georgeff 1991, Wooldridge and Parsons 1999). One
of the key properties of intentions is that they enable the agent to be goal-driven
rather than event-driven, i.e. by committing to intentions the agent can pursue long-
term goals. But when circumstances have changed and, for example, an intention
cannot be achieved anymore, the agent would do well to drop that intention.
Similarly, when opportunities arise that enable intentions that the agent currently
has not adopted, the agent should reconsider. However, because reconsideration is

 

 

 

Figure 1. The abstract BDI agent control loop. The loop consists of continuous
observation, deliberation, planning and execution. To perform optimally,
the reconsider(. . .) function decides whether deliberation and planning is
necessary.
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itself a potentially costly computational process, one would not want the agent to

reconsider its intentions at every possible moment, but merely when it is necessary

to reconsider, that is, when the set of intentions would change were it to reconsider.

The purpose of the reconsider(. . .) function as shown in figure 1 is precisely this: to

deliberate when it pays to deliberate (when deliberation will lead to a change in

intentions), and otherwise not to deliberate, but to act.

Developing an appropriate intention reconsideration policy—which keeps an

agent committed to its intentions just as long as it would be rational to do so—is

thus a critical issue in the design of any BDI agent, and it is this issue that we address

in this paper.

2. Environmental factors

The starting point for our study is an investigation of the extent to which

environmental factors, (that is to say, issues independent of the properties of the

agent), can play a part in determining when an agent should reconsider its intentions.

We build on the work of Kinny and Georgeff (1991), who, in a series of experiments,

investigated the relative performance of intention reconsideration strategies for BDI

agents in different environmental settings. The experimental framework they used

involved a PRS BDI system (Georgeff and Lansky 1987) that was situated in Pollack

and Ringuette’s TILEWORLD domain (Pollack and Ringuette 1990). Our contribution

over the results that Kinny and Georgeff obtained are: first, the investigation of

accessibility and determinism factors on the agent’s effectiveness (as Kinny and

Georgeff only considered dynamism); second, investigating the effect of combined

environmental factors (dynamism, accessibility and determinism) on the agent’s

effectiveness.

2.1. Background

In essence, the TILEWORLD is a grid environment on which there are agents, tiles,

obstacles and holes. An agent can move up, down, left or right, and can move tiles

towards holes. An obstacle is a group of immovable grid cells. Holes have to be filled

up with tiles by the agent. An agent scores points by filling holes with tiles, with the

aim being to score as many points as possible. The TILEWORLD is inherently dynamic:

starting in some randomly generated world state, based on parameters set by the

experimenter, it changes over time in discrete steps, with the appearance and

disappearance of holes. The experimenter can set a number of TILEWORLD param-

eters, including: the frequency of appearance and disappearance of tiles, obstacles,

and holes; the shape of distributions of scores associated with holes; and the choice

between hard bounds (instantaneous) or soft bounds (slow decrease in value) for

the disappearance of holes. In the TILEWORLD, holes appear randomly and exist

for as long as their life-expectancy, unless they disappear because of the agent’s

actions. The interval between the appearance of successive holes is called the hole

gestation time.

The aims of Kinny and Georgeff’s investigation were to ‘(1) assess the feasibility

of experimentally measuring agent effectiveness in a simulated environment,

(2) investigate how commitment to goals contributes to effective agent behaviour
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and (3) compare the properties of different strategies for reacting to change’ (Kinny

and Georgeff 1991: 82). The full TILEWORLD domain was considered too complex for

the experiment, and the testbed was therefore simplified in several ways. First, tiles

were omitted: an agent scores points simply by moving to holes. In addition,

the agent was assumed to have perfect, zero-cost knowledge of the state of the

world. Finally, it was assumed that agents only form correct and complete plans, and

only generate plans for visiting a single hole (rather than planning multiple-hole

tours).

In Kinny and Georgeff’s experiments, two different types of reconsideration

strategy were used: bold agents, which never pause to reconsider their intentions

before their current plan is fully executed, and cautious agents, which stop to recon-

sider after the execution of every action. These characteristics are defined by a degree

of boldness, which specifies the maximum number of plan steps the agent executes

before reconsidering its intentions. Dynamism in the environment is represented by

the rate of world change and is manipulated by changing the ratio of the clock rates

of the TILEWORLD and the agent. The effectiveness of the agent is represented by its

score (the sum of values of holes filled) divided by the maximum score it could

in principle have achieved (the sum of the scores of all holes appearing in the

TILEWORLD during a trial). The results of the experiments show that a cautious agent

outperforms a bold agent in highly dynamic environments; intuitively, because in

dynamic environments, which change frequently, it pays to reconsider intentions

frequently.

In Kinny and Georgeff’s investigation, as mentioned previously, the agent has

perfect zero-cost knowledge of the world. In later work by Kinny, Georgeff and

Hendler (Kinny et al. 1992) a sensing cost was introduced, which represents the time

cost of processing sensor information. The aim of this work was to show that an

optimal sensing rate exists, depending on the degree of world dynamism and the

sensing cost. A model was presented that captures the trade-off between time saved

by early detection of change and time wasted by too frequent sensing. Applying a

cost to sensing is different from varying the accessibility of the world. Varying

accessibility essentially means varying the amount of information accessible to the

agent, which implies that it does not matter how much the agent attempts to obtain

information. If a cost is applied to sensing, the information is available, but for a

higher price.

The aim of the work described in this section is to experimentally investigate the

performance of a range of intention reconsideration policies in environments with

different properties. To do this, we make use of a simulation of a single agent

inhabiting the TILEWORLD environment adapted in the way described by Kinny and

Georgeff and with two further modifications: (i) we omitted obstacles from the

TILEWORLD; and (ii) we allowed the agent to move diagonally over the grid

(in addition to moving horizontally and vertically). Omitting obstacles simplifies

the problem domain without trivializing it; allowing diagonal movement is an

obvious extension.

Following Kinny and Georgeff (1991), we define the effectiveness � of an agent as

the ratio of the actual score achieved by the agent to the score that could in principle

have been achieved. This measurement is thus independent of randomly distributed

parameters in a trial. It also avoids problems such as machine-dependency and

prevention of repetition of experiments on different machines, which would occur if
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the effectiveness of an agent was based on such measures as CPU-time or elapsed

time (Pollack and Ringuette 1990).

There are three main environmental attributes that we vary in our experiments:

. Dynamism: (an integer in the range 1 to 80 denoted by �) represents the ratio

between the world clock rate and the agent clock rate (Kinny and Georgeff

1991). If �¼ 1, then the world executes one cycle for every cycle executed by the

agent. Larger values of � mean that the environment is executing more cycles

for every agent cycle; if �>1 then the information the agent has about its

environment may not necessarily be up to date.

. Accessibility: (a real value in the range 0 to 1 denoted by �) represents the

proportion of the environment that is visible to the agent. If �¼ 1, then the

agent can see the entire TILEWORLD, and thus has complete, perfect information

about its environment; if �¼ 0, then the agent can see nothing of its

environment but the grid point it currently occupies. Intermediate values of �
give the proportion of the TILEWORLD that can be seen; the product of � and the

maximum dimension of the TILEWORLD gives the ‘distance’ in grid locations

that the agent can see.

. Determinism: (an integer in the range 0 to 100 denoted by �) represents how

certain it is that an action has the expected outcome. The idea is that an agent

performs actions in order to bring about certain states of affairs. However, in

most realistic environments, actions are non-deterministic, in that they can have

a number of possible outcomes. Thus, � represents the probability that an

action will have its intended outcome, expressed as a percentage. If �¼ 100,

then the agent can be certain that every action it performs will have the desired

effect; as �! 0 the probability that an action will have an undesirable outcome

increases. In our scenario, actions are movements that can be made by an agent,

either north, south, east, west or diagonally. We model non-determinism by

allowing actions to move the agent in an unintended direction—for example,

in attempting to move north, the agent may actually end up moving east.

This represents the situation in mobile robotics, where a robot attempting to

move in some direction can never be sure that it will succeed in moving in that

direction.

