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!"#$%&'$( Understanding theowof knowledge inmulti-agent protocols is essentialwhenproWing the
correctness or security of such protocols. Current logical approaches- often based on model checking-
are well suited for modeling knowledge in systems where agents do not act strategically. Things
become more complicated in strategic settings. In this paper we show that such situations can be
understood as a special type of game < a I9>63"K:" />9K2%2>9 :'#" < in which a coalition ]wins^ if it
is able to bring about some epistemic condition. This paper summari_es some results relating to these
games. Two proofs are presented for the computational complexity of deciding whether a coalition
can win a knowledge condition game with and without opponents 3!2a-complete and Sa-complete
respectiWely7. We also consider a Wariant of knowledge condition games in which agents do not know
which strategies are played- and proWe that under this assumption- the presence of opponents does not
affect the complexity. The decision problem without opponents is still Sa-complete- but requires a
different proof.

)*+ ,-%.#/ complexity- epistemic logic- game theory- imperfect information- knowledge- protocol-
strategy
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Strategic interaction- be it in cooperation or in coordination- has been subcect of
study in economics and game theory 3Won Seumann and Morgenstern- 1G447- the
social sciences 3Schelling- 1G657 and more recently multi-agent systems 3Wan der
Uoek and Wooldridge- 25537 and logic 3aauly- 25517. In this paper- we focus on
the interplay between $%&'%":2/ and 29?>&#'%2>9'3 aspects of interaction. Kame
theorists haWe for a long time acknowledged the intricate interplay between these
two aspects. On the one hand- there is a long list of examples of epistemic conditions
that guarantee specic solutions in games- such as Aumann’s celebrated account of
howcommonknowledge of rationality custies the algorithmof backward induction
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to nd Sash equilibria 3Aumann- 1GG57X for a contemporary treatment of seWeral
similar issues- see also 3de Truin- 25547. Such examples address general epistemic
assumptions about the oWerall game. On the other hand- there are approaches that
attempt to make explicit what the players know in eWery stage of the game- one
of the motiWations being that reWealing or hiding specic information during an
interaction may be of a strategic interest to some of its participants. It is the latter
issue that we address in this paper- adding epistemic properties to the state of affair
that players or agents want to achieWe or- to the contrary- aWoid.
Research in multi-agent systems has experienced a ourishing interest in formal

approaches to cooperation and interaction- in which languages represent the rea-
soning of or about agents in coalitions- and models typically represent the effect of
agents forming coalitions oWer time. Since a key feature of agency is '5%>9>#= cf.
3Wooldridge andRao- 1GGG7- rather than fully determining an agent’s behaWiour in a
deterministic program- the idea is that an agent is only giWen a pre-dened A&>%>/>3-
in which his course of actions may be constrained- but not uniquely prescribed.
The automatic Werication of protocols < either real-world protocols such as

Woting mechanisms- or electronic communication protocols such as electronic auc-
tion and network protocols < is an important topic in computer science 3Uol_mann-
1GG17. It is becoming eWer clearer that the required properties of these protocols
often inWolWe the presence or absence of I9>63"K:": the information possessed 3or
not possessed7 by the agents that enact the protocol 3Fagin et al.- 1GG57. At the
same time- it is realised that in many protocols < such as electronic auctions <
it is necessary to take into account the $%&'%":2/ behaWiour of participants. They
are not bound to behaWe as the designer of the protocol desires- but will attempt
to obtain the best result possible for themselWes. The combination of these two
ingredients < knowledge and strategic behaWiour < makes formal Werication a
difcult problem. In this paper- we dene a new class of games- which are in-
tended to be an abstract formal model of such protocols. We refer to these games
as I9>63"K:" />9K2%2>9 :'#"$; In a knowledge condition game- two coalitions of
agents enact a protocol. One coalition striWes to reach a certain knowledge sit-
uation- and the other coalition tries to preWent the rst coalition from reaching
its goal. In other words- one coalition ]wins^ if it is able to force a certain con-
dition to hold in the world- where this condition relates to the knowledge 3and
absence of knowledge7 of the agents in the game. Formally- we specify the goal
situation 3i.e.- the epistemic condition that the agents striWe to achieWe7 using epis-
temic logic- and protocols are modeled as extensiWe game forms with imperfect
information.
One canmakemany different choiceswhenmodeling the knowledge of agents in

a protocol. One issue is whether the strategies that agents use are publicly known- or
whether they are assumed to be priWate.We formulate two Wariants of the knowledge
condition games and their associated decision problem. In the rst Wariant all agents
know which strategy each agent uses- while in the second Wariant no agent knows
which strategies are being used.
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For both Wariants one can dene a decision problem. In these problems one
has to decide whether the rst coalition has a winning strategy for the knowledge
condition game. We then determine the computational complexity of this decision
problem for both Wariants.
The structures oWer which knowledge condition games are played in this paper

are ggame trees’- or- more formally- extensiWe game forms with imperfect informa-
tion 3Osborne and Rubinstein- 1GG47. These structures specify which agent can act
at a point in the protocol- and which actions this agent can choose from. A game
tree does not specify any preferences or winning conditions. Instead of dening
these winning conditions in a conWentional way 3by saying how good each sin-
gle outcome is for each agent7- we calculate what each agent knows by the end
of the protocols. This depends on the strategies that agents haWe chosen. We can
then specify a certain knowledge property 3i.e. gA knows φ and T does not know
ψ’7- and dene a group of agents that wants to make this property true- while an-
other group wants the property not to hold. The rst group wins if the knowledge
property holds in all reachable outcomes- otherwise the second group of agents
wins.
There is an increasing body of work on the 3>:2/'3 properties of games- and in

particular on strategic and epistemic properties 3see Section 57. UoweWer- in this
paper we choose to focus not on the logical properties of knowledge condition
games- but on the />#A5%'%2>9'3 />#A3"L2%= of determining who wins a knowledge
condition game under Warious assumptions. There are seWeral reasons for this choice
of emphasis.

< First- it is important to know for applications such as automated Werication
whether these problems are tractable- and if not- what special cases might be
tractable.

< Second- the complexity results giWe us an insight into how these games are dif-
ferent from other games or approaches- and what makes these problems difcult.

The structure of this paper is as follows. In Section 2- we present the deni-
tions required for the remainder of the paper: the section starts off with epis-
temic logic- then coWers interpreted game forms- and ends with strategic games
and knowledge condition games. Section 3 proWides seWeral extended examples of
knowledge condition games. The rst example shows how knowledge properties
are important in a Woting protocolX the second example inWolWes a more playful
qui_ problem. It shows how signaling can enter into reasoning about knowledge.
Section 4 presents four results relating to the complexity of knowledge condition
games. We proWe the complexity of deciding a knowledge condition game in which
strategies are known- rst for the restricted case of no opponents- then in gen-
eralX we then do the same for knowledge condition games in which strategies are
unknown. Section 5 discusses some related work- and Section 6 presents some
conclusions.
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M'83" N; Summary of key notational conWentions.

Sotation Meaning

H an interpreted game form
O a strategic game 3for instance a knowledge condition game7
! the set of all agents
P* Q* C* -* R* S indiWidual agents. P* Q* C* - are used as actual names of

agents in the examples- like 1- 2- 3 are actual numbers.
R* S denote agents in the denitions and proofs

$, % sets of agents
φ, ψ, ξ formulas
M an epistemic logic model
w a state in a model
' a single action
0 a sequence of actions
T set of sequences of actions
U a set of atomic propositions
π an interpretation function
U a utility function
5 an update function
# a model extraction function

5( 6%*74842&%+ 9*24$4-2#

In this section we dene how one can create a I9>63"K:" />9K2%2>9 :'#" O from an
29%"&A&"%"K :'#" ?>&# H; We begin by dening "A2$%"#2/ 3>:2/* 29%"&A&"%"K :'#"
?>&#$* $%&'%":2"$ and 5AK'%"$- which are all needed in order to dene knowledge
condition games.
First- note that it seems impossible to nd a notation that is consistent with both

logical and game theoretical conWentions. Therefore the choice of symbols in this
paper is arguably rather arbitraryX but it is at least consistent throughout the paper.
A summary of our key notational conWentions is giWen in Table I.

2.1. EaISTEMIC )OKIC

In order to express statements about knowledge we use the language of epistemic
propositional logic- along with its ,59 semantics 3Fagin et al.- 1GG5X Meyer and
Wan der Uoek- 1GG57. This language is called L in this paper. The language L is
parameterised by anite set! of agents and anite setU of atomic propositions- and
where we need tomake this clear- we identify the particular language parameterised
by ! and U by L3!, U7. UoweWer- where no confusion is possible we suppress
reference to these- simply writing L.
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DEFISITIOS 1. )et ! be a nite set of agent symbols 3with typical element R7-
and U a nite set of propositional atoms 3with typical element A7. The language
L3!, U7 3with typical element φ is dened through the following TSF grammar:

φ ::= A | ⊥ | φ → φ | V Rφ|Cφ

An example formula in this language is φ5 = VQ A. This formula expresses that
Q knows that A holds. It is useful to dene a few more operators in terms of the
existing ones. Segation is dened by ¬φ = φ → ⊥. Discunction is dened by
φ∨ψ = ¬φ → ψ . Concunction is dened by φ∧ψ = ¬3¬φ∨¬ψ7. ExclusiWe or
is dened by φ∇ψ = 3φ → ¬ψ7∧3¬ψ → φ7. Epistemic possibility 3gR considers
it possible that. . . ’7 is dened by WRφ = ¬VR¬φ. The operatorCφ expresses that
φ is commonly known by all agents.
This language is interpreted oWerV&2AI"#>K"3$- the standard semantic structures

for modal epistemic logics 3Meyer and Wan der Uoek- 1GG57.

