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Abstract. Understanding the flow of knowledge in multi-agent protocols is essential when proving the
correctness or security of such protocols. Current logical approaches, often based on model checking,
are well suited for modeling knowledge in systems where agents do not act strategically. Things
become more complicated in strategic settings. In this paper we show that such situations can be
understood as a special type of game — a knowledge condition game — in which a coalition “wins” if it
is able to bring about some epistemic condition. This paper summarizes some results relating to these
games. Two proofs are presented for the computational complexity of deciding whether a coalition
can win a knowledge condition game with and without opponents (2,P-complete and NP-complete
respectively). We also consider a variant of knowledge condition games in which agents do not know
which strategies are played, and prove that under this assumption, the presence of opponents does not
affect the complexity. The decision problem without opponents is still NP-complete, but requires a
different proof.
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strategy

1. Introduction

Strategic interaction, be it in cooperation or in coordination, has been subject of
study in economics and game theory (von Neumann and Morgenstern, 1944), the
social sciences (Schelling, 1960) and more recently multi-agent systems (van der
Hoek and Wooldridge, 2003) and logic (Pauly, 2001). In this paper, we focus on
the interplay between strategic and informational aspects of interaction. Game
theorists have for a long time acknowledged the intricate interplay between these
two aspects. On the one hand, there is along list of examples of epistemic conditions
that guarantee specific solutions in games, such as Aumann’s celebrated account of
how common knowledge of rationality justifies the algorithm of backward induction
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to find Nash equilibria (Aumann, 1995); for a contemporary treatment of several
similar issues, see also (de Bruin, 2004). Such examples address general epistemic
assumptions about the overall game. On the other hand, there are approaches that
attempt to make explicit what the players know in every stage of the game, one
of the motivations being that revealing or hiding specific information during an
interaction may be of a strategic interest to some of its participants. It is the latter
issue that we address in this paper, adding epistemic properties to the state of affair
that players or agents want to achieve or, to the contrary, avoid.

Research in multi-agent systems has experienced a flourishing interest in formal
approaches to cooperation and interaction, in which languages represent the rea-
soning of or about agents in coalitions, and models typically represent the effect of
agents forming coalitions over time. Since a key feature of agency is autonomy cf.
(Wooldridge and Rao, 1999), rather than fully determining an agent’s behaviour in a
deterministic program, the idea is that an agent is only given a pre-defined protocol,
in which his course of actions may be constrained, but not uniquely prescribed.

The automatic verification of protocols — either real-world protocols such as
voting mechanisms, or electronic communication protocols such as electronic auc-
tion and network protocols — is an important topic in computer science (Holzmann,
1991). It is becoming ever clearer that the required properties of these protocols
often involve the presence or absence of knowledge: the information possessed (or
not possessed) by the agents that enact the protocol (Fagin et al., 1995). At the
same time, it is realised that in many protocols — such as electronic auctions —
it is necessary to take into account the strategic behaviour of participants. They
are not bound to behave as the designer of the protocol desires, but will attempt
to obtain the best result possible for themselves. The combination of these two
ingredients — knowledge and strategic behaviour — makes formal verification a
difficult problem. In this paper, we define a new class of games, which are in-
tended to be an abstract formal model of such protocols. We refer to these games
as knowledge condition games. In a knowledge condition game, two coalitions of
agents enact a protocol. One coalition strives to reach a certain knowledge sit-
uation, and the other coalition tries to prevent the first coalition from reaching
its goal. In other words, one coalition “wins” if it is able to force a certain con-
dition to hold in the world, where this condition relates to the knowledge (and
absence of knowledge) of the agents in the game. Formally, we specify the goal
situation (i.e., the epistemic condition that the agents strive to achieve) using epis-
temic logic, and protocols are modeled as extensive game forms with imperfect
information.

One can make many different choices when modeling the knowledge of agents in
aprotocol. One issue is whether the strategies that agents use are publicly known, or
whether they are assumed to be private. We formulate two variants of the knowledge
condition games and their associated decision problem. In the first variant all agents
know which strategy each agent uses, while in the second variant no agent knows
which strategies are being used.
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For both variants one can define a decision problem. In these problems one
has to decide whether the first coalition has a winning strategy for the knowledge
condition game. We then determine the computational complexity of this decision
problem for both variants.

The structures over which knowledge condition games are played in this paper
are ‘game trees’, or, more formally, extensive game forms with imperfect informa-
tion (Osborne and Rubinstein, 1994). These structures specify which agent can act
at a point in the protocol, and which actions this agent can choose from. A game
tree does not specify any preferences or winning conditions. Instead of defining
these winning conditions in a conventional way (by saying how good each sin-
gle outcome is for each agent), we calculate what each agent knows by the end
of the protocols. This depends on the strategies that agents have chosen. We can
then specify a certain knowledge property (i.e. ‘A knows ¢ and B does not know
Yr’), and define a group of agents that wants to make this property true, while an-
other group wants the property not to hold. The first group wins if the knowledge
property holds in all reachable outcomes, otherwise the second group of agents
wins.

There is an increasing body of work on the logical properties of games, and in
particular on strategic and epistemic properties (see Section 5). However, in this
paper we choose to focus not on the logical properties of knowledge condition
games, but on the computational complexity of determining who wins a knowledge
condition game under various assumptions. There are several reasons for this choice
of emphasis.

— First, it is important to know for applications such as automated verification
whether these problems are tractable, and if not, what special cases might be
tractable.

— Second, the complexity results give us an insight into how these games are dif-
ferent from other games or approaches, and what makes these problems difficult.

The structure of this paper is as follows. In Section 2, we present the defini-
tions required for the remainder of the paper: the section starts off with epis-
temic logic, then covers interpreted game forms, and ends with strategic games
and knowledge condition games. Section 3 provides several extended examples of
knowledge condition games. The first example shows how knowledge properties
are important in a voting protocol; the second example involves a more playful
quiz problem. It shows how signaling can enter into reasoning about knowledge.
Section 4 presents four results relating to the complexity of knowledge condition
games. We prove the complexity of deciding a knowledge condition game in which
strategies are known, first for the restricted case of no opponents, then in gen-
eral; we then do the same for knowledge condition games in which strategies are
unknown. Section 5 discusses some related work, and Section 6 presents some
conclusions.
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Table 1. Summary of key notational conventions.

Notation Meaning

F an interpreted game form

G a strategic game (for instance a knowledge condition game)
z the set of all agents

A B,C,N,X,Y individual agents. A, B, C, N are used as actual names of

agents in the examples, like 1, 2, 3 are actual numbers.
X, Y denote agents in the definitions and proofs

sets of agents

formulas

S m
e

an epistemic logic model

a state in a model

a single action

a sequence of actions

set of sequences of actions
a set of atomic propositions
an interpretation function

a utility function

an update function

ST p3vT IS g e o

a model extraction function

2. Preliminary Definitions

In this section we define how one can create a knowledge condition game G from an
interpreted game form F. We begin by defining epistemic logic, interpreted game
forms, strategies and updates, which are all needed in order to define knowledge
condition games.

First, note that it seems impossible to find a notation that is consistent with both
logical and game theoretical conventions. Therefore the choice of symbols in this
paper is arguably rather arbitrary; but it is at least consistent throughout the paper.
A summary of our key notational conventions is given in Table I.