The experiments we conducted on environmental factors are divided into two

series: the single parameter variation series, in which we varied one parameter

per experiment; and the combined parameters variation series, in which we system-

atically varied two parameters per experiment. In the single parameter variation,

we respectively minimized or maximized the parameters other than the

one varied: in the dynamism experiment, we maximized accessibility (�¼ 1)

and maximized determinism (�¼ 100). In the accessibility experiment, we

minimized dynamism (�¼ 1) and maximized determinism (�¼ 100). Finally, in

the determinism experiment, we minimized dynamism (� ¼ 1) and maximized

accessibility (�¼ 1).

With respect to agent properties, we varied the replanning rate and the planning

cost. The replanning rate represents the boldness of the agent. For each experimental

condition, we set the rate to 1 (the agent replans every time before performing an

action—a cautious agent) and 1 (the agent never replans while executing a plan—

a bold agent). The planning cost represents the time cost of planning: the number of
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time-steps required to form a plan. For each experimental condition, we set planning
cost to 0, 1, 2 and 4. In what follows, we denote planning cost by p. In table 1,
we give an overview of the values of relevant parameters that we used in the
experiments (½x, y� denotes a uniform distribution from x to y and (x, y) denotes the
range from x to y). Note that each TILEWORLD was run for 15 000 time steps, and
each run was repeated 50 times.

2.2. Results and analysis
In this section, we present the results of our experiments. The experiments with single
parameter variation resulted in the graphs shown in figure 2. The experiments with
combined parameter variation resulted in the graphs shown in figures 5, 6 and 7.
The graphs for the combined parameter series generalize those of the single
parameter series, and so in principle it would suffice to give the graphs of the
combined parameter series only. However, in the interest of clarity, we included
graphs for both series.1 We refer to a plot of effectiveness � as in figure 2 as
an effectiveness curve and to a plot of � as in figures 5, 6 and 7 as an effectiveness
surface.

2.2.1. Single parameter variation

Dynamism: From the results of the dynamism experiment, as plotted in figures 2a
and 2b, we observe that the shapes of the effectiveness curves are similar for bold
and cautious agents, but the curves themselves differ. We can explain the shape of
the effectiveness curves and the differences between the curves as follows. If the
dynamism of the world is at a minimum (�¼ 1), then holes appear and disappear
sufficiently slowly that the agent can visit each hole before it disappears, which
results in a perfect score (�¼ 1) of the agent. As � increases, then at some point,
holes start to disappear before the agent has visited them, and � starts to drop
below 1. The effectiveness curve first declines steeply, later more gradually and
eventually asymptotically approaches zero.

Table 1. Overview of the experiment parameters.

Parameter Value/range

World dimension 20
Hole score 10
Hole life-expectancy [240,960]
Hole gestation time [60,240]
Dynamism (�) (1,80)
Accessibility (�) (0,1)
Determinism (�) (0,100)
Number of time-steps 15,000
Number of trials 50
Replanning rate 0 or 1
Planning cost (p) 0, 1, 2 or 4
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Some observations on the differences in the curves can be made directly. First, it is
clear that varying the cost of planning has much more influence on the effectiveness
of a cautious agent than on the effectiveness of a bold agent. Second, if planning is
free (p¼ 0), then a cautious agent performs better than a bold agent if �>7. Third,
if p>0, then a cautious agent performs worse than a bold agent, independent of the
dynamism of the world.

In an attempt to explain the shape of the graph in figure 2a, we used brute
force computation to calculate the mean distance an agent has to travel to any
hole in our TILEWORLD—as it turns out, the mean distance to any hole in our
experiments is approximately 9. As previously stated, the effectiveness of an agent
is the ratio of its actual score to the maximum score. This can be denoted by
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Figure 2. Experimental results (single parameter variation).
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�¼ scoreagent/scoremax. We can easily calculate the maximum score, namely

scoremax¼T/g, where T denotes the number of time-steps and g denotes the

hole gestation time. The agent’s actual score can be calculated by scoreagent¼T/f,

where f denotes the total time the agent takes to fill a hole. Similar to Kinny

and Georgeff, we define f to be given by f¼ d� (p/kþm), where d is the hole

distance, p is the planning cost, k is the reconsideration frequency and m is the

time to move a single step (here always 1). If we set k¼ d, we have a bold agent,

and when we set k¼ 1, we have a cautious agent. Now we can define the

effectiveness of the agent as �¼ g/(�� f). The curves in figures 2a and 2b can be

approximated by this function, using the values from table 1 and a mean hole

distance of 9.2 This approximation is shown in figures 3 and 4 for a bold agent

and cautious agent, respectively.

Accessibility: The shape of the effectiveness curves in figures 2c and 2d can be
explained from the way we implemented the accessibility of the agent. If the
accessibility is minimal (�¼ 0), the agent can only see the point where it is
currently located. With the exception of a hole appearing coincidentally on that
location, the agent cannot score any points, and its effectiveness is minimal (�¼ 0).
If the accessibility is maximal (�¼ 1), the agent can see all points in the world, and
has sufficient time to reach holes before they disappear, in which case its
effectiveness is perfect (�¼ 1) thanks to the low value of dynamism. If �<0.5,
then the curve is concave; if �>0.5, the curve is convex. This value can be
explained from the fact that if �>0.5, it is possible for the agent to be at an
optimal location, e.g. the middle of the grid, where it can see all the points in the
world.
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Figure 3. Theoretical effectiveness for a bold agent when dynamism is varied.
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From figures 2c and 2d it appears that there is no great difference between the
results for the bold agent if planning cost is varied and between the curves for the
cautious agent if planning cost is varied. Neither is there much difference between
the curves for the bold agent and the curves for the cautious agent. A variance
analysis on the experimental data confirms that the differences between the curves,
within the bold and cautious agent effectiveness curves as well as between them, are
not significant. An explanation for this might be that when accessibility is varied,
the amount of deliberation an agent engages in does not influence the effectiveness of
the agent. Intuitively, there is not enough information for the agent to deliberate
over in order to increase its effectiveness.

Note that in addition to giving agents ‘limited vision’, we conducted a series of
experiments in which we simulated agents with noisy sensors. The idea was that there
would be a probability � that any given piece of information (percept) received by
the agent was incorrect. If �¼ 0, then the agent’s sensors would be perfect: all
information available to the agent would be correct. If �¼ 1, then every piece
of information available to the agent would be incorrect. We systematically varied
the value of � from 0 to 1, and investigated the performance of bold and cautious
agents for each, with different planning costs. These experiments yielded a linear
relationship between effectiveness and �.

The shape of the graphs in figures 2c and 2d can easily be put on a theoretical
footing. Because the world changes slowly enough for the agent to reach a hole when
observed (�¼ 1), the agent’s effectiveness corresponds with its visibility—the number
of grid points the agent can see around itself. Calculating this visibility by brute force
computation resulted in a curve identical to the effectiveness curve as in 2c or 2d.
Using a curve-fitting method, this visibility curve can be approximated by a
biquadratic function. For example, for a 5� 5 world the agent’s visibility can be
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Figure 4. Theoretical effectiveness for a cautious agent when dynamism is varied.
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described by (�a2þ 9aþ 5)2/d2, where a denotes accessibility of the world before
normalization (a¼ �� d) and d denotes world dimension. The constant values in this
function depend on the world dimension d.

Determinism: The effectiveness curves for the determinism experiment are plotted
in figures 2e and 2f. If the determinism of the world is minimal (�¼ 0), the
outcomes of the agent’s actions are never as intended by the agent. But because the
agent can still encounter a hole by accident, it achieves a higher score than minimal
(�>0). If determinism is maximal (�¼ 1), the outcomes of the agent’s actions are
always the outcomes as intended by the agent, and the agent achieves a perfect
score (�¼ 1) again because we have set dynamism to its minimum value. The
reason for this is that determinism is defined as the chance that the outcome of an
agent’s action is the outcome intended by the agent. If �¼ 0, the agent never
arrives at the location it intends. If �¼ 1, the agent always arrives at the intended
location. As � increases, the agent slowly starts to arrive at the intended holes
and thus increases its score. The curve inclines slowly at first and later steeper,
until �>40, from where the effectiveness stays approximately perfect (�’ 1). We
speculate that the agent can achieve a perfect score when �>40 for the following
reason. If � exceeds a certain threshold (here: �>40), the agent can compensate for
failed actions by replanning. As long as the intended hole does not disappear, the
agent can replan and in the end will reach the hole. This means an increase in
deliberation, but a justified one, because it increases the effectiveness of the agent
considerably.

