
ATL Satisfiability is Indeed
EXPTIME-complete

DIRK WALTHER, University of Liverpool, UK.
E-mail: dirk@csc.liv.ac.uk

CARSTEN LUTZ, TU Dresden, Germany.
E-mail: lutz@tcs.inf.tu-dresden.de

FRANK WOLTER and MICHAEL WOOLDRIDGE,
University of Liverpool, UK.
E-mail: frank@csc.liv.ac.uk; mjw@csc.liv.ac.uk

Abstract

The alternating-time temporal logic (ATL) of Alur, Henzinger and Kupferman is being increasingly widely applied in
the specification and verification of open distributed systems and game-like multi-agent systems. In this article,
we investigate the computational complexity of the satisfiability problem for ATL. For the case where the set of
agents is fixed in advance, this problem was settled at EXPTIME-complete in a result of van Drimmelen. If the set
of agents is not fixed in advance, then van Drimmelen’s construction yields a 2EXPTIME upper bound. In this article,
we focus on the latter case and define three natural variations of the satisfiability problem. Although none of
these variations fixes the set of agents in advance, we are able to prove containment in EXPTIME for all of
them by means of a type elimination construction—thus improving the existing 2EXPTIME upper bound to a tight
EXPTIME one.

1 Introduction

Alternating-time temporal logic (ATL) is a logic of strategic ability, intended to support
reasoning about the abilities of agents and coalitions of agents in open systems (i.e. game-like
multi-agent systems) [3]. Introduced in 1997 [1], ATL appears to be rapidly gaining
acceptance as a key formalism for reasoning about multi-agent systems. There are several
reasons for the intense interest in ATL. From a language point of view, ATL can be seen as an
elegant generalization and extension of Computation tree logic (CTL), one of the most
successful and widely applied formalisms for reasoning about reactive systems [5]. While in
CTL, one is essentially restricted to stating that some property is either inevitable or possible,
in ATL, one can also express adversarial properties, such as ‘agents 1 and 2 can cooperate to
ensure that, no matter what the other agents do, the system will not enter an invalid state’
(written: hh1, 2iiœvalid). From the point of view of semantics, ATL is based on models [called
Alternating Transition Systems (ATSs)] that emphasize the game-like nature of distributed
computing, thus reflecting current opinion on the semantics of multi-process systems. And
finally, from the verification point of view, model checking in ATL has been shown to be no
more complex than that of model checking in its counterpart CTL: the ATL model checking
problem can be solved in time Oðm " nÞ, where m is the size of the model and n is the size of the

Vol. 16 No. 6, ! The Author, 2006. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org
Published online 12 August 2006 doi:10.1093/logcom/exl009

formula to be checked. As with CTL, this has enabled the development of practical model
checking tools for ATL [4].

One interesting aspect of ATL is that its model checking problem subsumes a number of
other important computational problems such as program synthesis, module checking and
controllability [3, p. 676]. However, the problem of social procedure design or mechanism
design in ATL is best understood as a (constructive) satisfiability checking problem: we are
given a specification of a social mechanism (such as a voting procedure [11]), expressed as
a formula ’ of ATL and asked whether or not there exists a procedure that satisfies
specification ’; and if so, we are asked to exhibit it. As such, a procedure corresponds to
a model of ’, social procedure design can be viewed as a proof of the satisfiability of ’ that
is constructive in the sense that an actual model is generated.

Although the complexity of the model checking problem for ATL was classified in the
very first publications on ATL [1], the complexity of the satisfiability problem was
not addressed. The fact that ATL is a generalization of CTL immediately gives an EXPTIME

lower bound, but the question of whether or not ATL satisfiability was in EXPTIME was
left open.1

For the case where the set of relevant agents is fixed in advance, the complexity of the
satisfiability problem for ATL was settled in 2003 with the publication by van Drimmelen [14]
of an automata-based EXPTIME decision procedure. More precisely, the approach was to
show that ATL satisfiability can be reduced to the non-emptiness problem for alternating
Büchi tree automata. For the overall decision procedure to have exponential running time, the
branching degree of the constructed trees has to be polynomial in the size of the input
formula. In van Drimmelen’s [14] proof, the constructed trees have branching degree kn,
where n is the number of agents and k is polynomial in the size of the input formula. Thus,
a polynomial branching degree, and hence an overall EXPTIME upper bound, is only obtained
if the number of agents allowed to appear in input formulas is fixed beforehand, rather than
being regarded as a part of the input. Thus, the obtained EXPTIME result can be stated
as follows:

THEOREM 1.1 (van Drimmelen)
Suppose ! is a fixed, finite set of agents. Then, satisfiability of ATL formulas based on ! in
an ATS over ! is EXPTIME-complete.

If input formulas may contain arbitrarily many agents, then n, the number of agents,
is dependent on the input formula. In this case, the branching degree of the constructed
trees becomes exponential, and the decision procedure only yields a 2EXPTIME upper bound.
Thus, if we do not fix the set of agents in advance, the complexity of satisfiability in ATL
is still open — between EXPTIME and 2EXPTIME. Note that van Drimmelen’s [14] approach
cannot be generalized by choosing a better tree construction: as we will see later in ATL,
it is possible to devise a formula that enforces a branching degree exponential in the number
of agents.

Considering ATL with an unbounded supply of agents, we find there are several
different ways of framing the satisfiability problem with respect to the agents that can appear
in both the formula and the structure that satisfies the formula. In particular, there are
different possibilities for the number of agents that occur in an ATS over which a formula

1This is a simplification. As we shall see later, some variants of the ATL satisfiability problem do not inherit
EXPTIME-hardness from CTL in an immediate way.

766 ATL Satisfiability is Indeed EXPTIME-complete

is to be interpreted. With this observation in mind, consider the following three formulations
of the ATL satisfiability problem:

(i) Given a finite set ! of agents and a formula ’ over !, is ’ satisfiable in an ATS over !?
(ii) Given a formula ’, is there a finite set ! of agents (containing the agents referred to in ’)

such that ’ is satisfiable in an ATS over !?
(iii) Given a formula ’, is ’ satisfiable in an ATS over exactly the agents which occur in ’?

Van Drimmelen’s [14] construction does not give an EXPTIME upper bound for any of these
three variations. The main contribution of the present article is to prove that, still, all three
variations are EXPTIME-complete.

The remainder of this article is structured as follows. To begin, in Section 2, we introduce
ATL both by way of some simple examples and its formal syntax and semantics. In Section 3,
we discuss various possible formulations of the satisfiability problem for ATL, and how these
problems relate to one another. Our main result is proved in Section 4, and we present some
conclusions in Section 5.

2 Alternating-time temporal logic (ATL)

ATL is a logic of strategic cooperative ability. It is intended to support reasoning about the
abilities of agents and coalitions of agents in open distributed systems (also increasingly
known as multi-agent systems). The syntactic expressions that facilitate such reasoning in
ATL are known as cooperation modalities. A cooperation modality has the general form
hhCiiT, where C is a set of agents (which intuitively correspond to the autonomously acting
components of a system) and T is a temporal logic expression of the form $’ (‘next ’’),
œ’ (‘always ’’), s’ (‘eventually, ’’), or ’ U (‘’ until ’). The meaning of a cooperation
modality hhCiiT is that the coalition C can cooperate to ensure that T is true; more precisely,
that there exists a collective strategy for the system components in C such that, if these
components act in the manner defined by this collective strategy, then T is guaranteed to be
satisfied. In ATL, as in its ancestor CTL, we are not allowed to arbitrarily intermingle
cooperation expressions and temporal logic formulas: every temporal expression ($, œ, U
or s) must be preceded by a cooperation expression of the form hhCii, for some set of
agents C.2

To better understand ATL, here are some example formulas [3].

hhCiiœ’

This formula asserts the controllability of the overall system by some coalition C with respect
to property ’. That is, it states that the coalition C can cooperate to ensure that the property ’
always holds in the system, no matter how the components of the system outside C behave.

hhaii % seebðmsgÞ

This formula says that agent a can guarantee that agent b eventually sees the message msg
(where seeb(msg) is an atomic proposition).

hhaiiœ:seebðmsgÞ

2The variation of ATL that permits arbitrarily intermingled temporal logic and cooperation expressions is known
as ATL*, and bears the same family relationship to ATL that the logic CTL* does to CTL [5].

ATL Satisfiability is Indeed EXPTIME-complete 767

This formula says that agent a can ensure that agent b never sees the message msg.
One area of interest to the authors of the present article is the use of ATL in the

specification, verification and synthesis of social procedures such as voting protocols [11].
Consider the following example (adapted from [11]).

