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Abstract

Autonomousagentsare systemscapableof autonomouslecisionmakingin real-timeervi-
ronments.Computationis a valuableresourcefor suchdecisionmaking,andyet the amountof
computatiorthatanautonomouggentmaycarryoutwill belimited. It followsthatanagentmust
be equippedwith a mechanisnthatenablest to make the bestpossibleuseof the computational
resourcest its disposal.In this paper we review threeapproacheso the control of computation
in resource-boundedgents.In additionto a detaileddescriptionof eachframework, this paper
comparesandcontrastdheapproachesandlists the advantagesanddisadwantage®f each.

1 Intr oduction

Until aboutthemid 1980s researchin thedesignof intelligentagentsvasdominatedy STRIPS-style
classicabplanningapproachefAHT90]. Theseapproachefocussednalgorithmsfor automatiglan
generationwherean agentgenerates plan (cf. program)to achieze somestateof affairs more or
lessfrom first principles. This style of planning,it wasbelieved, wasa centralcomponentn rational
action.By themid 1980s however, anumberof researchergf whomRodng Brooksis probablythe
bestknown [Bro99], beganto claim that planningapproacheswhich directly dependuponexplicit
symbolic reasoningwere fundamentallyflawed. First, it wasargued, symbolicreasoningsystems
tendto be computationallyintractable- renderingthemof limited valueto agentshat mustoperate
in arything like real-timeernvironmentgCha87 Byl94]. Secondmuchevery-daybehaiour doesnot
appeato involve abstracteliberationput seemso arisefrom theinteractionbetweercomparatrely
simpleagentbehaioursandtheagents environment.

The challengeposedby the behaiour-basedArtificial Intelligence(al) researctof Brooksand
colleaguedasamguablyled to somefundamentathangesn theagendaof the Al communityin gen-
eral. First,it hasbecomewidely acceptedhatintelligentbehaiour in anagentis morecloselycoupled
to theenvironmentoccupiedoy theagenthanwasperhapsithertoacknavledged.As aconsequence,



therehasbeenrenaved interestin the useof morerealisticervironmentalsettingsfor the evaluation
of agentcontrol architectures Secondjt hasbecomeacceptedhatwhile reasonings animportant
resourcdor intelligentdecision-makingit is notthe only suchresource As aconsequencéherehas
beenmuchinterestin hybrid approacheso agentdesign,which attemptto combinereasoningand
behaioural decision-makingWJ95 Mue97.

The basicproblemfacedby an autonomousgentis that of decisionmaking andin particular
decidingwhatactionto perform.But a normatie notionof decisionmaking,(suchasdecisiontheory
[NM44])), is not suitablefor implementationin intelligent agents:decisiontheory hasbeenhighly
successfulsa tool with which to analyseformal mathematicamodelsof decisionsituations but it
wasnever intendedor implementationin fact,classicadecisiontheoryseemgo imply thatanagent
musthave bothunlimitedtime andcomputationatesources orderto reachadecision.In addition,it
assumethatanagentalwayshascompleteaccesso its ervironmentto gatherall relevantinformation
necessaryo make adecision.For aresource-boundeagentsituatedn areal-timeervironment,these
assumptiongrenotvalid.

Reasonings thusavaluableresourcdor decisionmakingin intelligentagentslt follows thatthe
ability to effectively control reasoning-to applyit to besteffect—is likely to becritical to thesuccess
of rationalagentsin this papemwe presentasuney of thethreebest-knavn approacheto thecontrol
of reasoningn rationalagents:

e Continuoudeliberation Sheduling(BoddyandDean)[BD89] —

This planningalgorithmis basedn theideathatanagenthasa fixedsetof decisionprocedures
to reactto eventshappeningin the ervironment. The quality of the solution of a decision
proceduredependson thetime givento the procedure.Continuousdeliberationschedulings
analgorithmthatscheduleslecisionprocedureso achieve the highestoverall satishction.

e DiscreteDeliberation Stheduling(RussellandWefald) [RW91] —

This planningalgorithmis basedon the ideathat at every momentin time an agentmustde-
liberateor act. Discretedeliberationschedulings analgorithmthatdecideson the basisof the
expectedvaluesof deliberationor action,whetherto deliberateor to actrespeciiely.

e Boundedptimality (Russell, SubramaniamndParr) [RSP93]-

A perfectlyrationalagentbasesdts reasoningon decisiontheory given whatit knows of the
ernvironment. In practice whereagentseasonn real-time,this type of rationalityis not feasi-
ble, thuswe have to selecta subsef theseperfectlyrationalagentghatareableto reasonn
real-time. The agentdn this subsetare calledboundedoptimal agentsandbehae aswell as
possiblegiventheir computationatesources.

Researclon resource-boundedgentsoriginatesin Simons work on boundedrationality [Sim82],
whichinvestigatesationalityassuminghattheresource®f thedecisionmaler arelimited. All three
of thealgorithmsdiscusse@bove arebasednideasfrom boundedationality
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The remainderof this paperis structuredas follows. In section2 we explain the theoretical
backgroundof the subjectdiscussedn this paper: in section2.1 we set out the fundamentalof
decisiontheory and introduceutility theory and probability theory; in section2.2 we discussthe
origin of theresearcldescribedn thispaperi.e.,boundedationality;andsection2.3explainshow the
concepbf meta-easoning-reasoning@boutreasoning-is usedhere.ln section3 wediscusghethree
mentionedime-dependerplanningalgorithmsandcompareandcontrasthem. Finally, in section4
we teaseout somecommonthreadsrom the threeapproachesandpresensomeconclusions.

2 Background

2.1 DecisionTheory

Decisiontheory makes a distinction betweena decisionmaler and an ervironment and views the
decisionprocessasan interactionbetweenthesetwo. A parallelcanbe dravn with the conceptof
ageng: thebasicnotionof anagentis a mappingfrom ervironmentstateso actions:dependingon
the currentstate,an agents concernis to generateactionsto respondo eventsin that state[RN95].
In decisiontheory the decisionprocesss essentiallya mappingfrom ervironmentalstatego actions
aswell. But additionally decisiontheoryimposestwo importantprincipleson the action space:
the principle of completeneseequiresthat all possibleactionsmustbe represente@ntirely andthe
principle of exclusionrequiresthatall actionsmustexcludethe otherones,i.e., only a singleaction
canbechoseratary pointin time. We explain laterin this sectionhow decisiontheoryaccomplishes
theseprinciples. A mechanismhat obeys theseprinciples should be able to deal with complete
decisionsituationsin which the occurrenceof future ervironmentalstatesis certain. However, it
cannotdealwith incompletedecisionsituations.We considertwo differentkinds of incompleteness
with respecto the available informationaboutthe action outcomespace.Firstly, decisionsin risk:
whenthereis risk involvedin a decisionsituation thenfor eachfuture statethe availableinformation
includesthe probability of occurrenceof this state. Thusthe outcomesetis known, andprobabilities
areassignedo every memberof this set. Secondlydecisiondgn uncertainty in this case the setof
possiblefuture statesis known, but no informationis available aboutthe individual probabilitiesof
occurrenceComparedo the decisiondn risk, this secondkind of incompletenessontainsevenless
information: the outcomespaces known, but no probabilitiescanbe assignedo its members.

In this sectionwe formalisethesethoughtson decisionmakingby discussinglecisiontheory We
regarddecisiontheoryasthetheoryof rationaldecisionmaking[WK99]:

Definition 1 Rationaldecisionmakingis choosingamongalternativesin a way that “pr operly” ac-
cordswith the prefeencesandbeliefsof a decisionmaler.

The decisionmaler canbe anindividual or a groupmakinga joint decision. In this paper we only
considercasesin which the decisionmaler is an individual. The subjectof decisionmaking has
receved attentionfrom a variety of researctareas:economicsandpsychology{NM44] anddecision



andgametheory[LR57]. Themostabstrachotionof rationaldecisionmaking[WK99] is concerned
with alternatves, preferenceshat reflectthe desirability of the alternatves, andrationality criteria.
On a more concretelevel, we are concernedvith possibleactionsin the world, the desirability of
stateshoseactionswould leadto, andsomeorderingon desirability The basisfor decisiontheory
is utility theoryand probability theory Utility theory providesus with a framevork thatformalises
how desirabledifferent statesare, and probability theory provides us with a way to formalisethe
probabilitythatthe world will bein a certainstate.
By theterm*“utility theory”, we understandhe following:

Definition 2 Utility theoryis concernedvith measuementandrepresentatiorof prefeences.

The term utility refersto the measuremenscaleof preferences.Althoughin its initial definition,
utility only appliedto monetaryalues|NM44], it canbe appliedto all sortsof outcomes.The basis
of utility theoryis a preferenceorder <, which is normally a completepreorderover an outcome
spaceD. Theorderof preferencess thenrepresentedly autility functionU : O — IR. If y isweakly
preferredover z, thenwe indicatethis by z < y, which canberepresentetty U(z) < Ul(y); if y is
alwayspreferredover z, thenU(z) < U(y). Utility is thusmeasurean anordinal scale(although
representedardinal).

Whenfacedwith a decisionwe have to selecta choicefrom a setof possiblechoices.A specific
choicewill have a certainrelevant outcomeo for the decisionmaker (assuminghe ervironmentis
deterministic). Let O bethe setof all possibleoutcomes.If we make a choice,this will leadto a
certainoutcome. When a utility function is definedover all possibleoutcomeswe wantto make
a choicethatleadsto the outcomewith the highestutility. However, if the outcomeof a choiceis
not completelycertain,we alsohave to take into accounthe probability distribution over the possible
outcomesA well-known decisiontheoreticomodelthatcapturesxactly thisideais theexpectedutility
theory we calculatethe expectedutility of every possiblechoiceandwe make the choicewith the
highestexpectedutility. Let P(o | ¢) denotethe probability of outcomeo giventhatthe agentmakes
choicec andU (o) betheuutility of 0. Thenthe expectedutility EU (c) of choicec is

EU(c) =) _P(o| )U(o)
0€0
Underthis simpleandidealisedmodel, a “rational” agentis one that chooses: so asto maximise
EU(c). Appealingthoughthis modelof rational choiceis, it is frequentlynot consistenwith the
behaiour of individualsin practice:peopleseento actirrationally from timeto time. Thisapparently
irrational behaiour of peoplein practiceneedssomeexplanation. At leasttwo explanatoryfactors
canbeidentified (from [Gle9], p328]): experience becausavhile our mentalmachinerymight only
have somelimited capacityfor reasoningthis capacityneedsexperienceto cometo its full purpose;
andour useof heuristicsand biases becausevhile we might be educatedvith scienceandstatistics,
we occasionallystill useheuristicsandfall prey to biases.This doesnot meanthatindividualsindeed
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areirrational; at worst, our rationality is bounded- resultingfrom circumstancehabit, andlimited
processingcapacity This leadsto the viewpoint that decisionmalkersin practicedo not optimise,
which givesrise to the study of “boundedrationality”. Whereasa decisiontheoreticmodel gives
us an normativeview of decisionmaking,boundedrationality offers us a prescriptiveone. In other
words, decisiontheoryaimsto answerthe questionwhat to decideand boundedrationality aimsto
answertthe questiorhowto decide.Naive attemptdo “implement” decisiontheorytendto be search-
basedandsuchsearch-basedlgorithmsarerarely usableif decisionsarerequiredin anything like
real-time.