When one considers the effectiveness curves for a bold agent, it is clear there is not
much difference between them. As the planning cost p is increased, � decreases. This
decline is slight because the agent must replan completely after executing a plan,
rather than because the agent does not need to reconsider its plans. This is also the
reason why, with the exception of when planning is free ( p¼ 0), a bold agent
performs better than a cautious agent. A cautious agent has to replan after every
step, whereas a bold agent does not do this and therefore a bold agent can perform
more effectively. However, when planning is free, the cautious agent outperforms
the bold agent, because it does not need to execute its complete plan before
replanning. In this case, a cautious agent’s plans are more flexible and thus shorter.
With reference to figure 2f, it is immediately obvious that planning cost has
a significant impact on effectiveness for cautious agents in non-deterministic
environments.

Before we leave this section, we note that the effectiveness of the agent depends
on other characteristics of the environment, such as the life-expectancy of holes.
If the life-expectancy of a hole is too short, then the agent cannot reach the hole by
planning again. In this case, � must be very high in order for the agent to score any
points. On the other hand, if holes never disappear, the agent would achieve a perfect
score, even when � is very low.

2.2.2. Combined parameter variation
The experimental results from the combined parameter variation of dynamism and
accessibility are shown in figure 5, of accessibility and determinism in figure 6 and of
dynamism and determinism in figure 7. All effectiveness surfaces are consistent with
the effectiveness curves individually. For example, in the variation of dynamism and
accessibility, if dynamism is minimal (�¼ 1), the curve corresponds to the individual
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effectiveness curve for accessibility and if accessibility is maximal (�¼ 1), the curve
corresponds to the individual effectiveness curve for dynamism. For these values, the
analysis is thus similar to the analysis for the single parameter variations.

With the combined parameter variation experiments we want to show which
parameters dominate in complex environments. It is clear from the effectiveness
surfaces in figure 5 that dynamism has more influence on the effectiveness of the
agent than accessibility. This follows from the fact that the surfaces change more
rapidly over the dynamism axis than over the accessibility axis. From maximal
effectiveness (�¼ 1), where dynamism is minimal (�¼ 1) and accessibility is maximal
(�¼ 1), the decline in effectiveness is much steeper when dynamism increases than
when accessibility decreases.

It is clear from figure 6 that accessibility has more influence on the effectiveness of
the agent than determinism. Even in a worst case scenario—a cautious agent where
planning cost is 4—the decrease in effectiveness from maximal effectiveness (�¼ 1),
where accessibility is maximal (�¼ 1) and determinism is maximal (�¼ 100), is
steeper when accessibility decreases than when determinism decreases. In other
cases, effectiveness stays maximal until determinism is approximately 40 (�¼ 40).
We explained the reason for this in section 2.2.1: the agent can compensate for non-
determinism in the environment by replanning.
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Figure 5. Dynamism and accessibility: the results for a bold agent are in
(a) and (b), for a cautious agent in (c) and (d).
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Figure 7 shows that the agent’s effectiveness changes faster over the dynamism
axis than over the determinism axis, from which we conclude that dynamism has
more influence on the effectiveness of the agent than determinism.

2.3. Summary
The experiments presented in this Section show that, for the modified TILEWORLD

scenario, accessibility does not influence the effectiveness of an agent with respect to
its reconsideration policy and planning cost; that determinism influences the
replanning rate rather than the reconsideration rate; and that dynamism influences
an agent’s effectiveness the most.

Despite the fact that these results are only strictly valid for the TILEWORLD, we
believe that they will extend to different domains. Indeed, we believe that the results
will broadly carry over to any domain which is dynamic, non-deterministic, and have
limited accessibility (all of which are features of many real world scenarios). If this
estimate proves too optimistic, it certainly seems likely that similar results would be
obtained for scenarios that are similar, including:

. RoboCup soccer, where agents have to move to the ball (which may be kicked
away) or to block other players (who may move);

. Pursuer/Evader, where agents have to move towards, or away from, other
agents (which are moving similarly); and
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Figure 6. Accessibility and determinism: the results for a bold agent are in
(a) and (b), for a cautious agent in (c) and (d).

M. Schut et al.274



. RoboCup rescue, where agents move through a simulated disaster zone rescu-
ing victims (who move) and responding to changes in the environment.

In all of these scenarios, the environment is dynamic and non-deterministic,
accessibility is limited and movement around the physical world is a major
consideration.

2.4. Towards more flexible intention reconsideration
The bold and cautious strategies considered above are hard-wired into agents at
compile-time. However, the issue of reconsideration is ideally one that an agent
would manage autonomously. Towards this end, in the remainder of this article, we
present two models that enable an agent to do precisely this. These models provide
two flavours of adaptive agent that can autonomously manage their intentions.

. In the first, the notion that intention reconsideration is a form of meta-level
reasoning—reasoning about how to reason—is taken seriously. We model
intention reconsideration as discrete deliberation scheduling, using the ideas of
Russell and Wefald (1991b). The key idea that informs this approach is that
deliberation is action, and it is thus possible to determine an optimal delibera-
tion action using the same mathematical techniques as decision theory uses to
determine an optimal ‘regular’ action.
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Figure 7. Dynamism and determinism: the results for a bold agent are in
(a) and (b), for a cautious agent in (c) and (d).
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. In the second approach, we model intention reconsideration as a partially
observable Markov decision process (POMDP) (Kaelbling et al. 1998). In this
model, solving the POMDP, i.e. determining an optimal policy for the
POMDP, means determining an optimal intention reconsideration policy.

For each of these models, we first describe and motivate the approach, and then give
an evaluation in terms of the TILEWORLD scenario given above.

3. Discrete deliberation scheduling

Russell and Wefald (1991a) describe how an agent should schedule deliberation
and action to achieve efficient behaviour. Their framework is known as discrete
deliberation scheduling.3 The key idea is that deliberations are treated as if they were
actions. Decision theory gives us various models of how to determine the best
possible action, of which the maximum expected utility model is perhaps the best
known. Viewing deliberations as actions allows us to compute the utility of a
deliberation action, and so makes it possible to apply the expected utility model as
the meta-level reasoning component over all possible actions and deliberations.
However, it is not difficult to see that this can be computationally hard. Russell and
Wefald propose the following strategy in order to overcome this problem. Assume
that at any moment in time the agent has some default action it can perform.
The agent can either execute this action or deliberate, where deliberation can lead
to a better action than the current default action. Their control algorithm then
states that as long as there exist deliberations with a positive value, perform the
deliberation with the highest value; otherwise, execute the default action.

We discuss the integration of the decision theoretic model for deliberation
scheduling from Russell and Wefald and the BDI agent architecture.

3.1. The DDS model
Here we give a brief overview of the model of discrete deliberation scheduling.
We explain the basic elements, present the control algorithm that uses these
elements and discuss some additional assumptions required to make the algorithm
computationally attractive. In the next Section we show how the model can be
applied to the TILEWORLD.

