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Abstract

A resolution based proof system for a temporal logic of knowledge is presented and shown
to be correct. Such logics are useful for proving properties of distributed and multi-agent
systems. Examples are given to illustrate the proof system. An extension of the basic system
to the multi-modal case is given and illustrated using the ‘muddy children problem’.

1 Introduction

Temporal logics have been shown to have many applications in computer science and
artificial intelligence. For example, they are used in the specification and verification
of reactive systems [28], in temporal query languages [8], executable logics [18] and
for reasoning about action [36]. For some applications, however, logics containing
connectives that operate over just the one modal dimension of time do not provide
sufficient expressive power. For such applications, it is necessary to provide connec-
tives that allow us to represent the properties of different modal dimensions in the
same logic.

In this paper, we consider such a multi-modal logic, called KL,,, containing con-
nectives for representing both time and knowledge. Thus, in addition to the usual
connectives of linear discrete temporal logic [12], KL, contains an indexed set of
unary modal connectives that allow us to represent the information possessed by a
group of agents. These connectives satisfy analogues of the axioms of the modal sys-
tem S5 [7], which is widely recognized as a logic of idealized knowledge [14]. Tt is
for this reason that we call KL,, a temporal logic of knowledge (formal properties of
KL,-like logics are studied in [25, 14]).

While logics such as KL,, have been studied for some time (see, e.g., [22, 27, 25,
15, 14]), relatively little effort has been directed at developing proof methods for
such logics [41]. This is perhaps because of the complexity of the problem: it is
shown in [25, 14] that even for comparatively simple temporal logics of knowledge,



the decision problem for validity is PSPACE complete. For more complex variants,
the problem is undecidable even in the propositional case. However, recent advances
in proof methods for the underlying temporal logic (for which the decision problem is
also PSPACE complete [37]) indicate that practical theorem provers for such complex
logics may still be possible [17, 10]. In this paper, we extend the proof method for
purely temporal logics described in [17] to deal with KL, by using modal resolution
rules similar to those devised by Mints [29]. Specifically, we present a clausal resolution
method for KL, an instantiation of KL, containing only one knowledge operator,
provide soundness and completeness arguments and show how this approach can be
extended to KL, in general.

The structure of this paper is as follows. In §2, we formally define our temporal
logic of knowledge and, in §3, we provide a normal form for formulae of this logic. In
84, we provide a resolution system for this logic, based upon the normal form, and
provide simple examples of its use in §5. The correctness of the system is considered
in §6, while the extension of the method to a multi-agent context is addressed in §7.
Related work is examined in §8 and, in §9, some conclusions and areas for further
work are outlined.

2 A Temporal Logic of Knowledge

In this section, we give the syntax and semantics of a logic KL,, a temporal logic of
knowledge where the modal relation Kj; is restricted to be an equivalence relation.

2.1 Syntax

Formulae are constructed from a set P = {p,q,r,...} of primitive propositions. The
language KL, contains the standard propositional connectives — (not), V (or), A
(and), = (implies) and < (if, and only if). For knowledge we assume a set of agents
Ag = {1,...n} and we introduce a set of unary modal connectives K;, for i € Ag,
where a formula K;¢ is read as “agent ¢ knows ¢”. For the temporal dimension we
take the usual set of future-time connectives O (neat),{> (sometime or eventually),
[ (always), U (until) and W (unless or weak until). We interpret these connectives
over a discrete linear model of time with finite past, and infinite future; an obvious
choice for such a flow of time is (N, <), i.e., the natural numbers ordered by the usual
‘less than’ relation.

The formulae of KL,, are constructed using the following connectives and proposition
symbols:

e a set P of proposition symbols;

e the constants false and true;

the propositional connectives —, V, A, =, <

the future-time temporal connectives, start, O, <, (1, ¥ and W;

the modal connectives K; (where i € Ag).



The set of well-formed formulae of KL,,, WFFg is defined by the following rules:
e any element of P is in WFF;
o false, true, and start are in WFrFg;

e if A and B are in WFFg then so are

—-A AV B ANB A=>B A&B
$A dA AUB AWB QA K;A
where ¢ € Ag.

We define some particular classes of formulae that will be useful later.

Definition 1 A literal is either p, or —p where p is a proposition.
Definition 2 A modal literal is either K;l or —K;l where [ is a literal.

Definition 3 The knowledge set for agent i for a set of literals or modal literals X
is defined as

K;set(X)={l| Kil € X}.
2.2 Semantics

First, we assume that the world may be in any of a set, S, of states.

Definition 4 A timeline, t, is an infinitely long, linear, discrete sequence of states,
indexed by the natural numbers.

Note that timelines correspond to the runs of Halpern and Vardi [25]. Let T'Lines be
the set of all timelines.

Definition 5 A point, p, is a pair p = (t,u), where t € TLines is a timeline and
u € N is a temporal index into ¢.

Let Points be the set of all points.

Definition 6 A wvaluation, 7, is a function « : Points x & — {T, F'}.

Definition 7 A model, M, for KL, is a structure M = (TL, Ry, ..., R,, ), where:
e TL C TLines is a set of timelines, with a distinguished timeline tg;

e R;, for all i € Ag is the agent accessibility relation over Points, i.e., R; C
Points x Points where each R; is an equivalence relation;

e 7 is a valuation.

As usual, we define the semantics of the language via the satisfaction relation ‘E’.
For KL,. This relation holds between pairs of the form (M,p) (where M is a model
and p € Points), and KL,-formulae. The rules defining the satisfaction relation are
given below. We omit most of the propositional connectives as they are standard.



(M, (t,0)
(M, (t,u)) [ true

(M, (t,u)) Ep it  w((t,u),p) =T (where p € P)

(M (tu)) =AM (M, (u) A

(M, (tu)) = AVE  iff (M, (tw) A or (M,(tu) =B

(M, (t,u)) E OA if (M,(tu+1)EA

(M, (t,w)) = JA if Vo' €N, if (u<u') then (M, (t,u')) E A
(M, (t,u)) = QA iff Ju' eN, if (u<u') then (M,(t,u')) E A
(M, (t,u)) E AUB iff Ju’ € Nsuch that (v’ > u) and (M,

(t,
Vu'" €N, if (u<wu” <u') then (M,(¢
,(tuw) EAWB iff (M, (t,u)) E AUBor (M,(t,u))E [1A
(t,u)) = KiA iff Vi e TL.Vu' €N. if ((tu),(t,u') € R;
then (M, (', u')) E A

Satisfiability and validity in KL,, are defined in the usual way.

As agent accessibility relations in KL,, models are equivalence relations, the axioms
of the normal modal system S5 are valid in KL,, models. The system S5 is widely
recognised as the logic of idealised knowledge, and for this reason KL, is often termed
a temporal logic of knowledge. (Our logic KL, in fact corresponds exactly to Halpern
and Vardi’s logic KLy [25], hence the name.)

In the following, [ are literals, m are literals or modal literals and D are disjunctions
of literals or modal literals.

3 A Normal Form for Temporal Logic of Knowledge

Formulae in KL, can be transformed to a normal form, which we call Separated
Normal Form for KL, (SNFg), which is the basis of the resolution method used in
this paper. SNF for linear-time temporal logics was introduced first in [17] and has
been extended to both first-order temporal logic [19] and branching-time temporal
logic [4].