2.2 BoundedRationality

It is clearthatwhen Al problemsare moved towardsreality, decisionsituationswill becomereal-
time. An importantcharacteristiof areal-timedecisionsituationis thatthe utility of anactionvaries
overtime. Ontheonehand,theutility mightincreaseovertime, e.g.,the outputquality of anarnytime
algorithm(describedn section3.1)increasesvhenit is executedonger Ontheotherhand theutility
mightdeceaseovertime,e.g.,whentheagentmissesanopportunitylike adeadline An exactmethod
to resole a decisionsituationis inherentlyintractable becauset typically involvessearchwhichis
usuallyintractable. Instead,an agentusesan algorithmwith one of two properties:appoximation
wherethe solutionis guaranteedo be within somee of the optimal solution, or probably correct
wherethe algorithmwill returnthe optimal solutionwith probability p. Researcton thesekinds of
algorithms,generallyreferredto asboundedrationality, wasinitiated by Simon[Sim82 in theearly
1950s.This work is describedn this section.In the 1960s,Good[Goo7]] distinguisheda “type II”
rationality from classical‘type I” rationality Type Il rationality maximisesexpectedutility taking
into accountdelibertion costs

In this paper the term “boundedrationality” is usedfor indicatingthe field of researctthatis
concernedwith the problemsthat real-timeagentsare facedwith: finite computationapower and
finite timein whichto reasonBoundedrationalityis definedasfollows [WK99]:

Definition 3 Boundedrationalityis rationality asexhibitedby decisionmalers of limited abilities.

Boundedrationality hasreceved attentionfrom a variety of researcHields: economic§Sim57], phi-
losophy[Den87], cognitive sciencgWK99], andartificial intelligence[Rus97. It is closelyrelated
to the disciplinesof rationaldecisionmaking,decisiontheory utility theoryandmeta-reasoningAs
mentionedpreviously, rationaldecisionmakingis choosingamongalternatvesin a way that corre-
spondswith the preferencesindbeliefsof a decisionmaker, but implicitly assumefinite time, in-
finite computationapower andcompleteinformation. Simon[Sim55] proposeda behaioural model
of rationalchoice,the “administratve man”, which replacegshe conceptof “economicman” with a
kind of rationalbehaiour, thatis compatiblewith the accesgo informationandthe computational
capacitieghatorganismg(including man) possessExperimentakvidencefor this modelis givenin
[Sim57]. It documentsasesn which decisionmakersdo notlive up to the ideal of rationaldecision



making.Ideal probabilityandutility distributionsimply a degreeof omnisciencehatis incompatible
with the psychologicalimitations of the organism.Organismsadaptwell enoughto “satisfice” (con-
catenatiorof satify andsuffice); they do not “optimise” aspostulatedoy decisiontheory[Sim57].
Simonpresented simulatedorganismthat could survive in its ervironment,despitethe factthatits
perceptualind choicemechanismsvere very simple. In the samework, he identified somestruc-
tural characteristicghataretypical of the “psychological”’environmentsof organismswhich referto
the relationbetweerthe organisms goalsandthe accesgo informationin the agents ervironment.
Examplesof suchcharacteristicarethattheaccesso informationandthe ernvironmentlimit the plan-
ning horizonfor the organism,andthatthe organisms needsandthe ervironmentseparatémeans”
from “ends”very naturally Someof thesecharacteristiceeappearedome30yeardaterin theagents
literatureon ervironmentalpropertiedRN95, p46]:

e accessibless.inaccessible
If anagenthasaccesdo the completestateof the ervironment,the ervironmentis accessible.

e deterministicvs. nondeterministic
If thenext stateof the ervironmentis uniquelydeterminedthe ervironmentis deterministic.

e episodicvs. non-episodic
If theagents experiencds dividedinto “episodes’which consistof perceving andacting,and
episodesio not dependon pastor future episodegregardingquality andaction),the erviron-
mentis episodic.

e staticvs.dynamic
If theenvironmentcannotchangewhile anagentis deliberatingthe ervironmentis static.

e discretevs. continuous
If therearea limited numberof distinct, clearly definedperceptionsandactions,the environ-
mentis discrete.

A subtledistinctionmustbe madebetweerboundedationalityasusedin economicor cognitive
scienceandthe way we useit here.In economicsandcognitive science poundedationalityis used
to explain why humanbehaiour is irrational. In this paper boundedrationality is more narravly
defined:it only addressethe issueof resourcebounds(in termsof time and computationapower)
in decisionmaking. Whendesigningagentshatarein continuousnteractionwith a real-timeernvi-
ronment,we have to accountfor the factthattheseagentshave to considertheir own resourcesAn
agentcannotdeliberatandefinitely becausatsomepointin timeit hasto act. Agentshave to beable
to controltheir deliberationin orderto seizeopportunitiesandto acteffectively in theirervironment.
A well-knowvn mechanisnthatcould be usedascontrolis meta-reasoningyhich is discussedn the
next section.



2.3 Meta-reasoning

Meta-reasoning or meta-lerel reasoningmeans‘reasoningaboutreasoning’[WK99]. Meta-level
reasonings distinguishedrom its counterparbbject-lerel reasoning Object-level reasonings de-
liberationaboutexternal entities,e.g.,consideringwhich actionto take, wheremeta-leel reasoning
is deliberationaboutinternal entities,e.g.,decidingwhetherit is worth deliberatingabouta specific
action. If the universeof discourseis a gameof chess,object-lerel reasoningmight for example
be concernedvith which openingmove to make and meta-level reasoningwith decidingwhetherit
is worth deliberatingaboutwhich openingmove to make. Russellgivesthe following definition of
meta-reasoninfVK99J:

Definition 4 Meta-reasonings any computationalprocessthat is concernedwith the executionof
othercomputationaprocessesvithin the sameagent.

Meta-reasoningenestwo importantpurposesn anintelligentagent[WK99]. Firstly, it givesthe
agentcontrolover its (object-level) deliberation.Secondlyit increaseshe flexibility of the agentin
theway it enableghe agentto recover from errorsin its object-lerel deliberation.

We touchuponusingmeta-reasoninépr agentsy describingthreemeta-reasoningrchitectures
(from [RW91]): TEIRESIAS, MRS andSOAR. TEIRESIAS [Dav82] is built upona MY CIN-type rule-
basedsystem[BS84] and provides explanation,knowledge acquisitionand stratgy knowledgefa-
cilities to controlthereasoningn MYCIN. Like MYCIN, TEIRESIAS is usedfor giving consultatre
adviceon diagnosisandtheray for infectiousdiseasesOnelimitation of MY CIN is thatit is notable
to dealwith time considerationsFor example,whenit takes48 hoursto positively identify whether
somespecimens infected,MY CIN cannot make a decisionbeforethose48 hourshave passedHow-
ever, in reality, a physicianoften mustmake a decisionbasedon early evidenceof bacterialgronth
in the specimen.In thatcase, TEIRESIAS canassistthe physicianby explainingwhy My CIN waits
48 hoursandthenthe physiciancantake appropriateactionto furtherthereasoningn MYCIN. The
meta-reasoninggvel in TEIRESIAS decideswhich rule to executein MYCIN. In TEIRESIAS, object-
level rulesaregivenavalue;theconcepof valuesis usedfor comparingvariouspossiblecomputation
steps.Themeta-leel ratesvaluesof applicableobject-level rulesandcandecidethatsomerule should
be applied. Meta-reasoningn TEIRESIAS is doneover the valuesof object-lerel rules (or possible
computatiorsteps)andis not usedfor describingthe outcomesf computatiorsteps.

In the MRS architecturdGS81], meta-reasoningelectscomputationatasksand methodswhich
areto becarriedout. Taskselectionhappenshrougha preferencenechanisnsimilar to theoneused
in TEIRESIAS: ataskis selectedf no runnabletaskis preferredto it. Thereis a methodselection
componenin MRS thatreducesabstractasksto concreteprocedurestheseproceduresre directly
executablewhereasabstractasksare not. Reasoningaboutpreferencess doneusing a backward-
chainingtheorem-preer [RN95] andobject-level inferencestepsareselectediependingn the prob-
ability of succes®sf aproof beginningwith thegivenstep.

The soAR [NRL89] systemusesa goal-basedxecutionarchitecture:rreasonings donein prob-
lem statesdefinedby a goal,initial state,andsetof operatorsExampledomainsof SOAR includethe
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well known Eight Puzzle,industrialexpert systemsnaturallanguageparsing,and Al weakmethods
(suchasand/orsearchandhill climbing). In SOAR, operatorsare selectedn threestages:(1) elab-
oration, in which all the rulesin long-termmemoryaretriggered,if matchingthe currentstate,to

provide preferences(2) decision,in which preferencesre resoled to selectan operatorto apply;

and(3) subgoalingijf resolutionis unsuccessfuthe systemntriesto solve it andcommitsitself to this

subgoal. The automaticsubgoalingselectionmethodis the mostinnovative featurein SoArR. The
key pointaboutsoAR is thatit canconducta simulationof object-level computationstepsin orderto

selectamongthem,unlike TEIRESIAS andMRS. However, the SOAR architecturecannotreasorwith

uncertaintyandthe modelsoAR usesfor computationabctionscannottradeoff time for accurag in

solutions. Theability to tradeoff time for accurag in solutionsis possiblythe mostimportantissue
whenwe wantto usemeta-reasonintp modelaresource-boundeggent.

2.4 Resource-BoundedAgents

We concludehissectionwith abrief overview of issuesnvolving theresource-boundeés of agents.
We returnto theseissuesin the next section,in which we discussframeworks for time-dependent
planning. We shawv in the next sectionthat every framewnork approacheshe issuesmentionedhere
from differentperspecties.

To startoff on the highestlevel of abstractionye areconcernedvith a system The components
in sucha systemareagents andan ervironment In this paper we arenot concernedvith systems
containingmorethanoneagent,.e., multi-agentsystemsbut limit ourselesto singleagentsystems.
Thetwo primaryissueghatarecharacteristidor situatedesource-boundeabentsaretimeandaccess
toinformation Boththesessuesareto betakeninto consideratiorby the agentbut arepropertiesof
theernvironment. This concludegheissueghatareexternalto theagent.

The two main processesvithin the agentarereasoningand acting We distinguishtwo kinds
of reasoning:delibetion — reasoningaboutwhat to do, and means-ends- reasoningabouthow
to doit. The componentghatenabledeliberatve reasoningare an evaluationmetanism- on the
basisof which the agentdecideswhatto do, anda control medanism— which enableghe agentto
dealwith time-dependernc The evaluationmechanismis typically utility based However, it is open
to discussiorover whatoneshoulddefinethe utility, e.g.,previous modelshave definedutilities over
environmentstatesactions actionhistoriesandactionsequencesl hecontrolmechanisnis typically
basedon somesortof meta-reasoning.

The main issuewe thenconcernourseheswith in this paperis howv an agentdealswith time-
dependeng which is the essentialssuethatunderliesthe frameavorks discussedn the next section.
Thesdramenvorksassumehatinformationaboutdeadlineds available,onthebasisof which optimal
actions(or actionsequenced)ave to begeneratedA disadantageof thisassumptioris thatit makes
theframewvorksonly directly applicabldan deliberatve agentsj.e., reactive behaiour —theimmediate
respondingio events— cannotbe easily modeledusing this approach. This meansthatin orderto

In adecision-theoreticontet, an agentis calleda decisionmaler.



modelawider rangeof agents- includingreactve agentstheseframevorks have to be changed.