The most important issue we are concerned with relates to the set of available
actions A of the agent: we distinguish between external actions Aext¼ {a, a0, a00, . . .},
affecting the agent’s environment, and internal actions Aint¼ {d, d 0, . . .}, affecting the
internal state of the agent. We let A¼Aext[Aint and assume Aint\Aext¼ 6 0.
We assume the agent’s environment, (i.e. everything external to the agent), may be
in any of a set E¼ {e, e0, e00, . . .} of environment states. We let utility be defined over
environment states: Ue:E ! R. If the agent uses maximum expected utility theory
(MEU) as a decision strategy, it chooses an action ameu2Aext for which the utility
of the outcome state is maximal:

ameu ¼ arg max
a2Aext

X
e2E

Pðe j aÞUeðeÞ ð1Þ

where P(e j a) denotes the probability of state e occurring, given that the agent
chooses to perform external action a. However intuitive this notion of decision
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making is, many problems arise when MEU is used in the real world. It assumes

Ue(E) is known before deciding, that enough time is available to obtain ameu, and it

does not easily extend to sequential decision making.

Russell and Wefald (1991a) offer an alternative. The idea underlying their model is

that the agent chooses between: (1) a default external action adef, and (2) an internal

action from the set of internal actions—at any moment, the agent selects an action

from {adef, d, d
0, . . .}. The only purpose of an internal action is to revise the default

external action, presumably to a better one. This algorithm does not guarantee an

optimal choice, but computationally it can be a lot more attractive than MEU. In the

remainder of this section, we outline the theory of discrete deliberation scheduling.

For the formal details, we direct the interested reader to Russell and Wefald (1991a)

and Schut and Wooldridge (2001).

The theory enables one to express utilities of deliberations and actions. Like ameu

was presented above for external actions, in discrete deliberation scheduling it is

possible to make similar computations for internal actions (deliberations). This idea

is exploited in the decision control algorithm (DCA), which ensures that an agent

deliberates when there is a deliberation action with positive utility, and performs an

external action otherwise.

Computing the utilities of deliberations is not trivial, mainly because of their

reflective character. Performing a deliberation implies reasoning over one’s own

available actions to execute and this requires complicated reflective capabilities on

the agent’s side. Russell and Wefald tackle this problem pragmatically by sub-

sequently demonstrating: first, how to compute utilities of external and internal

actions; second, how to estimate the utilities of internal actions; and, finally, how to

represent temporal constraints on the utilities of internal actions.

First, utilities for external actions are computed simply based on the expected

utilities as shown in equation (1). The utility of an internal action is the utility of

the external action that the internal action eventually leads to. Russell and Wefald

refer to an internal action that immediately results in an external action as a complete

computation, and to one that does not necessarily do so as a partial computation.

Second, an agent will need to estimate utilities if it has no immediate access to its

utility function. This can be done by making utilities depend on sequences of actions

undertaken to get an appropriate utility estimate. Such sequences can in practice be

statistical knowledge collected from past situations.

Third, in practice, deliberation takes time. This can be captured by defining a cost

function over internal actions. Such a function then denotes the difference between

the intrinsic (time-independent) and total (time-dependent) utility of an internal

action. This cost function can represent a negative effect (best actions should

not be postponed) or a positive effect (longer deliberation leads to better external

actions).

Finally, in the most advanced model (including estimation, cost functions, etc.)

it is still not feasible in practice to assess the expected value of all continuations

of a computation, because computations can be arbitrarily long. Russell and Wefald

make two simplifying myopic assumptions: first, algorithms are meta-greedy, in that

they consider single primitive steps, estimate their ultimate effect and choose the step

appearing to have the highest immediate benefit; and, second the computation value

of a complete computation is a useful approximation to its true value as a possibly

partial computation (called the single-step assumption).
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3.2. Integrating BDI and DSS
Having now defined both the BDI model and discrete deliberation scheduling, we
discuss how the models can be integrated. The agent’s control loop of our framework
is the BDI agent control loop as shown in figure 1. As mentioned above, integrating

the frameworks comes down to implementing the reconsider(. . .) function in this
control loop. This implementation is shown in figure 8; it is based on Russell and
Wefald’s meta-reasoning model. The function computeUtility(. . .) computes the
estimated utility of deliberation. The argument of this function is the agent’s
set of beliefs. These beliefs typically include the values of the necessary distributions
for computing the estimates, e.g. the dynamism of the environment.

Because we use the BDI model, we treat deliberation on a very abstract level: we
merely recognise deliberation as a way to alter the set of intentions. Therefore, we are
only concerned with a single internal action: deliberation itself. The reconsider(. . .)
function then decides whether to deliberate (indicated by reconsider(. . .) evaluating
to ‘true’), or act (reconsider(. . .) evaluates to ‘false’). We can regard choosing to
act as the default action adef and choosing to deliberate as the single internal action.
It is clear that this relates Russell and Wefald’s model to the BDI model. We are left
with two questions: what should the default action adef be and how do we compute
the utilities of choosing to deliberate versus choosing to act? We deal with these
questions subsequently.

Let � be the set of all plans. A plan is a recipe for achieving an intention; p2�
represents a plan, consisting of actions p[0] through p[n], where p[i]2Aext and n
denotes the length of the plan. The agent’s means-ends reasoning is represented by
the function plan: }(B)�}(I) !�, used on line 12 in figure 1. At any moment in
time, we let the default action adef be p[0], where the computation of the utility of adef
is derived via equation (1). This answers the first question.

The computation of the utility of deliberation is done using Russell and Wefald’s
model: we estimate the utility of deliberation, based on distributions which deter-
mine how the environment changes. These distributions are necessary knowledge
because the optimality of intention reconsideration depends only on events that
happen in the environment. For now, we assume that the agent knows these
distributions and that they are static (they do not change throughout the existence

Figure 8. The reconsider(. . .) function in the BDI agent control loop. It computes
and compares the utilities of acting and deliberating, and decides, based on
the outcome of this comparison, whether to deliberate or not.
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of the environment) and quantitative. We estimate the utility of deliberation as the
difference between the utility of the outcome of the deliberation (i.e. a revised p[0]),
and adef (i.e. the current p[0]). Situated in a real-time environment, the agent
will discount the estimated utility of deliberation, based on the length of delibe-
rating. The decision control algorithm DCA then prescribes to deliberate and
execute the revised p[0] if this estimate is positive, and to act—execute the current
p[0]—otherwise.

This results in a meta level control function reconsider(. . .) which enables the
agent at any time to compute the utility of p[0] and also to estimate the utility of
deliberating over its intentions, and then, according to these utilities, acts (by
executing p[0]) or deliberates (by reconsidering its intentions). Next, we illustrate
the theory with the same scenario that we introduced above.

3.3. The TILEWORLD

For our work in this section we need a formal model of the TILEWORLD. Let H
represent the set of possible holes; an environment state is an element from the set
E¼}(H) with members e, e0, e00, . . .. We let Aext¼ {noop, ne, e, se, s, sw, w, nw, n},
where each action denotes the direction to move next and the noop is a null action;
if the agent executes noop, it stays still. The agent’s only internal action is to
deliberate, thus Aint¼ {d}. At any given time, if holes exist in the world, an agent has
a single intended hole IH—the hole it is heading for—over which it is deliberating.
If no holes exist, the agent stays still. Let disth denote the distance between the
agent and hole h2H. Then mindist¼min {disth | h2H} denotes the distance to the
hole closest to the agent. The agent’s deliberation function d selects IH, based on
mindist; the means-ends reasoning function plan selects a plan p to get from the
agent’s current location to IH. For example, if the agent is currently at location
(2, 0) and IH is at (1, 3), then p¼ [s; s; sw]. We assume that d and plan are optimal,
in that d selects the closest hole and plan selects the fastest route.