DEFISITIOS 2. A 3multi-agent7 Kripke modelM is a tuple

M = 3!,X,∼, U, π 7,

where:

< ! is a set of agentsX
< X is a set of states or worldsX
< ∼ is a collection of equiWalence relations ∼R⊆ X × X between states- one for
each agent R ∈ !X

< U is a set of atomic propositionsX and
< π : X → 2U is an interpretation function.

As usual- the equiWalence relations capture each agent’s knowledgeDignorance about
the state of the game: w ∼R w′ means that the states w and w′ ]look the same^
according to agent R. Thus ∼R relates states that R cannot tell apart. The function
π returns for all states w a set π 3w7 ⊆ U with the atomic propositions that are true
in w.
An example Kripke model is the modelM5- which has two states w1 and w2

and two agents P and Q. Agent P can distinguish these states- but agent Q cannot:
w1 ∼Q w2. In this model only one atomic proposition occurs: A. This proposition
only holds in state w1.
Epistemic formulas φ ∈ L can be interpreted oWer Kripke models. )et M =

3!,X,∼, U, π 7 be a Kripke model and w ∈ X . We dene a relation |= between
models with states M, w and formulas φ and write M, w |= φ if this relation
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holds. In this case we say that φ is true in w. If it is not the case thatM, w |= φ-
then we writeM, w -|= φ.

DEFISITIOS 3. )et M = 3!,X,∼, U, π 7 be a Kripke model- w ∈ X, A ∈
U, R ∈ ! and φ ∈ L3!, U7.

M, w |= A iff A ∈ π 3w7
M, w |= ⊥ neWer
M, w |= φ → ψ iff M, w |= φ impliesM, w |= ψ
M, w |= VRφ iff ∀v ∈ X : w ∼R v impliesM, v |= φ
M, w |= Cφ iff ∀v ∈ X : w ∼∗ v impliesM, v |= φ

The relation ∼∗ is the reexiWe- transitiWe closure of the union
⋃

R 3∼R 7.
The notation M |= φ is used to indicate that a formula holds in all states of the
giWen model.

3!,X,∼, U, π 7 |= φ ⇔ ∀w ∈ X : 3!,X,∼, U, π 7, w |= φ

We can use this denition to show that in the example modelM5- it is the case that
M5, w1 |= VP A andM5, w1 |= ¬VQ A andM5, w2 |= VQ3A ∨ ¬A7.

2.2. ISTERaRETED KAME FORMS

An 29%"&A&"%"K :'#" ?>&# characterises what might be called the ]action structure^
of a game: the actions that can be performed in any giWen state of play- and the
possible outcomes of these actions. A game form can be described in different but
equiWalent ways- for instance as a set of sequences of actions- or as a tree.We follow
Osborne and Rubinstein 31GG47 and use the idea of a set T of sequences 0; Each
sequence 0 is one possible sequence of actions by agents that is allowed by the
rules of the game. The whole set T of them fully describes what can be done in the
game.

DEFISITIOS 4. A set of nite sequences T is A&"!L1/3>$"K iff for any sequence
0 and action ' it is the case that 0' ∈ T implies 0 ∈ T . For any set of sequences
T and 0 ∈ T we dene the set of next actions P3T, 07 = {' | 0' ∈ T} and the set
of terminal sequences G 3T 7 = {0 ∈ T | P3T, 07 = ∅}.

Sequences of actions can be used to denote specic plays of a game: such
sequences are also called histories. We let G3T7 denote the set of all sequences that
cannot be extended. These are called %"&#29'3 histories- and correspond to >5%/>#"$
of the game. The set P3T- 07 consists of all actions that can be played in 0;Sote that
the set T implicitly denes a tree- since one can think of T as containing all paths
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in the tree that start from the root and go down the tree. Thus one can consider the
ggame tree’ that is implied by a prex-closed set.
In game theory- a game tree does not contain any information about the propo-

sitions that haWe been made true at different points of the game. For this reason- we
introduce 29%"&A&"%"K game forms. An interpreted game form is basically a game
tree to which an interpretation function for atomic propositions has been added.

DEFISITIOS 5. An 29%"&A&"%"K :'#" ?>&# H is a tuple

H = 3!, T, turn,∼, U, π 7 ,

where:

< ! is a nite set of agentsX
< T is a non-empty- prex-closed set of nite sequencesX
< turn is a function turn: T \G 3T 7→ !X
< for each R ∈ ! the relation ∼R⊆ T × T is an equiWalence relation between
sequencesX

< U is a nite set of atomic propositionsX and
< π : G 3T 7→ 2U returns the true atomic propositions of any terminal history.

where these components must satisfy the following condition:

if turn307 = R and 0′ ∼R 0 then also turn30′7 = R and
P3T, 07 = P3T, 0′7.

3This denition is adapted from Osborne and Rubinstein 31GG4- p. 25577. We haWe
extended the information sets such that agents also haWe information when they are
not in charge- which is a common extension for logical purposes 3Wan Tenthem-
2551X Tonanno- 25547.
Atomic propositions can be used to refer to certain terminal histories- for instance

to histories where an agent achieWes a certain goal. The idea of annotating end states
or terminal histories with logical propositions has been used before by Uarrenstein
et al. 325537 and the authors of the present article 3Wan Otterloo et al.- 25547.
An example interpreted game form H5 is depicted in Figure 1. In this example-

agent P can make a choice from two alternatiWes 3numbered 1 and 27- one of which
satises A. After this choice- P can distinguish these situations- but Q cannot.
For eWery interpreted game formH we can calculate a Kripke modelM = #3H7

representing the knowledge in the end states of H. We do this by taking all the
terminal histories of H as the set of states ofM. The states of the modelM are all
outcomes of the interpreted game form H- and two outcomes are related inM iff
they are related in H.
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H2:5&" Y. Interpreted game form H5.

DEFISITIOS 6. )et H = 3!, T - turn-∼, U, π 7 be an interpreted game form. The
end situation model # is dened as #3H7 = 3!, G 3T 7,∼′, U, π 7 where for each
agent R,∼′R is the restriction of ∼R to G 3T 7× G 3T 7.

If we apply the function # to the example interpreted game form H5- we get the
example Kripke model M5 = #3H57. The transformation # is used to express
when an interpreted game form H makes a formula φ true. The function # only
uses the epistemic relation between end states. The relations between nonterminal
sequences pose constraints on what strategies are allowed in Denition C.
Sote that if game form H is an imperfect recall game form- then the agents can

haWe less information in the end situation than they had halfway in the game. We
do not see this as a problem. One plausible situation in which this can happen is the
case where the agents are computer programs. Such agents often haWe Wery limited
memory. 3Indeed- while Qon Seumann and Morgenstern do consider imperfect
recall games- such as two-team bridge 3Won Seumann and Morgenstern- 1G53- p.
537- Selten once claimed that imperfect recall game forms ]can be recected as
misspecied models of interpersonal conict situations^ 3Selten- 1GC57.7

2.3. STRATEKIES

Strategies are an important part of eWery game. Informally a strategy σ$ is a function
that tells all agents in coalition $ what to do next in the histories they control. We
use 9>91K"%"&#292$%2/ strategies for our agents. This means that a strategy does not
return a unique option that the agent should take- but it returns a set of options-
with the intention that the agent should randomly select an element of this set. Our
strategies are thus akin to the randomi_ed or gmixed’ strategies- or more correctly
the 8"0'<2>5&'3 $%&'%":2"$- of game theory 3Osborne and Rubinstein- 1GG4- p. 2127-
although in this paper- we do not consider the common approach of introducing
probability distributions oWer choices.

DEFISITIOS C. )et H = 3!, T - turn- ∼, U, π 7 be an interpreted game form.
A $%&'%":= σ$ is a function that for any node 0 ∈ T \G 3T 7 with turn307 ∈ $
returns a non-empty set σ$307 ⊆ P3T, 07. A strategy must satisfy the constraint
that 0 ∼turn307 0′ implies σ$307 = σ$30′7.
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The second part of the denition states that a strategy should not prescribe different
options for histories that an agent cannot distinguish. An agent would not haWe the
knowledge to adhere to a strategy that does not satisfy this condition. Strategies
that satisfy the last constraint are sometimes called 592?>&#.
For the example interpreted game form H5 there are three different strategies

for agent P. The strategy can either tell the agent to take the rst option- or it
can prescribe the second option- or the strategy can express that the agent should
randomly choose between both options. Formally these possibilities are dened by
respectiWely σ 1{P}3ε7 = {1}, σ 2{P}3ε7 = {2} and σ 3{P}3ε7 = {1, 2}.
For any strategy σ$ for an interpreted game form H we can consider a restricted

interpreted game form H ′ in which the agents R ∈ $ only choose options that
are part of the strategy. The agents S /∈ $ can still do whateWer they could do H.
Such a restricted interpreted game formmodels the situation in which coalition$ is
committed to the giWen strategy. The restricted model H′ is computed by an 5AK'%"
?59/%2>9 H ′ = 53H, σ$7.

