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Abstract We introduce and investigate formal quantita-

tive measures of inconsistency between the beliefs of

agents in multi-agent systems. We start by recalling a well-

known model of belief in multi-agent systems, and then,

using this model, present two classes of inconsistency

metrics. First, we consider metrics that attempt to charac-

terise the overall degree of inconsistency of a multi-agent

system in a single numeric value, where inconsistency is

considered to be individuals within the system having

contradictory beliefs. While this metric is useful as a high-

level indicator of the degree of inconsistency between the

beliefs of members of a multi-agent system, it is of limited

value for understanding the structure of inconsistency in a

system: it gives no indication of the sources of inconsis-

tency. We therefore introduce metrics that quantify for a

given individual the extent to which that individual is in

conflict with other members of the society. These metrics

are based on power indices, which were developed within

the cooperative game theory community in order to

understand the power that individuals wield in cooperative

settings.

Keywords Multi-agent systems � Inconsistency � Shapley

value

1 Introduction

In a seminal 1988 paper, Alan Bond and Les Gasser

attempted to summarise the key challenges facing the

then-nascent multi-agent systems research area [3]. One

of the five key challenges they identified was the question

of ‘‘how to recognise and reconcile disparate viewpoints

and conflicting intentions among a collection of

agents’’ [3, p. 10]. They advocated the development of

principled techniques for understanding, managing, and

resolving such inconsistencies. In this paper, we study

ways to recognise the source and nature of inconsistencies

in a multi-agent systems as a necessary prescursor to

managing them.

Inconsistency in multi-agent systems can manifest itself

in the form of inconsistent beliefs (I believe taxes are bad;

my spouse believes taxes are good), or in the form of

inconsistent preferences (I prefer the family to holiday in

California; my spouse prefers the family to holiday in

France). Resolving inconsistencies between beliefs is, in

multi-agent systems research, primarily the domain of

argumentation. Resolving inconsistencies between prefer-

ences is primarily the domain of social choice theory and

computational social choice.

Our specific aim in the present paper is to develop

techniques that enable us to understand both the scale and

the structure of inconsistencies between the beliefs of

agents in a multi-agent system. There are several reasons

why it may be important to obtain an understanding of the

scale and structure of belief inconsistencies in a multi-

agent system. Most obviously, when inconsistency occurs
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within a team of agents, there is typically a need to

resolve that inconsistency, which may be time-consuming

or costly. If we are to put agents into teams, it therefore

makes sense to investigate beforehand the scale and

structure of any inconsistency in the team, so that

potential inconsistencies can be minimised. Moreover, we

might sometimes interpret the fact that one agent is

grossly inconsistent with other agents as an indicator of

faults, potentially requiring maintenance, or at least

meriting further attention.

The model of belief we adopt in the present paper is

sentential [15]: the belief system of each agent is char-

acterised by a knowledge base of formulae of some log-

ical belief language, together with a set of deduction rules

for the belief language. A multi-agent system is given by

a set of such deduction structures, one for each agent in

the system. Using these multi-agent belief systems as our

starting point, we develop two classes of metrics for

measuring and analysing belief inconsistency in multi-

agent systems. First, we define societal measures of

inconsistency. These measures give us a single numeric

value that quantifies the overall degree of inconsistency in

a multi-agent system. We find it necessary to provide

more than one such measure because, in order to deter-

mine whether the beliefs of agents in a multi-agent sys-

tem are inconsistent, we must aggregate the beliefs of the

agents in the system in some way, and there are many

possible ways of aggregating beliefs. Second, we define

individual measures of inconsistency. These measures

attempt to characterise the extent to which the beliefs of

individual agents in a system are in conflict with those of

other agents in the system. By using these individual

measures of inconsistency, we can analyse the structure of

inconsistency in a system, by identifying the sources of

inconsistency. The formulation of our inconsistency

measures is derived from the use of power indices in

cooperative game theory: in particular, the Banzhaf index

and Shapley value [5], building on the use of the Shapley

value for measuring inconsistency developed in [12].

Power indices are used in cooperative game theory to

evaluate the contribution a particular agent makes in a

cooperative setting, and in voting theory, they are used to

measure the power that a particular agent has, where

power is understood as the ability to influence a particular

outcome.

Throughout the paper, we assume some familiarity with

logic (e.g., the notion of deduction rules and deductive

proof) and computational complexity. We provide a brief

summary of the relevant concepts from cooperative game

theory, although space limitations prevent any discussion

of these concepts—see [5].