According to our model, the agent must at any time choose between executing
action p[0] and deliberating. Based on the utilities of these actions, the reconsider(. . .)
function decides whether to act or to deliberate. Let the utility of an environment
state be the inverse of the distance from the agent to its intended hole, n(distIH),
where n is an order-reversing mapping.4 Equation (1) then defines the utility of an
external action. While in this domain, the utility of an external action is immediately
known, the utility of internal actions is not immediately known, and must be
estimated. In accordance with our model, we use pre-defined distributions here:
the utility of an internal action is estimated using knowledge of the distribution
of the appearance and disappearance of holes.5 The reason for this is that the
appearance and the disappearance of holes are events that cause the agent to change
its intentions. For example, when the set of holes H does not change while executing
a plan, there is no need to deliberate; but when H does change, this might mean that
IH has disappeared or that a closer hole has appeared: reconsideration is necessary.
Let avedist be the average distance from the agent to every location on the grid;
this is a trivial computation. Let newholes be the estimated number of holes
that have appeared since the last deliberation; this is calculated using the dynamism
of the world and the gestation period of holes—the gestation period is the elapsed
time in between two successively appearing holes. We deem avedist/newholes an
appropriate estimate for the utility of deliberation.
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The reconsider(. . .) function for TILEWORLD agents is shown in figure 9. We let the
belief set of the agent at least consist of

B ¼ fdistIH, avedist, newholesg

and let the intention set be

I ¼ fIHg

The reconsider(. . .) function computes the utility of executing p[0] and estimates the
utility of deliberating: if

distIH <
avedist

newholes

the agent acts, and if not, it deliberates.
As mentioned above, this does not guarantee optimal behaviour, but it enables

the agent to determine its commitment to a plan autonomously. We empirically
evaluate our framework in the next section, and demonstrate an agent using such an
intention reconsideration scheme performs better than when a level of commitment
is hardwired into the agent.

3.4. Experimental results
In this section, we present a series of simulations in which we utilize the TILEWORLD

environment—as described above—inhabited by a single agent. The experiments are
based on the same methodology as described above in section 2. In section 2, the
performance of a range of intention reconsideration policies were investigated in
environments of different structure. Here we carry out broadly the same set of
experiments but, in addition to the bold and cautious agents studied before, we
introduce an adaptive agent, which figures out for itself how committed to its plans it
should be. The decision mechanism of this agent is based on the theory as described
in section 3.1.

Figure 9. The reconsider(. . .) function for the TILEWORLD.
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We measured three dependent variables: the effectiveness �, the commitment �
and the cost of acting c of of an agent using the discrete deliberation scheduling
approach to intention reconsideration. Effectiveness, as before, is the ratio of the
actual score achieved by the agent to the score that could in principle have been
achieved. Commitment is calculated as how many actions of a plan are executed
before the agent replans as a fraction of the full plan. Thus commitment for a plan p
with length n is (k� 1)/(n�1), where k is the number of executed actions. Observe
that commitment defines a spectrum from a cautious agent (�¼ 0, because k¼ 1)
to a bold one (�¼ 1, because k¼ n). The cost of acting is the total number of
actions the agent executes. While cost of acting can easily be factored into the agent’s
effectiveness, we decided to measure it separately in order to maintain clear
comparability with previous results.

In table 2, we summarize the values of the experimental parameters ([x, y] denotes
a uniform distribution from x to y and (x, y) denotes the range from x to y).

3.4.1. Results
The experiments for dynamism resulted in the graphs shown in figure 10. In
figure 11a we plotted commitment � of an adaptive agent, varying dynamism,
with a planning cost p of 0, 1, 2 and 4, respectively. The collected data was smoothed
using a Bezier curve in order to get these commitment graphs, because the
commitment data showed heavy variation resulting from the way dynamism is
implemented. Dynamism represents the acting ratio between the world and the
agent; this ratio oscillates with the random distribution for hole appearances, on
which the adaptive agent bases its commitment. The commitment of a cautious and
bold agent are of course constantly 0 and 1 respectively. In figure 11b, the cost of
acting c is plotted for the three agents for p¼ 4. The cost of acting represents the
number of time steps that the agent performed an action.

3.4.2. Analysis
For bold and cautious agents, we obtained the same results as from the series of
experiments described above. When planning is free ( p¼ 0) as in figure 10a, it was
shown in the experiments in section 2 that a bold agent outperforms a cautious
agent. This out-performance, however, was negligible in a very dynamic environ-
ment. In these experiments, it is very clear that in a static world (where dynamism

Table 2. Overview of the experiment parameters

Parameter Value/range

World dimension 20
Hole score 10
Hole life-expectancy [240,960]
Hole gestation time [60,240]
Dynamism (�) (1,80)
Accessibility (�) 20
Determinism (�) 100
Number of time-steps 15,000
Number of trials 25
Planning cost (p) 0, 1, 2 or 4
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Figure 10. Performance of a cautious, bold and adaptive agent. Effectiveness is
measured as a result of a varying degree of dynamism of the world. The four
panels represent the effectiveness at different planning costs (denoted by p),
ranging from 0 to 4.
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Figure 11. Commitment for an adaptive agent and cost of acting for a cautious,
bold and adaptive agent. In (a), the commitment level is plotted as a
function of the dynamism of the world for an adaptive agent with planning
cost (denoted by p) of 0, 1, 2 and 4. In (b), the cost of acting—the
number of time steps that the agent moves—is plotted as a function of the
dynamism of the world for a cautious, bold and adaptive agent with a
planning cost of 4.
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is low), a bold agent indeed outperforms a cautious agent. But from some point
onwards (dynamism is approximately 28), a cautious agent outperforms a bold one.
This observation agrees with the natural intuition that it is better to stick with a plan
as long as possible if the environment is not very likely to change much, and to drop
it quickly if the environment changes frequently. More importantly, when planning
is free, the adaptive agent outperforms the other two agents, independent of the
dynamism of the world. This means that adaptive agents indeed outsmart bold and
cautious agents when planning is free.

As planning cost increases, the adaptive agent’s effectiveness gets very close to the
bold agent’s effectiveness. However, there is more to this: when we take the cost
of acting into account, we observe that the adaptive agent’s acting cost is much
lower. Considering these costs, we can safely state that the adaptive agent keeps
outperforming the bold agent. When planning is expensive ( p¼ 4) as in figure 10d,
the cautious agent suffers the most from this increase in planning cost. This is
because it only executes one step of its current plan and after that, it immediately
plans again. It thus constructs plans the most often of our types of agents. We also
observe that the bold agent and adaptive agent achieve a similar effectiveness. But
again, as shown in figure 10d, the adaptive agent’s acting costs are much lower.

We included the level of commitment for an adaptive agent, as shown in figure 10d,
to demonstrate how commitment is related to the dynamism of the world. Some
interesting observations can be made here. Firstly, we see that planning cost has a
negative influence on commitment—as planning cost increases, the level of commit-
ment decreases. The reason for this is that the cost of planning is the time it takes to
plan; as this value increases, more events can take place in the world during the
planning period, and it becomes more attractive to replan earlier rather than later.
Secondly, we see that if dynamism increases, the level of commitment decreases. This
can be easily explained from the intuition, as described above, that in a fast changing
world, it is better to reconsider more often in order to be effective.

4. Markov Decision Processes

In this section, we show how intention reconsideration may be modelled using the
theory of Markov decision processes for planning in partially observable stochastic
domains. We view an intention reconsideration strategy as a policy in a partially
observable Markov decision process (POMDP): solving the POMDP thus means
finding an optimal intention reconsideration strategy. We have shown above that an
agent’s optimal rate of reconsideration depends on the environment’s dynamism,
determinism, and observability. The motivation for using a POMDP approach here
is that in the POMDP framework the optimality of a policy is largely based on
exactly these three environmental characteristics.

Let P be a set of propositions denoting environment variables. In accordance with
similar proposition-based vector descriptions of states, we let environment states be
built up of such propositions. Then E is a set of environment states with members
{e, e0, . . .}, and e¼ {p1, . . . , pn}, where pi2P.

