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Abstract
The Game Description Language (GDL) is a special purpose declarative language for defining games. GDL is used in the
AAAI General Game Playing Competition, which tests the ability of computer programs to play games in general, rather
than just the ability to play a specific game. Participants in the competition are provided with a previously unknown game
specified in GDL, and are required to dynamically and autonomously determine how best to play this game. Recently, there has
been much interest in the use of strategic cooperation logics for reasoning about game-like scenarios—the Alternating-time
Temporal Logic (ATL) of Alur, Henzinger, and Kupferman is perhaps the best known example. Such logics are specifically
intended to support reasoning about game-theoretic properties of multi-agent systems. In short, the aim of this article is to
make a concrete link between ATL and GDL, with the ultimate goal of using ATL to reason about GDL-specified games.
We make the following contributions. First, we demonstrate that GDL can be understood as a specification language for ATL
models, and prove that the problem of interpreting ATL formulae over propositional GDL descriptions is EXPTIME-complete.
Second, we use ATL to characterize a class of ‘fair playability’ conditions, which might or might not hold of various games.
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1 Introduction
Game playing competitions, particularly between humans and computers, have long been part of the
culture of artificial intelligence. Indeed, the victory of IBM’s Deep Blue computer over then world
champion chess player Gary Kasparov in 1997 is regarded as one of the most significant events in the
history ofArtificial Intelligence (AI). However, a common objection to such specialized competitions
and dedicated game playing systems is that they explore only one very narrow aspect of intelligence
and rationality. To overcome these objections, the American Association for Artificial Intelligence
(AAAI) introduced in 2005, a general game playing competition, intended to test the ability to
play games in general, rather than just the ability to play a specific game [12, 23]. Participants in the
competition are computer programs, which are provided with the rules to previously unknown games
during the competition itself; they are required to play these games, and the overall winner is the one
that fares best overall. Note that the participant programs are required to interpret the rules of the
games themselves, without human intervention or interpretation. The Game Description Language
(GDL) is a special purpose, computer processable language, which was developed in order to define
the games to be played by participant programs. Thus, a participant program must be able to interpret
game descriptions expressed in GDL, and then autonomously play the game defined by the GDL
description.

Since GDL is a language for defining games, it seems very natural to investigate the problem
of reasoning about games defined in GDL. Just as the designer of a computer communications
protocol might want to use model checking tools to investigate the properties of the protocol (ensure
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it is deadlock-free, etc. [6]), so also the GDL game designer will typically want to investigate the
properties of games. In addition to checking protocol-like properties such as deadlock-freeness, the
fact that GDL is used for describing games suggests a whole new class of properties to check: those
relating to the strategic properties of the game being defined.

One formalism for reasoning about games that has attracted much interest is Alternating-time
Temporal Logic (ATL) [3]. The basic construct of ATL is the cooperation modality, 〈〈C〉〉ϕ, where
C is a collection of agents, meaning that coalition C can cooperate to achieve ϕ; more precisely,
that C have a winning strategy for ϕ. ATL has been widely applied to reasoning about game-like
multiagent systems in recent years, and has proved to be a powerful and expressive tool for this
purpose [3, 14, 21, 22, 27, 28].

In this article, we make a concrete link between ATL and GDL. Specifically, we show that GDL
descriptions can be interpreted as specifications of anATL model, and thatATL can thus be interpreted
over GDL descriptions. The main contribution of this work is that we show it is possible to translate
propositional GDL descriptions into ATL formulae that are ‘equivalent’ in a sense to be precisely
defined later, and which are only polynomially larger than the original GDL description. As a
corollary, we are able to characterize the complexity of ATL reasoning about propositional GDL
games: the problem is EXPTIME-complete.

Apart from its theoretical interest, we also want to explore this topic more practically. We try to
answer the following questions:

• What are the conditions which characterize when a given GDLdescription defines a (meaningful)
game? We refer to these properties as playability conditions.Although some important playability
conditions have been discussed in the GDL literature [12, 17], these conditions are in fact very
minimal.

• How can we check whether a game specified in GDL satisfies such playability conditions?

The main application of our work, we believe, is in having an approach to analysing the properties
of games described using GDL: the GDL game designer can express desirable properties of games
using ATL, and then automatically check whether these properties hold of their GDL descriptions.

The article is structured as follows. In the following two sections, we introduce first the GDL and
then ATL. In Section 4, we establish a link between GDL descriptions and ATL specifications, and
characterise the complexity of interpreting an ATL specification with respect to a GDL description.
In Section 5, we give a systematic classification of GDL playability conditions, and show how
these conditions may be characterized as ATL formulae. This classification extends considerably the
discussion and formalization of playability conditions given in [12, 17, 23]. We conclude with a brief
discussion, pointers to related work and some directions for future work.

2 GDL and game models
GDL is a specialized language, intended for defining games [12, 17]. A game description must define
the states of the game, a unique initial state and the players in the game (‘roles’ in GDL parlance). For
every state and every player, the game description must define the moves (a.k.a. actions) available to
that player in that state, as well as the state transition function of the game—how moves transform the
state of play. Finally, it must define what constitutes a win, and when a game is over. The approach
adopted by GDL is to use a logical definition of the game. We introduce GDL by the way of an
example (Figure 1): a version of ‘Tic-Tac-Toe’. In this game, two players take turns to mark a 3×3
grid, and the player who succeeds in placing three of its marks in a row, column or diagonal wins.
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01 (<= (role xplayer))
02 (<= (role oplayer))
03 (<= (init (cell 1 1 b)))

...
11 (<= (init (cell 3 3 b)))
12 (<= (init (control xplayer)))
13 (<= (next (cell ?m ?n x))
14 (does xplayer (mark ?m ?n))
15 (true (cell ?m ?n b)))

...
28 (<= (next (control oplayer))
29 (true (control xplayer)))
30 (<= (row ?m ?x)
31 (true (cell ?m 1 ?x))
32 (true (cell ?m 2 ?x))
33 (true (cell ?m 3 ?x)))

...

54 (<= (legal ?w (mark ?x ?y))
55 (true (cell ?x ?y b))
56 (true (control ?w)))
57 (<= (legal oplayer noop)
58 (true (control xplayer)))

...
61 (<= (goal xplayer 100)
62 (true (line x)))

...
77 (<= terminal
78 (line x))
79 (<= terminal
80 (line o))
81 (<= terminal
82 (not open))

Figure 1. A fragment of a game in the GDL.

GDL uses a prefix rule notation based on LISP. The Tic-Tac-Toe game in Figure 1 consists of 82
lines. The first two lines, (role xplayer) and (role oplayer), define the two players in this
game. The following init lines (lines 03–12) define facts true in the initial state of the game (all
the cells are blank, and xplayer has the control of the game). The following rule (lines 13–15)
defines the effect of making a move: if cell(m,n) is blank (cell ?m ?n b), and xplayer marks it,
then in the next state, it will be true that cell(m,n) is marked by x: (cell ?m ?n x). The next rule
(lines 28–29) says that if the current state is under the control of xplayer, then the next state will
be under the control of oplayer. Lines 30–33 define what it means to have a row of symbols (we
omit a number of related rules). The legal rule (lines 54–56) defines when it is legal for a player
?w to perform a mark action. The goal rule (lines 61–62) defines the aim of the game: it says that
the xplayer will get a reward of 100 if it brings about a line marked by x. The final, terminal
rules (lines 77–82) define when the game has ended.

Overall, a GDL description consists of a list of such rules. As we will see below, the semantics of
these rules are similar to the semantics of rules in logic programming languages. Certain operators
in a GDL description have a special meaning: role (used to define the players of the game); init
(defining initial facts); legal (defining preconditions for actions); and goal (defining rewards for
agents).An additional operator,true, is sometimes used, to make explicit that a particular expression
should be true in the current state of the game.

While GDL in [12, 17] permits predicates such as (cell ?m ?n b), we simplify this by allowing
only nullary predicates, i.e. propositions. We can do this via instantiation of the predicates, i.e.
replacing variables with their values. For example, variables like ?m, ?n are replaced by elements
in their domain {1,2,3}. Thus, (cell ?m ?n b) is instantiated as (cell 1 1 b), (cell 1 2 b),
... , (cell 3 3 b). It is easy to see that the rule in (lines 13–15) is replaced by nine rules with no
predicates, and in general, there will inevitably be an undesirable blow-up in the number of rules
when translating from arbitrary predicate form; nevertheless, the translation is possible, a point that
is implicitly used in what follows. We refer to an expression such as (cell 1 1 b) as a nullary
predicate, or an atomic proposition. We will refer to our fragment of GDL as propositional GDL in
the remainder of the article.

In what follows, we will formally define the interpretation of GDL descriptions with respect to
game models.As GDL is based on Datalog, a logic programming language, we begin by introducing
Datalog.
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2.1 DATALOG program and its semantics

Datalog is a query and rule language for deductive databases that, syntactically, is a subset of
Prolog [7]. GDL uses Datalog as a basis to specify game rules. When we build GDL models
(Section 2.3) and ATL-theories (Section 4.2) from game descriptions, Datalog will be used in the
background as follows. A game description (Section 2.2) specifies what is true in the initial state,
what should hold throughout the game, and what should be the effect of performing certain actions.
To compute the propositional content of a state, the Datalog semantics will play a crucial role: it
offers, as a side effect, a solution to the frame problem [20]: only what is explicitly specified to be
true (initially, or following from a global constraint, or as the effect of an action) will become true.

As we mentioned above, we deal with propositional GDL. Accordingly, we only introduce the
propositional fragment of Datalog (see [5] for a more extended description).

Definition 2.1 (Datalog: language, rules and programs)
The basic unit of the Datalog Language is a set of atomic propositions "={p,q,...}. Let #(") be
the set of literals over ": #(")="∪{¬p |p∈"}.

ADatalog rule is of the form (⇐ (p)(#1)...(#n)) where p∈" and #i∈#(") (i≤n). If the displayed
rule is called r, we call p its head (p=hd(r)) and the body of r, bd(r), is the set {#1,...,#n}. Note
that a body can be empty.

A Datalog program is a set of Datalog rules.

A model for a Datalog program is a set of atomic propositions, with the intended meaning that
these are the atoms that are true. We make this precise in the following definition, which shows that
a rule (⇐ (p)(#1)...(#n)) can roughly be interpreted as an implication (#1∧···∧#n)→p.

Definition 2.2 (Models for Datalog programs)
Given a Datalog program $, a set of atoms %⊆" is a model of $ if and only if it satisfies the
following conditions:

• if (⇐ (p))∈$, then p∈%;
• if (⇐ (p) bd)∈$ and pos(bd)⊆% and neg(bd)∩%=∅, then p∈%, where pos(bd) is the set of

positive literals in bd and neg(bd) is the set of negative literals.