Two agents, A and B, must choose between two outcomes, p and q. We want a mechanism
that will allow them to choose, which will satisfy the following requirements. First, whatever
happens, we definitely want an outcome to result – that is, we want either p or q to be
selected. Second, we really do want the agents to be able to collectively choose an outcome.
However, we do not want them to be able to bring about both outcomes simultaneously.
Similarly, we do not want either agent to dominate: we want them both to have equal power.

We can elegantly capture these requirements using ATL, as follows.

hh6 0ii $ ðp _ qÞ ð1Þ
ðhhA,Bii $ pÞ ^ ðhhA,Bii $ qÞ ð2Þ
:hhA,Bii $ ðp ^ qÞ ð3Þ
ð:hhAii $ pÞ ^ ð:hhBii $ pÞ ð4Þ
ð:hhAii $ qÞ ^ ð:hhBii $ qÞ ð5Þ

The first requirement states that an outcome must result: this will happen inevitably, whatever
the agents do. Requirement (2) states that the two agents can choose between the two
outcomes: they have a collective strategy such that, if they follow this strategy, outcome
x will occur, where x is either p or q. Requirement (3), however, says that the agents cannot
choose both outcomes. Requirements (4) and (5) state that neither agent can bring about an
outcome alone.

Now, it is easy to see that there exists a voting protocol that satisfies these requirements.
Consider the following mechanism, (from [12]), intended to permit the agents to select
between the outcomes in accordance with these requirements.

The two agents vote on the outcomes, i.e. they each choose either p or q. If there is a
consensus, then the consensus outcome is selected; if there is no consensus, (i.e. if the two
agents vote differently), then an outcome p or q is selected non-deterministically.

Notice that, given this simple mechanism, the agents really can collectively choose the
outcome by cooperating. If they do not cooperate, however, then an outcome is chosen for
them.

We give a precise description of this mechanism in Figure 1; the mechanism is specified in
the REACTIVE MODULES language of the MOCHA model checking system for ATL [4]. Thus, the
protocol contains three agents, which in MOCHA terminology are called modules. (Note that
defining the protocol in this way requires an agent that was not named in the specification
formulae above.)

& AgentA and AgentB correspond to the A and B in our scenario. Each agent controls
(i.e. has exclusive write access to) a variable that is used to record their vote. Thus, voteA
records the vote of AgentA, where a value of false in this variable means voting for
outcome P, while true implies voting for Q. The ‘program’ of each agent is made up of

768 ATL Satisfiability is Indeed EXPTIME-complete

two remaining guarded commands, which simply present the agent with a choice of
voting either way.

& The Environment module is used to model the mechanism itself. This module simply
looks at the two votes and if they are the same, it sets the variable outcome to be the
consensus outcome; if the two votes are different, then the guarded commands defining
Environment’s behaviour say that an outcome will be selected non-deterministically.

It is similarly easy to see how ATL can be used, in this way, to specify much more complex
voting protocols and other related social procedures. It is important to note that this example
is chosen for pedagogic reasons and realistic protocols will be rather more elaborate. In
particular, in realistic applications, we will often have a considerably larger number of agents
who participate in a protocol than just two. If we fix the set of agents in advance, then we can

FIGURE 1. A simple social choice mechanism, defined in the Reactive Modules language of the
MOCHA model checker

ATL Satisfiability is Indeed EXPTIME-complete 769

impose an upper bound on the number of participants in the protocols that we can describe
and synthesize. Therefore, a natural satisfiability problem for this application appears to be
variant (a) from above in which the set of agents is unbounded and given as part of the input.

Once we have a protocol, we can use an ATL model checker (such as MOCHA [4]) to
automatically verify that our implementation of the requirements is correct. However, the
problem of synthesising a protocol from such a specification corresponds to (constructively)
checking the satisfiability of the specification—wherefrom our interest lies in the satisfiability
problem.

Let us now move on to consider the formal syntax and semantics of ATL.

DEFINITION 2.1 (ATL Syntax)
Let " be a countable infinite set of atomic propositions and ! a countable infinite set of
agents. A coalition is a finite set A ' ! of agents. The set of ATL-formulas is the smallest
set containing the following:

& p for p 2 ";
& :’, ’ _ for ATL-formulas ’ and ;
& hhAii $ ’, hhAiiœ’, hhAii’U for a coalition A and ATL-formulas ’ and .

The modality hh ii is called a path quantifier, $ (‘next’), œ (‘always’) and U (‘until’) temporal
operators. Logical truth (>) and the Boolean connectives (^, ! and $) are defined as usual.
The operator hhAii % ’ used in the examples is defined as hhhiihAii>U ’. Observe that, unlike
the Aœ and Eœ operators of CTL, the ATL operator hhAiiœ cannot be expressed in terms
of the other operators.

Several versions of the semantics of ATL have been presented in the literature. We choose
to work with alternating transition systems (ATSs) as introduced in [2].

DEFINITION 2.2 (ATS)
An ATS for ! is a tuple S ¼ h",!,Q,!, "i with n) 1 where

& " ' " is a finite, non-empty set of atomic propositions;
& ! ¼ fa1, . . . , ang ' ! is a (finite) set of n agents;
& Q is a finite, non-empty set of states;
& ! : Q ! 2" is a valuation function which assigns to every state a set of propositions which

are true there and
& " : Q * ! ! 22

Q

is a transition function which maps a state q 2 Q and an agent a 2 ! to
a set of choices "ðq, aÞ available to a at q such that the following condition is satisfied:
for every state q 2 Q and every set Qa1 , . . . ,Qan of choices Qai 2 "ðq, aiÞ, 1 + i + n, the
intersection Qa1 \ " " " \Qan is a singleton set.

Intuitively, "ðq, aÞ describes the a-choices available in q: when in state q, agent a chooses a set
from "ðq, aÞ to ensure that the ‘next state’ will be among those in the chosen set. It is natural to
generalize this notion to A-choices for coalitions A: let S ¼ h",!,Q,!, "i be an ATS. For
each state q 2 Q and each coalition A ' !, set

"ðq,AÞ :¼ fQA ' Q j QA ¼
T

a2A Qa where for each a 2 A,Qa 2 "ðq, aÞg if A 6¼ 6 0
f
S

"ðq,!Þg if A ¼ 6 0:

!

When in state q, the coalition A may jointly choose a set from "ðq,AÞ to ensure that
the next state is from this set. Clearly, "ðq,!Þ is a set of singletons. The states

770 ATL Satisfiability is Indeed EXPTIME-complete

appearing in singletons in "ðq,!Þ are the successors of q, i.e. whatever choices the
individual agents make, the next state of the system will be from ["ðq,!Þ. This
explains the definition of "ðq, 6 0Þ: the empty set of agents cannot influence the
behaviour of the system, so the only choice that the empty coalition has is the set of all
successors.

An infinite sequence # ¼ q0q1q2 . . . 2 Q! of states is a computation if, for all positions i) 0,
there is a choice fqiþ1g 2 "ðqi,!Þ (i.e. qiþ1 is a successor of qi). As a notational convention for
any finite or infinite sequence # ¼ #0#1 . . . and any i) 0, denote with #½i. the i-th component
#i in # and with #½0, i. the initial sequence #0 . . . #i of #.

A strategy for an agent a 2 ! is a mapping fa : Qþ ! 2Q such that, for all # 2 Q/ and all
q 2 Q, fað# " qÞ 2 "ðq, aÞ. Note that a strategy fa maps each finite sequence # " q of states to a
choice in "ðq, aÞ available to agent a at the state q. A strategy for agents in a coalition A ' !
is a set of strategies FA ¼ f fa j a 2 Ag, one for each agent in A.

The set outðq,FAÞ of outcomes of a strategy FA starting at a state q 2 Q is the set of all
computations # ¼ q0q1q2 . . . 2 Q! such that q0 ¼ q and qiþ1 2 \fa2FAfað#½0, i.Þ for all i) 0.

DEFINITION 2.3 (ATL Semantics)
Given an ATS S ¼ h",!,Q,!, "i, the satisfaction relation 0 is inductively defined as follows:
For all states q of S, coalitions of agents A ' !, agents a 2 ! and ATL-formulas ’, ’1 and ’2,
it holds that

& S, q 0 p iff p 2 !ðqÞ for all propositions p 2 ";
& S, q 0 :’ iff S, q 60 ’;
& S, q 0 ’1 _ ’2 iff S, q 0 ’1 or S, q 0 ’2;
& S, q 0 hhAii $ ’ iff there is a strategy FA such that, for all computations # 2 outðq,FAÞ,

it holds that S, #½1. 0 ’;
& S, q 0 hhAii’ iff there is a strategy FA such that, for all computations # 2 outðq,FAÞ,

it holds that S, #½i. 0 ’ for all positions i) 0;
& S, q 0 hhAii’1U’2 iff there is a strategy FA such that, for all computations # 2 outðq,FAÞ,

there is a position i) 0 such that S, #½i. 0 ’2 and S, #½j. 0 ’1 for all positions j with
0 + j < i.