The internal state of an agent consists of beliefs and intentions. Let Bel: E ! [0,1],
where

P
e2EBel(e)¼ 1, denote the agent’s beliefs: we represent what the agent

believes to be true of its environment by defining a probability distribution over
the possible environment states. The agent’s set of intentions, Int, is a subset of the
set of environment variables: Int�P. An internal state s is a pair s ¼ Bel, Intih ,
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where Bel: E ! [0,1] is a probability function and Int � P is a set of intentions. Let S
be the set of all internal states. For a state s2S, we refer to the beliefs in that state as
Bels and to the intentions as Ints. We assume that it is possible to denote values and
costs of the outcomes of intentions: an intention value V : Int ! R represents the
value of the outcome of an intention; and intention cost C: Int ! R represents the
cost of achieving the outcome of an intention.6 The net value Vnet: Int ! R

represents the net value of the outcome of an intention; Vnet(i), where i2 Int, is
typically V(i)�C(i). We can express how ‘good’ it is to be in some state by assigning
a numerical value to states, called the worth of a state. We denote the worth of a state
by a function W :S ! R, and we assume this to be based on the net values of the
outcomes of the intentions in a state. For example, for a state s containing a single
intention i, then W(s)¼Vnet(i). Moreover, we assume that one state has a higher
worth than another state if the net values of all its intentions are higher. This means
that if 8s, s0 2 S, 8i2 Ints, 8i

0 2 Ints0, Vnet(i) � Vnet(i
0), then W(s) � W(s0). In the

empirical investigation discussed below, we illustrate that a conversion from
intention values to state worths is feasible, though we do not explore the issue
here.7 Finally, Ac denotes the set of physical actions the agent is able to perform;
with every �2Ac we identify a set of propositions P��P, which includes the
propositions that change value when � is executed.

In the remainder of this paragraph, we explain what a POMDP is; in the next
Section, we explain how to use it for implementing intention reconsideration.
A POMDP can be understood as a system that at any point in time can be in any
one of a number of distinct states, in which the system’s state changes over time
resulting from actions, and where the current state of the system cannot be
determined with complete certainty (Boutilier et al. 1999). In our case, the partial
observability arises when environments are not completely accessible to the agent,
in which case it cannot distinguish between states which vary only in details that it
cannot observe. Partially observable MDPs satisfy the Markov assumption so that
knowledge of the current state renders information about the past irrelevant to
making predictions about the future. In a POMDP, we represent the fact that the
knowledge of the agent is not complete by defining a probability distribution over all
possible states. An agent then updates this distribution when it observes its
environment.

Let a set of states be denoted by S and let this set correspond to the set of the
agent’s internal states as defined above. This means that a state in the MDP
represents an internal state of the agent. We let the set of actions be denoted by
A. (We later show that A 6¼Ac in our model.) An agent might not have complete
knowledge of its environment, and must thus observe its surroundings in order to
acquire knowledge: let � be a finite set of observations that the agent can make
of the environment. We introduce an observation function O: S�A!�(�) that
defines a probability distribution over the set of observations; this function
represents what observations an agent can make resulting from performing an
action a2A in a state s2S. The agent receives rewards for performing actions in
certain states: this is represented by a reward function R:S � A ! R. Finally, a state
transition function �: S�A! �(S) defines a probability distribution over states
resulting from performing an action in a state—this enables us to model non-
deterministic actions.

Having defined these sets, we solve a POMDP by computing an optimal policy:
an assignment of an action to each possible belief state such that the expected
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sum of rewards gained along the possible trajectories in the POMDP is a maximum.
Optimal policies can be computed by applying dynamic programming methods
to the POMDP, based on backwards induction; value iteration and policy iteration
are the most well known algorithms to solve POMDPs (Boutilier et al. 1999).
A major drawback of applying POMDPS is that these kinds of algorithms tend to be
highly intractable; we later return to the issue of computational complexity as it
relates to our model.

4.1. Intention reconsideration as a POMDP
We regard the BDI as a domain dependent object level reasoner, concerned directly
with performing the best action for each possible situation; the POMDP framework
is then used as a domain independent meta level reasoning component, which lets the
agent reconsider its intentions effectively. We define a meta level BDI-POMDP as a
tuple S,A,�,O,R, �ih . We have explained above that a state s2S in this model
denotes an internal state of the agent, containing a belief part and intention part.
As intention reconsideration is mainly concerned with states, actions and rewards,
we leave the implementation of observations �, the observation function O and the
state transition function � to the designer for now.

Since the POMDP is used to model intention reconsideration, we are merely
concerned with two possible meta level actions: the agent either performs an object
level action (act) or the agent deliberates (del ). The possible actions A¼ {act, del }
correspond to the agent either acting (act) or deliberating (del ). Because the
optimality criterion of policies depends on the reward structure of the POMDP,
we define the rewards for action act and deliberation del in state s2S as follows:

Rðs, aÞ ¼
WðsintÞ if a ¼ act

WðsÞ if a ¼ del

�

where sint2S refers to the state the agent intends to be in while currently being in
state s. Imagine a robot that has just picked up an item which has to be delivered at
some location. The agent has adopted the intention to deliver the item, i.e. to travel
to that location and to drop off the item. The reward for deliberation is the worth of
the agent’s current state (e.g. 0) whereas the reward for action is the worth of the
intended state (e.g. 10) for having delivered the item. The robot consequently acts,
which brings it closer to its ‘correct’ intentions. Intentions are correct in case the
agent does not waste effort while acting upon them. An agent wastes effort if it is
deliberating over its intentions unnecessarily. If an agent does not deliberate when
that would have been necessary, the agent has wrong intentions.8

This structure of reward agrees with the intuition that the agent eventually receives
a reward if it has correct intentions, it receives no reward if it has wrong intentions,
and it receives no direct reward for deliberation. With respect to this last intuition,
however, we must mention that the ‘real’ reward for deliberation is indirectly
defined, by the very nature of POMDPs, as the expected worth of future states
in which the agent has correct intentions. As intentions resist reconsideration
(Bratman et al. 1988), the agent prefers action over deliberation and the imple-
mentation of the reward structure should thus favour action if the rewards are
equivalent.

For illustrative purposes, consider the simple deterministic MDP in figure 12.
This figure shows a 5� 1 gridworld, in which an agent can move either right or left
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or stay at its current location. The agent’s current location is indicated with a square

and the location it intends to travel to is denoted by a circle. Assume the agent is

currently in state s1: its location is cell 4 and it intends to visit cell 1. Action will get

the agent closer to cell 1: it executes a move left action which results in state s2.

Deliberation results in dropping the intention to travel to cell 1, and adopting the

intention to travel to cell 5 instead; this results in state s3. Obviously, deliberation is

the best meta action here and the expected rewards for the meta actions in s1 reflect

this: the expected reward for deliberation is higher than the one for action. In all

other states, these expected rewards are equivalent, which means that the agent acts

in all other states.

Solving a BDI-POMDP means obtaining an optimal intention reconsideration

policy: at any possible state the agent might find itself in, this policy tells the agent

either to act or to deliberate.

It is important that deciding whether to reconsider intentions or not is computa-

tionally cheap compared to the deliberation process itself (Wooldridge and Parsons

1999); otherwise it is just as efficient to deliberate at any possible moment. Using a

POMDP to determine the reconsideration policy satisfies this criterion, since it

clearly distinguishes between design time computation, i.e. computing the policy,

and run time computation, i.e. executing the policy. We recognize that the design

time problem of computing a policy is very hard; this problem corresponds with the

general problem of solving POMDPs and we do not attempt to solve this problem in

this paper. However, the computation that concerns us most is the run time

computation, and in our model this merely boils down to looking up the current

state and executing the action assigned to that state, i.e. either to act or to deliberate.

This is a computationally cheap operation and is therefore suitable for run time

execution.
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Figure 12. A 5� 1 gridworld example which illustrates the definition of rewards in
a BDI-POMDP. Rewards, being either 0 or 10, are indicated per location.
With each state we have indicated the expected reward for executing a
physical action and for deliberation; the best meta action to execute is
indicated in square brackets.
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4.2. Experimental results

In this section, we describe the use of the POMDP model in the TILEWORLD testbed

and discuss the results obtained. The TILEWORLD implementation that we used is

exactly that described above.

The TILEWORLD testbed is easily represented as a MDP.9 Let L denote the set of

locations, i.e. L¼ {i: 1� i� n} represents the mutually disjoint locations, where n

denotes the size of the grid. A proposition pi then denotes the presence (pi¼ 1) or

absence ( pi¼ 0) of a hole at location i. An intention value corresponds to the reward

received by the agent for reaching a hole, and an intention cost is the distance

between the current location of the agent and the location that the agent intends to

reach. An environment state is a pair fpi, . . . , png,mi
�

, where {pi, . . . , pn} are the

propositions representing the holes in the grid, and m2L is the current location of

the agent.