It is easy to verify that under these semantics (as under conventional logical semantics), $1 =
{(⇐ (p)(q))} has three models: {p,q}, {p} and {}. However, Datalog rules are not simply classical
implications: only if there is a ‘reason’ to accept an atom p, will it be made true. Under this approach,
in $1, since q is not true, there is no reason to accept p, so the only model for $1 would be {}. As
a slightly more involved example, if we have a rule r1 = (⇐ (p)(q)(¬s)), then, in order to accept p,
we should have accepted q, and we should have no reason to accept s. But, of course, this can lead
to cycles in reasoning: suppose we also have r2 = (⇐ (q)). Then one would expect we conclude p,
but not if acceptance of p would undermine one of its reasons to accept it, i.e. if we also have a rule
r3 = (⇐ (s)(p)), accepting p would undercut one of the reasons (namely ¬s) for accepting it. The
following definition characterizes conditions under which such circular reasoning is guaranteed not
to occur, thereby guaranteeing unique models for programs.

Definition 2.3 (Dependency graphs for Datalog programs)
Let a Datalog program $ be given. Its Dependency Graph DG($) is a labeled directed graph
〈",lab+,lab−〉, where

• " is the set of atoms in $; each atom serves as a node in the graph.
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• lab+(p,h) (i.e. an edge from p to h labeled with +) iff there is a rule r∈$ with h=hd(r) and
p∈bd(r).

• lab−(p,h) iff there is a rule r∈$ with h=hd(r) and ¬p∈bd(r).

A dependency graph helps us to keep track of what we need to know before deciding whether an
atom p∈hd(r) will be accepted in a model, or not. In the case of $1, we have lab+(q,p), and in case
of $2 ={r1,r2,r3}, we have lab+(q,p),lab−(s,p) and lab+(p,s).

Definition 2.4 (Stratified Datalog programs)
A Datalog program $ is called stratified if its dependency graph DG($) contains no cycles with
a ‘−’ label. An atom p is said to be in stratum i∈N if the maximum number of edges labelled ‘−’
on any path ending at p∈DG($) is i. A rule r∈$ is of stratum i if hd(r) is in stratum i. A Datalog
program $ is called acyclic if DG($) contains no cycles.

Note that in our example, $1 is stratified, but $2 is not: there is a cycle containing the
vertices p and s.

Definition 2.5 (Datalog semantics for stratified Datalog programs)
Given a stratified Datalog program $, we construct a model s=DatlogPMod($) as follows. First
of all, let t0 ={p | (⇐p)∈$}. Suppose ti is defined, initialise si to ti and, as long as there is a rule
(⇐ (p)(#1)...(#n)) in stratum i such that si |=#1∧···∧#n, add p to si. After this, put ti+1 =si. If the
maximum stratum of $ is k, put s= tk+1. We will call DatlogPMod($) the Datalog semantics of $.

Going back to our examples, we indeed obtain a unique model for $1, i.e. DatlogPMod($1)={}.
This shows that not all models for a Datalog program in the sense of Definition 2.2 qualify as a
model under the Datalog semantics DatlogPMod($) for a program $. But it is easy to see that
in general we have that a model under the Datalog semantics for $ is indeed a model for $.
Stratification guarantees that, when computing a model for $, whenever we have a literal ¬q in the
body of a rule r, we will consider all rules r′ with hd(r′)=q before considering r. This cannot be
done for ¬s in the cyclic program $2, but consider $3 ={r1,r2}: this program is stratified: the atoms
q and s are in stratum 0, and p is in stratum 1. Hence, rule r2 is of stratum 0 and r1 is of stratum 1. So
the model construction first considers r2: it adds q to the model. When we consider rule r1, we have
moved to stratum 1, which means that we can now assume that s (of stratum 0) will not become true
anymore, and the procedure sets p to true. In summary, we have DatlogPMod($3)={q,p}.

The fact that a program $ is acyclic is equivalent (see [5]) to requiring that there is a level mapping
f :#(")→N for which f (p)= f (¬p) and for every rule (⇐ (p)(#1)...(#n)) in $, f (p)> f (#i), for all
i≤n. This again says that once we consider a rule r, we may assume that all the atoms in its body
have obtained a definite truth value.

Theorem 2.1 ([5])
The procedure of Definition 2.5 yields a unique model for $, and it does not depend on the particular
stratification.

Suppose we have a program $ in which all the rules ri with hd(ri)=p, are r1,r2,...,rn . Interpreting
rules as implications says that when one of the bodies is true, the head p should also be true. Under
the more constructive interpretation, possible for stratified programs, it means: the only way to make
p true, is to have one of the bodies of the rules r1,...,rn true. This is captured by the following
definition and result.
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Definition 2.6 (Completion of $)
Given an acyclic Datalog program $, the completion of $ is a set of formulae CP($) as follows.
Let the definition D($,p) of p be the set of rules r in $ for which hd(r)=p. Then let

cp(p)= (p↔
∨

r∈D($,p)

∧
bd(r))

where bd(r)={#1,...,#n} and
∧

bd(r)=#1∧···∧#n; for every empty body bd(r),
∧

bd(r)=0. Note
that, if p does not occur as a head in any rule in $, we have cp(p)=¬p. Finally, the Clark completion
CP($) of a Datalog program $ over " is simply {cp(p) | p∈"}.
Theorem 2.2 ([5])
Let $ be an acyclic program, and " be the set of atoms in $. We have

∀p∈",p∈DatlogPMod($) iff CP($) |=cl p,

where DatlogPMod($) is the unique model of the stratified program $, the set CP($) is the Clark
completion of $ and |=cl denotes the consequence in classical logic.

We already noted DatlogPMod($1)={} and indeed, the Clark Completion of this program is
CP($1)={q↔⊥,p↔q}. For $2, we had DatlogPMod($2)={q,p} and CP($2)={q↔0,s↔
⊥,p↔ (q∧¬s)}.

Theorem 2.2 links the Datalog semantics of Definition 2.5 of a Datalog program $ to a classical
interpretation of formulas obtained from $. We will use this as follows. A game description & will
be a special kind of Datalog program (Section 2.2). When building a model G& for such a game
description &, we will use the Datalog semantics DatlogPMod(&) (Section 2.3). However, when
building an ATL-theory for &, (Section 4.2) we will use the completion CP(&) of &. Theorem 2.2
helps us ensure that both constructions yield the same consequences.

The following observation is straightforward, and will be used later on.

Observation
Adding a fact⇐ (p) preserves the property of being stratified, i.e. if $ is stratified, then so is $∪{(⇐
(p))}.

2.2 Game descriptions

We now formally define GDL game descriptions.

Definition 2.7 (GDL Syntax)
Let a primitive set of proposition symbols Prim={p̂,q̂...}, a set of agents Ag, a set of actions Ac,
a set of strings S and a set of integers [0 ... 100]1 be given. The set of atomic propositions of GDL,
denoted Atgdl, is defined as the smallest set that satisfies the following conditions:

• Prim⊆Atgdl;
• a special atom terminal∈Atgdl;
• for two strings s1,s2∈S, (distinct s1 s2)∈Atgdl;
• for every agent i∈Ag and action a∈Ac, (legal i a)∈Atgdl;

1This set of integers is used to indicate the payoffs of agents in each state, following [17]. The range 0 ... 100 is arbitrary.
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• for every agent i and integer v in [0 ... 100]), (goal i v)∈Atgdl.

The set of atomic expressions AtExprgdl of GDL, is defined as the smallest set that satisfies the
following conditions:

• for p∈Atgdl, {p, (init p), (next p), (true p) } ⊆AtExprgdl;
• for every agent i and action a, { (role i), (does i a)} ⊆AtExprgdl.

LitAtGDL is {p,(true p),(not p),(not (true p)) | p∈AtGDL}. LitExprgdl is AtExprgdl∪
LitAtGDL .

A game description specifies the atoms from Atgdl that are true, either in the initial state, or as a
result of global constraints, or as the effect of performing some joint actions in a given state. The
meaning of these atomic expressions will be given in Definition 2.10.

Definition 2.8 (Game Descriptions)
A GDL game description & is a set of Datalog rules r of the form 2 (⇐ (h)(e1)...(em)) where h,
the head hd(r) of the rule, is an element of AtExprgdl and each ei (i∈[1...m]) in the body bd(r) of r
is a literal expression from LitExprgdl. If m=0, we say that r has an empty body. We can split every
game description & into four different types of rules where:

• &role contains all claims of the form (⇐ (role x)). They specify the agents in the game.
• &init is a set of constraints of the form (⇐ (init p)). They have an empty body and their

heads represent constraints of the initial state of the game.
• &glob is a set of global constraints, i.e. rules of the form (⇐ (p) (e1) ... (em)), where p∈AtGDL

and each body ei (i∈[1...m]) is from LitAtGDL .
• &next contains all rules with a (next p) in the head: (⇐ (next p)(e1)...(em)) where each
ei(i∈[1...m]) is from LitAtGDL or of the form (does i a).

Finally, we will assume that game descriptions & are stratified in the sense of Definition 2.4.

2.3 Game models

In general, a game model can be seen as a game tree, where we have a set of nodes, representing
states of the game, and a labelled edge from one state to another representing a transition between
those states, caused by the performance of actions/moves by players. We will shortly consider how
to compute such game states from game descriptions.

For the description of game models G, our approach is equivalent to that of [12]. Instead of roles
we will refer to a set Ag={1,...,n} of agents or players.

Definition 2.9 (GDL game model)
Given the set of atomic propositions Atgdl, a GDL Game Model is a structure:

G=〈S,s0,Ag,Ac1,··· ,Acn,τ,π〉

where S is a finite, non-empty set of game states; s0∈S is the initial state of G; Ag is a finite, non-
empty set of agents, or players in the game; Aci is a finite non-empty set of possible actions or moves

2We do not allow disjunctions in the body of a GDL rule, but note that this is not a restriction: a rule such as (⇐ (h)(e1∨e2))
can be captured by two rules (⇐ (h)(e1)) and (⇐ (h)(e2)).
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for agent i; τ :Ac1×···×Acn×S→S is a partial function such that τ (〈a1,...,an〉,s)=u, means that
if in game state s, agent i chooses action ai (i≤n), the system will change to its successor state u—we
require all states, except the initial state, to have only one predecessor; and finally, π :S→2Atgdl is
an interpretation function, which associates with each state the set of atomic propositions in Atgdl
that are true in that state. We will often abbreviate an action profile 〈a1,...,an〉 to 4a.

Our game models are essentially those of [12]. However, we encode notions like being a terminal
state, or a legal action, through π , rather than through separate relations in the model.

Now we specify when a game model G is a model for a game description &; this makes precise
the informal description of [12], and in fact represents a formal semantics for GDL.