2.1. EPISTEMIC LOGIC

In order to express statements about knowledge we use the language of epistemic
propositional logic, along with its S5, semantics (Fagin et al., 1995; Meyer and
van der Hoek, 1995). This language is called £ in this paper. The language L is
parameterised by a finite set X of agents and a finite set P of atomic propositions, and
where we need to make this clear, we identify the particular language parameterised
by ¥ and P by L(Z, P). However, where no confusion is possible we suppress
reference to these, simply writing L.
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DEFINITION 1. Let X be a finite set of agent symbols (with typical element X),
and P a finite set of propositional atoms (with typical element p). The language
L(X, P) (with typical element ¢ is defined through the following BNF grammar:

pu=plllo—0¢|KxplCo

An example formula in this language is ¢9 = Kpp. This formula expresses that
B knows that p holds. It is useful to define a few more operators in terms of the
existing ones. Negation is defined by —-¢ = ¢ — _L. Disjunction is defined by
¢V = —¢p — . Conjunction is defined by ¢ A ¥ = —(—¢ vV —). Exclusive or
isdefinedby ¢V = (¢ — =Y )A (=Y — ¢). Epistemic possibility (‘X considers
it possible that. .. ”) is defined by Mx¢ = —Kx—¢. The operator C ¢ expresses that
¢ is commonly known by all agents.

This language is interpreted over Kripke models, the standard semantic structures
for modal epistemic logics (Meyer and van der Hoek, 1995).

DEFINITION 2. A (multi-agent) Kripke model M is a tuple
M :(Ev vaa P97T)a

where:

— X is a set of agents;

— W is a set of states or worlds;

~ is a collection of equivalence relations ~xC W x W between states, one for
each agent X € X;

P is a set of atomic propositions; and

— 7 : W — 2% is an interpretation function.

Asusual, the equivalence relations capture each agent’s knowledge/ignorance about
the state of the game: w ~x w’ means that the states w and w’ “look the same”
according to agent X. Thus ~ relates states that X cannot tell apart. The function
7 returns for all states w a set w(w) € P with the atomic propositions that are true
in w.

An example Kripke model is the model M, which has two states w; and w,
and two agents A and B. Agent A can distinguish these states, but agent B cannot:
w; ~p w,. In this model only one atomic proposition occurs: p. This proposition
only holds in state w;.

Epistemic formulas ¢ € £ can be interpreted over Kripke models. Let M =
(X, W, ~, P, ) be a Kripke model and w € W. We define a relation = between
models with states M, w and formulas ¢ and write M, w = ¢ if this relation
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holds. In this case we say that ¢ is true in w. If it is not the case that M, w = ¢,
then we write M, w - ¢.

DEFINITION 3. Let M = (X, W, ~, P, ) be a Kripke model, w € W, p €
P, X e Xand ¢ € L(XZ, P).

M, wkEp iff pem(w)

M,wkE L never

MwEe¢—y iff M,wkE ¢implies M, w = v

M, w = Kx¢ iff Yve W:w ~x vimplies M, v = ¢

M, wECo iff Yve W:w ~*vimplies M, v = ¢

The relation ~* is the reflexive, transitive closure of the union | (~x).
The notation M = ¢ is used to indicate that a formula holds in all states of the
given model.

(an’N9P7”)|:¢<:>VwGW(29W7N7Pa7[)7w':¢

We can use this definition to show that in the example model M, it is the case that
My, wi = Kap and My, wy = —=Kgp and My, w, = Kg(p vV —p).

2.2. INTERPRETED GAME FORMS

An interpreted game form characterises what might be called the “action structure”
of a game: the actions that can be performed in any given state of play, and the
possible outcomes of these actions. A game form can be described in different but
equivalent ways, for instance as a set of sequences of actions, or as a tree. We follow
Osborne and Rubinstein (1994) and use the idea of a set H of sequences 4. Each
sequence & is one possible sequence of actions by agents that is allowed by the
rules of the game. The whole set H of them fully describes what can be done in the
game.

DEFINITION 4. A set of finite sequences H is prefix-closed iff for any sequence
h and action a it is the case that ha € H implies h € H. For any set of sequences
H and h € H we define the set of next actions A(H, h) = {a | ha € H} and the set
of terminal sequences Z(H) = {h € H| A(H, h) = (}.

Sequences of actions can be used to denote specific plays of a game: such
sequences are also called histories. We let Z(H) denote the set of all sequences that
cannot be extended. These are called ferminal histories, and correspond to outcomes
of the game. The set A(H, h) consists of all actions that can be played in 4. Note that
the set H implicitly defines a tree, since one can think of H as containing all paths
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in the tree that start from the root and go down the tree. Thus one can consider the
‘game tree’ that is implied by a prefix-closed set.

In game theory, a game tree does not contain any information about the propo-
sitions that have been made true at different points of the game. For this reason, we
introduce interpreted game forms. An interpreted game form is basically a game
tree to which an interpretation function for atomic propositions has been added.

DEFINITION 5. An interpreted game form F is a tuple
F =, H,turn, ~, P, m),

where:

¥ is a finite set of agents;

H is a non-empty, prefix-closed set of finite sequences;

turn is a function turn: H \Z(H) — X;

for each X € X the relation ~xC H x H is an equivalence relation between
sequences;

P is a finite set of atomic propositions; and

7 : Z(H) — 2F returns the true atomic propositions of any terminal history.

where these components must satisfy the following condition:

if turn(h) = X and b’ ~x h then also turn(h’) = X and
A(H,h) = A(H, ).

(This definition is adapted from Osborne and Rubinstein (1994, p. 200)). We have
extended the information sets such that agents also have information when they are
not in charge, which is a common extension for logical purposes (van Benthem,
2001; Bonanno, 2004).

Atomic propositions can be used to refer to certain terminal histories, for instance
to histories where an agent achieves a certain goal. The idea of annotating end states
or terminal histories with logical propositions has been used before by Harrenstein
et al. (2003) and the authors of the present article (van Otterloo et al., 2004).

An example interpreted game form Fj is depicted in Figure 1. In this example,
agent A can make a choice from two alternatives (numbered 1 and 2), one of which
satisfies p. After this choice, A can distinguish these situations, but B cannot.

For every interpreted game form F we can calculate a Kripke model M = m(F)
representing the knowledge in the end states of F. We do this by taking all the
terminal histories of F as the set of states of M. The states of the model M are all
outcomes of the interpreted game form F, and two outcomes are related in M iff
they are related in F.
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Figure 1. Interpreted game form Fj.

DEFINITION 6. Let F = (X, H, turn, ~, P, ) be an interpreted game form. The
end situation model m is defined as m(F) = (X, Z(H), ~', P, ) where for each
agent X, ~; is the restriction of ~x to Z(H) x Z(H).

If we apply the function m to the example interpreted game form Fy, we get the
example Kripke model My = m(Fp). The transformation m is used to express
when an interpreted game form F' makes a formula ¢ true. The function m only
uses the epistemic relation between end states. The relations between nonterminal
sequences pose constraints on what strategies are allowed in Definition 7.