To summarisein this sectionwe discussedsomebackgroundssuesin the control of reasoning
in resource-boundedgents.The popularway to theoriseaboutdecisionmakingin agentss classic
decisiontheory A limitation of decisiontheoryis thatit doesnot givesusary methodhowto make a
decisionbut it merelytells whatto decide.All naive waysto implementclassicdecisiontheorytend
to be searchbasedand thereforeinherentlyintractableand not likely to be very usefulin practice.
Both the decisionmalker andthe ervironmentconstrainthe decisionprocessthe decisionmaler has
boundedesourcesspecificallycomputationapower, andareal-world ervironmentis obviously real-
time, i.e., decisionshave to be madewithin a certainamountof time. This meanghe decisionmaker
mustcontrol its decisionmaking, or, in a moregeneralcontext, control its reasoning.To do this, it
needdgo reasoraboutreasoningi.e., it needd4o meta-reason.

3 Time-DependentPlanning

Time-dependenplanningis concernedwith determininghowv bestto respondto predictedevents
whenthetime availableto make suchdeterminationwyariesfrom situationto situation[BD94]. The
intuition behindtime-dependenplanningis that an agentshouldmale optimal useof its available
time. In this section,we discussthreetime-dependenplanningframevorks: two are basedon the
ideaof schedulingthe necessaryleliberation: continuousand discrete,respecirely; the third one,
boundedoptimality, extendsdiscretedeliberationschedulingo be appliedto agents.Throughouthe
discussion®f theseframewnorks, we usethe TILEWORLD planningscenaridPR90]to illustratehow
to applythe frameworks. Finally, we discusghe Belief-Desire-Intentior{BDI) agentarchitectureand
the generalMarkov DecisionProcesgmDP) planningframework, in which time-dependentlanning
algorithmscanbeapplied.

3.1 Continuous Deliberation Scheduling

In [BD89], aframework is introducedcalledexpectation-driva iterative refinementThis framevork
enableneto constructsolutionsto time-dependerplanningproblems.The planningin this frame-
work is doneusing a setof decisionproceduresalled anytimealgorithms A decisionprocedue
is a procedureusedby an agentto selectan actionwhich, if executed,changeshe world [Zil96].
Two typesof actionsaredistinguished.Thefirst type of actionsareinferential, which denotepurely
computationalctions. The secondtype are physicalactions,that changethe stateof the external
world, and may require somecomputation. Essentially arytime algorithmsare algorithmswhose
quality of resultsimprovesmonotonicallyascomputatiortime increasesThe characteristicef these
algorithmsare (1) they canbe suspende@dnd resumedwith negligible overhead,(2) after termina-
tion atary point, they will returnananswerand(3) answergeturnedmprove in somewell-behaed
manneras a function of time. Many conventionalalgorithmssatisfy thesecharacteristics.Zilber-
stein[Zil96], for example,shavs how the solutionof randomisedour improvement[Law85] to the
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Figurel: A simpleexampleof continuousdeliberationscheduling(from [BD94]). Assumethatan
agenthastwo futureevents,c; andes, torespondo, andaimsto maximisethevalueof bothresponses.
Theagenthasatits disposadecisionproceduregor respondingo eventse; andes. In (i) and(ii) the
respectre performanceprofilesof thesedecisionproceduresreshavn. Sucha performanceprofile
definegheexpectedesponsealue(u.) asafunctionof theallocatedime (§) for thatdecisionproce-
dure.Panel(iii) shavstheallocationof time for therespectie decisionproceduresiesultingfrom the
continuousdeliberationschedulingalgorithm. Panel(iv) shavs thefinal deliberationscheduleafter
collectingandsortingthetimeslices.

Traveling SalesmarProblem(TSP)canbeusedasananytime algorithm.

BoddyandDeaninvestigatedherandomisedourimprovementasananytime algorithmin aprob-
leminvolving arobotcourierassignedhetaskof deliveringpackageso asetof locations.Therobot’s
only concernherewastime: it triesto minimisetime consumedleliberatingaboutwhatto do. This
taskactuallyinvolvestwo primary tasks:tour improvementand path planning. Anytime algorithms
areemployed for solving both problemsand statisticsare gatheredn their performanceo be used
atruntimein guidingdeliberationscheduling.The procesof delibemtion schedulingis the “explicit
allocationof computationatesourcedasedntheexpectedeffect of thoseallocationsonthesystems
behaiour” [BD94]. Deliberationschedulings accomplishedy a sequencef allocationdecisions
madeby the systemastime passesaseventshappenandasnew informationbecomeswvailable. The
gatheredstatisticsrepresenthe performancef the algorithmandarecalledperformanceprofiles A
performanceorofile of anarnytime algorithmis the expectedoutputquality asa function of runtime
[zil96].

Figurel shavs asimpleexampleof continuougeliberatiorschedulingfrom [BD94]). Theprob-
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lemin this exampleis asfollows: assumehe currenttime is ¢ (in figuresl.iii and1.iv indicatedby
“now”), at which the agenthastwo eventsto respondto, ¢; and ¢y, respectiely, and constructa
schedulefor deliberationto respondto thoseevents, maximisingthe quality of the responsesFig-
uresl.iandl.ii shav the performanceprofilesfor thedecisionproceduresor ¢; andcy, respectrely.
Figurel.iii shavs theallocationof time perdecisionprocedureafter executingthe continuousdelib-
erationschedulingalgorithm,andfigure 1.iv shaws the allocationof time after collectingandsorting
thetime slicesfor the decisionproceduregor ¢; andc,. Thealgorithmworksfrom right to left and
startsby allocatingall time betweenc; andc, to the decisionprocedurefor ¢co, becausehereis no
usein spendingtime on the decisionprocedurefor ¢; whenevent ¢; hasoccurred. The algorithm
thendecideswhich decisionprocedureto allocatetime for, basedon the increasen quality of the
solutionof the decisionprocedures.This is donefor aninterval of time over which the increases
continuousln this example,time is allocatedfirst to the decisionprocedurdor ¢y, thenfor ¢y, for ¢;
andtherestfor co. Thisis shavn in figure L.iii. After all availabletime is allocated the time slices
arecollectedandorderedandthe agentcanstartexecutingthe arytime algorithms,which resultsin
the graphshavn in figure 1.iv. Here,the agentexecutesthe decisionprocedureor ¢; until a certain
momentand then startsexecutingthe decisionprocedurefor ¢;. Becausehe decisionprocedures
arearytime algorithms,the agentcanrespondo eventc; by giving the solutionit reachedvhenthe
decisionprocedurdor ¢; wasstopped.

In the remaindeof this section,we explain howv Boddy andDeanformalisecontinuousdelibera-
tion scheduling.This formalisationresultsin a deliberationschedulgrocedureD S, thatis described
belov. An importantassumptiorBoddy and Deanmale is that at ary momentin time the agent
knows abouta set of pendingconditionsit hasto respondto?. A secondassumptiorthey make
is that the value of the agents responseo one conditionis independentf the responsedo other
conditions. The decisionabouthow long to executewhich decisionprocedurefor is basedon the
valuesof the responses$o conditions. Let Response(c) denotethe responseo conditione, andlet
V(Response(c) | ¢) bethevalueof respondingo conditionc with Response(c) giventhe occur
renceof c. The total value of the responsédo a setof conditionsC is the sumof all valuesof the
conditions giventhatthatconditionoccurs:

Z V(Response(c) | c)

ceC
Thevalueof aresponsés the outputquality of a performancerofile, andin termsof decisiontheory
denotesheutility of aresponseTheagenthasadecisionprocedureip(c) for eachconditionec € C. A
decisionprocedureés anarytime algorithm(asdescribedabore). A performancerofile (asdescribed
above) for this algorithmis formalisedby a function . : IR — IR. An exampleof sucha function
is shawn in figure 1.i. Let alloc(d,dp(c)) denotethe allocationof ¢ time units to dp(c) and let

2The term eventis usedinterchangeablyith conditionin the formalisation, becausean event can be viewed as a
conditionfor theagentto act.
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V(Response(c) | ¢, alloc(d,dp(c))) bethevalueof theresponseo ¢, giventhe occurrencef ¢ and
the allocationof § time unitsto dp(c) to calculateResponse(c). Thenpu,. takesthe amountof time,
d, andreturnsthe expectedvalue of the responseo ¢ with dp(c) runningfor the specifiedamountof
time:

pe(0) = E(V(Response(c) | ¢, alloc(d,dp(c))))

Becausave assumehattheresultquality of anytime algorithmsimprovesmonotonicallyasruntime
increasesand performanceprofiles denotethe expectedoutput quality of run time, the resultsof
performanceprofile functionswill alsoimprove monotonically This meanshatperformanceprofile
functionshave diminishingreturns i.e., slopesof consecutie line sggmentsnustbedecreasingyc €
C : 3f, pc(t) = f(t) suchthatf is monotonicallyincreasingcontinuousandpiecevisedifferentiable
andVz,y € IR" suchthat f'(z) andf'(y) exist, (z < y) = (f'(y) < f'(z)).

Theideabehindthe DS procedurds to work backwards,startingat thetime of occurrencef the
lastconditionto respondo. Let C' = {cy,... ,c,} bethesetof conditionsto be respondedo. Let
time(c) bethetime of occurrencef conditionc, andlet A(t) bethe setof all conditionswhosetime
of occurrencas laterthansomeparticulartime ¢:

At) = fe| (c € C) A (time(e) > D)},

Next, letlast(t) bethetime of occurrenceof conditionc thatis notin A(%):

last(t) = max{time(c) | c € (C — A(t)}).

In DS, ¢ is initially setto +oc. In thatcase,we actuallydo not needto be concernedwith A(%),
becauséhereareno conditionswith time of occurrencdaterthan+oc. Clearly if ¢ takesary value
otherthan+oo, thenit is possiblethereare conditionswith a time of occurrencdaterthant — these
conditionsaretakeninto accountusingA(t).

Next, we have to decidehow to allocateprocessotime to decisionprocedures.This is based
on the expectedgain in value for the decisionproceduregor conditionsin A(t). Let «;(z) bethe
gainof the ith decisionprocedurehaving alreadybeenallocatedz amountof time. Theterm-;(x)
is formulatedasthe slopeof the linear sggmentof p; atz. If y; is discontinuousat z, then~;(x) is
theslopeof thelinearsggmentatthe positve sideof z. Finally, let min_alloc({é;}) betheminimum
of time interval lengthsfor the next linearsegmentsfor performanceprofilesgiventhetime allocated
thusfar. Thisis required,becausavhenselectingdecisionproceduresthe currentgainshave to be
constant.

Now we canintroducethedeliberationschedulgrocedureDS. DS consistof threemainloops:

1. Initialise allocationvariables(uselast(—o0)).
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2. Decidehow muchtimeto allocateperdecisionprocedurduselast(t), min_alloc({d;}), vi(6:))-

3. Decidewhento run the decisionproceduresfor all selecteddecisionprocedurestun the ith
decisionprocedurdrom ¢ till ¢ + §; andincrease by §;.

In [BD94], Boddy and Dean prove that DS is optimal, i.e., it generates{d;} which maximises
Yo pi(d;). For the detailedformulation of DS and the optimality proof, we refer the readerto
[BD94].