We compute the game model GMod for a game description & as follows. The main idea is that
every state s∈S of GMod is associated with the unique model under the stratified semantics of some
Datalog Program $ that is derived from &. In particular, let δ(&glob) be derived from &glob by
replacing every occurrence of true p by p. Since we assume that &glob does not contain init
or next in any body of any rule, δ(&glob) is indeed a Datalog program. Moreover, δ(&glob)
is stratified whenever &glob is. Also, let δ(&init) be {⇐p | (⇐init p)∈&init}. The set Ag of
agents, and Aci of actions for agent i in GMod are immediately read off from &: Ag={i | (⇐
(role i))∈&role} and Aci ={a | (legal i a) occurs in &}.

In the following, we construct S, τ and π step by step.

• First, we define the initial state s0. Put

π (s0)=DatlogPMod(δ(&init)∪δ(&glob))

Since δ(&glob) is stratified, by our observation ending in Section 2.1, we apply DatlogPMod()
to a stratified program.

• Next, suppose a game state s∈S has already been defined. If this is not a terminal state, i.e.
terminal 5∈π (s), each agent should have at least one legal action available. An action ai is
legal for agent i in state s, if and only if (legal i ai) ∈π (s). If terminal 5∈π (s), we define,
for every profile of legal actions 〈a1,...,an〉, a successor u of s by first computing the atoms that
need to be true due to &next.

F&(〈a1,...,an〉,s)= {⇐ p | ∃ (⇐ (next p) (e1)···(em)) ∈&next

& π (s) ∪ {¬q |q 5∈π (s)}
∪ {(does i ai) | i∈[1...n]} |=cl e1∧···∧em}

So, F&(〈a1,...,an〉,s) computes those atoms that need to be true in the next state (the F is for
‘forward’), given that each agent i performs ai. Now we add a new state u to G and stipulate:

u=τ (〈a1,...,an〉,s) and π (u)=DatlogPMod(F&(〈a1,...,an〉,s)∪δ(&glob))

Again, using the observation at the end of Section 2.1, u is well-defined.
• Iteration: we repeat the above procedure to all the descendents of the initial state, until we reach

all the terminal states.

We illustrate the main idea with the Tic-Tac-Toe example. Suppose that we already have
a propositional version of the GDL description presented in Figure 1, i.e. all the vari-
ables have been instantiated. As (control xplayer) ∈δ(&init), we use &glob and get



[14:56 5/8/2009 exp039.tex] LogCom: Journal of Logic and Computation Page: 9 1–30

Verification of Games in GDL 9

(legal xplayer (mark 1 1)) ∈π (s0), and (legal oplayer noop) ∈π (s0). We also see that
terminal 5∈π (s0), because the bodies of all the global rules with head terminal are not satisfied.
Thus, we have an action profile 4a=〈mark 1 1,noop〉. It is easy to verify that (cell 1 1 x) and
(control oplayer)∈F&(4a,s0), due to the next rules.

Atoms of the form (does i ai) are not added to the game model GMod—they are only used to
calculate different successors for a given game state s. So, they incorporate a kind of hypothetical
reasoning of the form: ‘suppose player i were to do ai, what would be the resulting next state?’

It is now easy to verify that GMod is indeed a game model for &, if we give the following truth
definitions.

Definition 2.10 (GDL semantics)
Let G=〈S,s0,Ag,Ac1,...,Acn,τ,π〉 be a game model. Let {i1,...,ik}=Ag′ be a set of agents ⊆Ag,
each ix with an action ax (x≤k). Then, we say that t is an i1 :a1,...,ik :ak successor of s if there is
a choice for any agent j in Ag\Ag′ for an action bj from Acj such that τ (〈c1,...,cn〉,s)= t, where
cv =ax if v= ix∈Ag′, and cv =bj if v= j∈Ag\Ag′. For a game model G and state s, we define:

• G,s |=gdlp iff p∈π (s), for any p∈Atgdl;
• G,s |=gdlnot p iff G,s 5|=gdlp;
• G,s |=gdltrue p iff G,s |=gdlp;
• G,s |=gdlnot (true p) iff G,s 5|=gdltrue p;
• G |=gdlinit p iff G,s0 |=gdlp;
• G |=gdl (⇐ (p) (e1)...(em)) iff ∀s : (∀i∈[1...m] : G,s |=gdlei)⇒G,s |=gdlp;
• G |=gdl (⇐ (next p)(e1)...(em)(does i1 a1)...(does ik ak)) iff ∀s,t : (∀i∈[1...m] :

G,s |=gdlei and t is an i1 :a1,...ik :ak successor of s) ⇒G,t |=gdlp.

It is straightforward to verify that GMod |=gdl &.

3 Alternating-time temporal logic
We now introduce a logic for reasoning about games defined using GDL. For this, we believe ATL
is ideally suited [3]. The key construct in ATL is 〈〈C〉〉Tϕ, where C is a coalition, (a set of agents),
and Tϕ a temporal formula, meaning ‘coalition C can act in such a way that Tϕ is guaranteed to be
true’. Temporal formulae are built using the unary operators !, !,♦ and U , where !means ‘in
the next state’, ! means ‘always’,♦ means ‘eventually’ and the binary operator U means ‘until’.

Definition 3.1 (Language of ATL)
The language of ATL (with respect to a set of agents Ag, and a set of atomic propositions *), is given
by the following grammar:

ϕ ::=p |¬ϕ |ϕ∨ϕ | 〈〈C〉〉 !ϕ | 〈〈C〉〉!ϕ | 〈〈C〉〉ϕUϕ

where p∈* is a propositional variable and C⊆Ag is a set of agents.

3.1 Semantics

ATL has been provided with a number of semantics, the main three of them are proven to be equivalent
in [15]. Since moves, or actions, play such a prominent role in game playing, we use Action-
based Alternating Transition Systems (aatss) (which, for the language of ATL, are equivalent to, for
instance, Concurrent Game Structures).
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Definition 3.2
An AATS is a tuple

A=〈Q,q0,Ag,Ac1,...,Acn,ρ,τ,*,π〉

where: Q is a finite, non-empty set of states; q0∈Q is the initial state; Ag={1,...,n} is a finite,
non-empty set of agents; Aci is a finite, non-empty set of actions, for each i∈Ag, where Aci∩
Acj =∅ for all i 5= j∈Ag; ρ :AcAg→2Q is an action precondition function, which for each action
a∈AcAg(=

⋃
i∈AgAci) defines the set of states ρ(a) from which a may be executed; τ :Ac1×···×

Acn×Q→Q is a partial system transition function, which defines the state τ (4a,q) that would result
by the performance of 4a from state q—note that, as this function is partial, not all joint actions are
possible in all states (cf. the precondition function above); * is a finite, non-empty set of atomic
propositions; and π :Q→2* is an interpretation function, which gives the set of atomic propositions
satisfied in each state: if p∈π (q), then this means that the propositional variable p is satisfied in state q.

In order to be consistent with GDL, in this article, we require that aatss satisfy the following
coherence constraints: (Non-triviality) agents always have at least one legal action—∀q∈Q,∀i∈
Ag,∃a∈Aci s.t. q∈ρ(a); and (Consistency) the ρ and τ functions agree on actions that may be
performed: ∀q,∀4a=〈a1,...,an〉,(4a,q)∈dom τ iff ∀i∈Ag,q∈ρ(ai).

Given an agent i∈Ag and a state q∈Q, we denote the options available to i in q—the actions
that i may perform in q—by options(i,q)={a |a∈Aci and q∈ρ(a)}. For a coalition C, we define
options(C,q)=⋃{options(i,q) | i∈C}. We then define a strategy for an agent i∈Ag as a function
σi :Q→Aci which must satisfy the legality constraint that σi(q)∈options(i,q) for all q∈Q. In this
definition, a strategy is memoryless in the sense that an action is chosen only for states, not for a history
of states. A strategy profile for a coalition C ={i1,...,ik}⊆Ag is a tuple of strategies 〈σ1,...,σk〉, one
for each agent i∈C. We denote by %C the set of all strategy profiles for coalition C⊆Ag; if σC ∈%C
and i∈C, then we denote i’s component of σC by σ i

C . Given a strategy profile σC ∈%C and state
q∈Q, let out(σC,q) denote the set of possible states that may result by the members of the coalition
C acting as defined by their components of σC for one step from q:

out(σC,q)={q′ |τ (4a,q)=q′ where (4a,q)∈dom τ and σ i
C(q)=ai for i∈C}

Notice that the set out(σAg,q) is a singleton. Also, out(·,·) only deals with one-step successors, and
we interchangeably write out(σC,q) and out(AcC,q): for the one step future, a strategy carries the
same information as an action. A q0-computation is an infinite sequence of states λ=q0,q1,.... If
u∈N, then we denote by λ[u] the component indexed by u in λ.

Given a strategy profile σC for some coalition C, and a state q∈Q, we define comp(σC,q) to be the
set of possible runs that may occur if every agent i∈C follows the corresponding strategy σi, starting
when the system is in state q∈Q. That is, the set comp(σC,q) will contain all possible q-computations
that the coalition C can ‘enforce’ by cooperating and following the strategies in σC .

comp(σC,q)={λ |λ[0]=q and ∀u∈N :λ[u+1]∈out(σC,λ[u])}.

Again, note that for any state q∈Q and any grand coalition strategy σAg, the set comp(σAg,q) will
be a singleton, consisting of exactly one infinite computation.

In a nutshell, it should be clear that game models (Definition 2.9) and aatss (Definition 3.2) are
very similar: the basic difference is that a game model has terminal states without any outgoing
transitions.
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We can now give the rules defining the satisfaction relation ‘|=atl’ for ATL, which holds between
pairs of the form A,q (where A is an AATS and q is a state in A), and formulae of ATL.

Definition 3.3 (Semantics of ATL)
Given an A, a state q, the semantics of ATL is defined as follows:

A,q |=atl p iff p∈π (q) (where p∈*);
A,q |=atl ¬ϕ iff A,q 5|=atl ϕ;
A,q |=atl ϕ∨ψ iff A,q |=atl ϕ or A,q |=atl ψ ;
A,q |=atl 〈〈C〉〉 !ϕ iff ∃σC ∈%C , such that ∀λ∈comp(σC,q), we have A,λ[1] |=atl ϕ;
A,q |=atl 〈〈C〉〉!ϕ iff ∃σC ∈%C , such that ∀λ∈comp(σC,q), we have A,λ[u] |=atl ϕ for all
u∈N;
A,q |=atl 〈〈C〉〉ϕUψ iff ∃σC ∈%C , such that ∀λ∈comp(σC,q), there exists some u∈N such that
A,λ[u] |=atl ψ , and for all 0≤v<u, we have A,λ[v] |=atl ϕ.