The translation to SNF g uses the renaming technique [33] where complex subfor-
mulae are replaced by new propositions and then the truth value of these propositions
are linked to the formulae they replaced in all states. So, to be able to define the
normal form, we must first define the []* operator, which is in turn defined in terms
of the C (or common knowledge) and E operators. We define E by

E¢ & N Kip.
i€Ag

The common knowledge operator, C, is then defined as the maximal fixpoint of the
formula

Cop & E(pACH).



Finally, the []* operator is defined as the maximal fixpoint of

0% & O@ACI"9).

To illustrate the properties of this operator, we must formalise the notion of reacha-
bility.

Definition 8 Let M be a KL,-model and (¢,u), (t',u’) be points in M. Then (', u')
is reachable from (t,u) iff either: (i) ¢ = ¢' and v’ > w; (ii) ((¢,u), (¢',u')) € R; for
some agent i € Ag; or (iii) there exists some point (¢, ") in M such that (¢, ") is
reachable from (¢,u) and (¢',u') is reachable from (¢",u").

The important property of the [ 1* operator can now be stated.

Theorem 9 Let M be a KL,-model and p,p’ be points in M such that (M,p) =
[1*¢. Then {(M,p') = ¢ if p' is reachable from p.

Proof Assume (M,p) = [1*¢ and that p' is reachable from p. Then there must
be some sequence of states pi,...,pr such that p; = p and pr = p', such that Vv €
{1,...,k — 1}, we have either (i) p, and p,y; are on the same time line but p,1
occurs later than p,, or (ii) (py,pvt1) € R; for some i € Ag. An induction shows
that (M, p,) = [1*¢ implies (M, p,41) E [1*¢, for all v € {1,...,k — 1}. The base
follows from the fact that [1*¢ is defined to be [1(¢ AC [[1*¢) and that = C¢ = ¢.
For the inductive step, assume (M, p,) = [1*¢. Then either (i) py41 occurs on the
same timeline as p,, but later, in which case from the definition of []* we know that
(M, py+1) E O*¢, or else (ii) (pw,pw+1) € Ri, in which case from the definition
of [1* and C, we also know that (M,py,+1) E [U*¢. Hence (M,pr) E [J*®, so
(M,p'"y E [1*¢, and so from the definition of [1*, we have (M,p') = ¢.

Thus we reason about reachable points from the initial point in the distinguished
timeline ¢o (where start is satisfiable), i.e. the points we require in the proof. As
renaming [33] is central to the transformation of arbitrary formulae to SNF, we must
be sure that its properties carry over to KL,. Now we have defined the []* operator
then renaming of a formula such as (¢ 1)), where ¢ is a complex subformula,
produces $(¢Up) A [1*(p < ). This theorem therefore guarantees that renaming
carried out within the context of the [ ]* operator will preserve satisfiability.
Formulae in SNFg are of the general form

D*/\Ti



where each Tj is known as a rule and must be one of the following forms.

start = V Iy (an 4nitial rule)
b=1

g T

/\ ke = O \/ i (a global rule)

a=1 b=1

/\ k, = Ol (a sometime rule)

a=1

true = \/ myp (a K-rule)
b=1

Here k,, Iy, and [ are literals and my are either literals or modal literals. The outer
‘[J*” operator that surrounds the conjunction of rules is usually omitted. Similarly,
for convenience the conjunction is dropped and we consider just the set of rules T;.
In the following discussion we further split the K-rules into two types, literal rules
and modal rules. Literal rules are K-rules where the right hand side consists of a
disjunction of literals. Modal rules are K-rules where at least one of the disjuncts is
a modal literal.

3.1 Translation into SNF g

In this section, we consider the translation of an arbitrary KL, formula into the
normal form. We will describe the individual transformations in detail, but note
that many of them are similar to those used in translating purely temporal logic to
SNF [19].

Take any formula A of KL, and translate into SNF g as follows (where f is a new

proposition).
start = f
A — { Fo= A}

If the main operator on the right of the implication is a classical operator remove it



as follows.

{r= (AAB)}
{r= (4= B))
{r=(4® B)
{r=~(AAB)}

{z = -(A= B)}

{z = ~(AV B)}

{ = -(A & B)}

Rename complex subformulae
new proposition.

{z = KA} — {z
{z=-KA} — {Z

Rename complex subformulae enclosed in any temporal operators as follows where y

is a new proposition.

{z = OA}

{z = -0A}

{zr = A}

{r=-[14)

{z= 04}

— A N A

{z = =04}

—

—

enclosed in a modal operator as follows where y is a

=
=

=
=

S A

44

{23}

{z = -AVB)
{2204

{z = -Av-B}
(2%}
{rz3}

{z = ((AA-B)V(BA-4)) }

f"y } For any A that is not a literal.
—'fi—'y } For any A that is not a literal.

Qy For any A that is not a

A disjunction of literals.

Oy

-A

ADy } For any A that is not a literal.
Oy

-A

gy } For any A that is not a literal.
Oy }



z = yUB
{x=AUB} — { y = A }

x = AUy
{r=AUB} — { y - B }

{z=-(AUB)} — {y =

z = yWB
{r=>AWB} — { y = 4 }

x = AWy
{x=AWB} — { y = B }

For any A that is not a literal.

For any B that is not a literal.

(~B)W (-AA-B) }

For any A that is not a literal.

For any B that is not a literal.

{=-(AWB)} — {y = (-B)U(-AA-B)}

Then any temporal operators, applied to literals, that do not occur in the normal
form are removed as follows (where y is a new proposition).

,

A
Y
OA
Oy

OB
AV B
yV B
O(AV B)
O(y Vv B)

{r= 04} — |

e 8 8
TR

{r=AUB} —

cewew 8 8 8
RN ANTAN

AV B
yV B
O(AV B)
O(yV B)

{r=AWB} — [

e 8 8
STRRTANAN

\

/

N

For A a literal.

»  For A, B that are literals.

For A, B that are literals.

/

Next we use renaming on formulae whose right hand side has disjunction as its main
operator but may not be in the correct form where y is a new proposition and D is a

disjunction of formulae.

z = DvVy
{r==DVA} — {y ~ 4 }
{r==DV KA} — {y =~ 4 }
z = DV-K;y
{r=DV-K,A} — {y - -A

For any A that is not a literal,
or whose main operator is not
Kz' or _lKi.

For any A that is not a literal.

} For any A that is not a literal.



Finally rewrite formulae containing no temporal operators whose right hand side is a
disjunction of literals or modal literals into rule form.

{z=D} — {true = -zVvD } Forany proposition z.

Thus, the above transformations are applied until the formula is in the normal form
(see [19] for further details).

4 Resolution for Temporal Logics of Knowledge

Here we consider the resolution rules for the temporal logic of knowledge KL;). To
simplify notation we shall write the single modal operator K; as K. The extension
of this system into its multi-modal version is considered in Section 7.