DEFISITIOS F. )et H = 3!, T - turn-∼, U, π 7 be an interpreted game form. The
update function 5 is dened by

53H, σ$7 = 3!, T ′, turn′,∼′, U, π ′7 ,

where:

< T ′ is the smallest subset of T such that ε ∈ T ′ and for each 0 ∈ T ′ and
' ∈ P3T, 07: if turn307 /∈ $ or ' ∈ σ$307 then 0' ∈ T ′X

< ∼′ is such that for all R : ∼′R=∼R ∩3T ′ × T ′7X and
< turn′ and π ′ are the same as turn and π - but with their domain restricted to T′.

An update of the example H5 with strategy σ 3{P}- does not change anything:
53H5, σ 3{P}7 = H5. An update with σ 1{P} returns a model H1 with only two histo-
ries: ε and 1. This means that the Kripke model of H1 only has one state- in which
A holds: #353H5, σ 1{P}77, 1 |= VQ A.

2.4. STRATEKIC KAMES

A distinction is often made in game theory between "L%"9$2<" :'#"$ and $%&'%":2/
:'#"$; In an extensiWe game- agents take turns in selecting actions. In a strategic
game the indiWidual actions are notmodeled: each player can select a strategy before
the game starts- and somehow these strategies of all players together determine an
outcome. Knowledge condition games are based on extensiWe game forms but are
dened as strategic games. The next denition of a strategic game is therefore
needed.
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DEFISITIOS G. A $%&'%":2/ :'#" O is a tuple:

O = 3!, {,}!, U7,

where:

< ! is a nite set of agentsX
< for each R ∈ !, ,R is a set of strategies for agent RX and
< U : ,! → R! a function that- for each choice of strategies- returns a A'=>??
<"/%>&;

We are only interested in two-player- constant-sum- _ero-one games- and in these
games only two payoff Wectors are possible: 31- 57 which is best for the rst player-
and 35- 17 which is best for the second player. In these games one can say that an
agent can win if it has a strategy that guarantees that the agent gets utility 1. If the
rst player can win we write w3O7 = 1.

DEFISITIOS 15. )et O = 3{P, Q}, {,P, ,Q}, U7 be a two player constantsum
_ero-one game. The winner function w is dened by

w3O7 = 1⇔ ∃σP ∈ ,P∀σQ ∈ ,Q : U3σP, σQ7 = 31, 57

2.5. KSOW)EDKE COSDITIOS KAMES

A I9>63"K:" />9K2%2>9 :'#" is two-player 3or more accurately: two-team7-
constant-sum- _ero-one strategic game. It is two-player in the sense that we are
interested in two coalitions- i.e.- sets of agents $ and%- playing against each other.
These sets must be discoint- but not eWery agent has to be in one of those sets. If
an agent R ∈ ! is not in $ ∪ % then this agent is said to be 9"5%&'3. The agents
in $ are called A&>A>9"9%$- and the agents in % >AA>9"9%$; To dene a knowledge
condition game- we must giWe an interpreted game form H and an epistemic logic
formula φ: the proponents try to make this formula true on H- and the opponents
try to make it false on H. Formally:

DEFISITIOS 11. )et H = 3!, T - turn- ∼, U, π 7 be an interpreted game form-
$, % ⊆ ! discoint sets of agents and φ ∈ L a knowledge formula. Dene
kcg3H, $, %, φ7 = 3{$, %}, {,$, ,%}, U7 where ,$, ,% contain all strategies of
$, % in H respectiWely- and

U3σ$, σ%7 =
{
31, 57 iff ∀w ∈ X : 3!,X,∼, U, π ′7, w |= φ

35, 17 otherwise

where 3!,X,∼, U, π ′7 = #35353H, σ$7, σ%77.
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In this denition- the proponent coalition$ has a tougher task than the opponents
%- because $ has to guarantee that φ holds in all cases. This has been done with
applications in security in mind. In security settings- it is also necessary to secure a
system against all possible scenarios and attacks. It therefore makes sense to giWe
$ the task of making sure that φ occurs.
)et H5 be the example interpreted game form and take φ5 = VQ A. For the game

O5 = kcg3H5, {P},∅, φ57 we can compute a payoff matrix. As calculated before-
{P} has three strategies. The empty coalition only has the unique empty function
?∅ as a strategy.

σ 1{P} σ 2{P} σ 3{P}

?∅ 31, 57 35, 17 35, 17

We see that for this game- {P} has a winning strategy 3namely σ 1{P}7. Therefore
w3kcg3H5, {P},∅, φ77 = 1. In the aboWe denition- we use the updated model
#35353H, σ$7, σ%77 as a model for what all agents know. We haWe thus implicitly
assumed that it is common knowledge to all agents which strategies are used by $
and %. This is a reasonable assumption if one considers strategies as well known
conWentions. Also in other circumstances- for instance if the game is played by
computer programs that are open for inspection- this is a reasonable assumption.
In some circumstances- howeWer- one might not want to make this assumption.
Therefore we present below a Wariant kcg′ of knowledge condition games in which
the knowledge formula φ is eWaluated in the original model #3H7. The strategies
are used to determine the reachable states w. The proponents win if in all these
states w- it is the case that #3H7, w |= φ.

DEFISITIOS12. )et H = 3!, T - turn-∼, U, π 7 be an interpreted extensiWe game
form- $, % ⊆ ! discoint sets of agents and φ ∈ L a knowledge formula. Dene
kcg′3H, $, %, φ7 = 3{$, %}, {,$, ,%}, U′7 where ,$, ,% contain all strategies of
$, % in H respectiWely- and

U′3σ$, σ%7 =
{
31, 57 iff ∀w ∈ X : #3H7, w |= φ

35, 17 otherwise

where X is dened by 3!,X,∼, U, π 7 = #35353H, σ$7, σ%77.
The difference between kcg and kcg′ lies in their respectiWe utility function. The

function U eWaluates the formula φ in the model #35353H, σ$7, σ%77- in all states.
The functionU′ eWaluates the formulaφ in themodel#3H7- thus in themodel before
the update. This difference reects the idea that in kcg- strategies are commonly
known- whereas in kcg′ they are not known. The function U′ only eWaluates the
formula φ in states w that occur in the model #35353H, σ$7, σ%77. The idea here is
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that the truth of φ only matters in states that are actually reached- and which states
are reachable depends on the strategies chosen.
The two types of knowledge condition games that we haWe dened are two

extreme Wiewpoints. Under the rst denition strategies are completely known to
eWerybody. In the denition of kcg′ strategies are completely unknown. One can
dene other- gintermediate’- Wariants- where agents can distinguish some but not all
strategies- or for instance only know their own strategy. The hardness results for the
extreme cases presented later in this paper also hold for some of the intermediate
Wariants. So- one can argue that the extreme cases already coWer many interesting
situations. Detailed studies of the intermediate situations are therefore left for future
work.

2.6. A)TERSATISK-TIME TEMaORA) )OKICS

In this subsection we discuss the temporal- epistemic- strategic logic ATE)- since
much of the work here is motiWated by it. The logic ATE) is an extension of AT)-
a well known logic for reasoning about time and strategies.
The combination of knowledge- time and strategies makes ATE) a Wery rich but

also a complicated logic. Our work on knowledge condition games is an attempt to
aWoid complications by leaWing out temporal reasoning.
Alternating-timeTemporal )ogic 3AT)7 is amulti-agent extension of the branch-

ing time logic CT) 3Alur et al.- 25527. The language of AT) contains temporal
operators similar to CT)- but instead of the path-quantiers A and E that appear
in CT)- strategy operators 〈〈$〉〉 are used- where $ can be any set of agents from
a giWen set !. In AT)- a temporal operator is always preceded by a cooperation
modality. The formula 〈〈$〉〉 © φ for instance- expresses that the coalition $ can
make their choices in such a way that- no matter what the agents in !\$ do- in the
next state φ will hold. The CT)-formula E©φ mirrors AT)’s 〈〈!〉〉©φ 3the grand
coalition! can choose actions such that in the next state- φ7- and the CT) formula
A©φ is the same as 〈〈∅〉〉© φ: gno matter what the agents in !\∅ do- φ will hold
in the next state’. Of course- in between these extremes- AT) can express many
more coalitional abilities. ATE)- 3where the E stands for epistemic7- also contains
knowledge operators.

DEFISITIOS 13. )et ! be a nite set of agents- and U a nite set of atomic
propositions. The logic ATE) contains formulas φ generated by the following rule.
In this rule- A is a typical element of U, R ∈ !, $ ⊆

∑
and ψ is a path-formula.