The remaining classical logic connectives (‘∧’, ‘→’, ‘↔’) are assumed to be defined as abbreviations
in terms of ¬,∨, in the conventional manner, and 〈〈C〉〉♦ϕ is defined as 〈〈C〉〉0Uϕ. For readability,
we omit set brackets in cooperation modalities, for example, writing 〈〈1〉〉 instead of 〈〈{1}〉〉 and
writing 〈〈〉〉 instead of 〈〈{}〉〉. Finally, we write A |=atl ϕ for A,q0 |=atl ϕ.

We now give an equivalence relation between two aatss, called Alternating Bisimulation. The
purpose is to characterize the AATS structures that cannot be distinguished by ATL formulas. Here
by ‘distinguish’, we mean there exists an ATL formula such that it is true in one structure but false
in another structure. The following definition is based on [2].

Definition 3.4 (Alternating bisimulation)
Let A1 =〈Q1,q1,Ag,Ac1

1,..., Ac1
n, ρ1,τ1,*,π1〉 and A2 =〈Q2,q2,Ag,Ac2

1,...,Ac2
n,ρ2,τ2, *,π2〉 be

two aatss. Then, a relation R⊆Q1×Q2 is called an alternating bisimulation if Rq1q2 and, for every
two states t1 and t2 for which Rt1t2,we have:

• Invariance: for all p∈*, p∈π (t1) iff p∈π (t2).
• Zig: for every coalition C⊆Ag, and every ac1

C ∈options(C,t1), there exists ac2
C ∈options(C,t2)

such that for every t′2∈out(ac2
C,t2), there is a t′1∈out(ac1

C,t1) so that Rt′1t′2.
• Zag: for every coalition C⊆Ag, and every ac2

C ∈options(C,t2), there exists ac1
C ∈options(C,t1)

such that for every t′1∈out(ac1
C,t1), there is a t′2∈out(ac2

C,t2) so that Rt′1t′2.

Note that the set of agents in both structures are the same, while the actions in both structures do
not have to be the same, since in ATL, one cannot directly refer to actions in the object language. We
have:

Theorem 3.1 ([2])
Let A1 and A2 be such that there is an alternating bisimulation R between them, with Rq1q2. Then,
for all ATL formulae ϕ:

A1,q1 |=atl ϕ ⇔ A2,q2 |=atl ϕ.

4 Linking GDL and ATL
From previous sections, we can see that GDL and ATL are intimately related: GDL is a language for
defining games, while ATL is a language for expressing properties of such games. The difference
between the two languages is that GDL takes a relatively constructive, internal approach to a game
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GΓ AΓTsem

ΓGDL ΓATLTsyn

has unique
GDLmodel

has bisimilar
ATLmodels

Figure 2. The relation between a GDL description of a game &gdl and its related ATL theory &atl.

description, essentially defining how states of the game are constructed and related by possible moves.
In contrast, ATL takes an external, strategic view: while it seems an appropriate language with which
to express potential strategic properties of games, it is perhaps not very appropriate for defining
games.

In this section, we will answer the following question: how complex is it to interpret a property,
represented by an ATL formula, over a game represented by a GDL description? We do this by
building two links between GDL and ATL:

• On the semantic level, every GDL description & has an ATL model associated with it.
• On the syntactic level, every GDL description & has an ATL theory associated with it.

Let us now be more precise about the links between GDL and ATL (cf. Figure 2). We start from
any game G with GDL description &gdl. On the semantic level, we use our procedure from Section
2.3 to construct a unique model G& =GMod(&) from &gdl. This model has an associated ATL model
A& =Tsem(G&). In Section 4.1, we introduce and explain Tsem. On the syntactic level, we provide
a translation Tsyn that transforms the GDL specification &gdl into an ATL theory &atl =Tsyn(&gdl).
We further show that this transformation is correct, in the following sense: all ATL-models satisfying
&atl are bisimilar to A& . So &atl can be said to characterize the ATL theory of the game G. And,
one has, for any GDL formula γ , that G& |=gdl γ iff Tsem(G&) |=atl Tsyn(γ ), where |=gdl denotes
the semantics of GDL and |=atl denotes the semantics of ATL.

We now explore these two links in more detail.

4.1 From GDL Game models to ATL Game models: Tsem

Suppose that we have already constructed a game model GMod from a GDL description &, using
the methods in Section 2.3. It is not yet possible to interpret an ATL formula on this model GMod.
In this subsection, we transform GMod (or indeed, any game model G) into an AATS, the ATL game
structure on which we can interpret ATL formulae.

Given a GDL game model G=〈S,s0,Ag,Ac1,...,Acn,τ,π〉 and a set of atomic proposi-
tions Atgdl, we can define an associated AATS Tsem(G)=AG =〈Q,q0,Ag,Ac1∪{fin1},...,Acn∪
{finn},ρ,τ ′,*,π ′〉 with the same sets of agents Ag and such that * is constructed from Atgdl in
the following manner. If the game model G is a model for a description &, we will also write A& for
AGMod .
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Definition 4.1 (Translation t and told)
Define a translation t :Atgdl→Atatl, where we associate every atom in Atgdl with an atom in Atatl.

t(p̂) = p̂ (p̂∈Prim) t(goal i v) = goal(i,v)
t(legal i a) = legal(i,a) t(terminal) = terminal
t(distinct s1 s2) = distinct(s1,s2)

Let told be as follows: told(p)= t(p)old =pold , for any p∈Atatl.

We add four types of atomic propositions to *:

(1) Atoms representing the current state of the game: for every p in Atgdl, add t(p) to *.
(2) Atoms representing the previous state of the game: for every p in Atgdl, add t(p)old to *.
(3) Atoms representing actions that are done in the transition from previous state to current state:

add atom done(i,a) to * for each (does i a).
(4) Atoms distinguishing the initial and end states of the game: add init for initial state and a

special atom s⊥. The atom s⊥ denotes a special kind of states, called ‘sink states’, which we
add to AG in order to make it a proper AATS. The idea is that in game model G, a terminal
state does not have any successors, but in AG, a sink state is the only successor of a terminal
state and itself.

The other elements of AG are:

• Q=Q1∪Q2, where Q1 =S, and Q2 ={sq |q∈Q1} which contains sink states. Put q0 =s0;
• ρ :AcAg→2Q is the action precondition function, which agrees, for each agent, with legal(i,ai)=

t(legal i ai), i.e. ρ(ai)={q |G,q |=gdl (legal i ai) and G,q |=gdl (not terminal),q∈
Q1}. Moreover, ρ(fini)=Q2∪{q |G,q |=gdlterminal,q∈Q1}, for every agent i.

• τ ′ :Ac1×···×Acn×Q→Q is based on τ . We keep all the mappings in τ and add these:
τ ′(〈fin1,...,finn〉,q)=sq, for all q∈Q1 such that G,q |=gdlterminal;

• π ′ :Q→2* is such that π ′(q) is the minimal set satisfying the following conditions:
(1) For all q,q′ ∈Q1:

• init∈π ′(q0)
• t(p)∈π ′(q)⇔p∈π (q)
• for each action profile 4a=〈a1,...,an〉 such that q′ =τ ′(4a,q), we require ∀i∈

Ag,done(i,ai)∈π ′(q′), and t(p)old ∈π ′(q)⇔p∈π (q).
(2) For allsq∈Q2, we require π ′(sq)=π ′(q)∪{s⊥,done(fini,i)}\{done(i,ai) | i∈Ag,ai∈Aci}.

Our intuition behind π ′ is that each state in Q1 \{q0} has exactly one done-proposition for each
agent to record the action made in its unique predecessor, and a set of pold-propositions to record
the atomic propositions that are true in that same predecessor. Moreover, for sq∈Q2, the atom s⊥
is true, the atoms done(i,fini) are true, but for the other atoms, sq is exactly as q.

Given a game description &, we now have two game models GMod and A& . To show that they
satisfy all the rules of game defined by &, we first define a translation from GDL rules to ATL
formulae.

Definition 4.2 (Translation from gdl rules to atl formulas)
Let & be a gdl game description. A translation from any gdl rules in &init∪&glob∪&next to atl
formulas R :gdl→atl is defined as follows:

• R(⇐ (init p))= init→ t(p)
• R(⇐ (p)(e1)...(em))=〈〈〉〉!(¬s⊥∧R(e1)∧···∧R(em)→ t(p))
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• R(⇐ (next p)(e1)...(em)(does i1 a1)...(does ik ak))=〈〈〉〉!(¬s⊥∧
R(e1)∧···∧R(em)→〈〈{i1,...,ik}〉〉 !(t(p)∧done(i1,a1)∧···∧done(ik,ak)))

where t :Atgdl→Atatl is as in Definition 4.1, and for a gdl expression ei, we stipulate: R(ei)= t(p)
if ei = p or true p, and R(ei)=¬t(p) if ei =not p or not (true p).

Theorem 4.1
Let & be a GDL game description, G& its game model and A& be the associated AATS structure. For
each rule r∈&init∪&glob∪&next, each s∈S and all e∈AtExprgdl, we have

G&,s |=gdle iff A&,s |=atl R(e) and G& |=gdl r iff A& |=atl R(r)

Proof. The proof is straightforward by induction on GDL rules. !

4.2 From GDL descriptions to ATL-theories: Tsyn

Now we turn to the syntactic level of the correspondence. Given a GDL description &gdl, we translate
it into an ATL theory Tsyn(&gdl)=&atl which characterizes the same game. Here, by ‘same game’
we mean the following. From the description &, we can derive a game model GMod, and hence a
unique AATS A& . And for &atl, there might be several aatss that satisfy it. They all amount to the
same in the sense that there is no ATL formulae that can distinguish these aatss and A& . We will
prove this formally later by showing that there is an alternating bisimulation between A& and any
AATS model for &atl.

Given &, we define the ATL theory &atl as a conjunction of ATL formulae:

&atl =DIST∧INIT∧MEM∧ONE_DONE∧LEGAL∧STRAT∧TERM∧SINK

Intuitively, these conjuncts play the following roles. DIST characterizes the distinct predicate.
INIT characterizes the initial state. Next, MEM is to remember the previous state; ONE_DONE
and LEGAL ensure that for each non-terminal state, there is a legal action selected by each agent.
Combined with MEM, ONE_DONE and LEGAL, STRAT computes the current state given the old
state and the actions that have been done. Finally, TERM and SINK ensure all terminal states will
transit to their special sink state.

We now define these properties in detail. First, we need to ensure the intended meaning of the
special atom distinct(·,·), as follows:

DIST =〈〈〉〉!distinct (t1,t2) for all terms t1 and t2 that are syntactically different.

We now explain &atl in more detail. Let S0 =DatlogPMod(δ(&init)∪δ(&glob)), which gives
the set of atomic consequences (using the global rules) of all (init p) expressions. We want an ATL
formula that characterizes the full initial state. Consider:

INIT = init∧〈〈〉〉 !〈〈〉〉!¬init∧PS0∧
∧

pold∈Atatl

¬pold∧Ndone∧¬s⊥

where
PS0 =

∧

p∈S0

p∧
∧

p/∈S0

¬p,
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and
Ndone =

∧

i∈Ag

∧

a∈Aci∪{fini}
¬done(i,a).