The resolution rules presented are split into four groups, initial resolution, modal
resolution, step resolution and temporal resolution. The first three types of resolution
are variants of classical resolution. Temporal resolution, however, is an extension
allowing the resolution between formulae such as [Jp with —p.

4.1 Initial Resolution

A literal rule may be resolved with an initial rule as follows

true = (AVr)
[IRES1] start = (BV-r)
start = (AVB)

where A is a disjunction of literals. Similarly, two initial rules may be resolved together

start = (AvVr)
[IRES2] start = (BV-r)
start = (AV B)

4.2 Modal Resolution

During modal resolution we apply the following rules which are based on the modal
resolution system introduced by Mints [29]. Firstly we are allowed to resolve a literal
or modal literal and its negation.

true = Dvm
[MRES])] true = D'V-m
true = DvD!

Secondly we can resolve the formulae K1 and K-l as we cannot know something and
know its negation.

true = DVKI
[MRES2] true = D'V K-
true = DVD




Next, as we have the T axiom Kp = p, we can resolve between formulae such as Kl
and -l giving the following rule.

true = DVKI
[MRES3] true = D'Vl
true = DvVvD

Finally, we have the following rules which involve pushing the external K operator
into one of the rules to allow us to resolve, for example, =K with [

true = DV-KI
[MRES4a] true = D'Vl
true = D Vmod(D')

true = DV K-l
[MRES4b] true = D'VI; Vi,
true = DVmod(D')VKlI,

where mod (D') is defined below.

Definition 10 We define a function mod (D), defined on disjunctions of literals or
modal literals D, as follows.

mod (AV B) = mod(A4)Vmod(B)
mod (Kl) = Kli
mod (-Kl) = =Kl
mod(l) = -K-l

These last two resolution rules require explanation. We explain the rule MRES4a
below. The justification for MRES4b is similar. Recall, there is an implicit K operator
surrounding each rule. We are resolving the first rule in MRES4a, as it is, with the
second rule having distributed the external K over the implication. Thus, when we
resolve =K1 with K1, we must adjust the other disjuncts of the second rule to show
that K has been distributed. In more detail we consider the right hand sides of the
rules given, i.e. DV =Kl and D'V I. Rewriting as implications we have =D = =Kl
and —D' = [. Recall that each of these global rules is surrounded by an implicit K
operator therefore the second rule can be rewritten as K(—-D' = 1) or K—-D' = KlI.
Now D' is a disjunction of modal literals or literals i.e. D' = m; Vma V... S0
K-D' = K-mi ANK—-mgyA. ... Now we can resolve the =K and K1 on the right hand
side of the implication obtaining =D A (K—mj3 A K—mgy A ...) = false. Rewriting as
a disjunction we have DV -K—-m; V-K-ma V...
Since, in S5, we have the theorems

—|K—|p = —|KK—|p
Kp & -K-Kp

we can delete =K — from any of the disjuncts m; that are modal literals and obtain
the required resolvent.

10



Finally we require the following rewrite rule to allow us to obtain the most com-
prehensive set of literal rules for use during step and temporal resolution

true = LVKLVKIlV...

[MRES5] true = LVILViaV...

where L is a disjunction of literals.

4.3 Step Resolution

‘Step’ resolution consists of the application of standard classical resolution to formulae
representing constraints at a particular moment in time, together with simplification
rules for transferring contradictions within states to constraints on previous states.
Simplification and subsumption rules are also applied.

Pairs of global rules may be resolved using the following (step resolution) rule.

P = QO(Avr)
[SRES1] Q = OBV
(PAQ) = O(AvVB)

A literal rule may be resolved with a global rule as follows.

true = (AVr)
[SRES2] Q = OMBV-r)
Q = O(AvB)

Once a contradiction within a state is found, the following rule can be used to generate
extra global constraints.

P = Ofalse

[SRES3] true = P

This rule states that if, by satisfying P in the last moment in time a contradiction is
produced, then P must never be satisfied in any moment in time. The new constraint
therefore represents []—P

4.4 Termination

Each cycle of initial, modal or step resolution terminates when either no new resolvents
are derived, or false is derived in the form of one of the following rules.

start = false
true = false
true = Ofalse

4.5 Temporal Resolution

During temporal resolution the aim is to resolve a {J-rule, Q = <>I, with a set of rules
that together imply [ ]-l, for example a set of rules that together have the effect of
A = O []-l. However the interaction between the ‘O’ and ‘ [ ]’ operators in KL,

11



makes the definition of such a rule non-trivial and further the translation from KL,
to SNFg will have removed all but the outer level of [ J-operators. So, resolution
will be between a {>-rule and a set of rules that together imply an [ J-formula which
will contradict the {>-rule. Thus, given a set of rules in SNF, then for every rule
of the form Q = <{}I temporal resolution may be applied between this sometime rule
and a set of global rules, which taken together force -l to always be satisfied.

The temporal resolution rule is given by

Ay = OF,
A, = OFn
[TRES] @ = i

Q = (N\-4)wi

=0

with side conditions

foral0<i<n F F;=-l

and + F,=\/ 4
j=0

These side conditions ensure that the set of rules A; = OF; together imply O []-l.
In particular the first side condition ensures that each rule, A; = O F;, makes —[ true
in the next moment if A4; is satisfied. The second side condition ensures that the right
hand side of each rule, A; = OF;, means that the left hand side of one of the rules
in the set will be satisfied. So once the left hand side of one of these rules is satisfied,
i.e. if A; is satisfied for some i in the last moment in time, then =l will hold now and
the left hand side of another rule will also be satisfied. Thus at the next moment in
time again —l holds and the left hand side of another rule is satisfied and so on. So
if any of the A; are satisfied then -l will be always be satisfied, i.e.,

\/Ak=>ODﬂl.

k=0

Such a set of rules are known as a loop in —l.

As we usually work with rules in the normal form we translate the resolvent from
TRES into SNFg obtaining the following rules for each ¢ from 0 to n where ¢ is a
new proposition.

true = -QVIV-4;

true = -QVIVt
t = O@lv-4)
t = O(ve)

4.6 The Temporal Resolution Algorithm

Given any temporal formula 1 to be shown unsatisfiable the following steps are per-
formed.

1. Translate v into a set of SNFg rules ;.

12



2. Perform initial resolution until either

(a) false is derived - terminate noting 1 unsatisfiable; or
(b) no new resolvents are generated - continue at step 3.

3. Perform modal and step resolution (including simplification and subsumption)
until either

(a) false is derived - terminate noting v unsatisfiable; or
(b) no new resolvents are generated - continue to step 4.

4. Select an eventuality from the right hand side of a {>-rule within 1), for example
1. Search for loops in —I and generate the appropriate resolvents. If there are
no eventualities remaining unchecked, go to step 6.

5. If any new formulae have been generated, translate the resolvents into SNF g,
add them to the rule-set and go to step 2, otherwise continue to step 4.

6. Terminate declaring v satisfiable.

Examples

1. First we prove the purely modal formula K(p = ¢) = (Kp = Kq), the K
axiom for normal modal logics. We negate obtaining K (p = ¢) AKpA—Kq and
rename obtaining the following.