φ ::= A | φ → φ| ⊥ |〈〈$〉〉ψ | VRφ

ψ ::= !φ | φUφ | © φ

This logic is interpreted oWer alternating epistemic transition systems. These are
dened as tuples 3U, !, Z,∼, π, δ7. As usual- U is a set of atomic propositions and
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! a set of agents. The setZ is a set of states the system can be in- and π : Z → 2U
adds propositions to these states. For any agent R the relation ∼R⊆ Z × Z is an
equiWalence relation- and δ : Z × ! → 22Z assigns to each agent in each state a
set of sets of states. Each agent can choose one set of states- and the next state of
the system will be from that set.
An example would be a system where Z = {5, 1, 2, 3, 4}. Suppose that

δ35, R 7 = {{1, 2}, {3, 4}} and δ35, S 7 = {{1, 3}, {2, 4}}. Agent R can now choose
{1, 2} and S can choose {2, 4}. They make these choices simultaneously. The next
state of the system will be 2- because that is the only common state in their chosen
sets. It is necessary to put some constraints on δ so that a next state can always be
chosen.
The interpretation of this logic uses the notionof strategy to interpret the coalition

operator 〈〈$〉〉. A strategy for $ is any function that makes a choice σ$3R, [7 ∈
δ3[, R 7 for any agent R ∈ $ in any state [ ∈ Z. Tased on a strategy σ$- one can
dene the set of possible walks W3σ$7 through Z so that all choices for agents
R ∈ $ are made as recommended by the strategy. This set of walks is used in the
following interpretation of ATE).

M, [ |= ⊥ neWer
M, [ |= A iff A ∈ π 3v7 where A ∈ U
M, [ |= φ → ψ iff M, [ |= φ impliesM, [ |= ψ
M, [ |= VRφ iff ∀3[, [ ′7 ∈∼R :M, [ ′ |= φ
M, [ |= 〈〈$〉〉φ iff ∃σ$ : ∀w = v . . . ∈W3σ$7 :M, w |= φ

M, w |=©φ iff M, w39 + 17 |= φ
M, w |= !φ iff ∀9 > 5 :M, w397 |= φ
M, w |= φUψ iff ∃# > 5 :M, w3#7 |= ψ and

∀# > I > 5 :M, w3I7 |= φ

A main adWantage of ATE) oWer kcg is that ATE) extends temporal logic- and
can thus be used to express different kinds of goals such as eWentually achieWing
something- or aWoiding some state foreWer.When not putting any further constraints
on how knowledge and choosing a strategy interfere- the logic has a low model
checking complexity 3Wan der Uoek andWooldridge- 25527. UoweWer- this does not
remain true if one requires strategies to be 592?>&# 3see the paragraph following
Denition C7. If one demands uniform strategies- model checking becomes Sa-
complete- eWen without using the knowledge operator 3Schobbens- 25547. Another
point of discussion for this logic is the fact that the existence of a strategy- used
in the interpretation of 〈〈$〉〉φ- is a Wery weak condition. One can come up with
situations were 〈〈R〉〉φ holds but one would not expect R to achieWe φ 3!amroga
and Wan der Uoek- 2553X !onker- 2553X Wan Otterloo and !onker- 25547. Thus- it
seems that the interpretation of this logic merits further study- and indeed ATE)
currently receiWes a lot of research attention 3Agotness- 2554X Roberts et al.- 25557.
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The framework of knowledge condition games is arguably a less Wersatile Weri-
cation framework than ATE)- because kcg does not allow complicated temporal
reasoning. Only the special case of knowledge at the outcome stage of the protocol
is studied. Knowledge condition games also do not allow for concurrent moWes.
This has the adWantage that knowledge condition games are easier to understand-
and that the complications that arise in the interpretation of ATE) do not arise in the
context of knowledge condition games. An interesting difference between ATE)
and kcg is that in kcg nondeterministic 3and hence arguably ]richer^7 strategies are
permitted- whereas ATE) assumes deterministic strategies.

:( ;<&8=7*#

In this section- we illustrate the Walue of knowledge condition games- by presenting
seWeral examples of how they can be used to model scenarios of interest.

3.1. ASOShMOUS QOTISK

A Woting protocol can be used when a group of agents has to make a coint decision
on a certain issue. A common protocol is #'J>&2%= <>%29:: each agent can Wote for
an option and the option that gets the most Wotes is the outcome of the protocol.
In the example interpreted game form H\ - three agents P, Q and C use macority
Woting to decide whether planP should be accepted or not. Each agent has a choice
from two actions: support the plan 3$7- or recect it 3&7. They Wote in alphabetical
order- so rst P chooses from action $ or &- then Q 3without knowing P’s choice7
chooses either $ or & and nally C does the same- unaware of what P, Q did. This
protocol thus has eight terminal histories. The proposition A indicates whether P
is accepted and A holds if at least two agents choose $. Furthermore ' holds if P
chooses $- 8 if Q chooses $ and the same for C with /. The interpretation function
is thus π 3$$$7 = {', 8, /, A}, π 3$$& 7 = {', 8, A} . . . π 3&&& 7 = ∅. We assume that
$ -∼ R $ ′ if $ and $ ′ differ in the eWaluation of the outcome A- or if the Wote of R
differs in $ from that in $ ′.
The following game results hold.

ω3kcg3H\ , {P, Q}, {C}, A77 = 1
w3kcg3H\ , {P, Q}, {C}, VQ/ ∨ VQ¬/77 = 1

w3kcg3H\ , {Q}, {C}, VQ/ ∨ VQ¬/77 = 5
N

1 2 3 4

23 24 34
13 14

34
12 14 24

12 13 23

H2:5&" +. The fty fty problem HZ .
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P and Q together can ensure that A is true- by Woting $ and $. What they can also
do is Wote differently- so that ' and ¬8 result. In this case the outcome will solely
depend on C’s choice. They thus learn what C Woted. Agent Q cannot learn what C
did on its own.
One example- described by Schneier 31GG6- p. 1337- is a Woting protocol where

Qwould haWe the option of copying P’s 3encrypted7 Wote. In that case one might get

w3kcg3H ′\ , {Q}, {P,C}, VQ' ∨ VQ¬'77 = 1

This is an unwanted property and thus a gbug’ in the protocol. It is necessary to
reason about knowledge to express this bug- so a standard game-theoretic analysis
might not haWe reWealed this shortcoming.

3.2. TUE FIFTh-FIFTh aROT)EM

Consider the following scenario:

In a TQqui_ show the qui_master asks a candidate the following question:Which
day of the week comes directly after Tuesdayi Is it 3a7 Monday- 3b7 Wednesday-
3c7 Friday or 3d7 Saturday. The candidate replies: gI am not sure. Can I do fty
ftyi’. The qui_ master has to remoWe two options that are not the answer- so he
says: gThe answer is not Monday and neither Friday’. Does the candidate know
the answeri

3This situation frequently occurs on teleWision in many countries in the gMillionaire
show’.7 One can also consider this situation to be a metaphor for a multi-agent
information exchange situation. )et us model this in an interpreted game form HZ
inWolWing an agent- 3nature7 that determines what the right answer is- a qui_master
Z that eliminates two answers- and a candidate C. This interpreted game form is
depicted in Figure 3. First nature selects one of the answers to be the right answer:
it can choose from the actions 1- 2- 3 and 4. The qui_ master- who knows the right
answer- can then select an action 2J that indicates that the two options 2 and J are
eliminatedX 2* J must be different from the right answer. The terminal histories are
thus all histories 3I, 2 J7. For such histories- 3I, 2 J7 ∼C 3I ′, 2 ′ J ′7 if the same options
are eliminated: 2 J = 2 ′ J ′. The set of atomic propositions is U = {'2 | 1 ≤ 2 ≤

N

1 2 3 4

23 34 14 12

H2:5&" (. The updated interpreted game form 53HZ, σ{Z}7.
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4}∪ {"2 | 1 ≤ 2 ≤ 4}- and each terminal history is interpreted in the following way:
π 3I, 2 J77 = {'I, "2 , " J }. The question is whether the candidate knows the answer at
the end of the protocol. This is expressed by ψ = VC'1 ∨ VC'2∨ VC'3∨ VC'4.
The following table lists seWeral properties of this situation.

Sature may faWour the candidate: w3kcg3HZ, {- },∅, ψ77 = 1
Sature may not faWour the candidate: w3kcg3HZ, {- },∅, ¬ψ77 = 1
The qui_ master can help the candidate: w3kcg3HZ, {Z},∅, ψ77 = 1

We thus see that whether the candidate knows the answer depends on nature and
on the qui_ master Z. If nature uses a deterministic strategy- in which for instance
'1 always holds- then the candidate knows that this is the right answer. UoweWer- if
Sature uses the non-deterministic strategy in which each answer could be the right
answer- the candidate will not know the answer.
The situation becomes more interesting if the qui_ master gets inWolWed. In this

game the qui_ master has the ability to signal the right answer to the candidate.
Consider- for example- strategy σ{Z}- dened as follows.

σ{Z}317 = {23}
σ{Z}327 = {34}
σ{Z}337 = {14}
σ{Z}347 = {12}

This strategy tells the candidate exactly what the right answer is: The an-
swer directly before the two eliminated options 3assuming 4 comes before 17.
The updated model 53HZ, σ{Z}7 is giWen in Figure 3. This strategy acts as a code
between the candidate and the qui_ master. It is the strategy that proWes that
w3kcg3HZ, {Z},∅, [77 = 1. 3A practical conclusion one can draw is that one
should not bet on such a qui_ if one does not know what the interests of the qui_
master are.7
This example also demonstrates why we prefer to assume that strategies are

commonly known. If one would haWe used the alternatiWe denition kcg′- in which
agents do not know what strategies are used- then one can obtain the following
results.