2 Preliminary Definitions

2.1 Logic Notation

We assume some prior knowledge of classical logic (e.g.,

the notion of a rule of inference), but present a brief

summary of our key notational conventions, etc. Let B ¼
f>;?g be the set of Boolean truth values, with ‘‘>’’ being

truth and ‘‘?’’ being falsity. We will abuse notation a little

by using > and ? to denote both the syntactic constants for

truth and falsity respectively, as well as their semantic

counterparts. Let U ¼ fp; q; . . .g be a denumerable

vocabulary of Boolean variables, and let L0 denote the set

of (well-formed) formulae of classical propositional logic

over U, constructed using the conventional Boolean oper-

ators (‘‘^’’, ‘‘_’’, ‘‘!’’, ‘‘$’’, and ‘‘:’’), as well as the

truth constants ‘‘>’’ and ‘‘?’’. Where u 2L0, we let

varsðuÞ denote the (possibly empty) set of Boolean vari-

ables occurring in formula u (e.g., varsðp ^ qÞ ¼ fp; qg).
We write � u to mean that u is a tautology.

2.2 Agents

We assume a fixed and finite set N ¼ f1; . . .; ng of agents.

A coalition, C, is simply a subset of N, C � N. The grand

coalition is the set of all agents N. Notice that in everyday

use, the term ‘‘coalition’’ typically implies some common

purpose, or commitment to common action. We do not use

the term in this sense: a coalition in this paper is nothing

more than a set of agents.

2.3 Belief Languages

We model the beliefs of agents using a sentential approach,

and more specifically, using the deduction model of belief

developed by Konolige [15]. With this model, the belief

system of an agent i 2 N is modelled as a set of formulae of

a logical belief language, LB. For example, it could be that

LB ¼L0, i.e., that the language used by agents to rep-

resent their beliefs is in fact classical propositional logic. In

general, we won’t assume much of LB, except that it is a

logical language, with a well-defined syntax, semantics,

and proof theory, and with notions such as sound and

complete inference defined for it.

2.4 Deduction Rules and Deduction Structures

A deduction rule for LB is a rule of inference that has a fixed

and finite number of premises, and that is an effectively

computable function of its premises [15, p. 21]. Where q is a

set of deduction rules for LB, u 2LB is an LB-formula,
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and D �LB is a set of LB-formulae, we denote by D ‘q u
the fact that u may be derived from D using the deduction

rules q. A deduction structure, di, for an agent i 2 N is a pair:

di ¼ hDi;qii, where: Di �LB is a fixed, finite set of base

beliefs; and qi is a fixed, finite set of deduction rules for LB.

Where di ¼ hDi; qii is a deduction structure, we denote by

belðdiÞ the closure of Di under qi, i.e.,

belðhD; qiÞ ¼ fu j D ‘q ug:

2.5 Measures of Consistency and Inconsistency

There has recently been interest in techniques for analysing

(in)consistency in logical knowledge bases [10, 12]. Though

our interest is mainly in inconsistencies that arise across the

knowledge bases of multiple agents, we start with a simple

and intuitive measure of inconsistency for the knowledge

base of a single agent. To do this we define a two-place

function I so that IðD; qÞ evaluates to 1 if belðhD; qiÞ
contains an explicit contradiction, and 0 otherwise:

IðD; qÞ ¼
1 if 9u 2LB : fu;:ug � belðhD; qiÞ
0 otherwise.

�

Thus IðD; qÞ will evaluate to 1 iff belðhD; qiÞ contains an

explicit contradiction, i.e., a formula and the negation of

that formula.

Observe that if LB ¼L0, and q is a sound and com-

plete set of deduction rules for L0, then Ið� � �Þ will

characterise logical consistency for L0. If q is sound but

incomplete, then Ið� � �Þ will capture a weaker notion of

consistency: namely, whether explicit contradictions can be

detected by applying the rules q.

2.6 Multi-Agent Belief Systems

A multi-agent belief system is a structure

B ¼ hN; d1; . . .; dni, where N ¼ f1; . . .; ng is a set of

agents, and di ¼ hDi;qii is a deduction structure for agent i,

capturing the beliefs of agent i.