This ensures that the special atom init is true in the initial state, and is false everywhere else, and
that the truth values of the other atoms in the initial state of GMod are reflected properly. It also
ensures that all the old− and done− propositions are false, since there is no previous state, and this
is not a s state.

The intended use of an atom pold is that it records the old, i.e. previous, truth value of p. This is
captured by the principle MEM:

MEM =〈〈〉〉!
∧

p∈Atgdl

((t(p)∧¬terminal→〈〈〉〉 !t(p)old)∧(¬t(p)∧¬terminal→〈〈〉〉 !¬t(p)old))

The following constraint makes sure that for all non-initial states, one action is done by each agent:

ONE_DONE =〈〈〉〉!(¬init→
∧

i∈Ag

XORa∈Aci∪{fini}done(i,a))

where XOR is the exclusive OR operator, a Boolean operator that returns a value of true only if exactly
one of its operands is true. One assumption for playing GDL games is that each agent must play legal
moves. This is captured by the following:

LEGAL=〈〈〉〉!
∧

i∈Ag,ai∈Aci

((legal(i,ai)∧¬terminal)↔〈〈x〉〉 !done(i,ai))

This principle says that, when an action ai is legal for agent i, and the current state is not a terminal
state, then agent i should have a strategy to enforce it, and vice versa. For done(·,·) atoms, we have
the following equivalence (the left-to-right direction is valid in ATL for arbitrary formulas):

|=atl 〈〈i〉〉 !done(i,ai)↔〈〈Ag〉〉 !done(i,ai)

Let bd1,bd2,... be variables over possible bodies of rules, that is, sets of literals, but not including
any (does i a). Let p∈Atgdl. Now suppose that all the rules r in & with hd(r)∈{(p),(next p)}
are the following:

r1 : ⇐ (p) bd1
... ⇐ (p)

...

rh : ⇐ (p) bdh
s1 : ⇐ (next p) bd′1 (does i11 a11 )...(does im1 am1 )
...

...
...

...
...

...

sk : ⇐ (next p) bd′k (does ik1 ak1 )...(does imk amk )

We map all these rules for p to an ATL formula ϕ(p). For this, we first translate the symbols from
GDL to those of ATL using the functions t and told defined in Definition 4.1. For convenience, we
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denote t(bdi) as the translation of all the expressions in bdi by t, and similar for told(bdj). For each
atom p∈Atgdl, we can now define an ATL constraint MIN(p), as follows:

MIN(p)= t(p)↔




∨

i≤h

t(bdi)∨
∨

j≤k

(told(bd′j )∧done(ij1 ,aj1 )∧···∧done(ijm ,ajm ))





And if p does not occur in a head of any rule in &, we define MIN(p)=¬p.
The semantics of stratified program & is now captured by the following constraint:

STRAT =〈〈〉〉!
∧

p∈Atgdl

(
¬init∧¬s⊥→MIN(p)

)

When a terminal state is reached, no further ‘real’ moves are played by agents, i.e. they always
play the fini actions:

TERM =〈〈〉〉!
∧

i∈Ag

((terminal∨s⊥)↔〈〈〉〉 !(s⊥∧done(i,fini)))

Reaching a sink state should not change anything:

SINK =〈〈〉〉!
∧

p∈Atatl

(((terminal∨s⊥)∧p)↔〈〈〉〉 !(s⊥∧p))

In Section 4.1, we have shown that we can conceive a GDL game model as anAATS. The following
is essentially a soundness result for our transformation. Let & be a game description, and GMod its
game model with initial state s0; A& is the corresponding AATS. We have:

A&,s0 |=atl &atl

In the following, we add a requirement resulting in uniform AATS structures:

(uni) ∀s∈Q∀C⊆Ag∀σC ∀s′,s′′ ∈out(σC,s)∀i∈C∀a∈Aci :
(done(i,a)∈π (s′)⇔done(i,a)∈π (s′′))

This requirement says that, in the outcome states of a coalition C executing a strategy, for the
agents in C, the related done propositions are uniformly true or false. Notice that A& satisfies this
requirement.

We now turn to the complexity of reasoning about the uniform AATS structures. The ATL
satisfiability checking problem with respect to uniform aatss is as follows: given an ATL formula
ϕ, does there exist a uniform AATS A and a state s in A such that A,s |=atl ϕ?

Lemma 4.1
The ATL satisfiability checking problem with respect to uniform aatss is in EXPTIME.

Proof. Given an input formula ϕ, we apply the incremental tableau construction of [16]. This
algorithm, which runs in time O(2|ϕ|2 ), generates a set of ‘concurrent game Hintikka structures’,
which correspond to all the possible models for ϕ (uniform or otherwise). Once generated, we can
check each one to see whether it corresponds to a uniform model: we eliminate all structures that do
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Figure 3. Alternating bisimulation between A1 and A2.

not correspond to uniform models. If, at the end of this stage, we are left with any structures, then
the input formula is satisfiable in a uniform model. Notice that checking whether a concurrent game
Hintikka structure corresponds to a uniform model can trivially be done in time polynomial in the
size of the structure. !

Note that the translation of the GDL description &gdl into the ATL specification &atl can be done
in time polynomial in the size of &gdl, where the size of &gdl is the number of symbols it contains.

Now we prove an important result: every model for &atl is bisimilar to A& .

Theorem 4.2
Let G& be the model for a game description &, and let

A1 =〈Q1,q1,Ag,{Aci|i∈Ag},ρ1,τ1,*,π1〉

be its associated AATS structure. Let

A2 =〈Q2,q2,Ag,{Aci|i∈Ag},ρ2,τ2,*,π2〉

be a uniform AATS that satisfies &atl. Then there exists an alternating bisimulation R between A1
and A2, with Rq1q2. As a consequence, all AATS models for &atl verify the same formulas.

The proof will be constructive: Rz1z2 can be chosen to be π1(z1)=π2(z2). This means that all that
can be said about the game in the language of ATL given a state s, is completely determined by the
propositional contents of that current state. If two states agree on propositional content, the sets of
options for any agent are the same in those states, and the effect of doing specific combinations of
actions is the same as well; hence, all the possible futures are the same. This will be reflected in the
proof, which is outlined as follows (see also Figure 3).

First, if in z1 the atom terminal is true, this will also be the case in z2, and hence the only action
available in both states is fini, for all agents i. To be more precise, in z2, we know that all successors
verify done(i,fini), by TERM. (See our remark below, explaining why the proof is a little more
involved: we do not actually know that the agents have an action fini, in z2). For z1, this is so because
of the construction of A1 (it is associated to a game G&), and for z2, this is because A2 satisfies
TERM. So in both models, the system can only proceed to a sink state s and stay there forever. Since
a sink state satisfies the same atoms as it predecessor (for A1, this is true by construction of π , and
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for A2, this is true due to TERM∧SINK), and we already assume that those predecessors z1 and z2
verify the same atoms, the two sink states are propositionally equivalent, and hence bisimular.

If z1 and z2 are not sink states, we can reason about successor states that are reachable by doing
some actions. Conceptually, the proof follows the following pattern: if terminal is not true, for the
Zig direction, we have to show that for any coalition C and action ac1

C ∈options(C,z1), there is a joint
action ac2

C ∈options(C,z2) such that for any u2∈U2 =out(ac2
C,z2), there is a u1∈U1 =out(ac1

C,z1),
such that u1 and u2 bisimulate, i.e. have the same propositional content (Figure 3). We like to take
for ac2

C the same as ac1
C : U2 and U1 are then determined. Now take a u2∈U2. With what will it

bisimulate? Well, u2 is obtained from z2 by choosing an additional action for any agent outside C.
We choose the same action for those agents in z1 to find u1∈U1. Now, any atom p in z2 may be false
because no action and no global rule made it true. This will be the same for z1. Alternatively, p was
true in z2 ‘for a reason’. This reason can be the execution of an action (in which case it will be true in
z1 as well), or it may be true because of some global rule. Here, we apply induction on the stratum in
which p occurs in &, to show that p must be true in z1 as well. Reasoning for the Zag case is similar.

However, the details of the proof are more involved, for the reason that some syntactic atoms
suggests some semantic properties, which in A1 must be ensured through the link with & and G& ,
and for A2 they are guaranteed by &atl. For instance, an atom done(i,ai) may be true in A1,u1, which
then means that agent i has an option to perform action ai in z1. This would also imply legal(i,ai)
is true in z1. However, although the induction hypothesis for atoms then guarantees that legal(i,ai)
is also true in z2, there is no direct link with an action ai being available in z2 for agent i. Note that
although we have actions in AATSs, we cannot directly refer to them in the object language. All the
effects and availability of actions in A2 must be derived from &atl.

Proof. We define a relation R⊆Q1×Q2 as follows,

Rz1z2 iff π1(z1)=π2(z2).

We show that R is an alternating bisimulation which connects q1 and q2.
By INIT , one could easily check that Rq1q2.
Suppose we have established Rz1z2 for some z1∈Q1 and z2∈Q2 (cf. Figure 3). Easy to see that

R satisfies the invariance condition in Definition 3.4. We need to show that it satisfies both the Zig
and Zag conditions in Definition 3.4 as well.

We first show the Zig condition. In the case that A1,z1 |=atl terminal, by construction of A1
(a model associated with a game G&), the only actions available to the agents are the fini actions, and
performing them in z1 will lead to the unique sink state sz1 . Since A1 is the model associated with a
game G& , by definition π ′ of such a model we have, for all atoms p 5=s⊥,done(i,ai), that A1,z1 |=atl p
iff A1,sz1 |=atl p. We furthermore have A1,sz1 |=done(i,fini)∧s⊥. Using the assumption about z1
and z2, we also have A2,z2 |=atl terminal. But since A2 satisfies TERM and SINK , we also know that
sz2 satisfies the same atoms p 5=s⊥,done(i,ai) as z2, and moreover, thatsz2 satisfies done(i,fini)∧s⊥.
To prove Zig, take a coalition C⊆Ag and take a ac1

C ∈options(C,z1): we have just argued that the
only ac1

C is a tuple fini (i∈C). We have to show that there is a a2
C ∈options(C,z2), such that for every

u2∈out(ac2
C,z2), there is a u1∈out(ac1

C,z1) with Ru1u2. Take an arbitrary action ac2
C for C in z2 and

a u2∈out(ac2
C,z2). Since A2 satisfies TERM, we have A2,u2 |=atls⊥∧done(i,fini) and, by SINK ,

A2,u2 |=atl p iff A2,z2 |=atl p. So z2 and u2 agree on all atoms apart from s⊥ and done(fin,i), which
are both true in u2. We can take u1 =sz1 , then u1 and u2 both verify s⊥∧done(i,fini) and u1 agrees
for the other atoms with z1, and u2 agrees for the other atoms with z2. Since by assumption, z1 and
z2 verify the same atoms, we conclude that u1 and u2 verify the same atoms, and hence Ru1u2.
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In the following, we suppose A1,z1 5|=atl terminal. By assumption, we then also have A2,z2 5|=atl
terminal. Take an arbitrary coalition C, with a joint action ac1

C ∈options(C,z1), and consider U1 =
out(ac1

C,z1)⊆Q1 in A1. We need to find ac2
C ∈options(C,z2) such that for every u2∈out(ac2

C,z2),
there is a u1∈U1 so that Ru1u2.