Sature cannot faWour the candidate: w3kcg3HZ, {- },∅, ψ77 = 5
The qui_ master cannot help the candidate: w3kcg3HZ, {Z},∅, ψ77 = 5

These results are counter-intuitiWe- since signaling in games is a phenomenon that
does occur in practice.When proWing the security of a protocol- it is a good principle
to make the weakest assumptions possible. At rst sight- it seems that assuming
that strategies are not known is the weakest possible assumption. UoweWer in the
case of proWing ignorance- rst sight can be misleading. It is harder to proWe that
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the candidate does not know the answer when he or she knows all strategies that
are used- than it is to proWe ignorance when he or she does not know the strategies.
Therefore the weakest and safest assumption is to assume that he does know the
strategies. This shows that it is best to use the denition of kcg rather than the
alternatiWe kcg′ for these ignorance proofs. 3In fact- this motiWates the choice to
make kcg the default and call kcg′ the alternatiWe.7

>( ?-8=3$&$4-2&7 ?-8=7*<4$+

)ooking at computational complexity is interesting for two reasons. First of all it
can tell you whether a certain problem is gtractable’- i.e. whether the problem can
be reliably solWed in practice. Secondly it can tell you more about the problem < for
instance whether something is a Wery general problem 3i.e.- whether the problem
format can be used to formulate questions about many different situations- such as
logic7- or what features makes a problem difcult. In this section we look at the
complexity of the I/: K"/2$2>9 A&>83"#- which is the problem of deciding for a
game kcg3H, $, %, φ7 whether the rst coalition $ has a winning strategy. We look
at this problem under Warious assumptions- and report four theorems- as follows:

< The rst theorem is concerned with the problem of deciding whether a coalition
$ can win a knowledge condition game with an empty set of opponents. This is
called the 9>1>AA>9"9%$ knowledge condition game decision problem. It turns
out that this problem is already Sa-complete- and thus not tractable.

< The second theorem states that the general kcg decision problem is eWen harder:
with opponents the problem is !2a-complete.

< For the other theorems we use the alternatiWe Wersion of knowledge condition
games kcg′: In the third theorem we claim that the no-opponents problem is as
hard as the general problem. Toth problems turn out to be Sa-complete- which
is the fourth theorem.

Recall that a problem is in the class Sa if it can be solWed in polynomial time 3there
is a time bound that is polynomial in the input si_e7 by a nondeterministic Turing
machine. In practice this means that we can /0"/I a solution in reasonable time- but
may not be able to !9K a solution in reasonable time 3aapadimitriou- 1GG4X Cormen
et al.- 1GG57. Some problems in the class Sa are Sa-complete: eWery problem in Sa
can be expressed as an instance of an Sa-complete problem. Thus Sa-complete
problems are at least as hard as any problem in the classSa. It is widely belieWed- but
has not been proWen- that Sa-complete problems cannot be solWed in polynomial
time.
As an aside- we note that we encode interpreted game forms in an explicit way-

by listing all histories. In reality protocols are often specied in an implicit way 3for
instance in some formof source code7 and such representations can be exponentially
more efcient.
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TUEOREM 1. M0" A&>83"# %> K"/2K"* ?>& ' :2<"9 29%"&A&"%"K :'#" ?>&# H* />'321
%2>9 $ '9K I9>63"K:" A&>A&%= φ* 60"%0"& w3kcg3F, $, ∅, φ77 = 1* 2$ -U1/>#A3"%";

U&>>?; Assume that H, $, φ are giWen.The empty coalition has only one strategy
σ∅. This strategy is such that 53H, σ∅7 = H . Therefore

w3kcg3H, $,∅, φ77 = 1⇔ ∃σ$ #353H, σ$77 |= φ

A nondeterministic polynomial algorithm for this problem exists. Find or guess
nondeterministically a strategy σ$. Since a strategy encodes a subset of actions
aWailable in H- the si_e of σ$ is smaller than the si_e of H and thus polynomial in
the input si_e. Sow calculate M = #353H, σ$77- and Werify for each state w of
M thatM, w |= φ. The number of states inM is at most the number of terminal
histories of H - so |M| ≤ |H |. All of this can be done in polynomial time. Therefore-
this problem can be solWed using a nondeterministic polynomial algorithm and this
problem is in Sa.
In order to show that the restricted kcg problem of the theorem is as hard as

any Sa problem- we show that any instance of the 3SAT problem can be trans-
formed into an equiWalent restricted kcg instance. )et φ3 = ∧2 3'2 ∨ 82 ∨ /2 7
be a propositional logic formula in concunctiWe normal form with three literals per
clause. The literal formulas '2 , 82 , /2 must be either atomic propositions or negated
atomic propositions. The 3SAT problem is to decide whether a truth-assignment
A for all atomic propositions in φ3 exists such that A |= φ3. We can construct an
interpreted game form H with a single agent ! = {P} and a formula φ such that
w3kcg3H, {P},∅, φ77 = 1 if and only if ∃A : A |= φ3.
The model H = 3{P}, T - turn- ∼, U, π 7 is constructed in the following

way. )et U3 be the set of atomic propositions occurring in φ3. The new set
of atomic propositions U contains two propositions for any old proposition:
U = {L+ | L ∈ U3} ∪ {L− | L ∈ U3}. For each new proposition a history is created:
T = {ε} ∪ {"A | A ∈ U}. The interpretation function is such that only the corre-
sponding atomic proposition is true: π 3"A7 = {A}. Furthermore turn3ε7 = P. Agent
P cannot distinguish any end state: "A ∼ P "[ for all terminal histories "A and "[ .
The formula φ = φ1 ∧ φ2 is a concunction of two parts. The part φ1 expresses

that for each original atomic proposition A ∈ U3- either the positiWe proposition
A+ is considered possible or the negatiWe A−- but not both:

φ1 =
∧

A∈U3
3WP A+ ∨ WP A−7 ∧ ¬3WP A+ ∧ WP A−7

The idea is that the strategy that P uses is actually an assignment of Walues to all
atomic propositions in U3. The condition φ1 expresses that such assignment must
assign either the truth Walue true 3A+7 or false 3A−7 to each proposition A.
The φ2 part encodes the original formula φ3 =

∧
2 3'2 ∨ 82 ∨ /2 7. In the

next denition we use a helper function ? dened such that ? 3¬A7 = A− and
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? 3A7 = A+. using this function we dene Q as follows.

φ2 =
∧

2
WP3 ? 3'2 7 ∨ ? 382 7 ∨ ? 3/2 77

It is not hard to see that any strategy σ{P} such that #353H, σ{P}77 |= φ1 ∧ φ2
corresponds to an assignment A such that A3A7 = %&5" if and only if A+ ∈ σ{R}3ε7-
and that this assignment satisesA |= φ3. Since the formula andmodel constructed
haWe a si_e that is linear with respect to the si_e of φ3- this is a polynomial reduction.
Therefore the restricted kcg problem is Sa-hard. Since we haWe also shown that the
problem is in Sa- we conclude that the restricted kcg problem is Sa-complete.

As an example- consider the satisability of the 3SAT formula ψ = 3A ∨¬[ ∨
& 7∧ 3¬[ ∨¬A∨& 7. This formula contains three propositions- so the corresponding
interpreted game form- depicted in Figure 4- contains six terminal histories. The
corresponding knowledge formula is ψV .

ψV = 3WP A+ ∨ WP A−7 ∧ ¬3WP A+ ∧ WP A−7 ∧
3WP[+ ∨ WP[−7 ∧ ¬3WP[+ ∧ WP[−7 ∧
3WP&+ ∨ WP&−7 ∧ ¬3WP&+ ∧ WP&−7 ∧
WP3A+ ∨ [− ∨ &+7 ∧ WP3[− ∨ A− ∨ &+7

A typical Sa-complete problem is to determine whether a prepositional logic
formula is satisable. Supposeφ is a formulawith atomic propositions L1, L2, . . . L9 .

A

p+ p q+ q r+ r− − −

H2:5&" ]. The model of 3SAT formula ψ .

A

B B B B

p+r+ p+r p r+ p r q+r+ q+r q r+ −−−− −−− −q r

H2:5&" ). The construction of the !2a proof.
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We can thus write φ = φ38L7 where the Wector 8L consists of all the ∃L2 . The satisfac-
tion problem can nowbe phrased as decidingwhether ∃8L : φ38L7. In the samewaywe
can formulatemore difcult problems- by allowingmore quantiers:∃=∀L : φ38L, 8=7
is the problem where one has to decide whether there is an 8L such that φ38L, 8=7
is true for all 8=. This problem- called SAT2- is a typical !2a complete problem
3aapadimitriou- 1GG473chapter 1C7. It is widely belieWed that these problems are
strictly more difcult than Sa-complete problems.