Combining the 2n� n possible environment states with n possible intentions means

that, adopting explicit state descriptions, the number of states is 2n�n2, where n

denotes the number of locations. Computations on a state space of such size is

impractical, even for small n. In order to render the necessary computations feasible,

we abstracted the TILEWORLD state space. In the TILEWORLD domain, we abstract the

state space by letting an environment state e be a pair h p1, p2i, where p1 refers to the

location of the hole which is currently closest to the agent, and p2 refers to the

current location of the agent. Then an agent’s internal state is hh p1, p2i, fi1gi where i1
refers to the hole which the agent intends to visit. This abstraction means that the

size of the state space is now reduced to n3. However, the agent now has to figure out

at run time what is the closest hole in order to match its current situation to a state in

the TILEWORLD state space. This computation can be done in time O(n), by simply

checking whether every cell is occupied by a hole or not. Because the main purpose

of this example is merely to illustrate that our model is viable, we are currently not

concerned with this increase in run time computation.

4.2.1. Solving the TILEWORLD model off-line

To summarize, the model that we have to solve off-line consists of the following

parts. As described above, the state space S contains all possible internal states of

the agent. Each state s2S is a tuple hh p1, p2i, fi1gi, where p1 refers to hole that is

currently closest to the agent, p2 refers to the current location of the agent, and i1
denotes the hole which the agent intends to visit. The set of actions is A¼ {act, del}.

(Note that the set of physical actions is Ac¼ {stay, n, ne, e, se, se, sw, w, nw}, but that

is not of concern to us since we are concerned with the meta-level control problem

rather than object level action selection.) Since we assume full observability, the set

of observations is �¼S. Finally, state transitions are defined as the deterministic

outcomes of executing an action a2A. As the agent deliberates in state s resulting in

state s0 (i.e. � (s, del)¼ s0), then Bels¼Bels0, but possibly Ints 6¼ Ints0; as the agent acts

(i.e. � (s, act)¼ s00), then Ints¼ Ints0 0, but possibly Bels 6¼Bels0 0. Thus, deliberation

means that the intention part of the agent’s internal state possibly changes, and

action means that the belief part of the agent’s internal state possibly changes

(both ceteris paribus with respect to the other part of the internal state). Although

solving MDPs and POMDPs in general is computationally hard, we have shown

above that by appropriate abstraction of the TILEWORLD state space, the computa-

tions become feasible.
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4.2.2. Results

The experiments resulted in the graphs shown in figures 13, 14a and 14b. In every

graph, the environment’s dynamism and the agent’s planning cost p (for values 0, 1,

2 and 4) are varied. In figure 13, the overall effectiveness of the agent is plotted.

In Figure 14a, we plotted the agent’s commitment level. (Once again, the collected

data was smoothed using a Bezier curve.) Dynamism represents the acting ratio

between the world and the agent; this ratio oscillates with the random distribution

for hole appearances, on which the commitment level depends and in figure 14b

the cost of acting.

4.2.3. Analysis

The most important observation we make from these experiments is that the results

as presented in figure 13 are overall better than results as obtained in previous

investigations into the effectiveness of reconsideration (as elaborated below). Our

explanation for this observation is that solving the BDI-POMDP for our TILEWORLD

domain delivers an optimal domain dependent reconsideration strategy: the optimal

BDI-POMDP policy lets the agent deliberate when a hole appears that is closer than

the intended hole (but not on the path to the intended hole), and when the intended

hole disappears. This is exactly the reconsideration policy suggested by Kinny

and Georgeff (1991). Besides this observation, we see in figure 14a that our
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Figure 13. Overall effectiveness of a BDI-POMDP agent. Effectiveness is measured
as the result of a varying degree of dynamism of the world. The four curves
show the effectiveness at a planning cost (denoted by p) from 0 to 4. The two
other curves show the effectiveness at p¼ 1 and p¼ 2 of Kinny and
Georgeff’s best reconsideration strategy (from Kinny and Georgeff 1991).
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BDI-POMDP agent is able to determine its plan commitment at run time, depending
on the state of the environment. This ability contributes to increasing the agent’s
level of autonomy, since it pushes the choice of commitment level from design time
to run time.

In the context of flexible strategies, we can compare our results to those of the
previous section. The main conclusion we draw from comparing the results from the
two strategies is that the empirical outcomes suggest neither approach dominates
the other. Comparing the graphs from figures 10 and 13 we observe that the
agent’s effectiveness is generally higher for our BDI-POMDP model; when we
compare the graphs from figure 14 to figure 11, we see that the cost of acting is
lower overall in the discrete deliberation model. However, in our BDI-POMDP
model, the level of commitment is more constant, since the BDI-POMDP agent’s
decision mechanism depends less on predictions of appearances and disappearances
of holes.

4.3. Discussion
While we have evaluated our two approaches to flexible intention reconsideration in
the context of the TILEWORLD, we see no difficulty in adpating the techniques we are
proposing to different domains. Indeed, the only domain specific information that is
used in the formulation of the discrete deliberation scheduling is in the definition of
the utility functions. Thus, for any domain, in theory, in which agents engage in a
mixture of deliberation and action, it should be possible to apply the deliberation
scheduling approach to manage an agent’s intention reconsideration. Very similar
considerations apply to the POMDP model. The model is only concerned with the
meta-level decision about whether to deliberate or act, and this decision is based only
upon the utilities of the intention currently being acted on, and the utilities of other
potential intentions. Thus, the approach could, in theory, be applied to any domain
in which these utilities are available.
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Figure 14. (a) Average commitment level for a BDI-POMDP agent. The commit-
ment level is plotted as a function of the dynamism of the world with
planning cost (denoted by p) of 0, 1, 2 and 4. (b) Average cost of acting
for a BDI-POMDP agent. The cost of acting—the number of time steps that
the agent moves—is plotted as a function of the dynamism of the world with
planning cost (denoted by p) of 0, 1, 2 and 4.
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5. Related work

The notion of commitment has been widely studied in the agent literature. Two

different fields of research can be easily distinguished: a single agent and multi-agent

case. In both fields, only recently investigation has been initiated on run-time

decision making. Until now, the majority of previous work presupposed the problem

as a design-time one. Whereas in the single agent field, commitment is mostly

referred to as a deliberation and action trade-off, in the multi-agent field it is a ‘pledge’

to undertake a specified course of action (from Jennings 1993) and, obviously, more

related to the social property of agents.

Our work originates in the research on the role of intentions in the deliberation

process of practical reasoning agents, which was initiated by Bratman et al. (1988).

Since then, Pollack has investigated the issue of commitment in single practical

reasoning agent systems by means of overloading intentions (Pollack 1991). The idea

behind overloading is closely related to the filter override mechanism in the initial

BDI agent model as described in Bratman et al. (1988): the agent makes use of

opportunities that arise in the world, based on the intentions it has already adopted.

This research is more focused on the optimal usage of the current set of intentions,

rather than the actual process of deliberating over intentions.

More recently, Veloso et al. (1998) used a rationale based monitoring (RBM)

method to control of reasoning in intentional systems. The idea behind RBM is

that plan dependent features of the world are monitored during plan execution;

if a feature changes value, this is reason to replan. It must be noted here that

the determination of such monitors is a very domain-dependent task and this

might hinder the way to a more general domain-independent theory of control of

reasoning.

6. Conclusions

We have described research into the efficient and effective reconsideration of

intentions in autonomous belief-desire-intention (BDI) agents. We have investigated

how reconsideration depends on the environment in which an agent is situated. We

used the results of this investigation as the basis of two novel methodologies with

which agents can choose appropriate reconsideration strategies. Both these method-

ologies are decision theoretic: the first based on deliberation scheduling and the

second on partially observable Markov decision processes. We regard this kind of

management of intentions as a meta-level method for the control of reasoning for an

agent to deal with limited computational resources.