1. start = f

2. true = -fVKa

3. true = -fVKp

4. true = -fV-Kyq

5. true = -aV-pVyg

6. true = -fVv-KaV-Kp [4,5 MRES/d
7. true = -fV-Kp [2,6 MREST]
8. true = -f [3,7 MRESI]
9. start = false [1,6 IREST]

2. Next we prove a purely temporal formula that involves the application of the
temporal resolution rule, namely [lp = —<{>—p. We first negate obtaining
[Ip A {>—p and rename to give the following.

1. start = f

2. true = —fVp

3. true = -fVt

4. t = Ot

5. t = Op

6. f= O

7. f = —tW-p [4,5,6 TRES)

8. true = -—fV-tV-p [7 SNFK]

9. true = —~fV-p [3,8 MREST]
10. true = ~f [2,9 MREST)

13



11. start = false [1,10 IRESI]

3. Finally we prove a formula that involves both modal and temporal resolution
JK—-p = K- []-p. We first negate obtaining [JK-p A K- []—p and re-
name obtaining the following.

1. start = f

2. true = —-xcVK-p

3. true = —fVz

4. true = -fVt

5. true = -fV Ky

6 t = Ot

7 t = Oz

8 y = Op

9. true = -zV-p [2 MRES))
10. t = O-p [7,9 SRESZ]
11. y = —tWp [6,8,10 TRES)
12. true = -yVpV-t [11 SNFk]
13. true = —fVpV-t [5,12 MRESS)
14. true = —fVp [4,13 MRESI)
15. true = —fV-z [2,14 MRESS)]
16. true = -f 3,15 MRES1]
17. start = false [1,16 IRESI]

6 Correctness

6.1 The Normal Form

We can show that the normal form preserves satisfiability so that detecting unsatis-
fiability in the set of rules implies the original formula is unsatisfiable.

Theorem 11 Let ¢ be a well formed formula in KL,, and 7(¢) = [1* A, T; where T;
is the set of rules translated into SNF,. If ¢ is satisfiable so is 7(¢).

This result can be established in a similar manner to the way the normal form theorem
in standard temporal logic is proved [19].

6.2 Soundness

Theorem 12 (Soundness) If T, a set of rules in SNFg, has a refutation by the
procedure described above, then it is unsatisfiable.

Soundness can easily be established by showing that given a satisfiable set of formulae,
applying each resolution rule preserves satisfiability.

6.3 Completeness

The proof of completeness is based on that given in [32]. We construct a graph of the
set of SNFg rules that has two types of edge representing the modal and temporal

14



dimensions. We show that an empty graph corresponds to an unsatisfiable set of rules
and then that an unsatisfiable set of rules has a refutation by the resolution method
presented in this paper.

New Propositions

As a technical device we add any new variables required for temporal resolution into
the rule-set at the start of the proof to avoid the problem of adding new variables
during the proof. Thus for each sometime rule of the form A = <! we add the
new variable w; (meaning informally waiting for I) and the two rules from temporal

resolution
true = —-AvVuw VI

w = O(wl Vl)

that do not involve the loop. The full justification of this is is not given here but can be
found in [32]. Basically by adding these rules at the start of the proof the set of rules
obtained has a model (where w; has the meaning we require, i.e. [J(w; <& Q1)) if
and only if the original rule-set does.

Graph Construction

Let T be a set of SNFg rules. Given T, we construct a finite directed graph
G = (N, Ek,Er), for T where N is the set of nodes, Ex is the set of modal edges,
representing knowledge, and E7 is the set of temporal edges. A node, n = (V,Y), in
G is a pair where V and Y are constructed as follows. In [32] V' was a valuation of
all the propositions in 7. Here, however we have modal as well as temporal formulae
and as we want to be able to construct edges representing the modal dimension, for
any proposition p occurring in T we allow V' to contain (consistent) subsets of all
the literals or modal literals that can be constructed from p namely the formulae
{p,—p, Kp,~Kp, K—p,~K—-p}. Thus we construct all possible sets of formulae con-
taining p or its negation, Kp or its negation and K —p or its negation. Next we reduce
the number of these sets that we must consider by using the axioms of S5. Thus we
cannot have a set containing Kp and —p, or K—p and p from the T axiom or Kp and
K-p as we cannot both know a proposition and its negation. For each proposition
p € T this leaves the following four sets

Ve = {{Kp,~K-p,p},{K-p,~Kp,p}, {~K-p,~Kp,p}, {~K-p,~Kp, p}}.
To construct V' we take the union of a member of each V}, for each proposition p in
T,ie.

V= UpGT a € Vp.
Nodes are pairs (V,Y) where Y is a subset of the literals that occur on the right hand

side of sometime rules in 7.
Delete any node n = (V,Y") such that for some K-rule of the form

true = \/ m;

K3

then there is no m; such that m; € V. Informally this step deletes any nodes that
do not immediately satisfy the set of K-rules. Recall that rules have an implicit K
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operator surrounding them from the definition of [ 1* so when we construct edges in
the graph representing the knowledge at each node we can only draw edges to nodes
that satisfy the set of K-rules. Hence we delete those nodes unsatisfied by this set of
rules.

Next we push the external K operator into each rule and delete nodes that do not
satisfy the new set of rules. Consider any literal rule whose right hand side consists
of a single literal, for example true = [. By pushing in the external K-operator this
rule is equivalent to true = K1 so we delete any nodes where K1 is not satisfied. Next
consider any modal rule whose right hand side consists of a single literal disjoined with
one or more modal literals, for example true = [V Ka vV -KbV —~Kc. By pushing
in the external K-operator this rule is equivalent to true = Kl V KaV -KbV —-Kc
so any node that does not satisfy this rule is deleted (recall in S5 ~KK-p < —K-p
and Kp & —-K-Kp). Note we could also obtain true = -K-lV KaV -KbV -Kc
but as the original rule implies this rule (i.e. the original rule subsumes this rule) we
ignore it. Finally consider a K-rule with more than one literal disjoined on the right
hand side, for example true = I; V [2 V Ka. We must consider all possible ways
of pushing in the K operator into this rule obtaining true = Kl; V -K-la V Ka
or true = = K-l V Kls V Ka. Nodes that don’t satisfy these additional rules are
deleted.

Next delete any nodes (V,Y) such that for any sometime rule A = <}I it is not
the case that if V |= A then [ € Y. Informally if the left hand side of a sometime rule
is satisfied then the eventuality must be contained in the set of eventualities in that
node.

Next we construct the knowledge edges (Ex edges) between the undeleted nodes
as follows. Given node, n = (V,Y), we construct Ex edges to any node n' = (V',Y")
as follows:

1. if Kl € V then V' = [; and
2. KleV & KIleV'and =Kl €V & =Kl € V! for each literal [.

Step 1 ensures that for any modal literal in V' of the form K1, [ is satisfied in V' and
in step 2 that the set of modal literals in both nodes remains the same.

Now we construct the temporal edges. Given a node (V,Y), let B’ be the largest
subset of the global rules such that V satisfies the literals on the left hand sides of
each rule. Let C be the set of clauses on the right hand side of the rules in B’ and V'
be a set of literals and modal literals from a node in G that satisfies these clauses. Let
Y’ CY be the set of literals not satisfied by V. Let Y" be the set of literals obtained
from the right hand side of the sometimes rules where V' satisfies the left hand side.
Edges are constructed from (V,Y) to (V',Y"") for each V' and Y = Y'UY" and
these are the only edges out of (V,Y).