Note that if game form F is an imperfect recall game form, then the agents can
have less information in the end situation than they had halfway in the game. We
do not see this as a problem. One plausible situation in which this can happen is the
case where the agents are computer programs. Such agents often have very limited
memory. (Indeed, while Von Neumann and Morgenstern do consider imperfect
recall games, such as two-team bridge (von Neumann and Morgenstern, 1953, p.
53), Selten once claimed that imperfect recall game forms “can be rejected as
misspecified models of interpersonal conflict situations” (Selten, 1975).)

2.3. STRATEGIES

Strategies are an important part of every game. Informally a strategy ot is a function
that tells all agents in coalition I" what to do next in the histories they control. We
use non-deterministic strategies for our agents. This means that a strategy does not
return a unique option that the agent should take, but it returns a set of options,
with the intention that the agent should randomly select an element of this set. Our
strategies are thus akin to the randomized or ‘mixed’ strategies, or more correctly
the behavioural strategies, of game theory (Osborne and Rubinstein, 1994, p. 212),
although in this paper, we do not consider the common approach of introducing
probability distributions over choices.

DEFINITION 7. Let F = (X, H, turn, ~, P, ) be an interpreted game form.
A strategy or is a function that for any node » € H\Z(H) with turn(h) € T
returns a non-empty set or(h) € A(H, h). A strategy must satisfy the constraint
that i ~ymen) A" implies or(h) = or (k).
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The second part of the definition states that a strategy should not prescribe different
options for histories that an agent cannot distinguish. An agent would not have the
knowledge to adhere to a strategy that does not satisfy this condition. Strategies
that satisfy the last constraint are sometimes called uniform.

For the example interpreted game form Fj there are three different strategies
for agent A. The strategy can either tell the agent to take the first option, or it
can prescribe the second option, or the strategy can express that the agent should
randomly choose between both options. Formally these possibilities are defined by
respectively oy (€) = {1}, o}y, (€) = {2} and o7,,(¢) = (1, 2}.

For any strategy or for an interpreted game form F we can consider a restricted
interpreted game form F’ in which the agents X € I' only choose options that
are part of the strategy. The agents Y ¢ I' can still do whatever they could do F.
Such arestricted interpreted game form models the situation in which coalition I" is
committed to the given strategy. The restricted model F’ is computed by an update
function F' = u(F, or).

DEFINITION 8. Let F = (X, H, turn, ~, P, ) be an interpreted game form. The
update function u is defined by

u(F,or)= (%, H ,turn’,~', P, '),
where:

— H'’ is the smallest subset of H such that ¢ € H’ and for each h € H’ and
a € A(H, h): if turn(h) ¢ T or a € or(h) then ha € H';

— ~'1is such that for all X: ~\ =~y N(H' x H'); and

— turn’ and 7’ are the same as turn and 7, but with their domain restricted to H'.

An update of the example Fy, with strategy 0{3A}, does not change anything:
u(Fy, 0{3A}) = Fp. An update with O'{IA} returns a model F; with only two histo-
ries: € and 1. This means that the Kripke model of F; only has one state, in which
p holds: m(u(Fy, O'{IA})), 1 = Kgp.

2.4. STRATEGIC GAMES

A distinction is often made in game theory between extensive games and strategic
games. In an extensive game, agents take turns in selecting actions. In a strategic
game the individual actions are not modeled: each player can select a strategy before
the game starts, and somehow these strategies of all players together determine an
outcome. Knowledge condition games are based on extensive game forms but are
defined as strategic games. The next definition of a strategic game is therefore
needed.
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DEFINITION 9. A strategic game G is a tuple:

G = (%, {S}s, W,

where:

— X is a finite set of agents;

— foreach X € X, Sy is a set of strategies for agent X; and

— 8 : §* — R¥ a function that, for each choice of strategies, returns a payoff
vector.

We are only interested in two-player, constant-sum, zero-one games, and in these
games only two payoff vectors are possible: (1, 0) which is best for the first player,
and (0, 1) which is best for the second player. In these games one can say that an
agent can win if it has a strategy that guarantees that the agent gets utility 1. If the
first player can win we write w(G) = 1.

DEFINITION 10. Let G = ({A, B}, {Sa, Sg}, &) be a two player constantsum
zero-one game. The winner function w is defined by

w(G) =1<x o, € SyVop € Sp : Mo,,08) =(1,0)

2.5. KNOWLEDGE CONDITION GAMES

A knowledge condition game is two-player (or more accurately: two-team),
constant-sum, zero-one strategic game. It is two-player in the sense that we are
interested in two coalitions, i.e., sets of agents I" and &, playing against each other.
These sets must be disjoint, but not every agent has to be in one of those sets. If
an agent X € X isnotin I' U E then this agent is said to be neutral. The agents
in I" are called proponents, and the agents in E opponents. To define a knowledge
condition game, we must give an interpreted game form F and an epistemic logic
formula ¢: the proponents try to make this formula true on F, and the opponents
try to make it false on F. Formally:

DEFINITION 11. Let F = (X, H, turn, ~, P, ) be an interpreted game form,
I E C X disjoint sets of agents and ¢ € L a knowledge formula. Define
keg(F, T, B,¢) = (T, E}, {Sr, Sg}, &) where Sr, Sz contain all strategies of
I', E in F respectively, and

(1,0) iff YvweW : (X, W,~, P, 7'),w E¢

H(or, 0g) = {(0’ 1) otherwise

where (X, W, ~, P, ") = m(u(u(F, or), oz)).
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In this definition, the proponent coalition I" has a tougher task than the opponents
&, because I' has to guarantee that ¢ holds in all cases. This has been done with
applications in security in mind. In security settings, it is also necessary to secure a
system against all possible scenarios and attacks. It therefore makes sense to give
I" the task of making sure that ¢ occurs.

Let Fy be the example interpreted game form and take ¢g = K g p. For the game
Go = keg(Fo, {A}, 0, ¢p) we can compute a payoff matrix. As calculated before,
{A} has three strategies. The empty coalition only has the unique empty function
[y as a strategy.

1 2 3
Oiay 9ay 9qa

fp (1,0) (0, 1) (0, T)

We see that for this game, {A} has a winning strategy (namely O'{IA}). Therefore
w(keg(Fy, {A}, ¥, ¢)) = 1. In the above definition, we use the updated model
m(u(u(F, or), oz)) as a model for what all agents know. We have thus implicitly
assumed that it is common knowledge to all agents which strategies are used by I"
and E. This is a reasonable assumption if one considers strategies as well known
conventions. Also in other circumstances, for instance if the game is played by
computer programs that are open for inspection, this is a reasonable assumption.
In some circumstances, however, one might not want to make this assumption.
Therefore we present below a variant kcg’ of knowledge condition games in which
the knowledge formula ¢ is evaluated in the original model m(F). The strategies
are used to determine the reachable states w. The proponents win if in all these
states w, it is the case that m(F), w = ¢.

DEFINITION 12. Let F = (X, H,turn, ~, P, w)be an interpreted extensive game
form, I', E C ¥ disjoint sets of agents and ¢ € L a knowledge formula. Define
keg'(F, T, B, ¢) = ({T', E}, {Sr, Sz}, &) where Sr, Sg contain all strategies of
I', E in F respectively, and

W 1,0) iff Vwe W :m(F),w E=¢
(or, 02) = {(0, 1) otherwise
where W is defined by (X, W, ~, P, r) = m(u(u(F, or), og)).