If for some state q of some ATS S it holds that S, q 0 ’, then the ATL-formula ’ is true at q,
and S is called a model of ’. An ATL-formula is satisfiable if it has a model and it is valid
if it is true at all states in any ATS.

Notice that there is an intimate relationship between CTL and ATL. Let ! be the set of all
agents in an ATS S. On S, we can then interpret CTL’s existential path quantifier E in ATL as
the cooperation expression hh!ii, while we can interpret CTL’s universal path quantifier A in
ATL as the cooperation expression hh6 0ii. Clearly, this translation only works if the set of
agents ! is finite and known in advance.

The automata-based decision procedure in [14] sketched in the introduction yields a
2EXPTIME upper bound because, in the constructed tree models, the branching degree is
exponential in the number of agents. To illustrate that this branching cannot easily be
reduced, we exhibit a sequence of ATL formulas ð’iÞi2N such that, for any ATS S, state q and
i) 0, S, q 0 ’i implies that q has at least 2i successors in S:

’i :¼
^

1+j+i

"
hhajii*pj ^ hhajii*:pj

#
:

ATL Satisfiability is Indeed EXPTIME-complete 771

As every agent ai may choose the propositional letter pi to be true or false at a successor state,
jointly, the agents a1, . . . , ak may choose any possible valuation of p1, . . . , pk for a successor
state. As there are 2i such valuations, there must be as many successors.

3 Varieties of satisfiability for ATL

The key syntactic difference between ATL and its predecessor CTL is that the formulas of
ATL explicitly refer to the agents. We must be mindful of the way in which such agents are
interpreted in the formulation of the ATL satisfiability problem. To better understand why,
consider the following ATL formula (adapted from [11, p. 47]):

:hhaii*p ^ :hhaii*q ^ hhaii*ðp _ qÞ:

This formula expresses the fact that agent a cannot make p true and cannot make q true;
but it can make either p or q true. Now, is this ATL formula satisfiable? It depends on the
range of ATSs we are prepared to consider. If we admit arbitrary ATSs as witness to its
satisfiability, then the answer is yes: one can easily construct an ATS containing two or
more agents that satisfies it. However, suppose we only consider ATSs that contain at
most one agent. By virtue of the fact that the formula is well-formed, the agent in the
structure must be a. But then, the choice sets for this agent must be singletons and it is
then easy to see that the formula could not be satisfied in such a model. So, the agents
in the structures we are prepared to consider are important in determining the
satisfiability or otherwise of a formula and even unknown agents that are not referred
to in a formula can play a part in determining whether or not the formula is satisfied in
a structure. Notice that the presence of unknown agents introduces an element of non-
determinism, as the agents that occur in a formula cannot completely determine the behaviour
of the system anymore.

With these concerns in mind, consider the following three variations of satisfiability
for ATL.

(i) Satisfiability over given sets of agents:
Given a finite set ! of agents and a formula ’ over !, is ’ satisfiable in an ATS over !?

(ii) Satisfiability over arbitrary sets of agents:
Given a formula ’, is there a finite set ! of agents (containing the agents referred to in ’)
such that ’ is satisfiable in an ATS over !?

(iii) Satisfiability over formula-defined sets of agents:
Given a formula ’, is ’ satisfiable in an ATS over exactly the agents which occur in ’?

As already noted, van Drimmelen’s [14] construction does not give an EXPTIME upper bound
for any of these variations. The automata theoretic algorithm presented in [14] yields a
2EXPTIME upper bound Cases (i) and (iii). It does not a priori give any upper bound for
Case (ii), although a 2EXPTIME bound follows from this algorithm together with Lemma 3.2
given subsequently. Our main result is as follows:

THEOREM 3.1
Problems (i), (ii) and (iii) are EXPTIME-complete.

The remainder of this article is largely devoted to the proof of the EXPTIME upper bound.
The lower bound will be discussed briefly at the end of the next section. We begin by showing

772 ATL Satisfiability is Indeed EXPTIME-complete

that it suffices to prove the upper bound for problem (iii), as the other two cases may be
reduced to this.

LEMMA 3.2
Problems (i) and (iii) are polynomially reducible to each other, while problem (ii) is
polynomially reducible to (i). In fact, we even have the stronger property that, for each
formula ’ and each set of agents ! 1 !’, ’ is satisfiable in an ATS for ! iff it is satisfiable
in an ATS for !’ [fag, for one fresh agent a.

PROOF. Note that (iii) is a special case of (i), where ! coincides with the set of agents !’

which occur in ’. Conversely, given ! and ’ from (i), conjunctively add to ’ any valid
formula containing exactly the agents from ! which do not occur in ’. Then ’ is
satisfiable in an ATS for ! iff ’ ^ is satisfiable in an ATS for the agents which occur in
’ ^ . It thus remains to prove the second part, i.e. for each formula ’ and each set of agents
! 1 !’, ’ is satisfiable in an ATS for ! iff it is satisfiable in an ATS for !’ [fag for one
fresh agent a.

‘)’: Suppose S is an ATS for ! 1 !’ such that S satisfies ’. We convert S into an ATS S0

for !’] fag that also satisfies ’. Define the transition function "0 of S0 in terms of " in S
as follows: for all q 2 Q,

& "0ðq, a0Þ :¼ "ðq, a0Þ for each a0 2 !’ and
& "0ðq, aÞ :¼ "ðq,! n!’Þ.

It is easy to show by structural induction that, for all q 2 Q and all formulas using only
agents from the set !’, we have S, q 0 iff S0, q 0 . Thus, S0 is a model of ’ as required.

‘(’: Suppose S is an ATS for !’] fag such that S satisfies ’. Let a0 2 ! n!’. We convert S
into an ATS S0 for ! such that S0 still satisfies ’. Define "0 of S0 in terms of " in S as follows:
for all q 2 Q,

& "0ðq, a00Þ ¼ "ðq, a00Þ for each a00 2 !’;
& "0ðq, a0Þ ¼ "ðq, aÞ and
& "0ðq, a00Þ ¼ fQg for each a00 2 ! n ð!’ [fa0gÞ.

Again, it is easy to show by structural induction that, for all q 2 Q and all formulas using
only agents from the set !’, we have S, q 0 iff S0, q 0 . g

4 The main result

This section is devoted to the proof of Theorem 3.1. Our main result is containment in
EXPTIME of problem (iii) from the previous section, i.e. the satisfiability of ATL formulas
’ in ATSs over exactly the agents occurring in ’. By Lemma 3.2, this yields EXPTIME

upper bounds also for problems (i) and (ii). The EXPTIME lower bounds for (i) and (ii) are
immediate by reduction of CTL as sketched at the end of Section 2. To establish an EXPTIME

lower bound for problem (ii), we will reduce the global consequence problem in the modal
logic K.

We start with the EXPTIME upper bound for problem (iii). Our approach is to use a
type elimination construction similar to the one commonly used for CTL [6, 5]. One
advantage of this approach is that it is constructive: if the input formula ’ is satisfiable,

ATL Satisfiability is Indeed EXPTIME-complete 773

then the proof actually constructs a model of ’.3 Thus, our algorithm can be used e.g.
for the synthesis of social procedures as sketched in Sections 1 and 2. We should note
that recently a similar construction has been independently developed by Goranko and
van Drimmelen in [8]. However, Goranko and van Drimmelen [8] use their construction
to prove completeness of an ATL axiomatization rather than for obtaining upper complexity
bounds.

We start the presentation of our decision procedure with a number of definitions.

DEFINITION 4.1 (Extended Closure)
Let ’ be an ATL-formula. The extended closure eclð’Þ of ’ is the smallest set which is closed
under the following conditions:

& ’ 2 eclð’Þ;
& eclð’Þ is closed under subformulas;
& eclð’Þ is closed under single negation;
& if hhAiiœ 2 eclð’Þ, then hhAii*hhAiiœ 2 eclð’Þ;
& if hhAii U # 2 eclð’Þ, then hhAii*hhAii U # 2 eclð’Þ.

It is easy to verify that for a given ATL-formula ’, the cardinality of the extended closure
eclð’Þ is linear in the length of ’.

DEFINITION 4.2 (Type)
Let ’ be an ATL-formula. The set # ' eclð’Þ is a type for ’ if the following conditions are
satisfied:

(T1) 1 _ 2 2 # iff 1 2 # or 2 2 #, for all 1 _ 2 2 eclð’Þ;
(T2) 2# iff : =2#, for all : 2 eclð’Þ;
(T3) hhAiiœ 2 # iff f , hhAii*hhAiiœ g ' #, for all hhAiiœ 2 eclð’Þ;
(T4) hhAii U # 2 # iff #2# or f , hhAii*hhAii U #g ' #, for all hhAii U # 2 eclð’Þ.