ThedeliberationschedulgrocedureD S assumeshatthereis no uncertaintyaboutthe timesof
occurrenceof events. Boddy and Deandescribean extensionof DS, which assumeghereis only
uncertaininformationaboutthetimesof occurrencenf events[BD94]. This proceduras calledDS’.
In DS’, conditionsareassumedo have probability distributionsdefinedover themandto have some
earliestand latesttime of occurrence. Thenthe total value of the responseo a setof conditions
is the combinationof the probability that someevent happensandthe value of the responsdo that
eventatthetime of occurrenceAs DS allocatedorocessotime intervalsto adecisionprocedureywe
now have to accountfor the possibility thatthe event, correspondingo the decisionproceduremight
alreadyhave occurred.D S’ computesanoptimalsequencef processotime allocationfor which the
sumof expectedvaluesof response$o the conditionsto occuris maximal. An importantdifference
betweenD S and DS’ is that DS" workswith processoallocationwindowsinsteadof allocatingall
processotime at once. This multi-passapproachenablesD .S’ to take advantageof thefactthatit is
no usedeliberatingaboutan eventafterits occurrence Again, a detaileddescriptionof DS’ is given
in [BD94].

To concludethecontinuousdeliberatiorschedulingproceduraliscussedh this sectionoriginated
in researchon searchalgorithms. It definesa classof searchalgorithms,calledarytime algorithms,
with certainproperties]ike increasingsolutionquality over time. Boddy and Deanargue that most
searchalgorithmscanbeimplementedasarnytime algorithms.Thesealgorithmsform the basisof the
continuouddeliberationschedulingprocedurethey arethe decisionprocedureshat enablean agent
to respondo eventsin its ervironment. Whenthe agenthasa setof future eventsit needgo respond
to, anddecisionproceduresireavailableto respondo the events,the procedureschedulesheagents
deliberatiorby maximisingthequality of theresponsdor eachsingleevent. We laterdiscusshow the
procedureelatesto the otheralgorithmsdiscussedn this paper

Example

We briefly illustrate the continuousdeliberationschedulingproceduren an examplar TILEWORLD
planningscenario.The TILEWORLD is anagenttestbedhatis usedto for experimentallyevaluating
agentarchitectures. Considerthe following descriptionwhich explainsthe TILEWORLD scenario
[PINT 94, p5-8]:

“The TILEWORLD consistsof an abstractdynamic,simulatedenvironmentwith anembeddedagent. It is

built aroundtheideaof anagentcarrying“tiles” aroundatwo-dimensionagrid, deliveringthemto “holes”,
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andavoiding obstaclesDuring the courseof a TILEWORLD run, objectsappeaianddisappeaat ratespeci-
fied by theresearcherTheobjectsincludetiles, holes,obstaclestile storesandagasstation.The“lifetime”

of ary givenobjectis determinecby userspecifiedappearancanddisappearancetesfor thattype of ob-
ject. Theresearchecanalsospecifyotherpropertieof the objects suchastheir sizeandscore. Theagents
primarytaskis to fill holeswith tiles. To do this, it mustpick uptiles, eitherfrom atile storeor from wher
ever it haspreviously droppedhem,carrythetilesto a hole,anddepositatile in eachcell of thehole. If the
agentsuccessfullyfills all thecellsin the hole with tiles thatmatchthe hole’s shapeijt is avardedwith the
full amountof the hole’s score.A lesserscoreis recevedfor filling the holeswith non-matchingiles. The
agentis responsibléo maintainits fuel level. It consumeduel asit movesaroundtheworld; the moretiles
it is carrying,themorequickly it burnsfuel. To obtainmorefuel, it musttravel to the gasstationandfill its

tank. If theagentrunsoutof fuel, it cannotmove for thedurationof therun”

The robot courierexamplethat Boddy and Deanusedto illustrate continuousdeliberationschedul-
ing, asmentionedabore, canbe easilyrepresenteth the TILEWORLD scenario.Assumethatsome
numberof holesare scatterecaroundin the world andthe agenthasthe taskto deliver tiles to the
appropriateholes;the agentis currentlyin the tile storeandmustdeliver its tiles to the holes. This
is a typical Traveling SalesmarProblem— which rulesout a brute force approachto the problem.
We usecontinuousdeliberationschedulingto find a suitablesolution. The agentcannotdeliberate
indefinitely becaus®f the dynamicstructureof the TILEWORLD — holesmight disappeabeforethe
agentreacheshem.

Thetwo problemgheagentnow facesare:tourimprovementfirst, to constructaminimal distance
tour thatbringsit to all holesin theworld, andsecondpath planning to figure out for every holethe
fastestvay to getfrom thatholeto the next holein thetour. For both problemswe assuméhe agent
hasatits disposabnanytime algorithmwith a performancerofile with the desiredoerformancero-
file propertiesj.e., monotonicallyimproving quality over time anddiminishingreturns.For reasons
of spacewe assumehatthe performanceprofile for tour improvementis givenasperformancero-
file 41 asshawn in figure 1.i andthe profile for pathplanningus asshovn in figure 1.ii. We alsouse
eventsc; ande, from figure 1 here. Assumethatc; indicatesthe earliesttime thatthe couriermight
have to startdelivering, andc, the latesttime that he hasto startdelivering. At ¢;, the couriermust
thus have sometour readily available for execution,althoughthat tour might be far from optimal.
At ¢z, the courierhasno time left to improve the delivery time andhasto startdelivering. The DS
algorithmthenworksasfollows. It startsallocatingtime for the algorithmsbackwards,startingfrom
thetime pointof thelastevent,herecs. It continuallyselectsanamountof time, selectghealgorithm
to allocatethis time to, and addsthe selectedime to the executiontime for the selectedalgorithm.
The methodsof selectionare explainedin detail above andin [BD94]. Basically the time between
c1 andc, is allocatedto the path planningalgorithm, sinceno tour improvementcan be doneafter
c1. Thetime from the currenttime to ¢; is thendivided up in turnsbetweentour improvementand
pathplanning,dependingon which algorithmgivesthe maximumgain. When DS hasfinished,the
deliberationschedulegesemblesigure 1.iv.
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Having completedts deliberationschedulingthe agentis still in front of thetile store,andnow
startsexecutingthe algorithmsby usingthe just computeddeliberationschedule Thenat sometime
betweenc; andcy, the agenthasto startdelivering by executingthe tour as computedby the algo-
rithms. Continuousdeliberationschedulingis thus usedas a meta-reasoningnethodto control the
searchalgorithmfor finding a besttour, giventime constraints.

3.2 DiscreteDeliberation Scheduling

The term discrete delibeation schedulingcomesfrom Boddy and Dean[BD94]. It denotesa kind
of allocationof deliberationwhich treatsdeliberationas being divisible into discretechunks,such
thatthe allocationof eachchunkis a separatelecision.Work on this subjecthasbeencarriedout by
Russelland Wefald [RW91] and Etzioni [Etz89. We discussthe work of Russelland Wefald here.
Thiswork precededRussells theoryon boundedptimality, whichis discussedn section3.3.

Theideabehinddiscretedeliberationschedulings thatat any momentin time, the agenthasto
choosébetweermperforminga default actiona anda computationaactionfrom asetof computational
actionsS;. Performinga computationabctionmight causethe agentto changeits default action. In
this way, computationsretreatedasactions,andareselectedn the basisof their expectedutilities.
The utility of a computationdependson the passagef time (becauseof possiblechangesn the
environment) and the possiblerevision of the agents intendedactionsin the real world. Thenit
follows that the utility of an action outcomeis uncertain,sincewe do know beforehandchow the
ernvironmentchangesWe assumeéhatthe outcomeof externalactionsis known.

RussellandWefald [RW91]] distinguishthreeprogressiely morespecificmodelsof deliberation
thatform thefoundationof their theory:

e Externalmodel
Analysethe systemasan externalobjectby ascribingutilities andprobabilitiesto the systems
actionsandinternalstates.The goalof furthercomputations to refinethe choiceof thedefault
action.

o Estimatedutility model
An agentmight selectits currentbestactionby makingexplicit numericalestimate®f theutil-
ities of actions.The bestactionis thentheactionthatcurrentlyhasthe highestutility estimate.
Furtherdeliberationis donein orderto reviseandrefineutility estimates.

e Concetemodel
Here,the decisionalgorithmis specifiedasfar asthe resultsof a computationsteprevise the
agents intendedaction. Russelland Wefald implementedmeta-reasoningystemsup to the
concretemodelin forward searchprograms— programsthat revise the utility estimatesor
outcomestateshy generatingandevaluatingtheir successorsBecausehis modelinvolvesthe
object-level reasoningpf theagentwe do notdiscusst in muchdetailin this paper
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In this section,we progressiely build up to the concretemodel by discussingthe three models.
Throughouthediscussiorwe useanexample similar to onepresentedn RussellandWefald, which
is asfollows:

A CEO is facedwith anunpopularmanagemenpolicy, for examplethe closingdown of
factories,and might decideto run a coarse-grainedimulationmodel; if theresultsare
equiocal,amoredetailedmodelmight be run, but eventuallythe policy will have to be
executed.

Two importantassumptionaremade. Thefirst is thatthe outcomeof externalactionsareknown at
thetime whentheagentis choosingamongthem. The seconds thatthe utility of eachoutcomestate
is not immediatelyknown, but somecomputationmight be necessaryDecisiontheorytells us the
agentshouldchoosehe actionwhich maximiseshe agents expectedutility, asdiscussedn section
2.1. Let A bethe setof possibleactions,assumesomeaction 4; € A, andlet [4;] be the world
statethatresultsfrom takingaction 4; in thecurrentstate.Let P(W}) denotethe probability thatthe
currentstateis Wy, and[A;, Wy] is the resultof taking action A; in world stateW}. The expected
utility of anactionis then

EU(A)] =Y PWR)U([Ai, Wy])
k

In the managementxample,this would meanthatthe actionis chosenwith the bestoutcome.How-

ever, this outcomemight still be consideredad, e.g., cutting spending. The calculationis easyto

performfor physicalactions but slightly morecomplicatedor computationaactions:whencalculat-
ing the expectedutility for computationahctions,we have to take into consideratiorthefactthatthe
world changeswhile computingandthatthe agents future actionmight change.This translatesnto

thevalueof a computationahctionbeingthe utility of the computationitself minusthe utility of the
currentdefault action. In our example,if the simulationtakesa week,thenits valueis the difference
betweerdoing a (cutting spendingnow andclosingdown factoriesa weeklater We call this value
the netvalueof acomputationahctionS; anddefineit asfollows:

V(Sj) = U([S5]) = U([o])-

But it is not certainthat a computationwill immediatelyresultin an action: a distinction mustbe
madebetweercompletecomputationswhichresultin acommitmento anexternalaction,andpartial
computationswhich do not resultin a commitment.In the example,if the simulationresultsin one
single decision, it is a completecomputation;if it doesnot, it is partial. Whena computationis
completetheutility of S; is solelythe utility of the actioncommittedto afterthe computation:az; .
Let [as;, [S;]] denotethe outcomestateof actiona; thatresultedrom computationS;. Hence,
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V(8;) = U(les;, [S5]]) = U([o)

Whenthe computatioris partial,it will changeheinternalstateof the agentwhich affectsthevalue
of furthercomputationabctions.We thushave to definetheutility of theinternalstatein termsof how

it affectsthe agents ultimatechoiceof action: the expectedutility of the actionthe agentultimately
takes, givenits internalstate. We thushave to take into accountall possiblecomputatiorsequences
following S;. Let acomputationsequencéde representedby 7' andlet the externalactionresulting
from T bedenoteddy ar. Let P(T') bethe probabilitythattheagentwill performT'. Then