TUEOREM 2. M0" A&>83"# %> K"/2K" ?>& :2<"9 ' :2<"9 29%"&A&"%"K :'#" ?>&#
H* />'32%2>9$ $ '9K % '9K A&>A"&%= φ 60"%0"& w3kcg3H, $, %, φ77 = 1 2$ !2U1
/>#A3"%";

U&>>?; First we haWe to proWe that this problem is indeed in!2a. In order to do
this- consider the winning condition of a knowledge condition in more detail.

w3kcg3H, $, %, φ77 = 1⇔ ∃σ$∀σ% #35353H, σ$7, σ%77 |= φ

Suppose that H, $, % and φ are giWen. It is possible to encode strategies of
% as assignments to a Wector of propositional Wariables 8=- and the strategy of
$ as assignments to 8L . One can then nd a formula ψ38L, 8=7 that is true if
#35353H, σ$7, σ%77 |= φ. The si_e of this formula is polynomial in |H | + |φ|.
The kcg decision problem is equiWalent to a SAT2 problem:

w3kcg3H, $, %, φ77 = 1⇔ ∃8L∀8= : ψ38L, 8=7

The problem to decide whether ∃8L∀8= : ψ38L, 8=7 is a SAT2 problem- and is thus in
!2a.
The second part of the proof is to show that the kcg decision problem is indeed

complete for this class- and this can be done by reducing SAT2 to a knowledge
condition game. The proof is similar to the preWious Sa-completeness proof- but
now inWolWes two agents. Assume that a SAT2 problem ∃8=∀8L : ψ38L, 8=7 is giWen.
We can assume that ψ is in 3-SAT form: ψ = ∧2 3'2 ∨ 82 ∨ /2 7. First we dene
an interpreted game form H = 3!, T - turn- ∼, U, π 7. )et ! = {P, Q}- and
G 3T 7 = {3', 87|∃2, J : ' = L+

2 or ' = L−2 , 8 = =+
J or 8 = =−J }. The set T contains

all histories of G 3T 7 and all prexes of these histories. The function turn is dened
such that P moWes rst- and then Q moWes: turn3ε7 = P and turn33L±

2 77 = Q. The
relations ∼P and ∼Q are equal- and dened such that each agent only knows the
length of each history: $ ∼P $ ′ ⇔ |$| = |$ ′|. The set of propositions U of the kcg
problem is {^+ | ^ ∈ 38L ∪ 8=7} ∪ {^− | ^ ∈ 38L ∪ 8=7}. The function π is dened by
π 3', 87 = {', 8}. This completes the denition of the interpreted game form H. The
number of terminal histories of H is 2|8L | · 2|8=|- and thus the si_e of H is polynomial
in the si_e of the input problem.
We dene $ = {P} and % = {Q}. Sext we dene an epistemic logic formula

φ. such that $ can win the game kcg3H, $, %, φ7 iff ∃8L∀8= : ψ38L, 8=7. )et φ =
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¬φQ ∨ 3φP∧ ? 3ψ38L, 8=777. The part φQ expresses that the strategy of Q corresponds
to an assignment to 8=. The part φP expresses that the strategy of P corresponds to
a strategy for 8L . Finally ? 3ψ38L, 8=77 is a translation of the input formula ψ38L, 8=7.

φQ =
∧

J 33WQ=+
J ∨ WQ=−J 7 ∧ ¬3WQ3=+

J ∧ =−J 77
φP =

∧
2 33WPL+

2 ∨ WPL−2 7 ∧ ¬3WP3L+
2 ∧ L

−
2 77

? 3ψ38L, 8=77 = ? 3
∧

J 3'2 ∨ 82 ∨ /2 7 =
∧

2 3 ? 3'2 7 ∨ ? 382 7 ∨ ? 3/2 77

The function ? is dened such that ? 3¬A7 = A− and ? 3A7 = A−. The si_e of φ
is linear in the si_e of ψ . Therefore this is a polynomial reduction. This completes
the proof that the knowledge condition game decision problem is !2a-hard. Since
it is also in !2a- we conclude that the problem is !2a-complete.

The construction of a model H is illustrated in Figure 4. This is the model that you
would get in the reduction of ψ38L, 8=7 where 8L contains A and [ and 8= consists of &.
The model is again relatiWely small: only two actions happen in each play of this
interpreted game form. The rst one is decided by agent P- the second one by Q;
In the two preWious proofs- it is essential that the agents are aware of the strategies

they choose. Toth constructions would not work with the alternatiWe denition kcg′.
One can hope that the computational complexity of the kcg′ decision problemwould
be lower. Indeed one can proWe that in this case it does not matter whether there are
opponents.

TUEOREM 3. P$$5#" %0'% H, $, % '9K φ '&" :2<"9; w3kcg′3H, $, %, φ77 = 1 2?
'9K >93= 2? w3kcg′3H, $,∅, φ77 = 1;

U&>>?; )et O = kcg′3H, $, %, φ7 be a kcg′ decision problem. Sotice that the
goal of coalition % is to choose a strategy σ% such that U′3σ$, σ%7 = 35, 17-
where U′ is the utility function of the game O. Since U′ is dened using uniWersal
quantication oWer the set of terminal histories of 5353O, σ$7, σ%7 the best thing
to do forcoalition % is to make sure that this set is as large as possible. In order
to achieWe this- σ% should choose the neutral strategy that allows any action: the
strategy σ with σ 307 = P3T, 07. Since we haWe assumed that neutral agents can
do any action- we might as well assume that the agents R ∈ % are neutral- and
determine the Walue of the game w3kcg′3H, $,∅, φ77 = 1.

We see thus that the presence of opponents is not releWant- and indeed in ATE) no
distinction between opponents and neutral agents is made. The question is now
whether solWing the kcg′ decision problem is still as hard as the original no-
opponents kcg problem. The answer is yes. The no-opponents kcg′ problem is
also Sa-complete. UoweWer the proof is different in an interesting way.

TUEOREM 4. M0" A&>83"# %> K"/2K" ?>& :2<"9 29%"&A&"%"K :'#" ?>&# H* />'32%2>9
$ '9K I9>63"K:" ?>&#53' φ 60"%0"& w3kcg′3H, $,∅, φ77 = 1 2$ -U1/>#A3"%";
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U&>>?; We can proWe that this problem is in Sa by a similar argument as giWen
for Theorem 1. For the hardness result we again show a reduction from 3SAT.
Assume that φ3 =

∧9
2=13'2 ∨ 82 ∨ /2 7 is a propositional formula in concunctiWe

normal form with three literals per clause. )et U3 be the set of atomic propositions
occurring in φ3. We dene an interpreted game form between two agents: an agent
Z that asks questions- and an agent P that answers them. The proponent coalition
is $ = {P} and Z is assumed to be neutral. EWery terminal history is of the form
3A, 8, 2, L7- where A ∈ U3, 8 ∈ {5, 1}, 2 ∈ {1, 2, . . . , 9} and L ∈ {'2 , 82 , /2 }. The
rst action A is chosen by agent Z and must be one atomic proposition of φ3. The
agent Pmust then reply by giWing a boolean Walue 8. This indicates what truth Walue
P has in mind for A. Then agent Z chooses one triplet 3'2 ∨ 82 ∨ /2 7 that appears
in φ3. Agent P then has to choose which of these three parts it thinks should be
true: either '2 or 82 or /2 . The trick howeWer is that∼P is dened in such a way that
for all histories 0, 0′- agent P only knows the length of the histories: 0 ∼P 0′ iff
|0| = |0′|
A does not know- when making its nal decision- which answer it gaWe on its

rst turn. The agent thus risks giWing inconsistent information. For instance in the
history 3A, 1, 3¬A∨[∨& 7, ¬A7 agent A rst says that A is true- and then says that it
thinks that¬A holds. The goal of agent A in the game is to aWoid these inconsistent
histories. We let U = {"} consist of one proposition and dene for all A ∈ U3
the interpretation function such that π 33A, 1, 2, ¬A77 = {"}, π 33A J , 5, 2, A J 77 = {"}
and π 33A, 8, 2, L77 = ∅ otherwise. One can now consider the knowledge condition
gameO = kcg′3H, {P},∅, ¬"7. Agent P can win the gameO iff there is a satisfying
assignment for φ3.

The proof giWen aboWe is Wery similar to a proof giWen by Schobbens 325547 for the
Sa-completeness of AT) with imperfect information. This corroborates the claim
that this Wariant of knowledge condition games is closely related to AT) and thus
to ATE). The proof exploits the fact that in games where coalitions do not haWe
perfect recall- it is Wery difcult for agents and coalitions to coordinate their own
actions.

4.1. TRACTAT)E QARIASTS

In the preWious section we proWed that- in general- the kcg decision problem is not
tractable. In this section we identify some easier cases.

TUEOREM 5. @"% H 8" '9 29%"&A&"%"K :'#" ?>&# 62%0 A"&?"/% &"/'33* $ '9= />'321
%2>9 >? ':"9%$ '9K φ '9 "A2$%"#2/ ?>&#53'; B"/2K29: 60"%0"& 2% 2$ %0" /'$" %0'%
w3kcg′3H, $, φ77 = 1 /'9 8" K>9" 29 A>3=9>#2'3 %2#";

U&>>?; )et M = 3!,X, _, U, π 7 = #3H7 be the end state model of H. We
can compute the set , = {w ∈ X |M, w |= φ} in polynomial time. Dene a
utility function U such that U3w7 = 1 iff w ∈ , and U3w7 = 5 otherwise. The
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pair H, U is now an extensiWe game with perfect recall. The optimal solution σ
for this game can be computed in polynomial time 3Koller and afeffer- 1GG57. If
the expected payoff of σ is exactly one- then w3kcg′3H, $, ∅, φ77 = 1- otherwise
w3kcg′3H, $,∅, φ77 -= 1.