The set of all types for ’ is designated by $’.
Before continuing, we introduce some convenient notions. With !’, we denote the set of

agents which occur in the formula ’. Moreover, we assume that j!’j ¼ n implies
!’ ¼ f1, . . . , ng, i.e. the agents are numbered and their name coincides with their number.
We call ATL-formulas of the form hhAii 1 U 2 or :hhAiiœ eventualities. A next-formula is a
formula of the form hhAii* or :hhAii* . For each formula ’, assume that all next-formulas
in eclð’Þ are linearly ordered and use] to denote the number of the next-formula 2 eclð’Þ
(the numbering starts with 0 and the formula ’ will be clear from the context). The ordering is
such that no negative next-formula occurs before a positive one. Since there are as many
positive next-formulas in eclð’Þ as negative ones, we obtain an enumeration 0, . . . , k21

of k next-formulas with positive next-formulas 0, . . . , k=221 and negative next-formulas
 k=2, . . . , k21.

To understand the following central definition, let us sketch some details of the ATS
S that our algorithm attempts to build as a model for the input formula ’. If n ¼ j!’j and
k is the number of next-formulas in eclð’Þ, then (regardless of some technical details) ’,
the states of S consist of sequences of n-tuples whose components take values from
f0, . . . , k 2 1g. The set of all such n-tuples is denoted [k / n] and the states of S will thus be from

3This model is finite and of bounded size: the number of states is at most exponential in the length of ’.

774 ATL Satisfiability is Indeed EXPTIME-complete

½k=n./. If q 2 ½k=n./ is a state of S, then, fq " ~t j ~t 2 ½k=n.g will be the set
of its potential successors, i.e. the choices in "ðq, aÞ will be subsets of this set. When
constructing S, each state q 2 ½k=n./ will have to satisfy a number of positive next-
formulas and a number of negative next-formulas. Clearly, having to satisfy a positive
next-formula hhAii* at q means that there has to be an A-choice C 2 "ðq,AÞ such
that all states in C satisfy . Similarly, having to satisfy a negative next-formula :hhAii*
at q means that all A-choices C 2 "ðq,AÞ have to contain a state satisfying : . This can
be achieved by defining the transition function and assigning formulas to successors as
follows:

(i) For each agent a, we set

"ðq, aÞ :¼ ffq " ~t 2 ½k=n. j ~t ¼ ðt0, . . . , tn21Þ and ta ¼ pg j p < k=2g:4

Intuitively, every agent ‘owns’ a position in ~t, and via this position, he can make an
a-choice in state q by ‘voting’ for a positive next-formula that he wants to be satisfied.
Due to this definition, for coalitions of agents A, we can characterize A-choices as
follows: A subset S ' ½k=n. is called an A-voting set if there exists a mapping
$: A ! f0, . . . , k=2 2 1g such that

S :¼ f~t ¼ ðt0, . . . , tn21Þ j ta, ¼ $ðaÞ; for all a 2 Ag:

Then, the elements of "ðq,AÞ are exactly the sets fq " ~t j ~t 2 Sg with S being an A-voting
set.

(ii) To satisfy a positive next-formula hhAii* at q, we use the voting set S in which all
agents a 2 A vote for this formula, i.e.

S ¼ f~t ¼ ðt0, . . . , tn21Þ j ta ¼]hhAii* ; for all a 2 Ag 2 "ðq,AÞ:

The ATS S is constructed such that all states in the corresponding A-choice fq " ~t j ~t 2 Sg
make true.

(iii) To satisfy a negative next-formula :hhAii* at q, we have to pick an element from every
A-choice C 2 "ðq,AÞ and then make false at the picked elements.
Note that, in being a member of an A-choice, a picked element will also automatically be
a member of an A0-choice for all A0 ' A. This is fine as :hhAii* implies :hhA0ii* .
However, if B 6' A, then :hhAii* does not imply :hhBii* . Thus, we should be careful
that the picked elements from A-choices are not elements of B-choices for any such B.
This is implemented by demanding that the element ~t ¼ ðt0, . . . , tn21Þ picked for an
A-choice satisfies ta) k=2 for each agent a =2A.
The description of how exactly we pick elements is given after the next definition.

(iv) A special role is played by negative next-formulas :hh!’ii* . As we are working with
formula-defined sets of agents, !’ is the set of all agents in S. For this reason, such
negative next-formulas behave differently from formulas referring to smaller sets of
agents. For example, :hhAii* and :hhAii* 0 imply :hhAii*ð _ 0Þ iff A ¼ !’.

4Recall that we assume agents to be natural numbers.

ATL Satisfiability is Indeed EXPTIME-complete 775

However, dealing with formulas :hh!’ii* is simple: they merely state that no successor
of q satisfies .

The whole picture of the ATS construction is somewhat more complicated due to the
presence of box formulas and until formulas, which we will address later.

We now introduce a ‘refutation function’ whose purpose is to pick, for states q that have to
satisfy a negative next-formula :hhAii* , successors that refute as explained under (iii)
above.

DEFINITION 4.3 (Refutation Function)
Let ’ be an ATL-formula, n ¼ j!’j, and k the number of next-formulas in eclð’Þ. We define a
partial function

f : ½k=n. * 2!’ ! fk=2, . . . , k 2 1g

mapping vectors and coalitions of agents to (numbers of) negative next-formulas: for each set
A 3 !’ of agents, fix an agent aA 2 !’ n A. Then set, for all ~t ¼ ðt0, . . . , tn21Þ 2 ½k=n. and
A ' !’,

fð~t,AÞ :¼]:hhAii* if taA ¼]:hhAii* and for all a 2 !’, ta < k=2 iff a 2 A
undefined if there is no such :hhAii* :

!

Intuitively, fð~t,AÞ ¼]:hhAii* means that, for every state q satisfying :hhAii* , the successor
q " ~t has to refute . Note that there may be more than one successor of q refuting : at least
one element of each A-choice. Formally, the most important properties of the refutation
function are the following:

(1) For each formula :hhA0ii* 0 2 eclð’Þ with A0 3 !’ and each A0-voting set S, there is an
element ~t0 2 S such that fð~t0,A0Þ ¼]:hhA0ii* 0 ;5

(2) For all ~t0 ¼ ðt00, . . . , t0n21Þ 2 ½k=n., fð~t0,A0Þ ¼]:hhA0ii* 0 implies t0a) k=2 for all a 2 !’ n A0

[cf. explanation (iii)];
(3) For each ~t 2 ½k=n., there is at most a single A ' !’ with fð~t,AÞ defined.

It is easily verified that the function f from Definition 4.3, indeed, satisfies these
properties. A different function satisfying the properties is given by van Drimmelen in [14].
To determine the satisfiability of an ATL formula ’, the algorithm developed in this
section will check for the existence of a model that is composed from certain trees, so-called
’-trees.

DEFINITION 4.4 (’-tree, #-vector, *-matching)
Let ’ be an ATL-formula, n ¼ j!’j and k the number of next-formulas in eclð’Þ. For each
next-formula # 2 eclð’Þ and vector ~t ¼ ðt0, . . . , tn21Þ 2 ½k=n.,

& if # ¼ hhAii* and ta ¼]# for each a 2 A, then ~t is called a #-vector;
& if # ¼ :hhAii* with A 3 !’, then ~t is called a #-vector if fð~t,AÞ ¼]#;
& if # ¼ :hh!’ii* 2 eclð’Þ, then ~t is called a #-vector.

5Recall that A0-voting sets correspond to A0-choices; c.f. explanation (i) given earlier in this article.

776 ATL Satisfiability is Indeed EXPTIME-complete

For each type # 2 $’ and each ~t ¼ ðt0, . . . , tn21Þ 2 ½k=n., let S#ð~tÞ ' eclð’Þ be the smallest set
such that

(M1) if hhAii* 2 # and ~t is a hhAii* -vector, then 2 S#ð~tÞ and
(M2) if :hhAii* 2 # and ~t is a :hhAii* -vector, then : 2 S#ð~tÞ.

Given a set M, a hM, k, ni-tree T is a mapping T from a finite prefix-closed subset of
½k=n./ to M. A h$’, k, ni-tree is called a ’-tree. A ’-tree T is called *-matching if, for all
% 2 domðTÞ and all ~t 2 ½k=n., % " ~t 2 domðTÞ implies STð%Þð~tÞ ' Tð% " ~tÞ.

Intuitively, a vector ~t is a hhAii* -vector if, for all states q satisfying hhAii* , the successor
q " ~t has to satisfy , cf. explanation (ii) given earlier in this article. The :hhAii* -vectors
can be understood in an analogous way. This intuition is reflected in (M1) and (M2) and in
the definition of *-matching.