The difference between kcg and keg' lies in their respective utility function. The
function A evaluates the formula ¢ in the model m(u(u(F, or), 0z)), in all states.
The function ' evaluates the formula ¢ in the model m(F), thus in the model before
the update. This difference reflects the idea that in kcg, strategies are commonly
known, whereas in kcg’ they are not known. The function ' only evaluates the
formula ¢ in states w that occur in the model m(u(u(F, or), oz)). The idea here is
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that the truth of ¢ only matters in states that are actually reached, and which states
are reachable depends on the strategies chosen.

The two types of knowledge condition games that we have defined are two
extreme viewpoints. Under the first definition strategies are completely known to
everybody. In the definition of kcg’ strategies are completely unknown. One can
define other, ‘intermediate’, variants, where agents can distinguish some but not all
strategies, or for instance only know their own strategy. The hardness results for the
extreme cases presented later in this paper also hold for some of the intermediate
variants. So, one can argue that the extreme cases already cover many interesting
situations. Detailed studies of the intermediate situations are therefore left for future
work.

2.6. ALTERNATING-TIME TEMPORAL LOGICS

In this subsection we discuss the temporal, epistemic, strategic logic ATEL, since
much of the work here is motivated by it. The logic ATEL is an extension of ATL,
a well known logic for reasoning about time and strategies.

The combination of knowledge, time and strategies makes ATEL a very rich but
also a complicated logic. Our work on knowledge condition games is an attempt to
avoid complications by leaving out temporal reasoning.

Alternating-time Temporal Logic (ATL) is a multi-agent extension of the branch-
ing time logic CTL (Alur et al., 2002). The language of ATL contains temporal
operators similar to CTL, but instead of the path-quantifiers A and E that appear
in CTL, strategy operators ((I')) are used, where I" can be any set of agents from
a given set X. In ATL, a temporal operator is always preceded by a cooperation
modality. The formula ({I')) OO ¢ for instance, expresses that the coalition I" can
make their choices in such a way that, no matter what the agents in X\I" do, in the
next state ¢ will hold. The CTL-formula E ()¢ mirrors ATL’s ((%)) O ¢ (the grand
coalition ¥ can choose actions such that in the next state, ¢), and the CTL formula
A O¢ is the same as ((#)) O ¢: ‘no matter what the agents in 3\@ do, ¢ will hold
in the next state’. Of course, in between these extremes, ATL can express many
more coalitional abilities. ATEL, (where the E stands for epistemic), also contains
knowledge operators.

DEFINITION 13. Let X be a finite set of agents, and P a finite set of atomic
propositions. The logic ATEL contains formulas ¢ generated by the following rule.
In this rule, p is a typical element of P, X € £, " C ) and v is a path-formula.

¢u=plo— ol LIENY [ Kxd
=00 [P | O ¢

This logic is interpreted over alternating epistemic transition systems. These are
defined as tuples (P, X, Q, ~, w, 6). As usual, P is a set of atomic propositions and



KNOWLEDGE CONDITION GAMES 437

¥ aset of agents. The set Q is a set of states the system can be in, and 7 : Q — 2F
adds propositions to these states. For any agent X the relation ~xC Q x Q is an
equivalence relation, and § : Q x ¥ — 22 assigns to each agent in each state a
set of sets of states. Each agent can choose one set of states, and the next state of
the system will be from that set.

An example would be a system where O = {0, 1,2, 3, 4}. Suppose that
800, X) = {{1, 2}, {3,4}} and (0, Y) = {{1, 3}, {2, 4}}. Agent X can now choose
{1, 2} and Y can choose {2, 4}. They make these choices simultaneously. The next
state of the system will be 2, because that is the only common state in their chosen
sets. It is necessary to put some constraints on § so that a next state can always be
chosen.

The interpretation of this logic uses the notion of strategy to interpret the coalition
operator ((I')). A strategy for I is any function that makes a choice or(X, q) €
8(g, X) for any agent X € I in any state ¢ € Q. Based on a strategy or, one can
define the set of possible walks W(or) through Q so that all choices for agents
X e I' are made as recommended by the strategy. This set of walks is used in the
following interpretation of ATEL.

M,g =1 never

M,qgE=p iff pem(v)where pe P
M,gE=Eop— ¢ iff M,q = ¢impliesM,qg =

M, q = Kx¢ iff V(g,q) e~x: M,q' =¢

M,qg =T iff For:Yw=v...e Wor): M,w = ¢
M, w = O iff M,wrh+1)E¢

M, w = O iff Vn>0: M whn) k¢

M, w = Uy iff Im >0: M, w(m) = ¢ and

Ym >k >0: M,wk)kE=do

A main advantage of ATEL over kcg is that ATEL extends temporal logic, and
can thus be used to express different kinds of goals such as eventually achieving
something, or avoiding some state forever. When not putting any further constraints
on how knowledge and choosing a strategy interfere, the logic has a low model
checking complexity (van der Hoek and Wooldridge, 2002). However, this does not
remain true if one requires strategies to be uniform (see the paragraph following
Definition 7). If one demands uniform strategies, model checking becomes NP-
complete, even without using the knowledge operator (Schobbens, 2004). Another
point of discussion for this logic is the fact that the existence of a strategy, used
in the interpretation of ((I'))¢, is a very weak condition. One can come up with
situations were ((X))¢ holds but one would not expect X to achieve ¢ (Jamroga
and van der Hoek, 2003; Jonker, 2003; van Otterloo and Jonker, 2004). Thus, it
seems that the interpretation of this logic merits further study, and indeed ATEL
currently receives a lot of research attention (Agotness, 2004; Roberts et al., 2005).
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The framework of knowledge condition games is arguably a less versatile veri-
fication framework than ATEL, because kcg does not allow complicated temporal
reasoning. Only the special case of knowledge at the outcome stage of the protocol
is studied. Knowledge condition games also do not allow for concurrent moves.
This has the advantage that knowledge condition games are easier to understand,
and that the complications that arise in the interpretation of ATEL do not arise in the
context of knowledge condition games. An interesting difference between ATEL
and kcg is that in kcg nondeterministic (and hence arguably “richer”) strategies are
permitted, whereas ATEL assumes deterministic strategies.

3. Examples

In this section, we illustrate the value of knowledge condition games, by presenting
several examples of how they can be used to model scenarios of interest.

3.1. ANONYMOUS VOTING

A voting protocol can be used when a group of agents has to make a joint decision
on a certain issue. A common protocol is majority voting: each agent can vote for
an option and the option that gets the most votes is the outcome of the protocol.
In the example interpreted game form Fy, three agents A, B and C use majority
voting to decide whether plan P should be accepted or not. Each agent has a choice
from two actions: support the plan (s), or reject it (r). They vote in alphabetical
order, so first A chooses from action s or r, then B (without knowing A’s choice)
chooses either s or r and finally C does the same, unaware of what A, B did. This
protocol thus has eight terminal histories. The proposition p indicates whether P
is accepted and p holds if at least two agents choose s. Furthermore a holds if A
chooses s, b if B chooses s and the same for C with c. The interpretation function
is thus w(sss) = {a, b, c, p}, w(ssr) = {a, b, p}...w(rrr) = . We assume that
s #* X s’ if s and s’ differ in the evaluation of the outcome p, or if the vote of X
differs in s from that in s’.
The following game results hold.

w(keg(Fy, {A, B}, {C}, p)) =1
w(keg(Fv, {A, B}, {C}, Kpc vV Kp—c)) = 1
w(keg(Fy, {B}, {C}, Kpc vV Kp=c)) =0

Figure 2. The fifty fifty problem Fyp.
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A and B together can ensure that p is true, by voting s and s. What they can also
do is vote differently, so that a and —b result. In this case the outcome will solely
depend on C’s choice. They thus learn what C voted. Agent B cannot learn what C
did on its own.