It follows from ac1
C ∈options(C,z1) that A1,z1 |=atl legal(i,a1

i ) for all i∈C,a1
i ∈ac1

C . Therefore,
A2,z2 |=atl legal(i,a1

i ) for all i∈C,a1
i ∈ac1

C .And by LEGAL, we have A2,z2 |=atl 〈〈i〉〉 !done(i,a1
i )

for all i∈C. So, for each i∈C, there is ac2
i ∈options(i,z2) such that for all x∈out(ac2

i ,z2)⊆Q2,
A2,x |=atl done(i,a1

i ). Let ac2
C be an action profile that consists of a2

i for all i∈C and U2 =
out(ac2

C,z2)⊆Q2. It is easy to see that for all x∈U2, we have A2,x |=atl done(i,a1
i ) for i∈C. We

pick an arbitrary u2∈U2. We are done if we can show that there is a u1∈U1 for which Ru1u2.
By ONE_DONE, there is one and only one done(i,a) true in u2 for each i∈Ag. We already know

A2,u2 |=atl done(i,a1
i ) for i∈C, and we assume A2,u2 |=atl done(j,b1

j ) for all j∈Ag\C. As u2 is a

successor of z2, we have A2,z2 |=atl 〈〈Ag〉〉 !done(j,b1
j ) for all j∈Ag\C, and by LEGAL, we have

A2,z2 |=atl legal(j,b1
j ) for all j∈Ag\C, hence A1,z1 |=atl legal(j,b1

j ) for all j∈Ag\C. We collect

the actions a1
i for i∈C, and b1

j for j∈Ag\C to make a complete action profile 4a.
Now go back to A1 and consider u1 =out(4a,z1). We claim that this u1 is the state we are looking

for: it satisfies A1,u1 |=atl p iff A2,u2 |=atl p, for all p∈*. By MEM, we have pold ∈π1(u1) iff pold ∈
π2(u2) for all pold ∈*. By ONE_DONE, we have done(i,ai)∈π1(u1) iff done(i,ai)∈π2(u2) for all
done(i,ai)∈*.

We now claim:

∀p∈Atgdl,G,u1 |=gdlp iff A1,u1 |=atl t(p) iff A2,u2 |=atl t(p) (1)

The first ‘iff’ immediately follows from Theorem 4.1, and we will use it to know ‘why’ a certain
atom is true in G,u1. Since u1 =out(4a,z1), we know that in G, we have u1 =τ (4a,z1), i.e. u1 is
calculated from & as DatlogPMod(F&(4a,z1)∪δ(&glob)).

We distinguish two cases:

• Either there is no rule r∈F&(4a,z1)∪δ(&glob) with hd(r)=p. Thenp 5∈DatlogPMod(F&(4a,z1)∪
δ(&glob)) and hence G,u1 5|=gdlp, and, by Theorem 4.1, A1,u1 |=atl ¬p. Now consider the
axiom STRAT , which says that MIN(p) is true everywhere in A2 except the initial state and
the sink state. In case that p does not appear in the head of any rule in &, MIN(p)=¬p, which
implies that A2,u2 |=atl ¬p, as desired. Otherwise, pmust appear in the head of some rule r∈&.
Since in this case we assume this is not so for δ(&glob), the only way to make p true, using

MIN(p)=p↔




∨

i≤l

t(bdi)∨
∨

j≤k

(told(bd′j )∧done(ij1 ,aj1 )∧···∧done(ijm ,ajm ))





is that we have some bd′j , generated by some rule

sj : (⇐next(p) bd′j does(j1,aj1 )···does(jm,ajm ))

for which A2,u2 |=atl told(bd′j )∧done(j1,aj1 )∧···∧done(jm,ajm ). By ONE_DONE, we know
that for any i∈Ag, the only action bi for which A2,u2 |=atl done(i,bi) is true is bi =ai. By MEM,
since A2,u2 |=atl told(bd′j ), we have that A2,z2 |=atl bd′j . Using the induction hypothesis, we
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get A1,z1 |=atl bd′j . Now looking at A1 as a game model G for &, we see that (⇐ p)∈F&(4a,z1),
contradicting our assumption that there is no rule in F&(4a,z1)∪δ(&glob) with p as a head.

• Or, for some rule r∈F&(4a,z1)∪δ(&glob), we have hd(r)=p. We distinguish two sub-cases:
◦ r∈F&(4a,z1). It follows that r = (⇐p). And since u1 =DatlogPMod(F&(4a,z1)∪δ(&glob)),

we have G,u1 |=gdlp. It also follows from r∈F&(4a,z1), that G,z1∪{does 1 a1∧···∧
does n an} |=gdl bdl(r′)∧bda(r′) for somenext rule r′ in the form of (⇐next(p) bdl bda),
where bdl is the literal part of this rule, and bda is the action part. This means that
ax∈4a for all does x ax∈bda. By construction of G, we have G,z1 |=gdl bdl(r′), and,
by Theorem 4.1, we have A1,z1 |=atl t(bdl(r′)) which gives, by the induction hypothesis,
A1,z2 |=atl t(bdl(r′)) and, by MEM, A2,u2 |=atl told(bdl(r′)). By choice of u2, we also
have A2,u2 |=atl done(1,a1)∧···∧done(n,an), thus A2,u2 |=atl told(bda(r′)). By MIN(p),
we then have A2,u2 |=atl p.

◦ r∈δ(&glob) and r /∈F&(4a,s). Now we consider a level mapping f :e(Atgdl(&))→N. We
claim

∀n∈N : f (x)=n⇒ (G,u1 |=gdlx⇔A1,u1 |=atl x⇔A2,u2 |=atl x)

We do induction on f (p).
• Base case: f (p)=0. There must be a global rule (⇐p) in δ(&glob), thus G,u1 |=gdlp and

A1,u1 |=atl p. And by MIN(p), we have A2,u2 |=atl p. This proves the claim.
• Induction step: suppose f (p)=k+1, and the claim proven for all q with f (q)≤k. We have

to show that G,u1 |=atlp⇔A1,u1 |=atl p⇔A2,u2 |=atl p. The fact G,u1 |=gdlp is true if
and only if there exists a rule r = (⇐p bd)∈δ(&glob) such that G,u1 |=gdl bd. For any atom
q∈bd, f (q)<k+1, so by induction hypothesis, we know that G,u1 |=atlq⇔A1,u1 |=atl
q⇔A2,u2 |=atl q, for all q∈bd. It follows that G,u1 |=atl bd⇔A1,u1 |=atl t(bd)⇔
A2,u2 |=atl t(bd). And by MIN(p), we have G,u1 |=gdlp if and only if A2,u2 |=atl p.

We now show the Zag condition.
Take an arbitrary coalition C and with a joint action ac2

C and consider U2 =out(ac2
C,z2)⊆Q2 in

A2. Pick an arbitrary u2∈U2, we apply ONE_DONE, so for i∈C, we have a unique done(i,a1
i ) true

in u2. Due to the uniform requirement, we have that for all u∈U2 and all i∈C, A2,u |=atl done(i,a1
i ).

Take a1
i into ac1

C , we have an action profile for C. And let U1 =out(ac1
C,z1).

We want to demonstrate that for every u1∈U1 there is a u2∈U2 for which Ru1u2. Choose u1∈U1
arbitrarily. Let 4a be the action profile for which u1 =out(4a,z1), it is easy to see that in G this means
that u1 =τ (4a,z1), i.e. u1 =DatlogPMod(F&(4a,z1)∪δ(&glob)). Now we have A1,z1 |=atl legal(j,a1

j )

for j∈Ag\C and a1
j ∈4a. And by assumption, A2,z2 |=atl legal(j,a1

j ) as well. Hence, by LEGAL, we

have A2,z2 |=atl 〈〈j〉〉 !done(j,a1
j ) for every j∈Ag\C. For each done(j,a1

j ), we can find an action a2
j

in A2 such that for all u∈out(a2
j ,z2), we have A2,u |=atl done(j,a1

j ). We collect a2
j for all j∈Ag\C,

and combine them with a2
i for all i∈Ag, then we get a complete action profile 4a′.

Now let u2 =out(4a′,z2), and we claim that this is the one to complete Ru1u2. The proof that
∀p∈Atgdl,G,z1 |=gdlp iff A1,u1 |=atl p iff A2,u2 |=atl p is similar to the proof of (1) above. !
Corollary 4.1
Given a game description &, the following two are equivalent, for any formula ϕ:

(1) The specific model A& satisfies ϕ, i.e. A& |=atl ϕ, or, equivalently, A&,q0 |=atl ϕ;
(2) ϕ follows from the theory &atl, i.e. &atl |=atl ϕ.
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One way of interpreting the results of Theorem 4.2 and Corollary 4.1 above is as follows: GDL can
be viewed as a model specification language, suitable for use in a model checker [6]. This gives rise
to the formal decision problem of ATL model checking problem over GDL game descriptions, which
can be described as follows: given a GDL game description & and an ATL formula ϕ (containing
only atoms and agents that occur in &), is it the case that A& |=atl ϕ?

Theorem 4.3
ATL model checking over propositional GDL game descriptions is EXPTIME-complete.

Proof. We first show that the problem can be decided in time exponential in |&|+|ϕ|, where |&| is
the number of symbols in & and |ϕ| is the number of symbols in ϕ. This follows from Theorem 4.2 and
Lemma 4.1. Given a game description &, and ATL formula ϕ, construct &atl. The question whether
A& |=atl ϕ is equivalent to the question whether &atl∧¬ϕ is unsatisfiable in ATL; the correctness
of this procedure follows from Corollary 4.1. The fact that ATL unsatisfiability is in EXPTIME is
from [9, 29].

EXPTIME-hardness may be proved by reduction from the problem of determining whether a given
player has a winning strategy in the two-player game peek-G4 [25, p. 158]. An instance of peek-G4
is a quadruple:

〈X1,X2,X3,ϕ〉
where:

• X1 and X2 are disjoint, finite sets of Boolean variables, with the intended interpretation that the
variables in X1 are under the control of agent 1, and X2 are under the control of agent 2;

• X3⊆ (X1∪X2) are the variables deemed to be true in the initial state of the game; and
• ϕ is a propositional logic formula over the variables X1∪X2, representing the winning condition.