The set of initial nodes is identified by those nodes (V,Y’) where the V satisfies
the set of clauses on the right hand side of the set of initial rules and Y is the set of
literals from the right hand side of the largest set of sometime rules whose left hand
side are satisfied by V. The behaviour graph for a set of SNF rules T is the set of
nodes and edges reachable from the initial nodes by either Ex or Er edges.

Given a behaviour graph for a set of rules T carry out the following deletions.
Delete any node n = (V,Y’) and any edges into or out of n as follows.
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e If a node has no temporal edges leading from it delete this node and all edges
into it.

e If a node (V,Y) contains an eventuality [ € Y and [ is neither satisfied by V
nor is there a node reachable from (V,Y") by following temporal (Er) edges only
whose valuation satisfies ! then (V,Y) is deleted.

The resulting graph is known as the reduced behaviour graph for T'.

Lemma 13 The sets of nodes disallowed during the construction of V,, namely
{Kp,~K-p,-p}, {Kp, K-p,p}, {Kp, K—p, -p} and {-Kp, K—p, p} are unsatisfiable.

Proof Sets containing both Kp and —p (respectively K—p and p) are unsatisfiable
because applying the T axiom Kp = p (respectively K—p = —p) to Kp (respectively
K-p) we can infer p (respectively —p) which contradicts with —p (respectively p).

Lemma 14 If G = (N, Ek, Er) is a reduced behaviour graph for a set of rules then
the set of edges Ex form an equivalence relation, i.e., are reflexive, transitive and
symmetric.

Proof First note that Ex must be reflexive as any nodes that do not have a reflexive
edge have been deleted during construction of the behaviour graph and by disallowing
nodes containing both K and —I. To show transitivity take any nodesn = (V,Y) € N
and ' = (V',Y') € N where (n,n') € Ex. From condition 2 of adding edges
between nodes we know that the set of modal literals in V' and V' are the same, so
the knowledge set for V and V' must also be the same. As each node is reflexive,
V = Kset (V). Let n'' = (V",Y") be any node with an edge from n' to n” i.e.
(n',n"") € Ex. Now as the set of modal literals in V' and V' are the same by the
construction of the graph the knowledge set for V' and V" must also be the same.
Hence the set of modal literals in V' and V" are also be the same, as are the knowledge
sets for V and V. Asn" is also reflexive V" |= K set (V") so as V" |= K set (V') and
the sets of modal literals for V' and V" are the same there must be an edge between
n and n'" also so the subgraph is transitive. Symmetry is similar as the sets of modal
literals for two nodes n = (V,Y) and n' = (V',Y’) such that (n,n') € Ex are the
same so the knowledge sets for V and V' are the same. Hence V | K _set (V) and
also V = K set (V') so for any edge (n,n') € Ex there must be an edge (n',n) € Exk.
Hence the sets of nodes reachable via the relations in Ex are reflexive, transitive and
symmetric, i.e. an equivalence relation and can be used to construct the R relation.

Proposition 15 A set of rules T in SNF g is unsatisfiable if and only if its reduced
behaviour graph is empty.

Proof We start by showing the if part. The construction of nodes in the behaviour
graph generate all possible states the system may be in and any nodes reachable from
the initial nodes in the reduced behaviour graph can be used to construct a model for
T by unwinding through the temporal edges to construct timelines and using modal
edges to reconstruct the equivalence relations.

We begin by justifying our choice of sets of literals and modal literals for each
proposition p € T for each node (V,Y). (From Lemma 13 any nodes disallowed
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during the construction of V,, for each p are unsatisfiable so could not form part of
a model. Further, each node must satisfy the clause on the right hand side of each
K-rule so the deletion of nodes that do not satisfy the K-rules does not remove any
models. Finally to take account of the external K operator we push K into each rule
and ensure that each node satisfies this set of rules.

Secondly, infinite paths unwinding through the temporal edges starting from an
initial node give a sequence of propositional valuations for our timelines by extracting
the literals from each V. By construction of the graph, this sequence satisfies the
conditions for constructing timelines for 7" apart from the conditions concerning the
satisfaction of eventualities (and none infinite paths). The reconstruction of the R
relation from G will construct equivalence classes from the construction of the Eg
edges in G.

If the unreduced behaviour graph is empty then there are no nodes that directly
satisfy the set of rules T, i.e. without considering the satisfaction of eventualities (or
none infinite paths). There must be no reachable nodes from the set of initial nodes
and as we have tried to construct every possible state for the set of rules T then T
must be unsatisfiable.

If the unreduced behaviour graph is not empty however not all sets of nodes
reachable from the initial nodes can be used to construct models of 7. If a node n
has no temporal successors then there are no infinite paths through that node. So
any models of 7' must arise from a path through the graph with n deleted. Also
if n contains an eventuality [ then any path through that node which is to yield a
model of T must satisfy [ either at n or somewhere later in the path, i.e. by unwinding
through the temporal edges. Hence we can apply the second deletion criterion without
discarding any potential models. The “if” part follows.

We now show the only if part. Assume that the reduced behaviour graph is non-
empty. We know the set of initial nodes is non-empty because the reduced behaviour
graph is defined to be the set of nodes reachable from the initial nodes. We will
construct a model of T'. We can construct a model by unwinding through the temporal
edges to obtain timelines and then reconstruct the modal edges between points in
timelines by relating to nodes in the reduced behaviour graph.

For the modal dimension we must show that for any KI € n in the reduced
behaviour graph all nodes n' = (V',Y") such that (n,n') € Ek satisfy V' =1 and for
each ~K! € n there exists some n' = (V',Y”') such that (n,n') € Ex and V' | -l
where the edges between all nodes reachable from n form an equivalence relation. We
ensure that for any modal literal K1 € n, [ is satisfied in all nodes (n,n') € Ex by
construction of the knowledge edges Ei. Further recall that the set of K-rules in T’
have an external K and every node must lead to one that satisfies these rules. This
is achieved by deleting nodes that do not immediately satisfy these rules during the
construction of the behaviour graph.