One example, described by Schneier (1996, p. 133), is a voting protocol where
B would have the option of copying A’s (encrypted) vote. In that case one might get

w(keg(Fy, {B},{A,C}, Kpa v Kg—a)) =1

This is an unwanted property and thus a ‘bug’ in the protocol. It is necessary to
reason about knowledge to express this bug, so a standard game-theoretic analysis
might not have revealed this shortcoming.

3.2. THE FIFTY-FIFTY PROBLEM

Consider the following scenario:

InaTV quiz show the quiz master asks a candidate the following question: Which
day of the week comes directly after Tuesday? Is it (a) Monday, (b) Wednesday,
(c) Friday or (d) Saturday. The candidate replies: ‘I am not sure. Can I do fifty
fifty?’. The quiz master has to remove two options that are not the answer, so he
says: ‘“The answer is not Monday and neither Friday’. Does the candidate know
the answer?

(This situation frequently occurs on television in many countries in the ‘Millionaire
show’.) One can also consider this situation to be a metaphor for a multi-agent
information exchange situation. Let us model this in an interpreted game form Fy
involving an agent N (nature) that determines what the right answer is, a quiz master
Q that eliminates two answers, and a candidate C. This interpreted game form is
depicted in Figure 3. First nature selects one of the answers to be the right answer:
it can choose from the actions 1, 2, 3 and 4. The quiz master, who knows the right
answer, can then select an action ij that indicates that the two options i and j are
eliminated; i, j must be different from the right answer. The terminal histories are
thus all histories (k, i j). For such histories, (k, ij) ~¢ (k’,i’j’) if the same options
are eliminated: ij = i’j’. The set of atomic propositions is P = {a; |1 < i <

N
/17/ | \3}4\
b 34 14 )

Figure 3. The updated interpreted game form u(Fg, o{g}).



440 S. V. OTTERLOO ET AL.

4} U{e; | 1 < i < 4}, and each terminal history is interpreted in the following way:
mw(k,ij)) = {ax, e;, e;}. The question is whether the candidate knows the answer at
the end of the protocol. This is expressed by ¥ = Kca; V Kcax vV Kcaz VvV Kcay.
The following table lists several properties of this situation.

Nature may favour the candidate: w(keg(Fo, {N},9,¢)) =1
Nature may not favour the candidate: ~ w(kcg(Fg, {N}, 9, =v)) =1
The quiz master can help the candidate: w(kcg(Fp, {Q}, 9, ¥)) =1

We thus see that whether the candidate knows the answer depends on nature and
on the quiz master Q. If nature uses a deterministic strategy, in which for instance
a; always holds, then the candidate knows that this is the right answer. However, if
Nature uses the non-deterministic strategy in which each answer could be the right
answer, the candidate will not know the answer.

The situation becomes more interesting if the quiz master gets involved. In this
game the quiz master has the ability to signal the right answer to the candidate.
Consider, for example, strategy o{¢;, defined as follows.

oy0(1) = {23}
0101(2) = {34}
o10)(3) = {14}
o101(4) = {12}

This strategy tells the candidate exactly what the right answer is: The an-
swer directly before the two eliminated options (assuming 4 comes before 1).
The updated model u(Fy, o(py) is given in Figure 3. This strategy acts as a code
between the candidate and the quiz master. It is the strategy that proves that
w(keg(Fo, {0}, 9, 9)) = 1. (A practical conclusion one can draw is that one
should not bet on such a quiz if one does not know what the interests of the quiz
master are.)

This example also demonstrates why we prefer to assume that strategies are
commonly known. If one would have used the alternative definition kcg’, in which
agents do not know what strategies are used, then one can obtain the following
results.

Nature cannot favour the candidate: w(keg(Fo, {N},9,¢)) =0
The quiz master cannot help the candidate: ~ w(keg(Fop, {Q}, 9, ¥)) =0

These results are counter-intuitive, since signaling in games is a phenomenon that
does occur in practice. When proving the security of a protocol, itis a good principle
to make the weakest assumptions possible. At first sight, it seems that assuming
that strategies are not known is the weakest possible assumption. However in the
case of proving ignorance, first sight can be misleading. It is harder to prove that
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the candidate does not know the answer when he or she knows all strategies that
are used, than it is to prove ignorance when he or she does not know the strategies.
Therefore the weakest and safest assumption is to assume that he does know the
strategies. This shows that it is best to use the definition of kcg rather than the
alternative kcg’ for these ignorance proofs. (In fact, this motivates the choice to
make kcg the default and call kcg' the alternative.)

4. Computational Complexity

Looking at computational complexity is interesting for two reasons. First of all it
can tell you whether a certain problem is ‘tractable’, i.e. whether the problem can
be reliably solved in practice. Secondly it can tell you more about the problem — for
instance whether something is a very general problem (i.e., whether the problem
format can be used to formulate questions about many different situations, such as
logic), or what features makes a problem difficult. In this section we look at the
complexity of the kcg decision problem, which is the problem of deciding for a
game kcg(F, I, E, ¢) whether the first coalition I" has a winning strategy. We look
at this problem under various assumptions, and report four theorems, as follows:

— The first theorem is concerned with the problem of deciding whether a coalition
I" can win a knowledge condition game with an empty set of opponents. This is
called the no-opponents knowledge condition game decision problem. It turns
out that this problem is already NP-complete, and thus not tractable.

— The second theorem states that the general kcg decision problem is even harder:
with opponents the problem is X,P-complete.

— For the other theorems we use the alternative version of knowledge condition
games kcg': In the third theorem we claim that the no-opponents problem is as
hard as the general problem. Both problems turn out to be NP-complete, which
is the fourth theorem.

Recall that a problem is in the class NP if it can be solved in polynomial time (there
is a time bound that is polynomial in the input size) by a nondeterministic Turing
machine. In practice this means that we can check a solution in reasonable time, but
may not be able to find a solution in reasonable time (Papadimitriou, 1994; Cormen
etal., 1990). Some problems in the class NP are NP-complete: every problem in NP
can be expressed as an instance of an NP-complete problem. Thus NP-complete
problems are at least as hard as any problem in the class NP. It is widely believed, but
has not been proven, that NP-complete problems cannot be solved in polynomial
time.

As an aside, we note that we encode interpreted game forms in an explicit way,
by listing all histories. In reality protocols are often specified in an implicit way (for
instance in some form of source code) and such representations can be exponentially
more efficient.
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THEOREM 1. The problem to decide, for a given interpreted game form F, coali-
tion I and knowledge proprty ¢, whether w(kcg(F, ', @, ¢)) = 1, is NP-complete.