Where B ¼ hN; d1; . . .; dni is a multi-agent belief sys-

tem, and C � N (C 6¼ ;) is a coalition, then we define:

D[C ¼
S

i2C Di D\C ¼
T

i2C Di

q[C ¼
S

i2C qi q\C ¼
T

i2C qi

bel[C ¼
S

i2C belðdiÞ bel\C ¼
T

i2C belðdiÞ

We will say a multi-agent belief system B is monotonic if

for all C � N and for all C1 �LB, if C1 ‘q[
C

u then for all

C2 �LB we have C1 [ C2 ‘q[
C

u.

Example 1 Consider a multi-agent belief system B1 with

agents N ¼ f1; 2g such that: D1 ¼ fp; p! qg; q1 ¼ a

sound and complete set of deduction rules for L0;

D2 ¼ fq! :pg; and q2 ¼ ;. We have:

IðD1; q1Þ ¼ IðD2; q2Þ ¼ IðD\f1;2g; q\f1;2gÞ ¼ 0

IðD[f1;2g; q[f1;2gÞ ¼ 1:

2.7 Cooperative Games and Power Indices

We use some definitions from the area of cooperative game

theory [5]. A simple cooperative game is a pair G ¼ hN; mi,
where N ¼ f1; . . .; ng is a set of players, and m : 2N !
f0; 1g is the characteristic function of the game, which

assigns to every set of agents a binary value. If mðCÞ ¼ 1

then we say that C is a winning coalition, while if

mðCÞ ¼ 0, we say C is a losing coalition. We require that

mð;Þ ¼ 0. We say that G ¼ hN; mi is monotone if

mðCÞ� mðDÞ for every pair of coalitions C;D � N such that

C � D. If G1 ¼ hN; m1i and G2 ¼ hN; m2i are simple

cooperative games with the same player set, we will say

they are equivalent, and write G1 � G2, if m1ðCÞ ¼ m2ðCÞ
for all C � N.

Agent i is a swing player for C � N n fig if C is not

winning but C [ fig is. We find it useful to define a

function swingðC; iÞ so that this function returns 1 if i is a

swing player for C, and 0 otherwise, i.e.,

swingðC; iÞ ¼
1 if mðCÞ ¼ 0 and mðC [ figÞ ¼ 1

0 otherwise.

�

The Banzhaf score for agent i, denoted ri, is the number of

coalitions for which i is a swing player:

ri ¼
X

C�Nnfig
swingðC; iÞ: ð1Þ

The Banzhaf measure, denoted li, is the probability that i

would be a swing player for a coalition chosen at random

from 2Nnfig:

li ¼
ri

2n�1
ð2Þ

The Banzhaf index for player i 2 N, denoted by bi, is the

proportion of coalitions for which i is a swing to the total

number of swings in the game—thus the Banzhaf index is a

measure of relative power, since it takes into account the

Banzhaf score of other agents:

bi ¼
riP
j2N rj

ð3Þ

Finally, we define the Shapley value; here the order in

which agents join a coalition plays a role. Let PðNÞ denote

the set of all permutations of N, with typical members

-;-0, etc. If - 2 PðNÞ and i 2 N, then let precði;-Þ
denote the players that precede i in the ordering -. (For

example, if - ¼ ða3; a1; a2Þ, then precða2;-Þ ¼ fa1; a3g.)
Given this, let 1i denote the Shapley value of i, defined as

follows:
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1i ¼
1

n!

X
-2PðAÞ

swingðprecði;-Þ; iÞ ð4Þ

A key result in cooperative game theory is that the Shapley

value is uniquely characterised by a small set of axioms1.

Later, when we consider the Shapley value in the context

of multi-agent belief systems, we will return to these axi-

oms. To state the axioms, we need some additional ter-

minology. We say player i 2 N is a dummy if for all

coalitions C � N, mðC [ figÞ ¼ mðCÞ. We say players i; j

are symmetric if for all coalitions C � ðN n fi; jgÞ we have

swingðC; iÞ ¼ swingðC; jÞ. It is then well-known that if i is

a dummy then 1i ¼ 0, while if i and j are symmetric then

1i ¼ 1j. Note that the Banzhaf index also satisfies these

axioms.

3 Societal Measures of Inconsistency

We now move on to the first main concern of this paper:

measuring in a principled way the degree of inconsistency

present in a multi-agent system. In this section, we will

explore societal measures of inconsistency: measures of

inconsistency that quantify the degree of inconsistency

present in society as a whole, irrespective of the properties

of individual members of the society. In subsequent sec-

tions, we will consider the problem of measuring how

inconsistent individuals are with respect to society.