Up to this point, we have set up the basic machinery to define ATSs based on
the states ½k=n./ and to treat satisfaction of (positive and negative) next-formulas. To
deal with eventualities, we introduce ’-trees that witness their satisfaction, so-called
witness trees. Their definition is largely analogous to the corresponding construction
for CTL [5].

DEFINITION 4.5 (Witness Tree)
Let ’ be an ATL-formula, $ a set of types for ’ and #2$. A ’-tree T is called a witness-tree
rooted at # in $ for a formula hhAii U # if it satisfies the following properties:

(i) For all % 2 domðTÞ, Tð%Þ 2 $;
(ii) T is *-matching;
(iii) Tð"Þ ¼ #;
(iv) For all % 2 domðTÞ, hhAii U # 2 Tð%Þ;
(v) For all non-leaf nodes %, 2 Tð%Þ;
(vi) For all leaf nodes %, # 2 Tð%Þ;
(vii) If % 2 domðTÞ, hhAii*hhAii U # 2 Tð%Þ, #=2Tð%Þ and ~t is a hhAii*hhAii U #-vector, then

% " ~t 2 domðTÞ.

T is called a witness-tree rooted at # in $ for a formula :hhAiiœ if it satisfies the following
properties:

(i) For all % 2 domðTÞ, Tð%Þ 2 $;
(ii) T is *-matching;
(iii) Tð"Þ ¼ #;
(iv) For all % 2 domðTÞ, :hhAiiœ 2 Tð%Þ;
(v) For all leaf nodes %, : 2 Tð%Þ;
(vi) If % 2 domðTÞ, :hhAii*hhAiiœ 2 Tð%Þ, : =2Tð%Þ and ~t is a :hhAii*hhAiiœ -vector,

then % " ~t 2 domðTÞ.

Our decision procedure is based on the following core notion of realisability. Intuitively, a
type # is realisable in a set of types $ if it is possible to (i) satisfy all next-formulas in # using
only types from $ and (ii) construct witness trees for all eventualities in # using only types
from $.

ATL Satisfiability is Indeed EXPTIME-complete 777

DEFINITION 4.6 (Realisability)
Let ’ be an ATL-formula and $ a set of types for ’. A type #2$ is realisable in $ if the
following conditions are satisfied:

(i) For each ~t 2 ½k=n., there is a #0 2$ such that S#ð~tÞ ' #0;
(ii) For each hhAii U # 2 #, there is a hhAii U #-witness tree rooted at # in $;
(iii) For each :hhAiiœ 2 #, there is a :hhAiiœ -witness tree rooted at # in $.

We are now ready to describe the decision procedure. The idea is to start with all types for the
input formula, then repeatedly eliminate types that are not realisable and finally check
whether there is a type that survived elimination and contains the input formula. Let ’ be an
ATL-formula whose satisfiability is to be decided. Inductively, compute a sequence%0,%1, . . .
of sets of types for ’ as follows:

%0 :¼ $’;

%iþ1 :¼ f# 2 %i j # is realisable in %ig:

Then %iþ1 ¼ %i for some i) 0. Let m ¼ i for the first such i. The algorithm returns ‘Yes, ’
is satisfiable in an ATS for !’’ if ’ is contained in some type in %m and ‘No’ otherwise.

We proceed as follows: first, we show that this procedure is effective by proving that the
existence of witness trees is decidable in exponential time. Second, we prove soundness and
completeness of the procedure. Finally, we establish that it runs in exponential time.

LEMMA 4.7
Let $ be a set of types for an ATL-formula ’. Then the existence of witness trees in $ can be
decided in time exponential in the length of ’.

PROOF. Let ’ and $ be as in the lemma and #0 a type in $. We only show how to check the
existence of witness trees for formulas of the form hhAii U#. Witness trees for formulas
:hhAiiœ can be treated analogously. Thus, suppose we want to check the existence of a
witness tree for hhAii U# 2 #0 rooted at #0 in $. Start with identifying leaf nodes of possible
witness trees by marking all types in $ which contain hhAii U# and #. Then identify inner
nodes of possible witness trees as follows: For all unmarked types #2$ such that
hhAii U# 2 #, mark # if 2$ and for all hhAii*hhAii U#-vectors ~t 2 ½k=n., there is a type
#0 2$ such that:

(i) S#ð~tÞ ' #0 and
(ii) (ii)#0 is marked.

Apply this procedure repeatedly until no more types in $ get marked. Note that this process
must terminate since $ contains only finitely many types.

It is easy to see that a witness tree for hhAii U# exists iff #0 was marked. For the
left-to-right direction, suppose a witness tree exists. At the beginning of the marking
procedure, all leaf nodes of possible witness trees are marked. In every subsequent
round, all inner nodes of possible witness trees in increasing distance from the leaf
nodes will be marked. Hence, eventually, #0 will be marked. For the right-to-left direction,
assume that #0 is marked and consider the following informal construction of a witness
tree. Take the type #0 as the root. For each leaf and for all hhAii*hhAii U#-vectors,
add a successor type that satisfies (i) and (ii) until a type is reached which was marked at

778 ATL Satisfiability is Indeed EXPTIME-complete

the beginning. Note that this process will not generate any infinite paths since, when choosing
a successor type for some type #, we can only use a type that was marked strictly before #
was marked. It is readily checked that all properties of a witness tree are fulfilled by the
obtained tree.

For the complexity of the algorithm that checks for witness trees, consider the following.
Let n ¼ j’j. Note that the cardinality of the extended closure eclð’Þ is linear in n, i.e.
jeclð’Þj ¼ c " n for some constant c) 1. Since $ ' $’ ' 2eclð’Þ, it holds that j$j + 2c"n. For
marking the leaf nodes, maximal 2c"n types have to be considered. For the marking of the
inner nodes, consider the following. Since there are at the most 2c"n types in $ and in each
marking round at least one type gets marked, there are maximal 2c"n marking rounds. In each
such round, maximal 2c"n yet unmarked types have to be checked. In order to find out whether
to mark such a type, not more than nn vectors have to be considered and for each such vector,
tests for conditions (i) and (ii) with maximal 2c"n types need to be performed. Altogether, this
yields an upper bound of 2c"n þ 2c"n " 2c"n " nn " 2c"n ¼ 2Oðn2Þ steps. Thus, the existence of witness
trees can be checked in time exponential in the length of ’. g

LEMMA 4.8
Let ’ be an ATL-formula. Then the procedure returns ‘Yes, the input formula ’ is satisfiable
in an ATS for !’’ iff this is indeed the case.

PROOF. Suppose ’ is given and let ! ¼ !’ and n ¼ j!’j.
‘)’ (Soundness) Assume that the elimination procedure was started on input ’ and returns

‘Yes, the input formula ’ is satisfiable’. Let $ ¼ f#0, . . . ,#m21g be the computed set of types.
Then all types of $ are realisable in $ and there is a type #2$ with ’2$. Our aim is to
construct an ATS that is a model of ’.

To this end, enumerate all eventualities in eclð’Þ by 0, . . . , ‘21. For each i with i < ‘ and
each j with j < m, fix a ’-tree Th i,#ji as follows:

& If i 2 #j, then fix a i-witness tree T rooted at #j in $. Supplement all inner nodes of T
with missing successors: for each inner node % 2 domðTÞ and each ~t 2 ½k=n., if
% " ~t =2 domðTÞ, then add it and set Tð% " ~tÞ ¼ # for some #2$ such that STð%Þð~tÞ ' #.
Note that such a # must exist by condition (i) of Definition 4.6. Let Th i,#ji be the result
of augmenting T in this way.

& If i =2#j, then let Th i,#ji be the tree comprised of the nodes f"g [½k=n. such that
Th i,#jið"Þ ¼ #j and for each ~t 2 ½k=n., Th i,#jið~tÞ ¼ # for some #2$ with S#j ð~tÞ ' #.

It is easy to see that all trees Th i,#ji are *-matching. To construct a model of ’, intuitively,
we do the following: we arrange the selected witness trees in an ‘* m-matrix such that the
rows range over the eventualities 0, . . . , ‘21 and the columns over the types #0, . . . ,#m21

and then replace all leaf nodes by an ‘arrow’ from the leaf node’s predecessor to the root
of some other witness tree.