We investigated the relationship between the agent’s reconsideration rate and its

environment. For this, we let the agent have a fixed reconsideration rate and

observed the effectiveness of such a rate in different environments. We characterized

environments in terms of dynamism, determinism and accessibility. These charac-

teristics represent the rate of change, the predictability of actions and the access

to information in the environment, respectively. We found that all characteristics

influence the effectiveness of the agent; that the reconsideration rate influences the

effectiveness, e.g. a bold agent performs best in a static environment and a cautious

agent performs best in a dynamic environment; accessibility has no influence on

effectiveness with respect to the agent’s reconsideration rate; and reconsidering in

highly non-deterministic environments only pays off if planning is free. From the
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experimental series in which we vary more than one environmental characteristic, we
found that dynamism influences the agent’s effectiveness the most.

The results of this investigation suggest that in real world situations, which tend
to be dynamic, non-deterministic and inaccessible, agents may be better off by
selecting an appropriate reconsideration rate themselves. The two methodologies we
developed enable an agent to autonomously decide how strongly committed it is
to its intentions. These methodologies are the main contribution of our work. Our
approaches give well-founded means of establishing domain-dependent reconsidera-
tion strategies (optimal in the case of the POMDP approach). This makes it possible
to program agents with essentially domain independent strategies, which they then
use to compute domain dependent strategies (off-line in the case of the POMDP
model, online in the case of the discrete deliberation scheduling model). Until now,
empirical research on meta level reasoning aimed at efficient intention reconsid-
eration has, to the best of our knowledge, involved hardwiring agents with domain
dependent strategies.

In the first methodology we use the technique of discrete deliberation scheduling
for implementing the agent’s meta-level control function that selects an appropriate
reconsideration rate. The main idea behind this approach is that while executing
a plan to achieve some intention, a trade-off is calculated to either execute a next
action or to deliberate and possibly adopt another intention. The trade-off is
decision-theoretically determined on the basis of the expected utility of the particular
intention. We empirically evaluated the method in the TILEWORLD, where we varied
dynamism and planning time. This evaluation demonstrated that: first, the agent
outperforms agents with a fixed reconsideration rate (bold/cautious); secondly,
the reconsideration rate increases as dynamism increases; and, finally, as planning
time increases, the rate of reconsideration increases.

The second methodology is based on the theory of partially observable Markov
decision processes (POMDPs). We let the meta-level process of reconsideration be
implemented as POMDP. The actions in such a POMDP consist of two meta-level
choices to the agent, i.e. either to act or deliberate. In every possible situation, the
agent may find itself in, the POMDP indicates whether the agent should act or
deliberate. This decision on reconsidering or not is enforced by the POMDP through
computing the expected utilities of these meta-level choices. Because of the very
nature of constructing and solving MDPs in general, this computation happens
completely off-line. Therefore, the online reconsideration process is merely a matter
of looking up the current situation and making the related best choice to either
deliberate or act. The main problem in constructing the POMDP is the choice of
appropriate rewards for action and deliberation, since this is the basis of their
expected utility. As intuition prescribes, we let the reward for action be the value of
the state one intends to be in and the reward for deliberation the value of the current
state. An important advantage of using POMDPs is that we can formalise many
reconsideration issues independent of the domain in which an agent is placed. Again,
we demonstrated empirically that this approach toward agent design gives better
performance than approaches in which the reconsideration rate is fixed. The
approach is also better in some aspects than reconsideration based on discrete
deliberation scheduling. This is because the the optimal reconsideration policy is
computed (off-line), leading to an optimal reconsideration rate during online
operation. In addition, the level of commitment is more constant when using the
POMDP, since reconsideration depends less on the predictions about the dynamism
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of the environment. However, the total number of executed actions, in other words
the cost of acting, is lower in the discrete deliberation model. Furture work will
further investigate the relative merits of the two approaches.
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Notes

1. To save space, we omitted the graphs from the combined parameter variation series for

planning cost equal to 1 and 2, as although we conducted these experiments, the results

were consistent with those of the single parameter variation experiments.

2. The function, however, assumes that the life-expectancy of holes is infinite.

3. This contrasts with the continuous deliberation scheduling framework, which is the term

mainly used to cover work such as anytime algorithms (see e.g. Boddy and Dean 1989).

4. The TILEWORLD is a domain in which it is easier to express costs (in terms of distances)

rather than utilities. With an order-reversing mapping from costs to utilities, we can

continue to use utilities, which fits our model better.

5. Note that we do not let the agent know when or where holes appear, we merely give it some

measure of how fast the environment changes.

6. We clearly distinguish intentions from their outcome states and we do not give values to

intentions themselves, but rather to their outcomes. For example, when an agent intends to

deliver coffee, an outcome of that intention is the state in which coffee has been delivered.

7. Notice that this problem is the inverse of the utilitarian lifting problem: the problem of

how to lift utilities over states to desires over sets of states. Discussing the lifting problem,

and its inverse, is beyond the scope of this paper, and therefore we direct the interested

reader to the work of Lang et al. (2002).

8. This approach does not take the time for deliberation into account, but we could do this by

reducing the utility of the agent by the utility of the action it would otherwise carry out.

9. Although we have set up the theory as such to allow for partial observability (POMDPs),

the example presented here concerns full observability and thus a MDP.

References
Allen, J. F., Hendler, J., and Tate, A. (eds), 1990, Readings in Planning (San Mateo, CA: Morgan

Kaufmann Publishers).
Boddy, M., and Dean, T., 1989, Solving time-dependent planning problems. In Proceedings of

the Eleventh International Joint Conference on Artificial Intelligence (IJCAI-89), Detroit, MI,
pp. 979–984.

Boutilier, C., Dean, T., and Hanks, S., 1999, Decision-theoretic planning: structural assumptions and
computational leverage. Journal of AI Research, 11: 1–94.

Bratman, M. E., Israel, D. J., and Pollack, M. E., 1988, Plans and resource-bounded practical
reasoning. Computational Intelligence, 4: 349–355.

Brooks, R. A., 1999, Cambrian Intelligence (Cambridge, MA: The MIT Press).
Bylander, T., 1994, The computational complexity of propositional STRIPS planning. Artificial

Intelligence, 69(1–2): 165–204.
Chapman, D., 1987, Planning for conjunctive goals. Artificial Intelligence, 32: 333–378.
Georgeff, M. P., and Lansky, A. L., 1987, Reactive reasoning and planning. In Proceedings of the Sixth

National Conference on Artificial Intelligence (AAAI-87), Seattle, WA, pp. 677–682.
Good, I. J., 1971, Twenty-seven principles of rationality. In V. P. Godambe, and D. A. Sprott (eds)

Foundations of Statistical Inference (Toronto: Holt Rinehart Wilson), pp. 108–141.
Jennings, N. R., 1993, Commitments and conventions: The foundation of coordination in multi-agent

systems. The Knowledge Engineering Review, 8(3): 223–250.
Kaelbling, L. P., Littman, M. L., and Cassandra, A. R., 1998, Planning and acting in partially

observable stochastic domains. Artificial Intelligence, 101: 99–134.

M. Schut et al.292



Kinny, D., and Georgeff, M., 1991, Commitment and effectiveness of situated agents. In Proceedings
of the Twelfth International Joint Conference on Artificial Intelligence (IJCAI-91), Sydney,
pp. 82–88.

Kinny, D., Georgeff, M., and J. H., 1992, Experiments in optimal sensing for situated agents.
In Proceedings of the Second Pacific Rim International Conference on AI (PRICAI-92).

Lang, J., Torre, L. V. D., and Weydert, E., 2002, Utilitarian desires. Autonomous Agents and Multi-
Agent Systems, 5(3): 329–363.

Mueller, J. P., 1997, The Design of Intelligent Agents (LNAI Volume 1177). (Berlin: Springer-Verlag).
Pollack, M. E., 1991, Overloading intentions for efficient practical reasoning. Noûs, 25(4): 513–536.
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