U((s) = Y P(D)U (e, [S;, TI).
T

The problemstatedabove translatego takingthe action(beingeitherphysicalor computational)
with the maximumexpecteadutility from theset{«, Si, ... , Si}. Theideal contol algorithmis then
definedasfollows:

1. Keepperformingthat S; with highestexpectednetvalue,until nonehaspositve expectednet
value.

2. Committo actiona.

In areal-timeervironment,we areconcernedvith thetime costof computationabctions thatis, we
wantto capturethe dependencef utility ontime asthe costof time In our formalisationsofar, this
costhasbeenincludedimplicitly in theutility functionof theagent.In orderto make theanalysidess
complicatedwe wantto representhetime costexplicitly. Thereforewe have to distinguishbetween
thetotal utility andtheintrinsic utility: thetotal utility is thetime-dependenttility of anaction;the
intrinsic utility is the utility of anactionif it is performedimmediately Let U; denotetheintrinsic
utility andlet C' expressthe differencebetweenthe total andintrinsic utility. The total utility and
intrinsic utility arerelatedasfollows:

U([As; [S5]]) = Ur([Ad]) — C(4s, 55)

We candraw a parallelwith the previoussectionon continuouddeliberatiorscheduling This function
couldbeanarytime algorithm: it definesn whatway the utility of anactionis discountedcbvertime.
But notethat herethe utility of anactionnormally decreaseastime progressesyhereaghe utility
of anactionin anarytime algorithmincreasesIf we wantthe costof time to beindependenbf the
agents choiceswe requiretheidentity of the bestactionto remainfixed over time. This meanghat
theagents optimalactionis alwaysthe onewith the highestintrinsic utility, andit suficesto require
thatthe costof thecomputatioris independenof theactionunderevaluation:
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U([4s, [S5]]) = Ur([Ad]) — C(S;).

Furthermorethe utility of anactionthatoccursduring S; only dependsn the lengthof .S; (in
elapsedime) andthe courseof eventshappeningn theworld duringthattime (becaus€omputations
only changetheinternalstate).In our examplethis meanshatwhile runningthe simulationmodel,
eventshappenin the world; however, onecannotrespondo theseevents,becausehe simulationis
still in progress.The computationS; will not affect that courseof events,thus.S; only dependson
its own length. We canthencalculatethetime costT'C of S; asafunctionof its length,denotedoy
| Sj |. ThusT'C givesthelossin utility whendelayinganaction.Hence,

U([Ai, [S;1)) = Ui ([Ai]) = TC(] Sj ])-

Alternatively, we caneasily separatehe benefitfrom the costof a computation.The netvalueof a
computationis the differencebetweenl) the actionthatresultsfrom the computatiorandthe current
default action, i.e., the benefitof the computationand2) the time-costof the computation,.e., the
costof thecomputationNow, let A(S;) denotethe estimatedenefitof the computation:

A(Sj) = U(les;]) = U([e)

Thenit is possibleto rewrite the definition of the netvaluefor a completecomputatiorasits benefit
mMINnusits cost:

V(S;) = A(S;) —TC(] Sj )

To summarisethemodeldevelopedsofar givesusawayto formalisethedecisionrmakingprocess
undercertainassumptions.This canbe illustratedusingour managemenéxample. The basicidea
is thatthe decisionmaler (the CEO) is facedwith doing a physicalaction(closingdown factories)
or a computationalction (running the simulationmodel). For now, we assumehat we know the
utilities of the possibleoutcomef actions,i.e., we know whatconclusiongo draw from theresults
of the simulationmodel- we later drop this assumptiorio maintainconsisteng with the claim that
themodelassumesve do not know the utilities. However, we do not necessariljknow the outcomes
of internal actions,i.e., we do not know the outcomeof the simulation, otherwisewe would not
needto runit. We keepperformingthe computationakctionwith the highestexpectedvalue until
no computationabctionshave a positive expectedvalue; we then committo performthe physical
action.We distinguishbetweercomplete(immediatelyresultingin a physicalaction)andpartial (not
resultingin a physicalaction)computationsandwe areableto explicitly representhelossin action
utility overtime.
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An importantassumptiorin the externalmodel,asdescribedabove, is thatutilities areavailable
atthetime theagentmustmalke achoice.But thisassumptions hardlyfeasiblefor a“realistic” agent,
i.e., anagentthatis non-omniscientindresource-boundedf we do not assumehe utilities to be
available,the agenthasto estimateutilities beforemakinga choice. This refinesthe externalmodel
andis called,asmentionecbefore the estimatecutility model: we replacethe utility functionU by a
functionl/ thatrepresentsheestimateditility function. We assumehattheobjectlevel hasacurrent
estimateof the utility of eachaction. Let the computationsequencéo datebe S andthe evidence
generatedy thatsequencdee. Thentheutility estimateof action A; aftercomputationS is then:

U%([Ai]) = EU([A]) | e).

Let 5.5, denotecarrying out computationsS; after computationsequenceS andlet e; denotethe
evidencegeneratedby S;. WhencomputationS; hasbeencarriedout:

Us.sj([AiD = E(U([A]) | e Aej)

But this functionimplicitly incorporateghe costof time, and,asin the externalmodel,we wantto
beableto representhis explicitly. Therefore assumingatime costis available,the expectedvalueof
completecomputationS;, givenevidencee, is

V([S5]) = El(U([as,])) = U([a]) | e Aej] = TC(| S; ).

Thisvalueresidesn theprobabilitydistributionsfor theeffect of evidencefor theexternalactions.Let
u = (u1,... ,u,) Whereu; throughu,, arenew utility estimategor actionsA; throughA4,,. Letp;(u)
bethejoint probabilitydistribution for thenew estimatesthisresultsin aprobabilitydistribution over
the new utility estimatedor every action. Thusthereexists sucha probability distribution for the
currentbestactiona, sincea € {A4;,...,A,}. Letthis probability distribution be denotedoy p;.
Finally, let max(u) = max{u,... ,u,}. Thenwe have:

o0
BV(S))] = [ max(psdu— [ upos(w)du.
u —o0

This equatiorsaysthattheexpectedvalueof acomputationahctionis theexpectedvalueof theexter
nal actionwith maximumutility minusthe expectedutility of the currentbestaction;thisideaagrees
with whatwe have formally representedh the discretedeliberationschedulingmodel. Probability
distributionsmay be obtainedby gatheringstatisticson pastcomputationsn the sameway we obtain
performanceprofilesof arytime algorithmsby gatheringstatisticson pastcomputations.

The estimatedutility modelthusdropsthe assumptiorthat utilities are available at the time an
agentmalesits choice.However, to assesghe expectedvalueof all continuation®f a computatioris
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in practicestill infeasible becauseomputationsanbe arbitrarily long. By makingtwo simplifying
assumptionsye avoid importantissuesconcerninghetractability of themodel. Thefirst assumption
is thatthe algorithmsusedaremeta-geedy in thatthey considersingleprimitive steps gstimatetheir
ultimate effect and choosethe stepappearingto have the highestimmediatebenefit. The second
assumptioris the single-stepssumptiona computationvalueasa completecomputatioris a useful
approximatiorto its true valueasa possiblypartial computation.

Thenext stepof refinement-the concretemodel- depend®n the domainin which the modelis
applied.RussellandWefald appliedthe modelin searchalgorithmsusedin gameplaying programs.
The concretenodelmakesassumptionaboutthe object-level decisionmechanismandnotaboutthe
meta-reasoningnechanism.The meta-reasoningnechanisnis specifiedcompletelyin the external
modelandthe estimatedutility model.In the concretemodel,the object-level reasonings structured
in away thatmalesit suitablefor meta-lerel control. However, thefocusin this paperis on themod-
eling of themeta-leel reasoningnechanismandnoton the objectlevel, andthereforea discussiorof
theconcretemodelis beyondthe scopeof ourinterest.

To conclude the discretedeliberationschedulingnodeldiscussedn this sectionbasicallygives
a decisionmaler the choicebetweenexecutinga physicalactionanda computationabctionat arny
momentin time. A physicalactionchangeshe externalstateof the systemj.e., the ervironmentof
the agent,whereasa computationabction only changeghe internal stateof the agent. The model
is decisiontheoreticin thatit baseghe agents decisionmaking processon the expectedutilities of
actions beingeitherphysicalor computational An importantpropertyof the modelis thatit enables
the agentto explicitly represenits knowledgeaboutthe relationbetweeractionandtime. We shav
laterhow discretedeliberationschedulingelatesto the otheralgorithmsdiscussedh this paper

Example

Assumethe TILEWORLD asexplainedin section3.1. In the context of discretedeliberationschedul-
ing, we first have to distinguishbetweenexternal actionsand computationsof the agent. Let an
externalactionbe a move by theagent(Up, Down, Left, or Right) andlet a computatiorbethe plan-
ning of apathto somelocationin theworld, typically with anhole. We let utility berepresentedsthe
resultof anorderreversingmappingon thedistancebetweertheagentandholeit is currentlyclosest
to. It is clearthatthe agenttriesto maximiseits utility. Let aworld statebe a cell in the grid of the
TILEWORLD. Theagentadoptssomedefault externalaction,i.e.,to move up, down, left or right. As
explainedabore, the purposeof a computatioris to revise the default action,presumablyto a better
one. This is obvious here: without computationthe default actionis simply a randommave action,
but a computatioreadsto actionsthatdirecttheagentto ahole.
Thediscretedeliberationschedulingramewnork enablesisto defineexpectedutilities for external
actionsandcomputationscomparghese and,consequentlyby executingtheidealcontrolalgorithm,
performeitheramove actionor to computeapathto getto ahole. Werestrictourattentionto complete
computationsi.e., after having carriedout a computationthereis immediatelyan externalactionto
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be executed.The utility of anexternalactionis simply theinverseof the distancebetweerthe agent
andthe closesthole after performingthataction;the utility of acomputations thenthe utility of the
actionthatresultsfrom thecomputation.Thenetvalueof acomputationis thenthedifferencebetween
the utility of the computatiorandthe utility of the default externalaction. With thesedefinitions,the
agentcanatarny momentin time determindf it is bestto move or to plana path.

But, correspondingo the discussiorof thetheoryof discretedeliberationschedulinguntil now it
isassumedhatperformingacomputatiorin the TILEWORLD, i.e., pathplanning,doesnothave atime
costassociatedvith it. As in applying continuousdeliberationschedulingin the TILEWORLD, the
real-timeaspecof theworld is thatholesappearlnddisappeathroughouthe existenceof theworld.
We can easily encodethe cost of path planningby introducinga newv parameternamelyone that
representshe numberof time stepsit takesto constructa path. Now it is straightforvard to separate
the benefitof planning(the differencebetweenthe utility of the revisedactionandthe utility of the
defaultaction)from thecostof planning(thetimeit takesto plan). Thevalueof acomputatioris then
its benefitminusits cost. Alternatively, we canrepresenthe valueof a computatiorastheintrinsic,
or, time-independenytility of theactionthatresultsfrom the computationminusthe planningcost.
Carryingoutthesecalculationsof utilities andexpectedvaluesis easyin the TILEWORLD, sincethey
only involve calculatingdistance$etweercellsonthegrid.