Finally we must check that from each node containing —~K! we can reach a node
containing —I. Assume G contains a node n = (V, E) € N that contains a formula
—-Kl, i.e. =Kl € V and no node n' = (V', E') is reachable from n (via Ex edges)
such that =l € V'. Firstly note that V' must contain | because if V' contained —l, as
the Ek relation is reflexive, then =K1 can be satisfied by V itself. Next note that
V' cannot contain Kl as it contains =K and nodes containing K and —KI are not
permitted as they are unsatisfiable. By construction of the graph each node must
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satisfy each K-rule in the rule-set, plus each rule with the external K pushed into it.
Assume first that the literals and modal literals in V without I, i.e. V\{l}, satisfy the
set of K-rules with the K-operator pushed into each rule. Hence there must be a node
n' = (V', E") such that V' is the same as V except it contains —! rather than [. As V'
contains the same modal literals as V' there must be an edge from n to n'. Hence =K
can be satisfied in a reachable node and our original assumption was wrong. Next we
assume that [ must be in V to satisfy a rule in 7. We consider three cases.

e Agssume that [ isin V as T contains the rule true = [. To satisfy this rule every
node in G contains /. By pushing in the external K the set of rules including
the pushed rules must contain the rule true = KI so each node in G must also
contain K. No node can contain both K[ and —K1 hence [ cannot exist because
of a rule true = /.

e Assume that [ isin V from satisfying a rule true = DVI where D is a disjunction
of modal literals and where V' does not satisfy D. By pushing in the external
K operator we obtain the rule true = D V KI hence n must also contain K.
As no node can contain both K7 and =K the node n cannot exist because of
satisfying [ in a rule true = D VI. Note if V satisfied D the case is as described
above — a node n' = (V', E') must exist such that V' is the same as V' except
it contains —I rather than [ and hence =K1 is satisfiable.

e Assume that [ isin V from satisfying a rule true = DVI where D is a disjunction
of literals or modal literals and where n does not satisfy D. We let D = LV M
where L is a disjunction of literals and M is a disjunction of modal literals.
As V does not satisfy D, V must satisfy =D therefore V satisfies L and - M.
Now for any node n' = (V', E') such that (n,n’') € Ekx, =Kl € V' and V'
must satisfy =M by construction of the graph. However if V' satisfies L (and
therefore D) and —l then the rule true = D V[ is satisfied. Further —Kl
is satisfied as required. The only situation when this does not occur is when
(=Kl AN-M) = —L, i.e., to satisfy the rule, true = LV M V[, | must hold
in each node when both =M and —KI do. Consider any node n' such that
(n,n') € Ex. The node n' must satisfy both =KI and =M, by construction of
the graph, and therefore must also contain /. Hence there is no node reachable
from n by Ex edges containing —I. However having pushed the K-operator into
the rules each node must satisfy true = K1V M V ~K—L. Here no reachable
node contains L so -K L is unsatisfiable, M is unsatisfiable by assumption, so
n must contain K. However we have assumed n contains —=KI so n does not
satisfy the set of pushed rules and must be deleted.

Next we check the Ex edges form an equivalence relation. This is shown in
Lemma 14.

Then we unwind through the temporal dimension. We unwind through the tem-
poral dimension starting at an initial node ng and selecting a path that satisfies each
eventuality in the initial node in turn ignoring any eventualities that have been sat-
isfied on the way. This must be possible because if each eventuality was not able to
be satisfied in a reachable node then the node must have been deleted by the second
deletion criterion. Once all the eventualities from the initial node have been satisfied
at some node, let n; be a successor of this node. There must be a successor as we
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have deleted any terminal nodes. The path through n; is extended until each even-
tuality in m, is satisfied one by one. Again take a successor node at this point and
call it no. This construction continues until we reach a successor node n; = n; for
some i > j that we have reached before. This must eventually happen as the graph
is finite. Let @) be the path obtained from the unwinding above between n; and n;.
Then the path obtained from unwinding up to the node n; followed by an infinite
cycle of the path @ has the property that for each node in the path each eventuality
is satisfied by some node later in the path. Recall from the construction of the graph
if an eventuality e has not been satisfied in a node then it must be contained in the
set of eventualities in any successor nodes. Hence if any eventuality e has not been
satisfied by the time we reach some ny, it either must be satisfied in n, or must appear
in the set of eventualities in n; and be satisfied in the next portion of path.

Thus we can construct infinite sequences of states where all eventualities are sat-
isfied through the temporal edges and the modal edges form equivalence relations
so the construction of timelines and reconstruction of the agent accessibility relation
means that from the construction of a non-empty behaviour graph we can construct
a model for T, i.e. T is satisfiable.

Lemma 16 Let T be a set of SNFg rules and let 7" be obtained from T by adding
some initial, global or K-rules whose propositions are already in 7. Then the be-
haviour graph of 7" is a subgraph of the behaviour graph of T

Proof We note that any node in the behaviour graph for 7" will also be in the
behaviour graph for T. Take any node n in T'. Then n has to immediately satisfy
the set of rules T plus some extra rules. As it (immediately) satisfies the rules in T
it must also occur in 7.

Lemma 17 If the unreduced behaviour graph for a set of SNFg rules T is empty
then a contradiction can be obtained by applying resolution rules IRES1, TRES2,
MRES1, MRES2 MRES3, MRES4a or MRES4b to rules in or derived from 7.

Proof If the behaviour graph is empty then by Proposition 15 the set of rules T is
unsatisfiable.

Assume that T' is the set of rules T plus the result of pushing the external K-
operator into any K-rule. Then the set of rules T" is unsatisfiable using classical
resolution between literals or modal literals and their negations, modal resolution
between modal literals K and K-l or modal resolution between K[ and —I. That is,
by applying the resolution rules IRES1, IRES2, MRES1 (that resolves a formula and
its negation) MRES2 or MRES3 we can detect a contradiction. By conjoining the set
of K-rules and rewriting the right hand side in DNF

true = \/ D;
%

each node must satisfy D; for some i. If D; contains a literal or modal literal and
its negation, K-l and K, or Kl and —I by applying resolution using rules MRESI,
MRES2 or MRES3 we can add new rules and exclude this disjunct. Otherwise each
D; must cause a contradiction with the right hand sides of the initial rules and must
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be excluded. Thus we can use the resolution rules IRES1, IRES2, MRES1, MRES2
and MRESS3 to derive a contradiction.

However in the resolution system the external K-operator is not pushed into the
rules so we must make sure that any resolvents generated after K has been pushed into
each modal rule can be produced by applying MRES1, MRES2, MRES3, MRES4a
or MRES4b. First consider the single literal true = [. Pushing K into this rule we
obtain true = K. This can be resolved with the rules true = -l V D, true =
K~-IlV D or true = —KI[V D obtaining the resolvent true = D by applying MRES3,
MRES2 or MRESI respectively. The rule true = [ can also be resolved with the
same three rules and produce the same resolvent by applying MRES1, MRES3 and
MRES4a respectively.

Next we examine modal rules containing a single literal, for example true = [V D’
where D’ is a disjunction of modal literals. Pushing K into this rule and obtaining
true = KIV D' we may resolve it with true = =l Vv D, true = K-l V D or
true = -~ K[V D where D is a disjunction of literals or modal literals by applying rules
MRES3, MRES2 or MRES1 and obtaining the resolvent true = DV D'. The original
rule true = [V D' may also be resolved with each of the rules using the resolution
rules MRES1, MRES3, MRES4a respectively to produce the same resolvent.