We now define the ATS S ¼ ð",!,Q,!, "Þ that we then prove to be a model of ’. " and !
are the sets of those propositions and agents that occur in the input formula ’. For defining
the set of states Q, fix symbols "i, j with i + ‘ and j + m. Then, set

Q :¼ f"i, jw j w 2 domðTh i,#jiÞ is an inner nodeg:

Next, the valuation ! is easily defined: for q ¼ "i, jw 2 Q, set

!ðqÞ :¼ Th i,#jiðwÞ \":

ATL Satisfiability is Indeed EXPTIME-complete 779

To define the transition function ", we first define a successor function on Q: for each
q ¼ "i, jw 2 Q and each ~t 2 ½k=n., set

s~tðqÞ :¼
"s, p if w " ~t is a leaf node of Th i,#ji;

s ¼ i þ 1 mod ‘ and Th i,#jiðw " ~tÞ ¼ #p

q " t if w " ~t is an inner node of Th i,#ji:

8
>><

>>:

Now the definition of " is straightforward: for each q 2 Q and a 2 !, set

"ðq, aÞ :¼ ffs~tðqÞ j ~t ¼ ðt0, . . . , tn21Þ 2 ½k=n. and ta ¼ pg j p < k=2g:

To show that S is indeed a model of ’, we introduce some auxiliary notions.
For each strategy FA ¼ ffa j a 2 Ag for a set of agents A ' ! and each sequence of states

2 Qþ, we write FA(#) to denote the set of states \a2Afað#Þ. Observe that, by definition of
strategies for single agents, we have FAð# " qÞ 2 "ðq,AÞ, for all # 2 Qþ and q 2 Q.

For each positive next-formula hhAii* , the hhAii* -strategy is the strategy
FA ¼ f fa j a 2 Ag for the set of agents A that is defined by setting for each a 2 A,

fað# " qÞ :¼ fs~tðqÞ j ~t ¼ ðt0, . . . , tn21Þ and ta ¼]hhAii* g:

It is readily checked that we have

FAð# " qÞ ¼ fs~tðqÞ j ~t is a hhAii* -vectorg:

g
For each negative next-formula :hhAii* , a :hhAii* -computation for a strategy FA

rooted at a state q 2 Q is a computation # 2 outðq,FAÞ such that, for all positions i) 0,
#½i þ 1. ¼ s~tð#½i.Þ for some :hhAii* -vector ~t 2 ½k=n..

CLAIM 1
Let :hhAii* be a next-formula, FA a strategy and q 2 Q. Then there exists a :hhAii* -
computation for FA rooted at q.

PROOF OF CLAIM

Let :hhAii* , FA and q be as in the claim. Inductively, define a :hhAii* -computation
2 Q! for FA rooted at q as follows:

& #½0. :¼ q and
& for each i) 0, #½i þ 1. :¼ s~tð#½i.Þ for some :hhAii* -vector ~t 2 ½k=n. such that s~tð#½i.Þ 2

FAð#½i.Þ.

In order to show that # is well-defined, it remains to show that for each i) 0, there is a state
s~tð#½i.Þ 2 FAð#½i.Þ such that ~t is a :hhAii* -vector. Distinguish two cases:

& A ¼ !. By definition, every vector ~t 2 ½k=n. is a :hh!ii* -vector. Since
FAð#½i.Þ 2 "ð#½i.,AÞ, FAð#½i.Þ is non-empty. Thus, any vector from FAð#½i.Þ is suitable.

780 ATL Satisfiability is Indeed EXPTIME-complete

& A 6¼ !. By definition of " and since FAð#½i.Þ 2 "ð#½i.,AÞ, FAð#½i.Þ ¼ fs~tð#½i.Þ j ~t 2 Sg for
some voting set S. By condition 1 of the function f used in the definition of :hhAii* -
vectors, S contains a :hhAii* -vector. Thus, there is a state s~tð#½i.Þ 2 FAð#½i.Þ such that ~t
is a :hhAii* -vector.

To denote the intended type of a state q ¼ "i, jw 2 Q, we set tðqÞ :¼ Th i,#jiðwÞ. Using the
construction of S and property (ii) of witness trees, it is straightforward to prove the following
claim, which, intuitively, states that our ATS is *-matching. g

CLAIM 2
For all q 2 Q and ~t 2 ½k=n., StðqÞð~tÞ ' tðs~tðqÞÞ.

The next claim establishes the property of S that is crucial for showing that it is a model of ’.

CLAIM 3
For any state q 2 Q and any formula 2 eclð’Þ, 2 tðqÞ iff Sq 0 .

PROOF OF CLAIM

Let q and be as in the claim. The proof is by induction on the structure of . Since the base
case and the Boolean cases are straightforward, we concentrate on path quantifiers.

& ¼ hhAii* 0. ‘)’: Suppose hhAii* 0 2 tðqÞ. Let FA be the hhAii* 0-strategy and
2 outðq,FAÞ a computation. By (/), #½1. ¼ s~tð#½0.Þ for some hhAii* 0-vector ~t. From
hhAii* 0 2 tð#½0.Þ and Claim 2, it follows that 0 2 tð#½1.Þ. The induction hypothesis
yields S, #½1. 0 0. Hence, S, q 0 hhAii* 0 by the semantics.

& ‘(’: Suppose hhAii* 0=2tðqÞ. Then :hhAii* 0 2 tðqÞ by (T2). Let FA be any strategy for
the agents in the coalition A and # a :hhAii* 0-computation for FA rooted at q. Note
that by Claim 1, there is such a #. Since #½1. ¼ s~tð#½0.Þ for some :hhAii* 0-vector ~t,
: 0 2 tð#½1.Þ by Claim 2. Condition (T2) yields 0=2tð#½1.Þ. Thus S, #½1. 60 0 by the
induction hypothesis. Hence, S, q 60 hhAii* 0 by the semantics.

& ¼ hhAiiœ 0. ‘)’: Suppose hhAiiœ 0 2 tðqÞ. Let FA be the hhAii*hhAiiœ 0-strategy and
2 outðq,FAÞ a computation. We show by induction on i that, for i) 0, the following
holds:

(i) hhAiiœ 0 2 tð#½i.Þ;
(ii) hhAii*hhAiiœ 0 2 tð#½i.Þ;
(iii) 0 2 tð#½i.Þ.

For the base case, (i) is immediate. Thus, (T3) yields hhAii*hhAiiœ 0 2 tð#½0.Þ and
 0 2 tð#½0.Þ. For the induction step, the induction hypothesis gives us
hhAii*hhAiiœ 0 2 tð#½i 2 1.Þ. By (/), #½i. ¼ s~tð#½i 2 1.Þ for some hhAii*hhAiiœ 0-vector ~t.
By Claim 2, it follows that hhAiiœ 0 2 tð#½i.Þ. Now we may again use (T3) to infer
hhAii*hhAiiœ 0 2 tð#½i.Þ and 0 2 tð#½i.Þ. This finishes the induction. Finally (iii) and the
induction hypothesis yield S, #½i. 0 0, for all i) 0 and we are done.
‘(’: Suppose hhAiiœ 0=2tðqÞ. Then :hhAiiœ 0 2 tðqÞ by (T2). Let FA be any strategy for
the agents in A and # a :hhAii*hhAiiœ 0-computation for FA rooted at q. In the
following, it is shown that : 0 2 tð#½i.Þ for some i) 0. Then (T2) yields 0=2tð#½i.Þ and the
induction hypothesis S, #½i. 60 0. Hence, S, q 60 hhAiiœ 0. by the semantics as desired.

ATL Satisfiability is Indeed EXPTIME-complete 781

Suppose by contradiction that : 0=2tð#½i.Þ for all i) 0. By (T2), 0 2 tð#½i.Þ for all i) 0.
We show by induction on i that, for i) 0, the following holds as well:

(i) :hhAiiœ 0 2 tð#½i.Þ;
(ii) :hhAii*hhAiiœ 0 2 tð#½i.Þ:

For the base case, (i) has already been shown. Since 0 2 tð#ð0ÞÞ, (T3) and (i) imply
hhAii*hhAiiœ 0=2tð#½i.Þ. Thus, (ii) follows by (T2). For the induction step, the induction
hypothesis gives us :hhAii*hhAiiœ 0 2 tð#½i 2 1.Þ. By definition of #, #½i. ¼ s~tð#½i 2 1.Þ
for some :hhAii*hhAiiœ 0-vector ~t. By Claim 2, we thus have :hhAiiœ 0 2 tð#½i.Þ.
To establish (ii), we may argue as in the base case.
By the matrix construction of S, there is a position i) 0 such that $ð#½i.Þ is the root of the
’-tree Th#,#i where # ¼ :hhAiiœ 0 and # ¼ tð#½i.Þ. Since :hhAiiœ 0 2 # by (i), Th#,#i is a
witness tree for the eventuality :hhAiiœ 0 rooted at # in $. The finiteness of
Th#,#i implies that there is a j) i such that the type tð#½j .Þ labels one of its
leaf nodes $ð#½j .Þ. Hence, : 0 2 tð#½j .Þ by definition of the witness tree Th#,#i;
a contradiction.

& ¼ hhAii U #. This case is similar to the previous one and left to the reader. g

Since ’2$ for some type #2$, there is a state q 2 Q such that 2 tðqÞ. Then it follows
from Claim 3 that S, q 0 ’.