As a starting point, we consider the probability that a

non-empty coalition C � N selected uniformly at random

from 2N n ; will have inconsistent beliefs, under the

assumption that the beliefs and deduction rules of coalition

members are simply pooled together through set theoretic

union. We denote this value for a multi-agent belief system

B by S[ðBÞ:

S[ðBÞ ¼ 1

2n � 1

X
C 6¼;
C�N

IðD[C; q[CÞ

In other words, S[ðBÞ is E½IðD[C; q[CÞ	, i.e., the expected

value of IðD[C; q[CÞ for a coalition C picked uniformly at

random. Notice that the value S[ðBÞ captures a ‘‘liberal’’

notion of inconsistency, in the sense that it treats every

agent’s base beliefs D and deduction rules q equally: the

base beliefs and deduction rules of every agent are pooled

together and conclusions derived. But this is a rather crude

way of pooling the beliefs of agents in a system. For

example, suppose one agent i is an intuitionistic reasoner,

and does not include the law of the excluded middle in his

rule set, while other agents are classical reasoners. Then it

is possible that some of the conclusions derived from i’s

base beliefs would not in fact be supported by i (if for

example they were derived using the law of the excluded

middle).

There are of course many ways of aggregating beliefs,

which we will not discuss here (see for example [18]). We

present just one alternative—a more conservative measure

of societal inconsistency, S\ðBÞ:

S\ðBÞ ¼ 1

2n � 1

X
C 6¼;
C�N

IðD\C; q\CÞ

Thus, the value S\ðBÞ only takes into account base beliefs

and deduction rules that are universally accepted. Notice

that if S
ðBÞ ¼ 1 for 
 2 f[;\g then every (non-empty)

coalition is inconsistent, and in particular, this implies that

all the agents within the system have individually incon-

sistent belief sets.

Example 2 Referring back to the multi-agent belief sys-

tem B1 defined in Example 1, we have S\ðB1Þ ¼ 0, and

S[ðB1Þ ¼ 1
3
.

Let us state some properties of these measures.

Proposition 1

1. For all monotonic multi-agent belief systems B, we

have:

S[ðBÞ�S\ðBÞ:

2. There exist monotonic multi-agent belief systems B

such that:

S[ðBÞ[S\ðBÞ:

Proof For point (1), suppose fu;:ug � belðhD\C; q\CiÞ
for some u 2LB. Then fu;:ug � belðhD[C; q[CiÞ from the

monotonicity of B. It follows that for all C � N, if

IðD\C; q\Þ ¼ 1 then IðD[C; q[Þ ¼ 1, henceX
C�N:C 6¼;

IðD[C; q[CÞ�
X

C�N:C 6¼;
IðD\C; q\CÞ;

and so S[ðBÞ�S\ðBÞ. Example 2 serves as a proof of

point (2).

4 Individuals and Social Consistency

The social (in)consistency metrics we introduced above

attempt to quantify the inherent overall (in)consistency of a

multi-agent system through a single numeric value. How-

ever, returning to the overall aims of this work, giving a

single inconsistency value for an entire system gives no

information about the sources or structure of inconsistency,
1 In the present paper, we will not be concerned with the axiom

known as additivity.
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which will be an important consideration for example if

one is to try to resolve or settle the inconsistency. With this

consideration in mind, in this section we present measures

that characterise the extent to which individuals influence

the consistency of a system. We start with a motivating

example.

Example 3 Assume LB ¼L0. Suppose we have a multi-

agent belief system B with N ¼ f1; 2; 3; 4g and D1 ¼ D2 ¼
D3 ¼ fpg while D4 ¼ f:pg. All agents i 2 N have

deduction rules qi that are sound and complete for L0. We

have:

IðD[C; q[CÞ ¼
1 if jCj[ 1 and 4 2 C

0 otherwise:

�

It follows that S[ðBÞ ¼ 7
15

. However, it is intuitively

obvious that there is just one agent in this scenario that is

the source of inconsistency: agent 4, who believes :p,

while every other agent believes p. And yet this agent

seems to have quite a dramatic influence on the overall

inconsistency of the society, according to the measure

S[ðBÞ.

This example clearly demonstrates the need for tech-

niques that give a more fine-grained analysis of inconsis-

tency within a multi-agent system, and in particular,

techniques that allow us to clearly isolate the sources of

inconsistency. The metrics we now present are intended for

this purpose.