Finally we consider the case where there is more than one literal in a K-rule.
Without loss of generality we consider a rule with two literals true = I; V Iy V D'
where D' is a disjunction of modal literals (or false). Pushing in a K operator we
obtain two rules true = KI;V-K-ly,VD' and true = -K-l;VKI,VD'. Now at least
one of these rules can be resolved with the rules true = —I; vV D, true = K—I; VD or
true = —KI; V D for i = 1,2 where D is a disjunction of literals or modal literals by
applying rules MRES3, MRES2 or MRES1. We consider the resolvents for resolving
with true = Kl; V ~K~ls V D'; the other case is similar. This rule may be resolved
with true = —l; V D, true = K-l; V D, true = —Kl; V D or true = K-ly V D.
The resolvents obtained are true = DV —K=ly V D', true = DV —K-ly, V D',
true = DV —K~ly VD' and true = Kl; V D V D’ respectively. These resolvents,
or resolvents that imply these resolvents can be generated from resolving the original
rule with each of these rules to obtain true = D V Iy V D', true = D V iy vV D',
true = DV -K-ly VD' and true = Kl VDV D’ using the resolution rules MRESI,
MRES3, MRES4a and MRES4b respectively.

Theorem 18 (Completeness) If T a set of rules in SNF is unsatisfiable then it has
a refutation by the procedure described above.

Let T be an unsatisfiable set of SNF x rules. The proof proceeds by induction on the
number of nodes in the behaviour graph of T'. If the (unreduced) behaviour graph
is empty then by by Lemma 17 we can obtain a contradiction by applying resolution
rules IRES1, IRES2, MRES1, MRES2, MRES3, MRES4a or MRES4b.

Now suppose the behaviour graph G is non-empty. By Proposition 15 the reduced
behaviour graph must be empty so there must be a node than can be deleted from G
as described above.

If a terminal node (V,Y") exists, consider the set of global rules B' whose left
hand side satisfy the valuation V. Then from the construction of the graph the set
of clauses from the right hand side of B’ must be unsatisfiable. In the resolution
system this represents a series of applications of step resolution (SRES1 or SRES2)
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between global rules or global and literal rules (the rule MRES5 may need to be first
applied) which lead to a rule with false on the right hand side, i.e. X = Ofalse
where V' |= X. This is rewritten as

true = -X

by applying the rule SRES3. Adding this rule to T giving 7" and constructing the
behaviour graph for 7", no edges will be incident on (V,Y") because we have added the
rule true = —X. So any edges out of any node must lead to a node that satisfies =X .
As V = X there can be no edges into (V,Y) in T". So (V,Y) becomes unreachable
and the graph for T" is a strict subset of the graph for T. By induction we assume
that T" has a refutation and so must 7.

Otherwise, if no terminal node exists there must be a node n that contains an
eventuality [, where [ is not satisfied in any node reachable from n. If N’ is the set
of nodes reachable from n then any edges out of a node in N’ lead to a node that
is also in N'. For each node n = (V,Y) in N’ the set of global rules or literal rules
(having applied MRESS5) whose left hand side is satisfied by V are combined to give
A, = OB, for n € N'. To show this is a loop in -/ we must check two conditions.

e For each n € N' we must have = B, = —l. Let V be a set of literals and modal
literals from a node in G that satisfies B,,. By the construction of the behaviour
graph there is a temporal successor of n in G of the form (V,Y’). By assumption
this node is also in N’ and therefore V' [~ I. So -l is a logical consequence of
B,, and B,, = .

e For each n € N' we must have = B,, = \/,,,cx» An. Let V be a set of literals
and modal literals from a node in G that satisfies B,,. By the construction of G
since V |= B, there is an edge from n to a node n’ € N' whose valuation is V.
Since n' € N' by assumption V |= A,s. Hence = By, =V, c v A as required.

We can use the set of rules A,, = O B,, for resolution with each eventuality [ occurring
inT.
Consider any node n = (V,Y) € N’ which contains [ as an eventuality. Let L be

defined as
L=\ 4,
neN'’

Note that V = L, V [~ | and V |= w;. Either there is an edge e € Er from some
node (V',Y") into n such that [ € Y’ and V' }£ 1 or T contains a rule A = {}I where
V = A and V }£ . For the former we must have V' |= w;. Applying the temporal
resolution rule adds the resolvent w; = O(l V L) to the set of global rules in 7.
Now V' satisfies the left hand side of this rule, i.e. V' = w; but V' does not satisfy
the disjunction on the right hand side (I V =L) so the resulting behaviour graph does
nor contain e. Otherwise for the latter we have A = I, V = A and V £ 1. Then
resolving the eventuality rule with the loop we obtain true = —-A V1V —L as one of
the resolvents. Now n doesn’t satisfy this resolvent and so n must be deleted from G.
In either case n either becomes unreachable or is deleted. So, the behaviour graph
for T' is a strict subset of that for T and by induction we assume that as 7' has a
refutation so must 7T'.
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7 Resolution in a Multi-Agent Context

In this section we consider the extension of the resolution proof rules from KL; to
KL,. We only consider the modal resolution rules as the rules for initial, step and
temporal resolution contain no modal operators.

The rule MRESI holds as long as the modal literal K;l and its negation —K;l
being resolved refer to the same K;. The rule MRES3 is easily extended as we resolve
a modal literal K; with a literal —=[. MRES5 is can be extended so that the disjunction
of modal literals Kl; VKi> V... in the hypothesis is K;l; VK lo V... for any i,j € Ag.

For MRES2 either we can extend the given rule to the following or allow a more
flexible version of MRESS5.

true = DV Kl
MRES2’ true = D'V K;-l
true = DvVD!

This is sound as the first rule implies true = D V [ and the second implies true =
D’ v —l. Resolving these we obtain true = D V D' as required. As an alternative a
more generally applied version of MRESS can be used followed by an application of
MRESI. The more general version of MRES?) is given below where D is a disjunction
of literals or modal literals.

true = DV K;l

MRES5 true = DVI

Soundness follows from applying the T axiom to the hypothesis.
Considering MRES4a we need a more complex resolvent in the multi-agent setting
where z is a new proposition.

true = DV -K;l
, true = D'VI
MRES4a true = DV-K;—x
true = -zVvD

A similar rule is defined for MRES4b. The justification is as before, i.e. we need
to push a K; operator into the second of the hypotheses to resolve —K;l with K;l.
However, in the multi-agent setting the formulae - K;—p & - K;K;—p and K;p &
—K;—Kp are not theorems so we must introduce a new variable 2 to rename D' in
the resolvents. Note if D’ is just a disjunction of literals the original MRES4a rule
can be used to avoid the introduction of new variables. For an illustration of this see
the use of the original MRES4a rule in the muddy children example given below.
For the completeness proof we construct a behaviour graph with a set of edges, Ek,
for each modal operator ¢, that is G = (N, Ek,, Ek.,, ..., Er). Instead of constructing
nodes from the union a member of each V), for each p in T' we use the union a member
of each V,, (where consistent) for each p in T and i € Ag. The set V), is just V,
where each K is replaced by K;. The use of MRES2’ is justified as nodes containing
K;l and K;—l are disallowed as they must contain both [ and -l and are therefore
inconsistent. Otherwise the proof of completeness is similar to the above.
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7.1 Muddy Children Example

To illustrate the resolution system in the multi-agent case we consider the muddy
children problem a well known problem in reasoning about knowledge. We use a
version taken from [14] page 4. A variant on this problem, known as the wisest man
puzzle, is given in [26]. A tableau based proof for this variant is given in [41].