‘(’ (Completeness): Suppose ’ is satisfiable in an ATS S ¼ h",!,Q,!, "i in a state
q’ 2 Q. For each state q 2 Q, let t(q) be the type f 2 eclð’Þ j S, q 0 g. Denote with
typesðQÞ the set of all types associated with some state in Q. We first establish the following
claim:

CLAIM 4
Let q 2 Q, ~t 2 ½k=n.. Then, there is a state q0 2 Q such that S~tðqÞ ' tðq0Þ. Moreover, the
following holds: if hhAii* 2 tðqÞ and FA is a strategy such that, for all computations
2 outðq,FAÞ we have S, #½1. 0 , we can choose q0 such that q0 2 FAðqÞ.

PROOF OF CLAIM

Let q and ~t be as in the claim. Also, select a formula hhAii* and a strategy FA as in the
‘moreover’ part of the claim. Note, first, that, by property (iii) of the function f used in the
definition of vectors for negative next-formulas, ~t is a vector for at most a single formula
:hhA0ii* 0 with A0 3 !’. Let

& hhA1ii* 1, . . . , hhA‘ii* ‘ be all positive next-formulas from t(q) for which ~t is a vector;
this includes the selected formula hhAii* ;

& :hhA0ii* 0 be the single negative next-formula from t(q) with A0 3 !’ for which ~t is a
vector, if such a formula exists;

& :hh!’ii* 00
1, . . . ,:hh!’ii* 00

m be all negative next-formulas from t(q) quantifying over
the set of all agents !’.

Observe that, by definition, ~t is a vector for all negative next-formulas quantifying over !’, so
that 00

1, . . . ,
00
m 2 StðqÞð~tÞ. Next, note that, by definition of vectors for positive next-formulas,

we have Ai \ Aj ¼ 6 0 for 1 + i < j + ‘.
For 1 + i + ‘, let FAi

be a strategy such that for all computations # 2 outðq,FAi Þ,
S, #½1. 0 i. Such a strategy exists since hhAiii* i 2 tðqÞ. For the selected formula hhAii*
from the ‘moreover’ part of the claim, choose the selected strategy FA. Let B ¼ [1+i+‘ and

782 ATL Satisfiability is Indeed EXPTIME-complete

set FB ¼ [1+i+‘FAi which is well-defined since Ai \ Aj ¼ 6 0 for 1 + i < j + ‘. Thus, for all
2 outðq,FBÞ, we have S, #½1. 0 i for 1 + i + ‘.

Next, select a computation # 2 outðq,FBÞ. If there is no negative next-formula in t(q), for
which ~t is a vector, then choose an arbitrary element # 2 outðq,FBÞ (outðq,FBÞ is non-empty
since "ðq,AÞ is non-empty for all q and A). Otherwise, choose a # 2 outðq,FBÞ such that
S, #½1. 0 : 0. Such an element exists since, first, :hhA0ii* 0 is in t(q) and, second, ~t being a
vector for this formula implies (by condition (ii) of the definition of such vectors) that Ai ' A0

for 1 + i + ‘.
Finally, we have S, #½1. 0 : 00

i for 1 + i + m since :hh!’ii* 00
i 2 tðqÞ implies that

S, #0½1. 0 : 00
i for any computation #0 rooted at q.

Summing up, we have shown that StðqÞð~tÞ ' tð#½1.Þ 2 typesðQÞ. Thus, #½1. is the state whose
existence is stated in the claim. g

In the following, it is shown that all types in typesðQÞ are realisable in typesðQÞ. Let q 2 Q
be a state. We have to check that each type t(q) in typesðQÞ satisfies conditions (i) to (iii)
of Definition 4.6.

(i) Let ~t 2 ½k=n.. We have to show that StðqÞð~tÞ ' # for some # 2 typesðQÞ. Clearly, this is an
immediate consequence of Claim 4 (the ‘moreover’ part is not needed).

(ii) Suppose hhAii U # 2 tðqÞ. It is our aim to construct a hhAii U #-witness tree rooted at the
type t(q) in typesðQÞ. Since S, q 0 hhAii U #, there is a strategy FA such that for all
computations # 2 outðq,FAÞ, there is a position i) 0 such that S, #½i. 0 # and S, #½j. 0
for j< i.
Using the semantics, it is not difficult to prove that FA satisfies the following property:
if # 2 outðq,FAÞ and i 2 N is smallest such that S, #½i. 0 #, then

(a) S, #½ j. 0 hhAii U # for j + i;
(b) S, #½ j. 0 hhAii*hhAii U # for j < i;
(c) S, #½ j. 0 for j < i.

We use FA to define a hQ, k, ni-tree T. This tree can then easily be converted into the
required witness-tree. For a member % of ½k=n./ denote by %½0, i. the initial segment of %
of length iþ 1. In particular, % coincides with %½0, j%j 2 1., where j%j denotes the length of
%. Now, the construction proceeds by induction as follows: In the induction start, set
Tð"Þ :¼ q. In the induction step, let % 2 domðTÞ be such that T(%) is already defined. If
S,Tð%Þ 0 #, then % is a leaf and we do not further extend this branch. Otherwise, for each
hhAii*hhAii U #-vector ~t, set Tð% " ~tÞ :¼ q0 for some q0 2 Q such that

(i) StðTð%ÞÞð~tÞ ' tðq0Þ and
(ii) q0 2 FAð#Þ where # ¼ Tð%½0.ÞTð%½0.%½1., 1.Þ " " "Tð%½0, j%j 2 1.Þ.

The existence of such a q0 is a consequence of Claim 4: since # ¼ #0 " Tð%Þ for some #0,
there exists a strategy F 0

A such that F 0
AðTð%ÞÞ ¼ FAð#Þ. Take any such strategy. Now,

apply Claim 4 including the ‘moreover’ part, using the next-formula hhAii*hhAii U #
and the strategy F 0

A, to get the desired state q0. Note that the prerequisites of the
‘moreover’ part are satisfied:

– S,Tð%Þ 0 hhAii*hhAii U # holds by (b).
– for all computations # 2 outð%,F0

AÞ, we have S, q 0 hhAii U # since F0
A is based on FA

and by (a).

ATL Satisfiability is Indeed EXPTIME-complete 783

We now show that T is finite. Suppose by contradiction that there is an infinite
path $ 2 ½k=n.! in T. Let # 2 Q! be the infinite sequence defined by setting
#½i. :¼ Tð$½0, i.Þ. By (ii), # 2 outðq,FAÞ. Then, there is a position i) 0 such that
S, #½i. 0 #. Thus, # 2 tð#½i.Þ ¼ tðTð$½0, i.ÞÞ and the node $½0, i þ 1. is a leaf; a
contradiction.
Since the nodes in T are labelled by states, the composition tðTð"ÞÞ yields a finite ’-tree.
To show that tðTð"ÞÞ is a hhAii U #-witness tree rooted at t(q) in typesðQÞ, it remains
to show that T satisfies properties (i) to (vii) in the definition of a hhAii U #-witness
tree: properties (i), (iii), (vi), and (vii) are immediate by definition of T; property (ii) is
a consequence of (i), property (iv) a consequence of (a), and property (v) a consequence
of (c).

(iii) This case is similar to the previous one and left to the reader.

From S, q’ 0 ’, it follows that ’ 2 tðq’Þ. Then typesðQÞ is a set of types that
are each realisable in typesðQÞ and tðq’Þ is a type in typesðQÞ such that ’ 2 tðq’Þ.
Let % be the set of types for ’ computed by the type elimination algorithm. It is easy
to see that typesðQÞ ' %. Hence, the algorithm returns ‘Yes, the input formula ’ is
satisfiable’. g

LEMMA 4.9
The described elimination procedure runs in exponential time.

PROOF. Suppose ’ is given and let n ¼ j’j. Recall that the size of the extended closure eclð’Þ
is linear in the length of ’, i.e. jeclð’Þj ¼ c " n for some constant c) 1. The algorithm
computes a sequence %0, . . . ,%m of sets of types such that %0)%1) " " ")%m. Since
%0 ¼ $’ ' 2eclð’Þ, this sequence is finite with m + 2c"n. For each i with 0 + i < m, it holds that
j%ij < j%0j + 2c"n. Thus, to compute the set %iþ1, at most 2c"n types in %i need to be checked
whether they are realisable in %i. In the following, it is shown that for a type # 2 %i, at most
2Oðn2Þ steps are needed to check for #’s realisability in %i. Consider the three points
in Definition 4.6:

(i) For at most for nn vectors (as k + n), inclusion tests for maximal 2c"n types in %i have
to be performed. Hence, this takes not more than nn " 2c"n ¼ 2Oðn2Þ steps.

(ii), (iii) By Lemma 4.7, to decide the existence of witness trees takes not more than 2Oðn2Þ

steps. This has to be done for at most n formulas of the form hhAii U # or :hhAiiœ
in #. Thus, altogether maximal 2Oðn2Þ steps are needed.