Proof. Assumethat F, I', ¢ are given. The empty coalition has only one strategy
oy. This strategy is such that u(F, oy) = F. Therefore

wkeg(F, T, 0,¢)) =1 < Jor m(u(F,or)) = ¢

A nondeterministic polynomial algorithm for this problem exists. Find or guess
nondeterministically a strategy or. Since a strategy encodes a subset of actions
available in F, the size of or is smaller than the size of F and thus polynomial in
the input size. Now calculate M = m(u(F, or)), and verify for each state w of
M that M, w = ¢. The number of states in M is at most the number of terminal
histories of F, so | M| < |F|. All of this can be done in polynomial time. Therefore,
this problem can be solved using a nondeterministic polynomial algorithm and this
problem is in NP.

In order to show that the restricted kcg problem of the theorem is as hard as
any NP problem, we show that any instance of the 3SAT problem can be trans-
formed into an equivalent restricted kcg instance. Let ¢3 =nNi(a; V b vV ¢)
be a propositional logic formula in conjunctive normal form with three literals per
clause. The literal formulas a;, b;, ¢; must be either atomic propositions or negated
atomic propositions. The 3SAT problem is to decide whether a truth-assignment
A for all atomic propositions in ¢ exists such that A = ¢3. We can construct an
interpreted game form F with a single agent ¥ = {A} and a formula ¢ such that
w(keg(F, {A}, D, ¢)) = 1 if and only if JA : A = ¢°.

The model F = ({A}, H, turn, ~, P, ) is constructed in the following
way. Let P? be the set of atomic propositions occurring in ¢>. The new set
of atomic propositions P contains two propositions for any old proposition:
P ={xT|x € P’}U{x" | x € P3}. For each new proposition a history is created:
H = {e} U{e, | p € P}. The interpretation function is such that only the corre-
sponding atomic proposition is true: 7 (e,) = {p}. Furthermore turn(e) = A. Agent
A cannot distinguish any end state: e, ~ A ¢, for all terminal histories ¢, and ¢,,.

The formula ¢ = ¢; A ¢, is a conjunction of two parts. The part ¢; expresses
that for each original atomic proposition p € P3, either the positive proposition
pT is considered possible or the negative p~, but not both:

¢1=\ Map* v Map™) A=(Map* A Msp™)
peP3

The idea is that the strategy that A uses is actually an assignment of values to all
atomic propositions in P>. The condition ¢, expresses that such assignment must
assign either the truth value true (p™) or false (p~) to each proposition p.

The ¢, part encodes the original formula ¢° = /i@ v b; Vv ¢;). In the
next definition we use a helper function f defined such that f(—p) = p~ and
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f(p) = p™. using this function we define B as follows.
¢ = [\ Ma(f@) v fb) V f(c)

It is not hard to see that any strategy oqa) such that m(u(F, o(4))) = ¢1 A ¢
corresponds to an assignment A such that A(p) = true if and only if p* € oyx;(e),
and that this assignment satisfies A = ¢>. Since the formula and model constructed
have a size that is linear with respect to the size of ¢*, this is a polynomial reduction.
Therefore the restricted kcg problem is NP-hard. Since we have also shown that the
problem is in NP, we conclude that the restricted kcg problem is NP-complete. O

As an example, consider the satisfiability of the 3SAT formula v = (p vV —~gq V
r)A(—q Vv —p Vvr). This formula contains three propositions, so the corresponding
interpreted game form, depicted in Figure 4, contains six terminal histories. The
corresponding knowledge formula is ¥k

Yk = MupTV Muap )AN=(MspT™ A Msp™) A
(Mag™V Mag ) A—~(Mag™ N Mpg™) A
(Mar™V Mar ) A—=(Mart A Mar ) A
Ma(p™ Vg~ VrT)A Mug~ Vv p~vrT)

A typical NP-complete problem is to determine whether a prepositional logic
formulais satisfiable. Suppose ¢ is a formula with atomic propositions xy, xz, . . . X;,.

//\\

Figure 4. The model of 3SAT formula .

AN ANNYANYA

———-o @8- ---0----0----0----0
ptrt ptr= p=rt pTrm ¢Trt ¢t gt g

Figure 5. The construction of the ¥, P proof.
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We can thus write ¢ = ¢(X) where the vector X consists of all the 3x;. The satisfac-
tion problem can now be phrased as deciding whether 3x : ¢(X). In the same way we
can formulate more difficult problems, by allowing more quantifiers: IyVx : ¢(X, y)
is the problem where one has to decide whether there is an X such that ¢(X, y)
is true for all y. This problem, called SAT,, is a typical %,P complete problem
(Papadimitriou, 1994)(chapter 17). It is widely believed that these problems are
strictly more difficult than NP-complete problems.

THEOREM 2. The problem to decide for given a given interpreted game form
F, coalitions T and E and property ¢ whether wkcg(F,T', B, ¢)) = 1 is X,P-
complete.

Proof. First we have to prove that this problem is indeed in X,P. In order to do
this, consider the winning condition of a knowledge condition in more detail.

wkeg(F, T, E, ¢)) =1 < JorVoz m(u(u(F, or),oz)) = ¢

Suppose that F, I, E and ¢ are given. It is possible to encode strategies of
E as assignments to a vector of propositional variables y, and the strategy of
[ as assignments to X. One can then find a formula (X, y) that is true if
mu(u(F,or),oz)) | ¢. The size of this formula is polynomial in |F| + |@].
The kcg decision problem is equivalent to a SAT, problem:

wkeg(F, T, B, ¢)) =1 & IxVy : Y(x, y)

The problem to decide whether 3XVy : v/ (X, y) is a SAT, problem, and is thus in
2,P.

The second part of the proof is to show that the kcg decision problem is indeed
complete for this class, and this can be done by reducing SAT, to a knowledge
condition game. The proof is similar to the previous NP-completeness proof, but
now involves two agents. Assume that a SAT, problem JyVx : (X, y) is given.
We can assume that ¢ is in 3-SAT form: v = A;(a; V b; V ¢;). First we define
an interpreted game form F = (X, H, turn, ~, P, ). Let ¥ = {A, B}, and
Z(H)={(a,b)|Ai, j:a = x;’ ora=1x;,b= y;.r orb = y]_} The set H contains
all histories of Z(H) and all prefixes of these histories. The function turn is defined
such that A moves first, and then B moves: turn(e) = A and turn((xii)) = B. The
relations ~4 and ~p are equal, and defined such that each agent only knows the
length of each history: s ~4 5" < |s| = |s/|. The set of propositions P of the kcg
problem is {z* |z € (x UY)} U {z" |z € (x U y)}. The function 7 is defined by
m(a, b) = {a, b}. This completes the definition of the interpreted game form F. The
number of terminal histories of F is 2|X| - 2|y|, and thus the size of F is polynomial
in the size of the input problem.

We define I' = {A} and E = {B}. Next we define an epistemic logic formula
¢. such that I' can win the game kcg(F, T, E, ¢) iff IxVy : ¥ (X, y). Let ¢ =
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-8V (@2 A F(U (X, 7))). The part ¢ expresses that the strategy of B corresponds
to an assignment to y. The part ¢ expresses that the strategy of A corresponds to
a strategy for X. Finally f (i (X, y)) is a translation of the input formula ¥ (X, y).