But althoughcalculatinguitilities is easysincethey are basedon simple distancesn the grid,
the agentstill needsto performsomecomputationin orderto find out the utility of its actions. For
example, utility dependson the distanceto the closesthole, and the agentneedsto find out what
theclosestholeis. Althoughthis explorationmight betrivial in the TILEWORLD, it is acomputation
neverthelesslt isin theinteresof theagento have estimate®f theseautilities, collectedfrom previous
computationsin the TILEWORLD, theseestimatesnight, for example,resultfrom distributionsthat
indicatewhatthedistancas to aclosesholefrom theagents currentiocation. Thesedistributionscan
beeasilygeneratedor the TILEWORLD. As theagents thenableto revise theseestimatedy means
of exploration,it is obviousthattheagentcannow estimateutilities by performingcomputationsAnd
thuswe have shavn how to constructan estimatedutility modelfor the TILEWORLD usingdiscrete
deliberationscheduling.

3.3 BoundedOptimality

In [Rus97, Russellgivesfour possibleformal definitionsof rationalaction:

e Perfectrationality
The systemalwaysmaximisests expectedutility, givenwhatit knows aboutits ervironment.

e Calculativerationality
The systemmaximisedts expectedutility, basedon the stateof the ervironmentbeforedelib-
eration.
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e Meta-level rationality
The systemoptimisesover object-level computationgor selectingactions.

e Boundedptimality
Thesystembehaesaswell aspossiblegivenits computationatesources.

Thekey notionin boundedoptimality is the move from optimisationover actionsor computationgo
optimisationover programs Russellarguesthattoo muchemphasisn Al hasbeengivento techniques
thatwill selecthecorrectactionin principle, asopposedo techniqueshatwill becapableof selecting
the correctactionin practice He suggestshat boundedoptimal agents- thosethat selectthe best
action possible,given their computationakesources- are thereforea more appropriategoal for Al
research.

Let anabstiact agent be definedasa mappingfrom perceptsequenceto actionsandlet a phys-
ical agent consistof an architecturg(by which Russellmeansan actualcomputationaldevice) and
aprogram.An architectures responsibldor interfacing betweenrervironmentandprogramandfor
runningtheprogram.A programimplementgheabstracagentandis constrainedy theervironment
andthearchitecturat is run by. Basedonthisintuition, RussellandSubramaniann [RSP93],define
boundedoptimality asfollows:

Definition 5 An agentis boundedoptimal if its program is a solutionto a constaint optimisation
problempresentedy its architectue andthetaskervironment.

Theideabehindboundedptimality is to formaliseon theonehandanabstractgentandontheother
handa physicalagent(a“real” agent).Wethenshaw thata perfectrationalagentis anoptimalabstract
agentandaboundedptimalagentis anoptimal physicalagent.

We first formalisean abstractagentas a mappingfrom perceptsequenceso actions. Besides
formalisingthis mappingin themodel,we wantto explicitly representimein themodelof anabstract
agent.The primitiveswe thusneedto specifyanagentaredravn from a setof time-pointsT, actions
A andperception®. ThesetT is atotally orderedby arelation< with a uniqueleastelement.We
modelperceptsequenceaspercepthistories i.e., a completesequenc®f perceptsndexed by time.
An history prefixis a projectionof an history thusa partial sequencetill a certaintime. For reasons
of completenesdpr bothactionsandperceptionswe definesetsof historiesandhistory prefixes:

o ={0T:T - 0} denoteghe setof perceptistories,
Ot ={0':teT, 0" € 0T} denoteghesetof perceptistoryprefixes,
AT ={AT.T — A} denoteghe setof actionhistoriesand

At ={A':teT,AT € AT} denoteghesetof actionhistory prefixes.

Thenanabstractagentis a mappingfrom a setof percepthistory prefixesto a setof possibleactions:
an abstractagentreceves at a certaintime a percepthistory prefix and generatesn action history
basednthis. Hence,
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Definition 6 Anagentfunctionhasthesignatue f : O' — A, whee AT (t) = f(O).

This function saysthat an agentmapspartial perceptsequenceso someaction; if we apply this
functionto thesetof all percepprefixes,this generatethesetof all actionhistories.But thisfunction
doesnotreflectthefactthatanagentis situatedn anenvironment:let X' = {X* : T — X} bethe
setof ervironmentstatehistories.Themodelrepresentthefactthattheagenimightnothave complete
accesso its ervironmentby a perceptuafiltering function f,, thatdetermineshe perceptionsf the
agent.A transitionfunction f, representshe effectsof the agents actions;it specifieghe next state
giventhe currentstateandthe agents action. Thenwe candefineanervironmentasfollows:

Definition 7 AnervironmentE is a setof statesX with initial stateX, andfunctionsf, and f., suh
that

XT(0) = Xo,
XT(t+1) = fo(AT(t), X" (t)) and
o™ (t) = fp(XT (1))

Notice that the agents ervironmentcan,to someextent, be inaccessibleput is assumedo be de-
terministic. In the model, effecty f, F) denotesthe statehistory generatedy agentfunction f in
environmentE; and[E, AT] denoteghe statehistoryfrom applyingactionhistory prefixin theinitial
stateof erwvironmentFE. We usethis notationlaterin the model.

Now thatwe have definedanabstracagent- theagentfunction—we continuewith thedefinition
of anagentprogram. An agentprogram! is animplementedagentfunction on an architectureM .
With M, we definea programmindanguagel,; andl € L£;,. An agentprogramrecevesa percept
asits inputandhasaninternalstate.ln orderto formalisethis internalstate Jet

1T ={I":T -1} bethe setof internalstatehistoriesand
It ={I':teT,I” €17} thesetof internalstatehistory prefixes.

Then

Definition 8 Anarchitectue M is a fixedinterpreterfor an agentprogramthat runsthe programfor
a singletime step,updatingits internal stateand genegting an action:

M:LyxIxO—=1xA,
whee (IT(t + 1), AT (t)) = M (1, I (¢), O™ (¢)).

The signatureof this function shavs that an architecturetakes an agentprogram( (definedin the
programminglanguageLl,s), a perceptand internal stateasits input and on the basisof those, it
generateaninternalstateandanaction.
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Now we have both definedthe abstractagent(the agentfunction) and the “real” agent(the
agentprogram)and are readyto relatethe two asfollows. We implementthe agentfunction f =
Agent(l, M) by anagentprogrami on architecturelM . Thebasicideathenis thatagentfunction f
is constructedy specifyingthe actionsequenceproducecby anagentprogrami on architectureM
for all possiblepercepisequencesThusanagentfunction f canbe definedasfollows:

Definition 9 Anagentfunctionf(O?) is anactionhistory A () sud that thefollowing holdsfor any
ervironmentt! = (X, fe, fp)

(IT(+1),AT(t)) =M, 17(t),0" () (1)
OT(t) = fp(XT (1)) (2)
XT(t+1) = fe(AT(1), XT(1))  (3)
XT(0) = Xo (4)
I*(0) = Iy (5)

In this definition,equation(1) comesfrom the definition of anarchitecturepquationg?), (3), and(4)
comedirectly from the definition of anervironment;andequation(5) initialisesthe internal stateof
the agent. Note thatin definition 9, we formalisean agentfunction and not a real agent,which, in
otherwords,meanghatwe definethe setof all possibleagentsimplementabler notimplementable.

It is importantto notethat not every agentfunction f mapsto anagentprograml € L;,. This
is becausesomeagentprogramscannotbe implementedon a particulararchitecture(they may re-
quire more memorythanis available on the architecturefor example). This leadsto animportant
obsenration: the setof agentprogramsis a subsetof the setof agentfunctions. If an architecture
M andcorrespondindanguageLl,; aregiven,we caneven constrainthe setof agentprograms:the
remainingsetof agentprogramsare calledfeasibleagentprograms.Again, the setof feasibleagent
programss asubsebdf thesetof agentprograms A formal notionof feasibility is necessaryo denote
all implementablegentfunctionson a givenarchitecturelM andlanguagel;:

Feasible(M) = {f :3l € L, f = Agent(l, M)}.

The modeldevelopedthusfar doesnot enableusto measurehe agents performanceTo beable
to evaluatethe agents performancea utility functionU : X7 — IR is introduced,which maps
environmentstatehistoriesto utilities. The combinationof an ernvironmentanda utility functionis
calleda taskervironment- the utility functionis thusexternalto the agentandernvironment. The
valueof anagentfunction f in ervironmentZ is theutility of its statehistory:

V(f,E) =U(efect{f, E)).

Similarly, the value of programil executedin architectureM is basedon the utility of agentfunction
f implementedy I:
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V(I,M,E) =V (Agent(l, M), E) = U(efect{ Agent(l, M), E)).

If thereis a probability distribution definedover a setof environmentsg, one caneasily adaptthe
above definitionsto captureexpectedvalues.

We arenow readyto definea perfectlyrationalagentanda boundedoptimal agent. A perfectly
rationalagentselectsthe actionthat maximisests expectedutility, giventhe perceptssofar. In the
model,this correspond$o anagentfunctionthatmaximises/ (f, E) overall possibleagentfunctions.
However, the problemwith perfectrationality is that the optimisationover the agentfunctionsis
unconstrainedinsteadwe have to accounfor amachine-dependefind of rationalitythatoptimises
constrainton programs.A boundedptimalagentthusmaximisesV’ over the setof agentfunctions
Feasible(M) thatareimplementableThenwe candefinefor a setof environmentsE:

o aperfectlyrational agent: f,p,; = arg max; V(f, E) and
e aboundedptimalagent:l,,; = arg max;c,, V (I, M,E).

The mostimportantdifferencebetweenra perfectlyrationalagentanda boundedoptimal agentis the
factthattheformeris unconstrainedyhile thelatteris constrainedy its architecture.

Example

Considerthe TILEWORLD scenaricasusedabore. As we herewantto implementa boundecbptimal
agentthat operatesn the TILEWORLD, we first definean abstractagentfor the TILEWORLD. We
thenconstrainthis agentby acknavledgingthe real-timecharacteristicef the TILEWORLD andthe
boundedesource®sf theagent.

Let usfirst identify the setsof obsenationsO andactionsA. An obseration denotesan obser
vational action: the agentacquiresknowvledgeaboutthe location of holesin the world. An action
is to move Up, Down, Left or Right, thusA = {Up, Down, Left, Right}. Combiningthe setof
perceptionsandactionswith a setof timepointsT, resultsin a setof percepthistoriesO” anda set
of actionhistoriesA”’, andrelevant historiesas shavn abose. Now an abstractagent,accordingto
definition 6, is amappingfrom obseration history prefixesto actions.It is indeedintuitive thatwhen
the agentobseres somehole at somelocationin theworld, it baseghe actionsto performto reach
the hole on that obseration. An ervironmentstateis herea configurationof the TILEWORLD, i.e.,
a descriptionof the world containingthe locationof the agent,holes,andotherobjectsin the world.
It is obvious how we canmodelthe agents incompleteknowledgeof the world usingthe perceptual
filter function f., whichtakesasinputanervironmentstateandoutputsobserationsto theagent.The
world changesfter the agentacts,andthe transitionfunction f, defineshow it changes.Sincewe
do not assumea staticernvironment— holescanappearanddisappeamwhile the agentmoves— here,
this characteristiags capturedby f, aswell. With definition 7 we thendefinewhatan ervironment
E encompassesThe agentrecevesits utility from the ervironment; here,whenthe agentendsup
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on alocationin theworld with an hole, it recevesa reward. Thusan agents utility is definedover
ervironmentstatehistoriesasgeneratedy thatagent. Thena perfectlyrational agentis an abstract
agentwith maximumutility.