Note that checking whether there is a type in %m that contains ’ takes not more than 2OðnÞ

steps. We conclude that our decision procedure runs in time exponential in the size of the
input. g

Let us now consider the lower bound. By Lemma 3.2, it is sufficient to prove EXPTIME-
hardness for variant (b) of the ATL satisfiability problem. For this variant, EXPTIME-hardness

does not trivially follow from EXPTIME-hardness of CTL: the translation from CTL to ATL

described at the end of Section 2 cannot be used since, when concerned with satisfiability over

arbitrary sets of agents, there is no obvious ATL-equivalent of CTL-formulas of the form

E’U . Note, in particular, that we cannot use hh!ii’U since the coalition ! of all agents is

not available for a formula. Moreover, the hh!ii’U equivalent formula :hh6 0ii:ð’U Þ is not
according to the syntax of ATL.

784 ATL Satisfiability is Indeed EXPTIME-complete

To show the lower bound for ATL satisfiability over arbitrary sets of agents, we reduce
the EXPTIME-hard global consequence problem in the modal logic K. We refer to e.g. [13]
for the syntax and semantics of K. To avoid confusion with the operators of ATL, we
denote the diamond and box of K with ^ and g. Recall that the global consequence problem
is to decide, given two K-formulas ’ and , whether it is the case that for every Kripke
structure M, if ’ is true in every state of M (in symbols, M 0 ’), then is true in every
state of M.

For the reduction, we use the following facts: (i) a Kripke structure M is equivalent to an
alternating transition system with a single agent [3, 7]; (ii) hh6 0ii*’] expresses that ’ is true at
all successors, and (iii) hh6 0iiœ’ expresses that ’ holds in the (reachable part of the) whole
model. Now let ’ and be K-formulas. Translate ’ and into formulas of ATL using the
following translation ð"Þ]:

p] ¼ p;

ð’ ^ Þ] ¼ ’] ^];
ð:’Þ] ¼ :’];
ð^’Þ] ¼ :hh6 0ii*:’];
ðg’Þ] ¼ hh6 0ii*’]:

Now it suffices to show the following:

LEMMA 4.10
 follows globally from ’ iff hh6 0iiœ’] ^ :] is unsatisfiable in ATL with an arbitrary set of
agents.

PROOF. It is straightforward to prove by structural induction that, for all Kripke structures
M, all states q ofM and all K-formulas #, we haveM, q 0 # iffM, q 0 #], where in the latter
case M is viewed as a single-agent ATS. We leave details to the reader and continue with a
proof of the lemma.

‘if’. We show the contrapositive. Thus, suppose does not globally follow from ’. Then
there is a Kripke structure M such that M 0 ’ and M, q 60 for some state q of M. Then,
M, q 0 hh6 0iiœ’] and M, q 60]. Hence, M 0 hh6 0iiœ’] ^ :], and this formula is satisfiable
in a single-agent ATS.

‘only if’. We again show the contrapositive. Suppose hh6 0iiœ’] ^ :] is satisfiable and take
an ATS M and a state q of M such that M, q 0 hh6 0iiœ’] ^ :]. By Lemma 3.2 and since
hh6 0iiœ’] ^ :] does not refer to any agents, we may assume that M is a single-agent ATS
and thus a Kripke structure. We have M, q 0 hh6 0iiœ’] and M, q 60]. By the former, ’]

holds at all points reachable from q. Denote by M the model induced by M on those points.
Then, N 0 ’ but N , q 60 . Hence, does not follow globally from ’. g

5 Conclusions

We have revisited the satisfiability problem for ATL, the alternating-time temporal logic
of Alur et al. [1], which was settled at EXPTIME-complete in a result of van Drimmelen [14]
for cases where the set of agents was fixed externally in advance. We pointed out that if
the set of agents is not fixed externally, then van Drimmelen’s construction yielded only

ATL Satisfiability is Indeed EXPTIME-complete 785

a 2EXPTIME upper bound. This motivated the statement of three variations of the ATL
satisfiability problem, where the set of agents was not fixed externally in advance. Our main
result was to prove that each of these variations is EXPTIME-complete.

Also of interest is the complexity of satisfiability for epistemic and other extensions of ATL
such as ATEL [10]. In fact, [15] uses a combination of the technique introduced in this article
with the technique of [9] to show that the simplest variety of ATEL from [10] with operators
for common and distributed knowledge is EXPTIME-complete as well.

For future work, it would be interesting to consider systems in which richer interactions
between knowledge and ability occur. Another significant issue to address is the complexity of
ATL* satisfiability. Given that ATL* subsumes CTL*, it follows ATL* satisfiability has a
2EXPTIME lower bound. Is ATL* 2EXPTIME complete?

Acknowledgements

The authors of the present article would like to point out that we greatly appreciate
Govert van Drimmelen’s work on ATL complexity and the results of [14], which we regard as
an important milestone on the road to understanding this exciting new logic. We are very
grateful to Govert for providing us with copies of his MSc thesis, upon which [14] was based,
and for answering our queries in the very best spirit of scientific openness. We would also like
to express our profound thanks to his supervisor Valentin Goranko for the open and valuable
discussions we have enjoyed on ATL satisfiability and related topics. We are indebted
to Wiebe van der Hoek for fruitful discussions about ATL and to the anonymous
reviewers for their comments that helped to improve the presentation of our results. We
gratefully acknowledge the support of the EPSRC under research grant GR/S62727/01
(‘Virtual Organisations for e-Science’). The work reported here was partly carried out while
the second author was visiting the University of Liverpool on a DAAD grant.

References

[1] R. Alur, T. A. Henzinger and O. Kupferman. Alternating-time temporal logic. In
FOCS ’97: Proceedings of the 38th Annual IEEE Symposium on Foundations of Computer
Science, pp. 100–109, Washington, DC, USA, October 1997. IEEE Computer Society.

[2] R. Alur, T. A. Henzinger and O. Kupferman. Alternating-time temporal logic. Lecture
Notes in Computer Science, 1536, 23–60, 1998.

[3] R. Alur, T. A. Henzinger and O. Kupferman. Alternating-time temporal logic. J. ACM,
49(5), 672–713, 2002.

[4] R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. Rajamani and S. Tas" iran.
Mocha: Modularity in model checking. In CAV ’98: Proceedings of the 10th International
Conference on Computer-aided Verification (LNCS Volume 1427), pp. 521–525. London,
UK, 1998, Springer Verlag.

[5] E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer Science
(vol. B): Formal Models and Semantics, pp. 995–1072. MIT Press, Cambridge, MA, USA,
1990.

[6] E. A. Emerson and J. Y. Halpern. Decision procedures and expressiveness in the temporal
logic of branching time. In STOC ’82: Proceedings of the 14th Annual ACM Symposium on
Theory of Computing, pp. 169–180, San Francisco, California, USA, 1982. ACM Press.

786 ATL Satisfiability is Indeed EXPTIME-complete

[7] V. Goranko and W. Jamroga. Comparing semantics of logics for multi-agent systems.
Synthese, 139(2), 241–280, 2004.

[8] V. Goranko and G. van Drimmelen. Complete axiomatization and decidability of
alternating-time temporal logic. Theoretical Computer Science, 353(1–3), 93–117, 2006.

[9] J. Y. Halpern and Y. Moses. A guide to completeness and complexity for modal logics of
knowledge and belief. Artificial Intelligence, 54(3), 319–380, 1992.

[10] W. Hoek and M. Wooldridge. Time, knowledge, and cooperation: Alternating-time
temporal epistemic logic and its applications. Studia Logica, 75(1), 125–157, 2003.

[11] M. Pauly. Logic for Social Software. PhD thesis, University of Amsterdam, 2001. ILLC
Dissertation Series, 2001–10.

[12] M. Pauly and M. Wooldridge. Logic for mechanism design — a manifesto. In
Proceedings of the 2003 Workshop on Game Theory and Decision Theory in Agent Systems
(GTDT-2003), Melbourne, Australia, 2003.

[13] E. Spaan. Complexity of Modal Logics. PhD thesis, Department of Mathematics and
Computer Science, University of Amsterdam, 1993.

[14] G. van Drimmelen. Satisfiability in alternating-time temporal logic. In LICS ’03:
Proceedings of the 18th Annual IEEE Symposium on Logic in Computer Science, 22–25
June 2003, Ottawa, Canada, pp. 208–217, Washington, DC, USA, 2003. IEEE Computer
Society.

[15] D. Walther. Satisfiability of ATEL with distributed knowledge is ExpTime-complete.
Technical Report, University of Liverpool, 2005.

Received 11 January 2005

ATL Satisfiability is Indeed EXPTIME-complete 787