¢F = N\, (Mpy[ v Mpy?) A—=(Mp(y] A y7))
6" = A((Maxf v Max)) A =(Ma(xf A x7))
FWE ) = f(N\j@ Vb ve)=N(fla)Vv fbi)V fle))

The function f is defined such that f(—p) = p~ and f(p) = p~. The size of ¢
is linear in the size of . Therefore this is a polynomial reduction. This completes
the proof that the knowledge condition game decision problem is ¥,P-hard. Since
it is also in X,P, we conclude that the problem is ¥,P-complete. O

The construction of a model F is illustrated in Figure 4. This is the model that you
would get in the reduction of ¥ (X, y) where X contains p and ¢ and y consists of 7.
The model is again relatively small: only two actions happen in each play of this
interpreted game form. The first one is decided by agent A, the second one by B.

In the two previous proofs, it is essential that the agents are aware of the strategies
they choose. Both constructions would not work with the alternative definition kcg’.
One can hope that the computational complexity of the kcg’ decision problem would
be lower. Indeed one can prove that in this case it does not matter whether there are
opponents.

THEOREM 3. Assume that F, T, B and ¢ are given. w(kcg' (F, T, E,¢)) = 1 if
and only if wkeg'(F, T, @, ¢)) = 1.

Proof. Let G = keg'(F, T, E, ¢) be a kcg’ decision problem. Notice that the
goal of coalition E is to choose a strategy oz such that &'(or, 0g) = (0, 1),
where I is the utility function of the game G. Since 4’ is defined using universal
quantification over the set of terminal histories of u(u(G, or), oz) the best thing
to do forcoalition E is to make sure that this set is as large as possible. In order
to achieve this, oz should choose the neutral strategy that allows any action: the
strategy o with o(h) = A(H, h). Since we have assumed that neutral agents can
do any action, we might as well assume that the agents X € E are neutral, and
determine the value of the game w(kcg' (F, T, @, ¢)) = 1. O

We see thus that the presence of opponents is not relevant, and indeed in ATEL no
distinction between opponents and neutral agents is made. The question is now
whether solving the kcg’ decision problem is still as hard as the original no-
opponents kcg problem. The answer is yes. The no-opponents kcg’ problem is
also NP-complete. However the proof is different in an interesting way.

THEOREM 4. The problem to decide for given interpreted game form F, coalition
" and knowledge formula ¢ whether w(kcg'(F, T, @, ¢)) = 1 is NP-complete.
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Proof. We can prove that this problem is in NP by a similar argument as given
for Theorem 1. For the hardness result we again show a reduction from 3SAT.
Assume that ¢ = A'_,(a; Vv b; V ¢;) is a propositional formula in conjunctive
normal form with three literals per clause. Let P> be the set of atomic propositions
occurring in ¢>. We define an interpreted game form between two agents: an agent
Q that asks questions, and an agent A that answers them. The proponent coalition
is ' = {A} and Q is assumed to be neutral. Every terminal history is of the form
(p,b,i,x), where p € P3be{0,1},i € {1,2,...,n}and x € {a;, b;, c;}. The
first action p is chosen by agent Q and must be one atomic proposition of ¢>. The
agent A must then reply by giving a boolean value b. This indicates what truth value
A has in mind for p. Then agent Q chooses one triplet (a; Vv b; V c¢;) that appears
in ¢>. Agent A then has to choose which of these three parts it thinks should be
true: either a; or b; or ¢;. The trick however is that ~ 4 is defined in such a way that
for all histories &, k', agent A only knows the length of the histories: & ~, A’ iff
|hl = |1']

A does not know, when making its final decision, which answer it gave on its
first turn. The agent thus risks giving inconsistent information. For instance in the
history (p, 1, (=pV g Vr), —p) agent A first says that p is true, and then says that it
thinks that —p holds. The goal of agent A in the game is to avoid these inconsistent
histories. We let P = {e} consist of one proposition and define for all p € P3
the interpretation function such that w((p, 1, i, =p)) = {e}, 7 ((p;, 0, i, p;)) = {e}
and 7 ((p, b, i, x)) = () otherwise. One can now consider the knowledge condition
game G = kcg'(F, {A}, ¥, —e). Agent A can win the game G iff there is a satisfying
assignment for ¢°. u

The proof given above is very similar to a proof given by Schobbens (2004) for the
NP-completeness of ATL with imperfect information. This corroborates the claim
that this variant of knowledge condition games is closely related to ATL and thus
to ATEL. The proof exploits the fact that in games where coalitions do not have
perfect recall, it is very difficult for agents and coalitions to coordinate their own
actions.

4.1. TRACTABLE VARIANTS

In the previous section we proved that, in general, the kcg decision problem is not
tractable. In this section we identify some easier cases.

THEOREM 5. Let F be an interpreted game form with perfect recall, I" any coali-
tion of agents and ¢ an epistemic formula. Deciding whether it is the case that
w(keg (F, T, ¢)) = 1 can be done in polynomial time.

Proof. Let M = (X, W, R, P, t) = m(F) be the end state model of F. We
can compute the set S = {w € W| M, w = ¢} in polynomial time. Define a
utility function 3 such that $l(w) = 1 iff w € S and U(w) = O otherwise. The
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pair F, 31 is now an extensive game with perfect recall. The optimal solution o
for this game can be computed in polynomial time (Koller and Pfeffer, 1995). If
the expected payoff of o is exactly one, then w(kcg'(F, T, @, ¢)) = 1, otherwise
w(keg'(F, T, 0, ¢)) # 1. O

For perfect recall frameworks and the variant kcg’ the decision problem is thus
tractable. One might wonder whether the same claim can be made for kcg. The
answer is no, because one can modify the NP-completeness proof for kcg in such
a way that it uses a perfect recall interpreted game form. The modification is that
one has to two agents, A and A’, so that A is the agent that chooses a strategy,
and A’ is the agent that cannot distinguish end states and occurs in the knowledge
condition. In general one can always find an perfect recall interpreted game form
that is equivalent for the kcg decision problem by choosing a fresh agent for each
decision node, and use fresh agents in the knowledge condition.

Instead of asking whether there are interpreted game forms F that make decision
problems easy, one can also ask whether there are easy formulas ¢. The answer
to this is question is yes: to see how this works, we first formulate the notion of
positive and negative formulas.

For any p € P, the formula p is both positive and negative. Falsum _L is also
both positive and negative. Iff ¢ is positive and i is negative, then ¢ — ¥ is
negative. Vice versa, iff i is positive and ¢ is negative, then ¢ — ¥ is positive. Iff
¢ is positive then K x¢ is positive. A formula of the form Ky ¢ is not negative.

Positive and negative formulas are both called monotone formulas, because
one can prove that they preserve truth in the following way. Suppose that M =
Z,W,~ P, r)yand M' = (X, W, ~/, P, ') are models such that W C W and
~"and 7’ are the restrictions of ~ and 7 to W’. In this case we say that M’ is a
sub-model of M. Suppose ¢ is a positive formula, and ¢~ is a negative formula.
Then the following statements can be proven.

MEo¢" implies M = ¢*
M ¢~ impliess M ¢~

The proof of these statements is done by induction over the formula structure. The
interesting step involves the knowledge operator. Suppose that M, w = Kx¢™.
By definition this means that Vv € W, if w ~x v then M, v = ¢™. Since W' is
a subset of W, this means that Vv € W', if w ~} v then M’, v = ¢, Using the
induction hypothesis we obtain Vv € W, if w ~ v then M’, v == ¢, and thus
M/, w |= Kx¢+.