For perfect recall frameworks and the Wariant kcg′ the decision problem is thus
tractable. One might wonder whether the same claim can be made for kcg. The
answer is no- because one can modify the Sa-completeness proof for kcg in such
a way that it uses a perfect recall interpreted game form. The modication is that
one has to two agents- P and P′- so that P is the agent that chooses a strategy-
and P′ is the agent that cannot distinguish end states and occurs in the knowledge
condition. In general one can always nd an perfect recall interpreted game form
that is equiWalent for the kcg decision problem by choosing a fresh agent for each
decision node- and use fresh agents in the knowledge condition.
Instead of asking whether there are interpreted game formsH that make decision

problems easy- one can also ask whether there are easy formulas φ. The answer
to this is question is yes: to see how this works- we rst formulate the notion of
A>$2%2<" and 9":'%2<" formulas.
For any A ∈ U - the formula A is both positiWe and negatiWe. Falsum ⊥ is also

both positiWe and negatiWe. Iff φ is positiWe and ψ is negatiWe- then φ → ψ is
negatiWe. Qice Wersa- iff ψ is positiWe and φ is negatiWe- then φ → ψ is positiWe. Iff
φ is positiWe then VRφ is positiWe. A formula of the form VRφ is not negatiWe.
aositiWe and negatiWe formulas are both called #>9>%>9" formulas- because

one can proWe that they preserWe truth in the following way. Suppose that M =
3!,X,∼, U, π 7 andM′ = 3!,X ′,∼′, U, π ′7 are models such that X ′ ⊂ X and
∼′ and π ′ are the restrictions of ∼ and π to X ′. In this case we say thatM′ is a
sub-model ofM. Suppose φ+ is a positiWe formula- and φ− is a negatiWe formula.
Then the following statements can be proWen.

M |= φ+ implies M′ |= φ+

M′ |= φ− implies M |= φ−

The proof of these statements is done by induction oWer the formula structure. The
interesting step inWolWes the knowledge operator. Suppose that M, w |= VRφ+.
Ty denition this means that ∀v ∈ X - if w ∼R v thenM, v |= φ+. Since X ′ is
a subset of X- this means that ∀v ∈ X ′- if w ∼′R v thenM′, v |= φ+- Using the
induction hypothesis we obtain ∀v ∈ X ′- if w ∼′R v thenM′, v |== φ+- and thus
M′, w |= VRφ+.
Knowledge condition games with monotone formulas are easier to solWe than

general knowledge condition games 3under standard complexity theoretic assump-
tions7.
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TUEOREM 6. M0" A&>83"# %> K"/2K" ?>& :2<"9 H, $, % '9K ' #>9>%>9" ?>&#53'
φ 60"%0"& w3kcg3H, $, %, φ77 = 1 /'9 8" $>3<"K 29 A>3=9>#2'3 %2#";

U&>>?; We proWe the case where φ is a positiWe formula. The argument for
negatiWe formulas is similar. Recall that by denition- w3kcg3H, $, %, φ77 = 1 iff
∃σ$∀σ%∀w ∈ X it is the case that #35353H, σ$7, σ%77, w |= φ whereX is the set
of worlds in the model #35353H, σ$7, σ%77. The formula φ is a positiWe formula-
and thus it follows that #353H, σ$77, w |= φ implies #35353H, σ$7, σ%77, w |= φ.
The best thing for coalition % to do is to use a strategy that does not eliminate any
action. They should use a neutral strategy σ 5 such that 53H, σ 57 = H . This strategy
is described by σ 5307 = P3T, 07.
For coalition$ things are exactly opposite. Suppose that σ 1 and σ 2 are strategies

so that σ 1 is more specic than σ 2. Formally this means that ∀0 : σ 1307 ⊂ σ 2307.
Themonotonicity ofφ implies that#353H, σ 277, w |= φ implies#353H, σ 177, w |=
φ. Coalition$ thus does best be choosing themore specic strategyσ 1. For coalition
$ we thus only haWe to consider the most specic strategies. These most specic
strategies are what one can call A5&"- because they select exactly one action at each
decision point. A backwards induction argument can be used to show that that there
are as many pure strategies for H as there are terminal histories in H. We can try all
pure strategies σ A to see if one satises ∀w: #353H, σ A77, w |= φ. This giWes an
algorithm that needs time O3|H |2 · |φ|7. The rst |H | is caused by the fact that we
need to consider all pure strategies. The remaining term |H | · |φ|. is the time needed
to determine whether for all w it is the case that 53M, σ A7, w |= φ. The decision
problem can thus be done in polynomial time.
For negatiWe formulas the roles of $ and % are interchanged. For a negatiWe

formula φ- coalition $ can use the neutral strategy σ 5. The opponent coalition %
should now try all pure strategies σ A.

@( A*7&$*. B-%C

Our approach to the formalisation of knowledge condition gamesdrawsupon anum-
ber of disparate areas of work. Our treatment of knowledge is based on epistemic
logic 3Meyer and Wan der Uoek- 1GG57. Epistemic logic originated from philosophy
3Uintikka- 1G627 but has been successfully used in the domain of computer science
to capture the knowledge of agents in interpreted systems 3Fagin et al.- 1GG57. It
has been combined with temporal logic 3Ualpern and Qardi- 1GFG7 and coalition
logic 3Wan der Uoek and Wooldridge- 25537 in order to capture knowledge deWel-
opment oWer time- to capture knowledge change after announcements 3Taltag et
al.- 25527 or knowledge eWolution in games such as Cluedo 3Wan Ditmarsch- 25557.
These frameworks haWe been applied to a range of different situations- such as the
Russian Cards problem 3Wan Ditmarsch- 2553X Wan Otterloo et al.- 25537 and the
Dining Cryptographers aroblem 3Wan der Meyden and Su- 25547. What we do is in
one sense a simplication of these approaches- because using temporal logic one
can express more things than cust gAt the end of the protocol. . . ’. In another sense
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it is an extension- because we explicitly deal with strategies- and take into account
that agents may knowwhich strategies are being used. In fact- knowledge condition
games haWe been designed as a response to the problems with ATE) 3Wan der Uoek
and Wooldridge- 25537. ATE) is a logic that includes operators for knowledge-
time and strategic ability. Knowledge condition games are closely related to model
checking problems in ATE). In particular- the ability of a coalition $ to win in a
knowledge condition game with knowledge condition φ and interpreted game form
H is more or less captured by the ATE)model checking problemMH |= 〈〈$〉〉:φ-
whereMH is the ATE) model corresponding to H. On a technical leWel- the main
difference is perhaps that strategies in ATE) are assumed to be deterministic- while
in knowledge condition games- we allow for non-deterministic 3and hence arguably
]richer^7 strategies. There are some additional technical differences- for example
the way that the underlying transition model is captured is different in the two ap-
proaches: in ATE)- a transition function is used- which is rather similar to a labeled
transition system- whereas in knowledge condition games we enumerate the set of
all histories of the game.
Tecause of the way it is designed- it is implicitly assumed in ATE) that the

epistemic relations between states do not depend on the strategies that are played. In
ATE) it is for instance not necessarily the case that agents know their own strategies.
In knowledge condition games- we haWe been able to deal more explicitly with this
strategic aspect- and secondly we haWe explicitly introduced opponents. The long
term goal of this research is to get a good understanding of the interaction between
knowledge and strategies- and perhaps this will ultimately lead to a renement of
ATE) to incorporate these aspects.
Scenarios like knowledge condition games haWe appeared many times in the

literature. aerhaps the most famous example is the />>&K29'%"K '%%'/I A&>83"#
3Fagin et al.- 1GG5- pp.1C6<1F37. In this problem- two army generals desire to reach
agreement onwhen to attack an enemy: neither general wants to attack on their own-
but only when they are sure that the other will also attack. They will thus attack only
when it is />##>9 I9>63"K:" between them that theywill attack. UoweWer- in order
to reach agreement- they can only communicate through a lossy channel 3i.e.- where
there is a non-_ero probability that any giWen message will be lost7. The famous
result with respect to this problem says that if the generals will only attack when it is
common knowledge that theywill attack- then in fact theywill 9"<"& attack- because
they will neWer reach common knowledge. This is because- no matter how many
rounds of acknowledgments are sent between the two generals- whoeWer sent the last
message can neWer be certain that it was receiWed. We can think of the coordinated
attack problem as a knowledge condition game inWolWing three agents < the two
generals forming one coalition on the one hand- and an enWironment- modelled as
an agent who controls the glossyness’ of the channel- on the other. Then- we can
ask whether the two generals can successfully ensure the epistemic condition that
it is common knowledge that they will attack. Related work in the game theory
literature is the "3"/%&>92/ #'23 :'#" 3Osborne and Rubinstein- 1GG4- pp. F1<F47.
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Ty combining protocols and knowledge conditions into games- one can express
properties of multi-agent protocols relating to security and secrecy. In a knowl-
edge condition game one can make ne distinctions between for instance neutral
and opponent agents- and one can giWe examples where this distinction is signi-
cant. Therefore these games are a promising direction for future research into the
interaction between knowledge and strategies.
The complexity results reported in this paper paint an interesting picture. There

seems to be a computational cost for assuming that agents know strategies. The
single agent decision problem is already intractable. The presence of opponents
makes it eWen harder to compute whether a coalition can guarantee a property. If we
drop this assumption and reformulate the notion of winning a knowledge condition
game- then the extra complexity of adding opponents disappears. UoweWer the
problem without opponents is still Sa-complete- and hence intractable- but for
different reasons. The complexity proof is no longer based upon formulating a
difcult knowledge formula- but on the hardness of coordinating in an interpreted
game form without perfect recall.
Future research could focus on comparing decision problems for knowledge

condition games to other game-theoretic decision problems- in order to establish
what exactly the complexity cost is of considering knowledge goals. It would also
be interesting to nd out under which assumptions knowledge condition games can
be solWed in polynomial time. Other directions include looking at knowledge con-
dition games from a logical Wiewpoint by searching for axioms- and to consider the
mechanism design problem to nd an interpreted game form with giWen properties.