But becausf the constraintghe environmentputson the agent,not all of theseabstractagents
areeither“useful” or implementablen practice. Although trivial in nature,an agentin the TILE-
WORLD operatepasedntheamountof fuel it has.An abstractgentdoesnottake thisinto account.
Weintroduceanarchitecturewith correspondinganguagepnwhichanabstractgentmustbeimple-
mentedasanagentprogram.Suchanagentprogramdoestake its boundedesourcesnto accountIn
the TILEWORLD, we candefinethe architectureandlanguageelatively easily sinceprecisemetrics
for computingthe fuel level are available. Thereforewe identify the setof feasibleagentprograms
asthoseprogramghat maintainan acceptablduel level. It is clearthatthis setis a subsebf the set
of abstractagents,asexplainedin the theoryabore. An agentis thenexecutedon the architecture,
whereexecutionsimply boils down to a mappingbetweernthe madeobserationsandthe bestaction
ascomputedby the program.Here,anobsenrationis a TILEWORLD configuration;this obseration
correspondso a possibleobsenation (otherwiseit could not have beenobsered); andthis possible
obsenration hasbeenmappedo a bestaction;this actionis consequentlgxecuted.

Russelland Subramaniamecognisehat the computationandspecificationof theseboundedop-
timal agentscanstill be very hard[RSP93],andthis is alreadyapparenin this simple TILEWORLD
applicationdomain. The approacho achieze boundedoptimality is thenalsovery differentfrom the
continuousanddiscretedeliberationschedulingmethods. Russelland Subramaniarshav that with
additionalassumptionsthesecomputationand specificationproblemscanbe tackled. Becauset is
not the main intention of this paperto shov how the methodsbehae computationally we do not
discusgheseassumptionandalternatve methodshere;they canbefoundin [RSP93].

3.4 The Belief-Desire-Intention model

Onepopularapproactto thedesignof autonomousgentgshatemegedin thelate 1980sis thebelief-
desie-intention(Bb1) model [BIP88, GL87]. The BDI model getsits namefrom the fact that it
recognisedhe primag of beliefs, desires,andintentionsin rationalaction. Intuitively, an agents
beliefscorrespondo informationthe agenthasaboutthe world. Thesebeliefsmay beincompleteor
incorrect.An agents desiesarestatef affairsthattheagentwould, in anidealworld, wishto bring
about. Finally, an agents$ intentionsrepresentesiresthatit hascommittedto achiesing. Theidea
is thatan agentwill not be ableto deliberateindefinitely over which statesof affairsto bring about;
ultimately it mustfix uponsomesubsetof its desiresand committo achiering them. Thesechosen
desiresareintentions The BDI methodologyenablesan agentto constrainits reasoningby clearly
separatinghe processof choosingwhich intentionsto achiere and the processof decidinghow to
achiere anintention.

A majorissuein thedesignof BDI agentds thatof whento reconsidelintentiong KG91, WP99].
An agentthereforeneedsto reasonaboutits intentionsfrom time-to-time, and changeits current
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Figure2: Experimentatesultson intentionreconsideratiostratgies. The dynamismof the environ-

ment,representinghe actionratio betweerthe agentandthe ervironment,is varied,andthe agents

effectivenesds measuredThe costof planningis representetby p. In (a) the resultsare shavn for

a bold agent— an agentthat executests completeplan beforereconsiderationin (b) the resultsare
shawvn for a cautiousagent— an agentthatreconsiderst every possiblemoment. Two obserations
canbe madedirectly: 1) the planningcostinfluenceshe agents$ effectiveness:as planningcostin-

creaseseffectivenessdecreasesand 2) the cautiousagentis much more affectedby an increasing
planningcostthanthe bold agentis.

intentionsby droppingthemand adoptingnen ones. However, intentionreconsiderations a com-
putationally costly processandis a kind of meta-leel reasoning. It is thereforenecessaryo fix

uponanintentionreconsideation strategy that makesoptimal useof the available computationate-

sources.Kinny and Geogef conductedresearchinto differentintention reconsideratiorstratgies
[KG91]. Theresultsof their experimentalstudy shav that dynamicernvironments— environments
in which the rate of world changes high — favour cautiousintentionreconsideratiorstratgies, i.e.,

stratgieswhich frequentlystopto reconsideintentions.Theintuition behindthis is thatsuchagents
do not wasteeffort attemptingto achieve intentionsthatareno longerviable,andareableto exploit

new opportunitiesasthey arise. In static ervironments— in which the rate of world changeis low —

tendto favour bold reconsideratiostratgies, which only infrequentlystopto reconsideiintentions.
Theresultsof this studyareshawn in figures2(a) — the resultplots for a bold agent,and2(b) — the

result plots for a cautiousagent. Parameterp indicatesthe costof planning. The issueof how an

agentshouldcommitto its intentionsis essentiallybalancingdelibeative reasoning(the procesof

decidingwhatto do) andmeans-endeeasoningthe procesf decidinghowto doit).

Intention reconsideratiorhas beenmodeledon a conceptuallevel [WP99, and only recently
researcthasbeenundertaknto actuallyimplementheintentionreconsideratioproces§SWo0(Q. We
proposeinvestigationon usingthe modelssuneyedin this paper to sene asanimplementatiorfor
intentionreconsiderationThusthe BDI modelmustnot be seenasanothertime-dependenplanning
model,but ratherasa modelin whichtime-dependenplanningis usefulto incorporate.
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Algorithm Value iteration

1.

2. Arbitrary initialisation of v on S

3. repeat

4, for s€S

5. for a€ A

6. Q(s,0) ¢ V(s,0) + 7 X, esp(5']5,a) - v(s');
7. end- f or

8. v(s) < max,Q(s,a);

9. end-for

10. until @ converges to Q%
11. return Q*

Figure3: Thevalueiterationalgorithmfor constructingoptimalMDP policies.

3.5 Mark ov DecisionProcesses

We briefly touchuponMarkov DecisionProcesseévDps) here, sincetheseprocessearewidely used
to modelgeneraldecisionproblems[BDH99]. The mbp modelis anotherframework in which the
discussednodelscanbe placedto createa moregeneraldecision-theoretidglanningstructure.

An MDP canbeunderstoodsavery generadecision-theoretiplanningapproacho agentdesign;
it is basicallya systemthat at any pointin time canbein oneof a numberof distinct statesandin
which the systems$ statechangesover time resultingfrom actions. The main componentsn the
MDP modelare: a statespaceS, in which all possibleworld statesare contained;a setof actions
A, which containsall actionsthat canbe performedby the agent;a setof obserations(?, a setof
“messages’entto the agentafteranactionis performed;a valuefunctionV : S x A — IR, which
mapsstatehistoriesinto utilities; and a statetransitionfunction : S x A — TI(S). ClassicAl
planningmodelscanbe representeédsan MDpP. A policy 7 : S; — A, whereS; € S denoteshe
possiblestatesat time ¢, is a mappingfrom statesper time point to actions. In an optimal policy,
theseactionsareoptimal, suchthatthe valueof the statehistorygeneratedy thatpolicy, is maximal.
Assumingthat appropriatedescriptionsof states,actionsand valuefunction are available, dynamic
programminggivesalgorithmsthatfind optimalpolicies[Bel57]. Thestandaralynamicprogramming
algorithmsare basedon backwardsinduction; valueiterationand policy iterationarethe mostwell
known algorithmsto solve mDPs. The valueiterationalgorithmis shavn in figure 3. The algorithm
computeghe policy valuefunction@ : S x A — IR, basedon the value of states andactiona,
i.e., V(s,a), andthevalueof the future policy. The future policy valueis the expectedvalue of the
successostatess’, reachableéby exectuingexecutingactiona, of states, discountedby a factor~
(where0 < v < 1). Theprobabilitythatperformingactiona in states resultsin states’ is denotedby
p(s'|s, a) andthis probabilitycanbe computedusingr (s, a); thevalueof a states is the maximum@
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valueof all actionsin s (computednline 8 in figure3). The functionhassomemaximum,denoted
by @Q*, andthe algorithm stopswhenit achieesthis maximum(or approximatest suficiently). A
major problemin the MDP modelis the compleity thatis involved with computingoptimalpolicies,
whichistypically intractable . Therefore appropriatdormsof representinghecomponentsf anMbDP
arerequiredandspecificknowledgeof the applicationdomainis usedto speedup the computations.
As such,the time-dependenplanningmodelsdiscussederecan be usedfor that purpose.In this
sectionwe discusshow the planningmodelsarerelatedto the MmDP model.

Comparingcontinuousdeliberationschedulingwith the MDP modelis notimmediatelyevident,
sincetheformeroriginatesn searchalgorithmsandthelatterin decisiontheory But sincethemodels
both computeoptimal policies,or schedulesoff-line, i.e., beforeexecution,somecautiouscompar
isonis possible. Whereasthe mDP model considersindividual actionsto reachgoals, continuous
deliberationschedulings concernedvith decisionprocedureso achiare somelevel of optimisation.
Suchadecisionprocedurecanbe seerasa comple actionwith appropriatgropertiesj.e., monoton-
ically improving quality over time anddiminishingreturns definedby its performanceprofile. Then
we canreplacethe setof MDP actionswith a setof decisionproceduresndbasethe MmDP utilities on
the performanceprofilesof theseproceduresThis requiresa properadjustmentf the MDP modelin
orderto achieve anefficientrepresentationf theproblem.Assumingutilities for actionscanbeaccu-
rately derived from performanceprofiles,dynamicprogrammingalgorithmscanbe usedto compute
optimal schedulesHowever, integrationof the two modelsmeanghata discretetime scaleis used,
whereaghetime scalein continuousieliberationis, of course continuous.

Discretedeliberationschedulings clearly decisiontheoreticallyfounded,andthereforeit is not
hardto relatethe modelto the MmDP model. Usingthe typical notionsof statesactions,andutilities,
the modelsareidenticalup to somelevel. To our bestknowledge,no formal investigationhasbeen
undertakn to representiscretedeliberationschedulingasan Mmbp. But the intuition behindanin-
tegrationof the two modelsis straightforvard: replacingthe setof — external— actionsin a standard
MDP by the discretedeliberationschedulingactionset— a default externalactionandthe setof com-
putationalactions- sufficesto createaninitial MDP representationf discretedeliberatiorscheduling.
Wethenusetheconcepbf utilities asexplainedin section3.2,anda dynamicprogrammingalgorithm
to computeoptimal policies.