The game is played in a series of rounds, with the agents i∈{1,2} alternating (with agent 1 moving
first) to select a value (true or false) for one of their variables in Xi, with the game starting from
the initial assignment of truth values defined by X3. Variables that were not changed retain the same
truth value in the subsequent round. An agent wins in a given round if it makes a move such that
the resulting truth assignment defined by that round makes the winning formula ϕ true. The decision
problem associated with peek-G4 involves determining whether agent 2 has a winning strategy in a
given game instance 〈X1,X2,X3,ϕ〉. Notice that peek-G4 only requires ‘memoryless’ (Markovian)
strategies: whether or not an agent i can win depends only on the current truth assignment, the
distribution of variables, the winning formula and whose turn it is currently. As a corollary, if agent
i can force a win, then it can force a win in O(2|X1∪X2|) moves. Given an instance 〈X1,X2,X3,ϕ〉
of peek-G4, we encode peek-G4 in GDL as follows (cf. [26]). Let X1,X2 and X3 be as described
above. We give some GDL code for peek in Figure 4. Initialization (lines starting with an 0) is
straightforward, where, in line 02, z is a variable from X3, and we assume that player 1 starts the
game (line 03). The lines starting with a 1 determine what the legal actions are, and define the turn
taking. Action noop is always legal (lines 10, 11), and players can change their ‘own’ variables as
long as they are not in a terminal state: in lines 12 and 14, we require x1∈X1. Lines 16–19 specify
that control alternates between the two players.

The lines starting with 2 describe how to compute the new value for a variable x. Ideally, we would
like to say: ‘in the next state, x is true if either it was true and not set to false, or else if it was set to
true’. However, since we are not allowed to have a negated (does player1 make_x_false),
we do the following. For any variable x∈X1∪X2, we add three variables x0,x1 and xold . The idea
here is that x0 signals that x has just been set to false (lines 20, 21), and x1 means that x has just been
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00 (<= role player1)
01 (<= role player2)
02 (<= init (z))

...
03 (<= control player1)

...
10 (<= (legal player1 noop))
11 (<= (legal player2 noop))
12 (<= (legal player1 make_x1_false)
13 (not terminal))
14 (<= (legal player1 make_x1_true)
15 (not terminal))

...
16 (<= (next (control player1))
17 (control player2))
18 (<= (next (control player2))
19 (control player1))

...
20 (<= (next x0)
21 (does player1 make_x_false))
22 (<= (next x1)
23 (does player1 make_x_true))

...

24 (<= (true (x))
25 (true (x_old))(not x0))
26 (<= (true (x))
27 (true (x1)))
28 (<= (next (x_old))
29 (true x))

...
30 (<= (terminal)
31 (true (phi_1)) ... (true (phi_n)))

...
32 (<= (true (phi_i))
33 (true (p_i_j)))

...
34 (<= (true (phi_i))
35 (not (q_i_j)))

...
40 (<= (goal player1 100)
41 (terminal)(control player2))
42 (<= (goal player2 100)
43 (terminal)(control player1))
44 (<= (goal player1 0)
45 (not (goal player1 100)))
46 (<= (goal player2 0)
47 (not (goal player2 100)))

Figure 4. Encoding peek-G4 in GDL: the reduction for Theorem 4.3.

put true (lines 22 and 23). Now, x can be true in a next state because of two reasons: it was true in
the previous state, and has not been made false (lines 24, 25), or because it has been made true (lines
26, 27). Recall that in all other cases, x will become false. Lines 28 and 29 specify that xold is true
exactly when x was true in the previous state. Note that when a player plays noop, neither x0 nor x1
will be set to true, and hence (lines 24–29) x will become true iff it was true.

Lines starting with 3 describe when the goal ϕ is reached. We assume the goal ϕ is in conjunctive
normal form: ϕ=ϕ1∧···∧ϕn. Let ϕi be pi1∨···∨pik ∨¬qi1∨···∨¬qim , where each pij and qiv (j≤
k,v≤m) is an atom. A clause ϕi will become true if any of its disjuncts becomes true (lines 32–35).
Then if all clauses ϕi becomes true, we reach a terminal state (lines 30–31).

Finally, lines starting with 4 describe the payoffs. A player wins when we reach a terminal state (a
state in which ϕ is true) and he has just moved, i.e. the other player has control (lines 40–43). In all
other cases, the player is losing (lines 44–47).

Moving to the ATL language, the formula 〈〈i〉〉♦wini (where wini =goal player i 100) formalizes
that i has a winning strategy. In ATL, one might think this is equivalent to 〈〈i〉〉♦ϕ, but it is not. Let
ϕ be (p1∧p2∧p2)∨(q1∧q2), with X1 ={p1,p2,p3} and X2 ={q1,q2} and X3 =∅ (no atom is true,
initially). In this game, we have 〈〈1〉〉♦ϕ (player 1 just makes p1,p2 and p3 true, in that order), but not
〈〈1〉〉♦win1 (player 2 can ‘get there faster’). Note that 〈〈1,2〉〉♦ϕ is equivalent to 〈〈1,2〉〉♦(win1∨
win2) which is true initially iff ϕ is satisfiable. !

Readers familiar with ATL model checking may wonder why the complexity of model checking
ATL formulae against GDL game descriptions is exponentially harder than model checking ATL
against semantic structures such as Concurrent Game Structures [3]. The reason is that GDL provides
for the succinct specification of very large game models—game models that are exponentially large
in the size of the GDL specification. This issue is discussed in more detail in [26]. Note that, although
this seems a negative result, it means that interpreting ATL over propositional GDL descriptions is
no more complex than interpreting ATL over apparently simpler model specification languages such
as the Simple Reactive Systems Language [26].
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5 Characterizing playability conditions with ATL
We claimed in Section 1 that ATL is an appropriate language for expressing playability conditions
for GDL-specified games, and in this section, we put some flesh on this claim. First, some words
about what we aim to accomplish. This is perhaps best explained by analogy with the literature
on temporal logic for reactive systems [10]. Temporal logics, in various forms, have been used for
reasoning about reactive systems for several decades, and a large literature has been established on
classifying the properties of such systems via temporal formulae of various types; probably the best
known classification is that of liveness and safety properties, although many more properties have
been classified [18, 19, p. 298]. Our ultimate aim is, in much the same way, to use ATL to derive a
similar classification of game properties. Note that ATL is, of course, a temporal logic, and we might
expect the classification to include liveness and safety properties and similar; but the more novel
aspect of the classification (and, crucially, the part of the classification which simply cannot be done
in conventional temporal logic) is a classification of strategic properties of games. Perhaps the most
important question is whether a game is ‘balanced’, in that all players have in some sense an equal
chance to win. As it turns out, this apparently intuitive property is surprisingly hard to define, but we
will see various notions of balancedness in what follows.

We begin our top-level classification of game properties by distinguishing between properties
relating to the coherence of a game and those relating to its strategic structure. We assume to have a
stock of state atoms SAt ={p,q,...} (in Tic-Tac-Toe, an example would be (cell 1 2 x)), old atoms
OAt ={pold |p∈SAt} and done atoms DAt ={done(i,a) | i∈Ag,a∈Aci}. (Throughout this section,
unless stated otherwise, properties that we discuss will be evaluated in the beginning of the game.)

5.1 Coherence properties

Roughly, coherence properties simply ensure that the game has a ‘sensible’interpretation. To illustrate
what we mean by this, we introduce a vocabulary of atomic propositions that we use within game
property formulae. These propositions play an analogous role to propositions such as ati(#) in the
temporal axiomatization of programs [13, p. 70].

• turni will be true in a state if it is agent i’s turn to take a move in that state;
• legal(i,a) will be true in a state if action (move) a is legal for agent i in that state;
• has_legal_movei will be true in a state s if agent i has at least one legal move in that state;
• terminal will be true in a state if that state is terminal, i.e. the game is over.
• wini will be true in a state if agent i has won in that state;
• losei will be true in a state if agent i has lost in that state;
• draw will be true in a state if the game is drawn in that state;

Note that the specific interpretation of these atomic propositions will depend on the game at hand,
but they will typically be straightforward to derive. In the context of GDL, we might have wini =
goal(i,100), losei =goal(i,0) and draw=∧

i∈Aggoal(i,50).
On top of this, we assume that every agent has access to an action noop. The idea of such an

action is that, when an agent performs this action, nothing will change as an effect of that action,
but of course, in synchronous games, things may change because of another agent’s actions. We also
assume to have the fin action for every agent i that we introduced for the AATS A& . This action is
slightly different from noop: we do not consider the action fin to be a legal one. We only added it for
technical reasons, ensuring that in the A& , there is always a successor state. In a detailed analysis, one
might like to have several actions modelling parts of the purpose of our noop: for instance, it is well
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possible that all players (in a card game, for instance) want to ‘pass’, and the rules of the game might
specify that when such a situation occurs a given number of times, the game ends. Summarizing: the
action noop is a legal action which signifies that an agent leaves making changes to the others, but
when all agents decide to perform noop, we assume that the game terminates (we do not have a pass
action), and the only action that agents can perform from then on are fin actions.

Now that we have such a vocabulary in place, we can start to define specific properties.
From the perspective of designing a game, the general game playing competition [12] suggests

the following criteria to be a necessity: it should first of all be playable: every player has at least one
move in every non-terminal state. We represent this constraint as follows.

〈〈〉〉!(¬terminal→
∧

i∈Ag

has_legal_movei) (Playability)

where has_legal_movei =
∨

a∈Aci,a 5=fini

legal(i,a).

In a turn-based game, all but one player will only be able to submit a noop action, and this should
be considered legal: it is the only action allowed, for those agents. In other words, even when it is
not a player’s turn, he should be able to submit a legal move. Hence, what non-Playability checks
is, whether that are non-terminal states in which an agent has no action to perform. Note that in our
sense, when all players decide to play the noop, this is considered playable.

We can define turn-based games by the following.

〈〈〉〉!(turni↔¬legal(i,noop)) (Turn)

In a finite extensive game, the terminal states are exactly those in which no player can perform a
move. This signals a fundamental difference with ATL, where computations are by definition infinite.
We can bridge this gap by letting a terminal state in a game correspond with a ‘sink-state’, from which
transitions are possible, but only to (copies of) itself. So, our first property says that a terminal state
really is terminal: once we reach a terminal state, nothing subsequently changes. For all properties
only involving state atoms, we have:

〈〈〉〉!((terminal∧ϕ)→〈〈〉〉!(terminal∧ϕ)) (GameOver)

The above property is in fact shorthand for infinitely many properties: one for every instantiation
of ϕ. In other words, we not only claim that specific atoms stay true in a terminal state, but arbitrary
properties do. Expressing this involves a scheme ϕ, and as such it would lend itself more naturally
to the theorem proving paradigm, rather than that of model checking. That is, when doing theorem
proving, one can use schemes and give a deduction for a property like GameOver. However, in our
set-up we can deal with this as follows.