Imagine n children playing together. .... Now it happens during their
play that some of the children, say k& of them, get mud on their foreheads.
Each can see the mud on others but not on his own forehead. Along comes
the father, who says, “At least one of you has mud on your forehead,” thus
expressing a fact known to each of them before he spoke (if £ > 1). The
father then asks the following question, over and over: “Does any of you
know whether you have mud on your own forehead?” Assuming that all
the children are perceptive, intelligent, truthful, and that they answer
simultaneously, what will happen?

There is a “proof” that the first k¥ —1 times he asks the question, they will
all say “No,” but then the k** time the children with muddy foreheads
will all answer “Yes.”

We consider the two person case and use mj to show that child one has a muddy
forehead and mso to show that child two has a muddy forehead. The following rules
show that if a child’s head is muddy it stays muddy and if a child’s head is not muddy
it stays not muddy.

1. my = Om1
2. mo = Om2
3. m1 = O-m

4. —my = O-mo

Next, if a child has a muddy forehead then the other children know it is muddy and if
a child has a forehead that is not muddy all the other children know it is not muddy.

true = -m; VvV Komy
true = -—-ms V Kims
true = my VvV Ko—my
true = mo VvV Ki1—mo

® oo

The father announces that at least one of the children’s foreheads is muddy. Thus the
first child knows this and the second child knows this and the first knows the second
knows etc. As our SNFg rules hold in each accessible state this is the same as just
saying
9. true = m;Vme

If a child knows his head is muddy then at all future moments he knows his head
is muddy. This can be written into SNF g as follows where the new proposition a
represents Kym; and b represents Koms.

10. a = Qa
11. b = Ob
12. true = -aV Kim
13. true = aV-Kim
14. true = -bV Kams

24



15. true = bV -Komsy

We take the case where both children’s foreheads are initially muddy.

16. start = my
17. start = my

We use the new variables x, ¥y and 2 to denote times 0, 1 and 2.

18. start = =z
19. z = Qy
20. y = Oz

As each child speaks at the same time to answer whether he knows the colour of his
spot we need rules to denote that, for example, at time 1 (where y holds) each child
knows it is time 1 (i.e. knows y).

21. true = -2V Kz
22. true = -2V K>z
23. true = -yV Ky
24. true = -yV Ksy
25. true = —-zV Kz
26. true = -—zV Ksz

At time 1 each child does not the the colour of his spot and will answer “No.”

27. true = —-wyV-Kim
28. true = -—-yV-Kyms

Finally we are trying to prove that at time 2 (when z holds) both children know the
colour of their spots. To obtain a contradiction we must add the negation of this to
the set of rules.

29. true = -zV-Kim;V-Kamg
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The proof commences as follows.

30. true = -yV-Ky-my [9,28 MRES4a]
31. true = -yVmy [7,30 MRES]]
32. true = -yV-K;—my [9,27 MRES4a]
33. true = —yVmy [8,32 MRESL]
34. true = -zV-aV-Koms [12,29 MRES]]
35. true = -zV-aV-b [14, 34 MRESI]
36. a = O(=zV-b) [10,35 SRES2]
37. (aAb) = O-z [11,36 SRES1]
38. (anbAy) = COfalse [20,37 SRES1]
39. true = -aV-bV-y [38 SRES3]

40. true = -Kym;V-bV -y [13,39 MRES1]
41. true = -Kym;V-KymsV-y [15,40 MRES]]
42. true = -KjyV-KomyV-y  [31,41 MRES4a]
43. true = -KyyV-KyyV-y [33,42 MRES4a]
44. true = -KoyV -y (23,43 MRES]]
45. true = -y [24, 44 MRES]]
46. z = QOfalse [19,45 SRES2]
47. true = -z [46 SRES3]

48. start = false [18,47 IRESI]

8 Related Work

The work we have presented is a resolution method for a temporal logic of knowledge.
Although resolution methods have been described for both modal logics [2, 3, 9, 6,
13, 16, 29, 30, 31] and temporal logics [1, 5, 39] the only method for logics with both
dimensions we know about is that in [20]. This work has the same mechanism for the
temporal dimension as presented here but differs elsewhere. The normal form in [20]
allows both temporal and modal operators in the same rules while the approach here
is to separate the two types of rules so that interaction between the two dimensions is
via rules containing only disjunctions of literals. Further the modal resolution system
given in [20] emphasises the addition of rules (and new variables) corresponding with
the application of modal axioms. Here we provide a set of resolution rules that
incorporate the S5 axioms (for example being allowed to resolve Kl with —I relating
to the axiom T). So we trade the easy application of rewrite-style rules that may
potentially generate many new rules with the application of resolution-style rules
that are more difficult to apply but produce only one resolvent with no new variables.
However [20] admits temporal belief logics as well as the temporal logics of knowledge
we have described here. We anticipate this will also be possible here if we amend the
modal resolution rules to correspond with the modal logic we use for belief (KD45).

The temporal component of the resolution mentioned here was originally intro-
duced in [17]. Subsequent work involved providing efficient algorithms to apply the
complex temporal resolution rule [10], developing strategies to guide the search [11]
as well as extending the approach to other logics [4]. Other resolution approaches for
temporal logics can be found in [1, 5, 39].

Resolution for modal systems are given in [2, 3, 9, 6, 13, 16, 29, 30, 31]. These
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fall into two main groups, those that work in the modal logic directly [2, 29] or those
that use a translation into predicate logic for example [30, 31]. Our system follows
the former route and is based on that for propositional S5 modal logic given by Mints
[29]. The use of new variables to represent subformulae whilst translating into the
normal form and then linking this new proposition with the subformula it represents
everywhere is essentially the renaming approach used in the transformation to the
normal form for temporal logics [33].

Other proof methods for such logics have been based on tableau methods, for
example the work on proof methods for BDI-logics given in [34, 35].

Here we combine a modal logic with a temporal logic to obtain a temporal logic
of knowledge. The theoretical properties of temporal logics of knowledge have been
studied extensively in [24, 25, 38]. Work has also been carried out into combining
arbitrary logics, see for example the work on fibring in [21].

9 Conclusions and Future Work

We have presented a set of resolution proof rules for temporal logics of knowledge.
We feel this is an improvement on that presented previously as the proofs for both
the temporal and modal dimensions remain separate and we utilise particular resolu-
tion rules for S5 rather than potentially generating many new formulae using rewrite
rules [20].

We are at present extending this system to deal with the evolution of knowledge
over time which requires interaction between the temporal and modal components. In
fact when time is incorporated into the muddy children problem it can be viewed as a
system with synchrony and perfect recall [14] as the puzzle proceeds in rounds or steps
(synchrony) as the children all answer “Yes” or “No” simultaneously and they can
remember what has happened in previous steps (perfect recall). The introduction of
resolution rules to incorporate the axiom for synchrony and perfect recall, K; Oy =
OK;p, means that (the slightly artificial) rules 21-26 can be dispensed with. The
complexity of axiom systems for several such interactions have been studied in [24,
25, 38], and we note that such interaction increases the complexity of the logics in
many cases and makes the problem undecidable in others.

A prototype version of the approach described in this paper has been implemented,
based upon an extension of our earlier Prolog system [10]. An improved version is
beginning to be developed, based on a C++ implementation and, with this, we expect
to be able to test the approach on significantly larger examples.
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