A*E*%*2'*#

Agotness- T.- 2554- ]A note on syntactic characteri_ation of incomplete information in ATE)^. in: S.
Wan Otterloo- a. McTurney- W. Wan der Uoek and M. Wooldridge 3eds.7: U&>/""K29:$ >? %0" H2&$%
V9>63"K:" '9K O'#"$ X>&I$0>A; UniWersity of )iWerpool- pp. 34<42.

Alur- R.- Uen_inger- T. A.- and Kupferman- O.- 2552- ]Alternating-time temporal logic^- `>5&9'3 >?
%0" PCW >F357- 6C2<C13.

Aumann- R.- 1GG5- ]Tackward induction and common knowledge of rationality^- O'#"$ '9K !/>1
9>#2/ Q"0'<2>5& G- 6<1G.

Taltag- A.- Moss- ).- and Solecki- S.- 2552- ]The logic of public announcements- common knowledge
and priWate suspicions^- Originally presented at TARK GF- accepted for publication in Annals of
aure and Applied )ogic.

Tonanno- K.- 2554- ]Memory implies Won Seumann-Morgenstern games^- V9>63"K:" _'%2>9'32%=
'9K P/%2>9- to appear.

Cormen- T.- )eiserson- C.- and RiWest- R.- 1GG5- N9%&>K5/%2>9 %> P3:>&2%0#$; The MIT aress: Cam-
bridge- MA.

de Truin- T.: 2554- ]Explaining games- on the logic of game theoretic explanations^. ah.D. Thesis-
UniWersity of Amsterdam- Amsterdam. I))C series DS-2554-53.



KSOW)EDKE COSDITIOS KAMES 451

Fagin- R.- Ualpern- !.- Moses- h. and Qardi- M.: 1GG5- _"'$>929: P8>5% V9>63"K:"; The MIT aress:
Cambridge- MA.

Ualpern- !. h. and Qardi- M. h.- 1GFG- ]The complexity of reasoning about knowledge and time. I.
)ower bounds^. `>5&9'3 >? C>#A5%"& '9K ,=$%"# ,/2"9/"$ :G- 1G5<23C.

Uarrenstein- T.- Wan der Uoek-W.-Meyer- !.-!. C.- andWitteWeen- C.- 2553- ]Amodal characteri_ation
of Sash Equilibrium^- H59K'#"9%' N9?>&#'%2/'" @H32<47- 2F1<321.

Uintikka- !.- 1G62- V9>63"K:" '9K Q"32"?4 P9 N9%&>K5/%2>9 %> %0" @>:2/ >? %0" M6> ->%2>9$; Cornell
UniWersity aress: Ithaca- Sh.

Uol_mann- K.- 1GG1- B"$2:9 '9K \'32K'%2>9 >? C>#A5%"& U&>%>/>3$; arentice Uall International:
Uemel Uempstead- England.

!amroga- W. and Wan der Uoek- W.- 2553- ]Some remarks on alternating-time temporal epistemic
logic^- submitted.

!onker- K.- 2553- ]Feasible strategies in alternating-time temporal epistemic logic^- UniWersiteit
Utrecht Master Thesis.

Koller- D. and afeffer- A.- 1GG5- ]Kenerating and solWing imperfect information games^- in: U&>/""K1
29:$ >? %0" Y]%0 N9%"&9'%2>9'3 `>29% C>9?"&"9/" >9 P&%2!/2'3 N9%"332:"9/" aN`CPNb* Montreal- pp.
11F5<11G2.

Meyer- !.-!. C. and Wan der Uoek-W.- 1GG5- !A2$%"#2/ @>:2/ ?>& PN '9K C>#A5%"& ,/2"9/"*Cambridge
UniWersity aress: Cambridge- England.

Osborne- M. !. and Rubinstein- A.- 1GG4- P C>5&$" 29 O'#" M0">&=* The MIT aress: Cambridge-
MA.

aapadimitriou- C.- 1GG4- C>#A5%'%2>9'3 C>#A3"L2%=* Addison Wesley )ongman.
aauly- M.- 2551- ])ogic for Social Software^. ah.D. Thesis- UniWersity of Amsterdam- I))C Disser-

tation Series 2551-15.
Roberts- M.- Wan der Uoek- W.- and Wooldridge- M.- 2555- ]Knowledge and social laws^. in U&>1

/""K29:$ >? %0" N9%"&9'%2>9'3 `>29% C>9?"&"9/" >9 P5%>9>#>5$ P:"9%$ '9K W53%21P:"9% ,=$%"#$
3AAMAS7- Utrecht.

Schelling- T. C.- 1G65- M0" ,%&'%":= >? C>9"2/%- Cambridge- Mass.: UarWard U.a.
Schneier- T.- 1GG6- PAA32"K C&=A%>:&'A0=* !ohn Wiley j Sons.
Schobbens- a.-h.- 2554- ]Alternating-time logic with imperfect recall^- in W. Wan der Uoek- A. )o-

muscio- E. de Qink- and M. Wooldrige 3eds.7: !3"/%&>92/ ->%"$ 29 M0">&"%2/'3 C>#A5%"& ,/2"9/"-
Qol. F5- ElseWier.

Selten- R.- 1GC5- ]Reexamination of the perfectness concept for equilibrium points in extensiWe
games^- N9%"&9'%2>9'3 `>5&9'3 >? O'#" M0">&= >- 25<55.

Wan Tenthem- !.- 2551- ]Kames in dynamic-epistemic logic^- Q533"%29 >? !/>9>#2/ _"$"'&/0 @:347-
21G<24F.

Wan der Uoek- W. and Wooldridge- M.- 2552- ]Tractable multiagent planning for epistemic goals^- in
U&>/""K29:$ >? %0" H2&$% N9%"&9'%2>9'3 `>29% C>9?"&"9/" >9 P5%>9>#>5$ P:"9%$ '9K W53%2':"9%
,=$%"#$ aPPWP,1+cc+b; Tologna- Italy- pp. 116C<11C4.

Wan der Uoek- W. and Wooldridge- M.- 2553- ]Cooperation- knowledge- and time: Alternating-time
temporal epistemic logic and its applications^- ,%5K2' @>:2/' H@347- 125<15C.

Wan der Meyden- R.- and Su- K.- 2554- ]Symbolic model checking the knowledge of the dining
cryptographers^- under reWiew.

Wan Ditmarsch- U. a.- 2555- ]Knowledge games^- ah.D. Thesis- UniWersity of Kroningen- Kroningen.
Wan Ditmarsch- U. a.: 2553- ]The Russian cards problem^- ,%5K2' @>:2/' H@347- 31<62.
Wan Otterloo- S.- and !onker- K.- 2554- ]On epistemic temporal strategic logic^- in U&>/""K29:$ >? %0"

,"/>9K X>&I$0>A >9 @>:2/ '9K C>##592/'%2>9 29 W53%2 P:"9% ,=$%"#$ 3@CWP,7.
WanOtterloo- S.- Wan derUoek-W.- andWooldridge-M.- 2553- ]Model checking a knowledge exchange

scenario^- in U&>/""K29:$ >? W>K"3 C0"/I29: '9K P&%2!/2'3 N9%"332:"9/"aW>C0P&%bAcapulco- pp.
3C<44.



452 S. Q. OTTER)OO ET A).

Wan Otterloo- S.- Wan der Uoek- W.- and Wooldridge- M.- 2554- ]areferences in game logics^- in
PPWP, +cc]- Sew hork.

Won Seumann- !. and Morgenstern- O.- 1G44- M0">&= >? O'#"$ '9K !/>9>#2/ Q"0'<2>5&* arinceton
UniWersity aress: arinceton- S!.

Won Seumann- !. and Morgenstern- O.- 1G53- M0">&= >? O'#"$ '9K !/>9>#2/ Q"0'<2>5&* arinceton
UniWersity aress: arinceton- S!- 3rd edition.

Wooldridge- M. and Rao- A.- 3eds.7- 1GGG- H>59K'%2>9$ >? _'%2>9'3 P:"9/=* Kluwer Academic aub-
lishers: Dordrecht- The Setherlands.