Let p be a state atom in SAt. We assume that state atoms cannot be changed by the players’ noop
or fin actions. So true state atoms remain true if all agents perform either noop or fin. This is captured
by the following property:

〈〈〉〉!(p→〈〈〉〉!((
∧

i∈Ag

(done(i,noop)∨done(i,fin)))→p)) (No Change)
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Now, we can establish (GameOver) by imposing the following, from which (GameOver) would
then follow by induction over ϕ:

〈〈〉〉!(terminal→〈〈〉〉 !〈〈〉〉!(terminal∧
∧

i∈Ag

done(i,fin))) (Ind)

Next, we often have that a state is terminal if the game is either won or drawn.

〈〈〉〉!((draw∨
∨

i∈Ag

wini)→ terminal)

Note that we may or may not have the converse implication, as we can specify more subtle results
using goal(i,x).

There will typically be some coherence relation between wini, losei and draw propositions,
although the exact relationship will depend on the game. For example, the following says that a
draw excludes a win.

〈〈〉〉!(draw→
∧

i∈Ag

¬wini) (Draw)

Finally, one might add conditions like termination, which says that a game will eventually end:

〈〈〉〉♦terminal (Termination)

5.2 Fair playability conditions

All of the above conditions contain only coalition modalities with empty set of agents, i.e. of the
form 〈〈〉〉Tϕ. Recall that 〈〈C〉〉Tϕ means that the agents in C can chose a strategy such that no matter
what the agents in Ag\C do, Tϕ will hold. In particular, 〈〈〉〉Tϕ then means that no matter what the
agents in Ag do, Tϕ will hold. Thus, these conditions define invariants, i.e. safety properties, over
games. Such properties could thus be specified using conventional temporal logics, such as CTL, and
verified using conventional temporal logic model checkers. We now turn to a fundamentally different
class of properties—those relating to the strategic structure of a game. As we argued above, such
strategic properties cannot be specified using conventional temporal logics, whence our interest in
logics such as ATL for this purpose.

In general, the kinds of properties we might typically hope for in a game relate to ‘fairness’3—
intuitively, the idea that no player has an inherent advantage in the game. In fact, it turns out to be
rather hard to give a useful formal meaning to the term, let alone to capture such a meaning logically.
Nevertheless, there are some useful fairness-related playability conditions that we can capture.

We first define the notion of winnability. A game is strongly winnable iff:

for some player, there is a sequence of individual moves of that player that leads to a terminal
state of the game where that player’s goal value is maximal. [12, p. 9].

3The term ‘fairness’ is already used in a technical sense in the temporal logic/verification community, to mean something
related but slightly different. Here, when we talk about fairness, we are appealing to the everyday meaning of the term, rather
than the technical meaning as in [11].
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Formally, Strong Winnability may be captured as follows.

∨

i∈Ag

〈〈i〉〉♦wini (Strong Winnability)

The Strong Winnability is too strong for games involving multiple players, as if it would hold in
the initial state, then perfect play by that player would guarantee a win by that player, which makes
the game inherently unfair. So, we have a more relaxed requirement, called Weak Winnability, for
multi-player games:

A game is weakly winnable if and only if, for every player, there is a sequence of joint moves
of all players that leads to a terminal state where that player’s goal is maximal.’ [12, p. 9].

We capture this as follows:

∧

i∈Ag

〈〈Ag〉〉♦wini. (Weak Winnability)

In general game playing, every game must be weakly winnable, and all single player games are
strongly winnable. This means that in any general game, every player at least has a chance of winning.

One might also impose ‘Weak Losability’, which would be like (Weak Winnability), but with wini
replaced by losei: at least, in principle, every player could lose.

There are many other notions of fairness one can impose on a game. We say a game is fair if no
player can lose without himself at least being involved. To put it another way, a player can only lose
with less than perfect play. Such a condition is false in games where there is a player with a winning
strategy in the initial state.

∧

i∈Ag

¬〈〈Ag\{i}〉〉♦losei (Fair)

5.3 Characterizing different games

The notions we just discussed can be considered as examples of minimal requirements to call a system
a ‘meaningful game’. We show how ATL can be used to characterize different kinds of games. In fact,
we have already seen such a general property: our (Strong Winnability) is in the literature known as
determinacy of the game. Other examples would include (Sequential): everywhere, the next state is
determined by one agent. InATL, such a situation is called turn-based [3].Although the characteristic
formula refers to arbitrary ϕ again, it can also be related to 〈〈〉〉!(XORi∈Agturni), together with (Turn)
and (Ind).

〈〈〉〉!(〈〈Ag〉〉 !ϕ→
∨

i∈Ag

〈〈i〉〉 !ϕ) (Sequential)

In many sequential games, the order in which players take their turns is crucial. Although ‘young
children are obsessed with making sure that they go first in any and every game that they play’ [8,
p. 56], sometimes, rather than a first-mover advantage, there is a second-mover advantage. Consider,
for example, the well-known problem of dividing a piece of cake, where one player cuts the cake
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and the other player chooses a piece: here, there is no advantage to being the cutter. We define the
advantage of agent i as this: the payoff of agent i is strictly larger than payoffs to the other agents.
Here is a formal expression:

advi =
∨

x∈{0...100}
(goal(i,x)∧

∧

j∈Ag\{i},x>y≥0

¬goal(j,y))

Second-mover advantage might be defined as follows:

∧

i∈Ag

((¬turni∧〈〈〉〉 !turni)→〈〈i〉〉♦advi) (Second-mover advantage)

Other examples include (Zero-sum), which we here give for a two-player game:

〈〈〉〉!(terminal→ ((win1∧lose2)XOR(draw1∧draw2)XOR(lose1∧win2)) (Zero-sum)

Note that although we currently have modelled the outcome propositions as booleans, one can do
this easily as numbers as well, enabling the easy representation of constant-sum games.

Finally, we have the following formula that characterizes one-shot strategic form games with
symmetric payoffs:

Strategic∧
∧

x,y∈{0...100}
Symmetry(x,y) (Strategic Symmetry)

where

∧

i∈Ag

turni∧〈〈〉〉 !terminal (Strategic)

(〈〈Ag〉〉 !(goal(1,x)∧goal(2,y))→〈〈Ag〉〉 !(goal(1,y)∧goal(2,x)) (Symmetry(x,y))

Note that, since we assume that all Aci and Acj are disjunct when i 5= j, in (Symmetry(x,y)) agents
do not need to be able to ‘swap actions’, they only need swap outcomes.

5.4 Special properties for Tic-Tac-Toe

We now consider properties specific to our running example, Tic-Tac-Toe. For this game, we denote
the players by Xplayer and Oplayer, respectively.

Now, our game designer may want to verify that the property that certain configurations on the
board will never be reached [e.g. (iCell) expresses the invariant that we do not have two o’s and
one x in the game in the first row and only blanks everywhere else—recall that the player who
starts is Xplayer]. Such properties need not be about invariants, but can also be, for instance, about
the progress in the game, or about persistence of written cells or non-written ones (Persistence(x))
(saying that a written X is persistent over any move, a non-written X is persistent under any move of
the other player(s)). Using our atoms that recall what is true in the previous state, we can also specify
the exact effect of any action: (Write(x)) says that wherever we are in the game, saying that it is x’s
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turn is equivalent to saying that in every next state, there is exactly one cell that is written with an x
now, but was blank before.

〈〈〉〉!¬(c(1,1,o)∧c(1,2,o)∧c(1,3,x)∧
∧

i 5=1

c(i,j,b) (iCell)

〈〈〉〉!(
∧

1≤i,j≤3

(c(i,j,x)→〈〈〉〉 !c(i,j,x))∧(¬turnXplayer→

∧

1≤i,j≤3

(¬c(i,j,x)→〈〈〉〉 !¬c(i,j,x)))) (Persistence(x))

〈〈〉〉!(turnXplayer↔〈〈〉〉 !XOR1≤i,j≤3(c(i,j,x)∧c(i,j,b)old)) (Write(x))

Regarding game playing, of course, it is interesting to know what parties can achieve, in a given
game. The designer of player i might, in particular, be interested whether the following instantiation
of (Strong Winnability) holds: is it the case that 〈〈i〉〉♦wini? In Tic-Tac-Toe, no player can guarantee
a win, i.e. (Strong Winnability) is not true for Tic-Tac-Toe. Indeed, for most interesting games,
(Strong Winnability) does not hold.

Let happy(C) = ∧
i∈C(wini∨draw). For instance (Coalition) expresses that coalition C has some

reason to cooperate: by doing so, everybody is reasonably happy, while there is no subset of C that
guarantees that.

〈〈C〉〉♦happy(C)∧¬
∨

C′⊂C

〈〈C′〉〉♦happy(C′) (Coalition)

As another example, (R(i,a)) considers whether a is a reasonable move for i: i.e. it cannot achieve
less than what it currently can achieve, by performing a. This is an example of a property one might
want to check in several states of the game, not just the root.

happy(i)∧turni∧〈〈i〉〉 !(done(i,a)∧happy(i)) (R(i,a))

In [24], we describe our work on how to verify GDL-specified games using a pre-existing ATL
model checker. The main purpose of this work is to show a method by which existing ATL model
checking tools can be used to verify GDL games, rather than developing a model checking tool from
the scratch. We have implemented a translator, gdl2rml, from GDL descriptions to representations in
the Reactive Modules Language (RML). RML is the model description language of the ATL model
checker MOCHA, which was developed by Alur et al. [1, 4]. Using GDL2RML, we can verify
properties expressed in ATL via MOCHA. For details, we refer to [24].

6 Conclusions
There has been much interest recently in the connections between logic and games, and in particular
in the use of ATL-like logics for reasoning about game-like multi-agent systems. In this article,
we have investigated connections between ATL and GDL. In particular, we have made two main
contributions. First, we have demonstrated that GDL can be understood as a specification language
for ATL models, and proved that the problem of interpreting ATL formulae over GDL descriptions is
EXPTIME-complete. Second, we have characterized a class of playability conditions which should
hold in different games, and they can be used to express the correctness of the games specified in GDL.
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In [24], we presented an automated tool that transforms a GDL description into an RML specification,
so that we can verify the playability properties on the RML description using an off-the-shelf ATL
model checker, MOCHA. In future research, we will apply our work to formal verification of further
GDL descriptions: the GDL game designer can express desirable properties of games using ATL, and
then automatically check whether these properties hold their GDL descriptions. The main issues are
likely to be the efficiency and scalability of our automated tools.
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