Knowledge condition games with monotone formulas are easier to solve than
general knowledge condition games (under standard complexity theoretic assump-
tions).
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THEOREM 6. The problem to decide for given F, ", & and a monotone formula
¢ whether w(kcg(F, ', E, ¢)) = 1 can be solved in polynomial time.

Proof. We prove the case where ¢ is a positive formula. The argument for
negative formulas is similar. Recall that by definition, w(kcg(F, T", E, ¢)) = 1 iff
dorVogVw € W itis the case that m(u(u(F, or), og)), w = ¢ where W is the set
of worlds in the model m(u(u(F, or), 0g)). The formula ¢ is a positive formula,
and thus it follows that m(u(F, or)), w = ¢ implies m(u(u(F, or), 0z)), w = ¢.
The best thing for coalition E to do is to use a strategy that does not eliminate any
action. They should use a neutral strategy o” such that u(F, 0°) = F. This strategy
is described by o°(h) = A(H, h).

For coalition I" things are exactly opposite. Suppose that o' and o2 are strategies
so that o! is more specific than o2, Formally this means that V4 : o' (h) C o2(h).
The monotonicity of ¢ implies that m(u(F, 0%)), w = ¢ implies m(u(F, 1)), w =
¢. Coalition I thus does best be choosing the more specific strategy o . For coalition
I we thus only have to consider the most specific strategies. These most specific
strategies are what one can call pure, because they select exactly one action at each
decision point. A backwards induction argument can be used to show that that there
are as many pure strategies for F as there are terminal histories in . We can try all
pure strategies o ¥ to see if one satisfies Yw: m(u(F, o?)), w = ¢. This gives an
algorithm that needs time O(|F|? - |¢|). The first | F| is caused by the fact that we
need to consider all pure strategies. The remaining term | F'| - |¢|. is the time needed
to determine whether for all w it is the case that u(M, o”), w |= ¢. The decision
problem can thus be done in polynomial time.

For negative formulas the roles of I" and E are interchanged. For a negative
formula ¢, coalition I' can use the neutral strategy o°. The opponent coalition
should now try all pure strategies o ”. O

5. Related Work

Our approach to the formalisation of knowledge condition games draws upon a num-
ber of disparate areas of work. Our treatment of knowledge is based on epistemic
logic (Meyer and van der Hoek, 1995). Epistemic logic originated from philosophy
(Hintikka, 1962) but has been successfully used in the domain of computer science
to capture the knowledge of agents in interpreted systems (Fagin et al., 1995). It
has been combined with temporal logic (Halpern and Vardi, 1989) and coalition
logic (van der Hoek and Wooldridge, 2003) in order to capture knowledge devel-
opment over time, to capture knowledge change after announcements (Baltag et
al., 2002) or knowledge evolution in games such as Cluedo (van Ditmarsch, 2000).
These frameworks have been applied to a range of different situations, such as the
Russian Cards problem (van Ditmarsch, 2003; van Otterloo et al., 2003) and the
Dining Cryptographers Problem (van der Meyden and Su, 2004). What we do is in
one sense a simplification of these approaches, because using temporal logic one
can express more things than just ‘At the end of the protocol... . In another sense
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it is an extension, because we explicitly deal with strategies, and take into account
that agents may know which strategies are being used. In fact, knowledge condition
games have been designed as a response to the problems with ATEL (van der Hoek
and Wooldridge, 2003). ATEL is a logic that includes operators for knowledge,
time and strategic ability. Knowledge condition games are closely related to model
checking problems in ATEL. In particular, the ability of a coalition I" to win in a
knowledge condition game with knowledge condition ¢ and interpreted game form
F is more or less captured by the ATEL model checking problem Mg = ((I')) ¢ ¢,
where M is the ATEL model corresponding to F. On a technical level, the main
difference is perhaps that strategies in ATEL are assumed to be deterministic, while
in knowledge condition games, we allow for non-deterministic (and hence arguably
“richer”) strategies. There are some additional technical differences, for example
the way that the underlying transition model is captured is different in the two ap-
proaches: in ATEL, a transition function is used, which is rather similar to a labeled
transition system, whereas in knowledge condition games we enumerate the set of
all histories of the game.

Because of the way it is designed, it is implicitly assumed in ATEL that the
epistemic relations between states do not depend on the strategies that are played. In
ATEL it s for instance not necessarily the case that agents know their own strategies.
In knowledge condition games, we have been able to deal more explicitly with this
strategic aspect, and secondly we have explicitly introduced opponents. The long
term goal of this research is to get a good understanding of the interaction between
knowledge and strategies, and perhaps this will ultimately lead to a refinement of
ATEL to incorporate these aspects.

Scenarios like knowledge condition games have appeared many times in the
literature. Perhaps the most famous example is the coordinated attack problem
(Faginetal., 1995, pp.176—183). In this problem, two army generals desire to reach
agreement on when to attack an enemy: neither general wants to attack on their own,
but only when they are sure that the other will also attack. They will thus attack only
when it is common knowledge between them that they will attack. However, in order
to reach agreement, they can only communicate through a lossy channel (i.e., where
there is a non-zero probability that any given message will be lost). The famous
result with respect to this problem says that if the generals will only attack when it is
common knowledge that they will attack, then in fact they will never attack, because
they will never reach common knowledge. This is because, no matter how many
rounds of acknowledgments are sent between the two generals, whoever sent the last
message can never be certain that it was received. We can think of the coordinated
attack problem as a knowledge condition game involving three agents — the two
generals forming one coalition on the one hand, and an environment, modelled as
an agent who controls the ‘lossyness’ of the channel, on the other. Then, we can
ask whether the two generals can successfully ensure the epistemic condition that
it is common knowledge that they will attack. Related work in the game theory
literature is the electronic mail game (Osborne and Rubinstein, 1994, pp. 81-84).
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6. Conclusion

By combining protocols and knowledge conditions into games, one can express
properties of multi-agent protocols relating to security and secrecy. In a knowl-
edge condition game one can make fine distinctions between for instance neutral
and opponent agents, and one can give examples where this distinction is signifi-
cant. Therefore these games are a promising direction for future research into the
interaction between knowledge and strategies.

The complexity results reported in this paper paint an interesting picture. There
seems to be a computational cost for assuming that agents know strategies. The
single agent decision problem is already intractable. The presence of opponents
makes it even harder to compute whether a coalition can guarantee a property. If we
drop this assumption and reformulate the notion of winning a knowledge condition
game, then the extra complexity of adding opponents disappears. However the
problem without opponents is still NP-complete, and hence intractable, but for
different reasons. The complexity proof is no longer based upon formulating a
difficult knowledge formula, but on the hardness of coordinating in an interpreted
game form without perfect recall.

Future research could focus on comparing decision problems for knowledge
condition games to other game-theoretic decision problems, in order to establish
what exactly the complexity cost is of considering knowledge goals. It would also
be interesting to find out under which assumptions knowledge condition games can
be solved in polynomial time. Other directions include looking at knowledge con-
dition games from a logical viewpoint by searching for axioms, and to consider the
mechanism design problem to find an interpreted game form with given properties.
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