Theapproactthatthe MmDP modeltakestowardsdecisionmakingis mostsimilar to the bounded
optimality model. The mostdistinctive differencebetweenthe two is that boundedoptimality ex-
plicitly adoptsa methodologyto dealwith computationatesourcesanda basicmDpP doesnot. The
abstracagentin theboundedptimality modelcanbeformalisedasanmDp, in which we canidentify
setsof perceptsactions andervironmentstates Theoptimalabstractgentis thenonethatoptimises
theutility of the statehistoryit generatesyhichis equvalentto thedefinitionof anoptimalpolicy in
anMDP. But thenotionof boundedptimality cannotbedirectly represented termsof anmDP, be-
causethis notion prescribeshe manipulationof computationatesourcesandthis kind of meta-level
reasonings not presenin an Mbp. Whereaghe issueof meta-leel reasoninghasbeenappliedto
MDPs in orderto reducembDpP compleity [BDH99, Section5], noneof theseapproachebave looked
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into the explicit allocationof the agents resources.In MDPs, the constructionof optimal policies
happendefoe policy execution(i.e., off-line). However, in the boundedoptimality modela policy

is dynamicallyconstructedvhile executinga feasibleagentprogram(i.e., on-line). As mentioned
above, the computationand specificationof boundedoptimal agentss still very hardto performfor

real-world situations. For this matter the boundedoptimal model could take exampleof the MDP

modelandfocuson the representation®f statesactionsandvalues,becausehesearenot explored
in theboundedoptimalmodel.

3.6 Resource-BoundedControl of Reasoning

In this sectionwe discussthe similarities and differenceshetweenthe models,and summarisethe
relative advantagesand disadantagesof eachframavork. We denotethe continuousdeliberation
schedulingprocedureby cbs; discretedeliberationschedulingoy DDS; and boundedoptimality by
BO.

The mostobvious similarity betweenthe modelsis thatthey arebasedon somenotionof ageny
(althoughthisis notmentionedxplicitly in thediscussiorof cDs). If we consideanagentasanentity
situatedn anervironmentthatgenerategsctionsbasedn receved percept§RN95], all threemodels
adoptthis entity asthe decisionmalker. This similarity is obvious, becauseéhe modelsarebasically
decisiontheoreticand,aspointedout in 2.1, the processof decidingis essentiallyaninteraction,in
termsof perceptsandactions betweera decisionmalker andits ernvironment.

It is obvious aswell that all threemodelsare ableto control the amountof necessaryeason-
ing beforemakinga decision. Althoughit is lessolvious, the mechanisnthataccomplisheshis is
meta-reasoningFor cDS andDDS it is clearthatthey usemeta-reasoningp control reasoningthe
meta-reasoningnechanisnin BoO is effectively the procedurethat constructssequencesf decision
proceduresThis procedures similarto the cDs procedure.

Themodelsagreghatthe problemwe facewhendesigninga situatedesource-boundeayentcan
conceptuallybesplit upinto two subproblemstime-pressurés apropertyof theervironmentandtask
theagentis to perform,while resource-boundees is a propertyof theagent.The propertyof time-
pressurecorrespondsvith the ervironmentcharacteristiof dynamism(mentionedin section2.2).
Themodelsagree gxplicitly or implicitly, onthe otherenvironmentcharacteristicservironmentsare
completelyaccessiblénotfor BO — seethenext section)anddeterministic.

All threemodelsadoptutility theoryasa meanso evaluatethe performanceof the agent. This
illustratesthe key pointin the designof situatedresource-boundealgentghatthe modelmustenable
thedesigneto representheeffectivenesf theagent. Themodelsdisagreehowever, onwhetherthe
utility functionis a propertyof theagenttheenvironment,or neither

The modelsall recognisethat deadlinesarethe mostimportantconceptresultingfrom incorpo-
ratingtime into decisiond. All threemodelscandealwith uncertaindeadlinesi.e., a deadlinethatis
stochasticatherthanfixed. But the way in which the modelsdealwith deadlinegs still static: it is

3In cps deadlinesarenot explicitly mentionedput conditionsthemselescanbeviewedasdeadlines.
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only possibleto scheduledeliberationif a setof pendingeventsis known. In this way, the behaiour
is completelydeliberatve andit is not possiblefor the agentto exhibit “reactve behaiour” [Bro91].

Thedecisionprocesses the modelsarebasedon compilationratherthanruntime. This pointis
closelyrelatedto the similarity mentionedn the last paragraph- thatagentsarenot ableto reactto
their ervironment.Compilationmeanghatall informationmustbe availablebeforehandénda conse-
quenceof thisis thatduringruntimeit is not possibleto make useof newly availableinformation.In
thisway it is difficult to usethe modelsif theagentsarein continuousnteractionwith their erviron-
ment. However, continuoudnteractionwith anervironmentis a generallyacceptecharacteristiof
agentdn genera[WJ95.

Finally, the modelsapproachthe decisionprocesst a ratherhigh level. Eventhoughthe models
areappliedin realworld situationstheformalisationof theernvironmentandagentarekepthighlevel,
meaningthatthe focuswason the applicationratherthanthe model. A possibleexplanationfor this
mightbethatthe modelsweredevelopedwith theapplicationastheir maingoalratherthanthemodel
itself.

A key differencebetweernthe modelsis theway in which the utility of actionsis discountedver
time. In cDs, actionsareformulatedasanytime algorithms. A propertyof an arytime algorithmis
thatthequality of its solutionimprovesastime progressesyhichmeandn abroadercontet, thatthe
utility of anactionincreasesstime progressesin Bo, actionsareformulatedasanytime algorithms
aswell, whichmeanghattheutility of anactionincreasesstime progresseaswell. In DDS however,
it is not specifiedwhetheranactions utility increase®r decreasesvertime, but it is mentionedhat
thelongeronewaitsuntil performinganaction,its utility decreasesButthemodeldoesnotguarantee
thattheutility of thedefaultactionalwaysincreasesvertime either

We now weigh up the relative advantagesanddisadwantagesof eachmodel. The advantageof
cDsare:

e Themodelcontainsa well definedprocedurdor execution. Assumingthatthe decisionproce-
dures(arytime algorithmsplustheir performancerofiles)areavailable, it is straightforvardto
implementcps.

e Therehasbeenfurtherwork doneon metricsof performancaneasurementCurrently perfor
manceprofilesonly indicatetheimprovementin accurag of thesolution,but Zilberstein[Zil96]
hasmadea further catgyorisationof measuringhe performancef anarytime algorithm: cer
tainty — degree of certaintythat the resultis correct; accurag — how closethe approximate
resultis to the exactanswer;andspecificity— metric of thelevel of theresult.

e Theprocedurds shavn to be fasterthancornventionalsearchalgorithms,suchasA* [RN95].
Thecbs proceduréhasbeenappliedin gameplaying programs.

Thedisadwantagesf cDs are:

e Becausehe footing of the procedures so strongly in searchalgorithms,the modelis only
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limitedly applicableto more generaldecisionproblems. Sincethe developmentof anytime
algorithmsin thelate 1980s they have notbeenusedin a moregenerakcontext.

e Theprocedurds lesssuitablefor reasoning.It is not clearhow to incorporatethe procedure
in moresophisticatedintelligent, reasoningystems.The emphasisn furtherresearclon cbs
seemgo have beenon how andwhento usearytime algorithmsratherthanthe proceduretself.

e The modelputsstrongrequirement®on the propertiesof the performanceprofiles of anytime
algorithms.For example,if the slopesof the performancerofilesarenotdecreasingvertime,
it cannotbe guaranteedhatthe procedureeturnsthe optimaldeliberationschedule.

e The proceduredependsrery muchon the ervironment. Firstly, muchinformationis needed
from the ervironmentbeforeexecutingthe proceduregndsecondlythe procedurds very sen-
sitive to its ervironmentin the sensehatif somethingminor changesit is notflexible to react
to that.

With respecto DDS, theadwantagesre:

e Althoughthetheorywasinitially appliedto searchalgorithmsiit is moving to a broaderappli-
cationarea.An exampleof thisis theBo model,whichis partially basedn bbs andis applied
to abroaderareaof problems.

e Themodeldeliversanexpressie languagethatcould be usedfor otherareasof researchThe
modelitself doesnot emphasisghe languageput developmentof it is aninterestingissuefor
furtherwork.

e Similarto cbs, whenappliedin gameplaying programs the algorithmis shavn to be faster
thatcornventionalsearchalgorithms.Thecbs andDDs modelshave notbeencomparedo each

other

Thedisadwantagef DDS are:

e Themainapplicationareaof the modelis searchalgorithms.Althoughthe modelis moving to
abroaderapplicationareathereis still muchfurtherwork.

e The model avoids long term reasoning,becausdat adoptsthe single-stepassumption. This
meanghatthe modelworks on basisof short-termgoals.

Theadwantage®f BO are:

e Unlike the othertwo models,Bo doesnot assumecompleteaccessibilityof the ervironment:
thefunction f,, reducesheavailableinformationto a subsebf all accessiblénformationin the
environment.
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e Themodelis applicableto a wider rangeof problems;a goodexampleof thisis themail-sorter
application.

e Whena B0 problemis modeledthe Bo theorydeliversan executablemodel. This bringsthe
BO modelmuchcloserto real-world applications.

Thedisadwantage®of BO are:
¢ Themodelhasonly beenappliedin episodicervironments.

e Thebasicintuition behindtheso modelis thatinsteadof working bottom-upin programdesign,
oneshouldwork top-davn, e.g.,assumall possiblesequencesf memoryconfigurationsn a
computerand searchfor the sequencehat solves the problemyou have. The main problem
with this approachis thatonelosescontrol over the program:oneendsup with a programthat
works, but onedoesnot know how it works. In this way, onesurpassesneof the basicaims
of Al, i.e., to controlintelligencein orderto manipulateit. Of course this point canbe made
aboutdecisiontheoryin general- to know the definition of an optimal agentdoesnot tell us
how to implementit. Furtherdiscussioraboutthis pointis more philosophicalthantechnical
andthereforedoesnot fall within the scopeof this paper but certainlyneedsmoreattentionin
furtherwork.

4 Conclusions

In this paperwe discussedhon agentscontrol their own reasoning,becauseheir resourcesare
boundedWe beganby discussinghefoundationof theoreticadecisionmaking: decisiontheory We
concludedhisintroductionby notingthat,in practice humansdo notlive upto theidealsof decision
theory This obseration is the foundationof boundedrationality We cannotcall this a theory be-
causdn theliteraturethereis currentlyno agreemenyet on atheoryof boundedationality Bounded
rationality is a conceptconcernedvith the limitations of an agentdescribedabore and specifically
resource-boundedss It is closelyrelatedto the concepif meta-reasoningd meta-reasoninggent
is consciousof the decisionsit makes, i.e., it cancontrolits own reasoningegardingits own deci-
sions. Althoughthereis no satisfyingtheoryof boundedrationality the concepthasbeenappliedto
planning. Oneapproacho applyingboundedationality is time-dependenplanning,which we dis-
cussedn this paper Thiskind of planningenablesaanagentto make optimaluseof its availabletime.
We discussedhreetime-dependenplanningframewvorks: continuousdeliberationscheduling,dis-
cretedeliberationschedulingandboundedoptimality Continuousdeliberationschedulings rooted
in searchalgorithms.Discretedeliberatiorschedulings amoredecision-theoretiapproachThedif-
ferencebetweenhe two approachebecomesglearif oneconsiderdiscretedeliberationscheduling
asaway to constructanoptimalanytime algorithm. Finally, boundedptimality marriesthe concepts
of continuousanddiscretedeliberationschedulingoy letting agentsselectthe bestactionpossible,
giventheir computationatesourcesin termsof amoregenerakystem.
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Much furtherwork canbe doneon this subject.The mainemphasisn this work shouldbe onthe
developmentof a generaltheoryon decisionmakingunderboundedresources.This is a high level
andlongtermgoal,but afirst steptowardsit couldbethedevelopmeniof aconceptuaframevork for
situatedresource-boundeagents.
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