Where B ¼ hN; d1; . . .; dni is a multi-agent belief system

and 
 2 f[;\g is one of the set theoretic operations of

union or intersection, we define a cooperative game G
B ¼
hN; m
Bi containing the same set of agents, and with char-

acteristic function m
B defined as follows:

m
BðCÞ ¼ IðD
C; q
CÞ:

Thus, in the game G
B, a coalition is ‘‘winning’’

(m
BðCÞ ¼ 1) if they are inconsistent (taking 
 as the

aggregation operator for beliefs and rules), and ‘‘losing’’

(m
BðCÞ ¼ 0) if they are consistent using the aggregation

operator 
. Note that we do not, of course, mean ‘‘winning’’

in the sense of this being a good thing—we simply follow

the terminology of cooperative game theory, and say a

coalition are winning if they obtain a value of 1.

We have now established a precise formal relationship

between the notion of inconsistency in multi-agent belief

systems, and simple cooperative games. With this rela-

tionship in place, we will shortly see how power indices

from cooperative game theory can be used to analyse

inconsistency in multi-agent systems. However, before we

do that, let us pause to consider the relationship we have

established in a little more detail. We have defined a

mapping from multi-agent belief systems to simple

cooperative games. It is easy to see that this mapping is

many-to-one, in the sense that multiple multi-agent belief

systems can map to the same cooperative game. Moreover,

the mapping is total, in the sense that every multi-agent

belief system induces a simple cooperative game. How-

ever, what about the other direction of the mapping? Is it

the case that every simple cooperative game is induced by

some multi-agent belief system? If we restrict our consid-

eration to monotonic reasoners, the answer is no:

Proposition 2 For every monotonic multi-agent belief

system B ¼ hN; d1; . . .; dni, the corresponding game G[B ¼
hN; m[Bi is monotone. It follows that there exist simple

cooperative games G ¼ hN; mi such that for all monotonic

multi-agent belief systems B ¼ hN; d1; . . .; dni, we have

G 6� G[B .

Proof We must show that m[BðCÞ� m[BðDÞ for every pair of

coalitions C;D � N such that C � D. So consider the

value m[BðCÞ. There are two possibilities: m[BðCÞ ¼ 0 or

m[BðCÞ ¼ 1. Where m[BðCÞ ¼ 0, suppose for sake of contra-

diction that m[BðDÞ ¼ 1. Then 9fu;:ug � belðhD[D; q[DiÞ.
Now, since B is monotonic, belðhD[C; q[CiÞ � belðhD[D; q[DiÞ,
which implies fu;:ug � belðhD[C; q[CiÞ and hence

m[BðCÞ ¼ 1; contradiction. Where m[BðCÞ ¼ 1, then

m[BðCÞ� m[BðDÞ follows from the fact that m[BðDÞ 2 f0; 1g.

Now, with the games G
B defined, we can directly apply

the power indices that were defined earlier. These metrics

can be understood as quantifying the extent to which

individual agents affect the consistency of a society. For-

mally, where B is a multi-agent belief system and


 2 f[;\g, we use the following notation:

– r
i ðBÞ is the Banzhaf score of player i in the game G
B,

that is, r
i ðBÞ is the total number of coalitions that

player i is in contradiction with;

– l
i ðBÞ is the Banzhaf measure of player i in the game

G
B, that is, l
i ðBÞ is the probability that player i would

be in contradiction with a coalition C selected

uniformly at random from the set of all possible non-

empty coalitions;

– b
i ðBÞ is the Banzhaf index of player i in game G
B, that

is, b
i ðBÞ measures the proportion of coalitional incon-

sistencies in B that i is responsible for;

– 1
i ðBÞ is the Shapley value of player i in the game

G
ðBÞ, that is, 1
i ðBÞ measures the probability that a

player i would make the grand coalition inconsistent,

taking into account all possible ways in which the

grand coalition could form.

Example 4 Consider the multi-agent belief system B2

presented in Example 3. Table 1 summarises the measures

r[i ðB2Þ, l[i ðB2Þ, b[i ðB2Þ, and 1[i ðB2Þ for agents
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i 2 f1; 2; 3; 4g. To better understand these values, consider

player 1. This player will be a swing player for a coalition

C (i.e., will make a coalition C inconsistent) exactly when

the coalition C contains agent 4 and no other players. (If

other players are in the coalition with 4, it will already be

inconsistent, and player 1 will not affect this status.) So

r[1 ðB2Þ ¼ 1, and similarly for players 2 and 3. Turning to

player 4, however, this player will make any non-empty

coalition C inconsistent, and so r[1 ðB2Þ ¼ 7.

At this point, let us return to the axioms for the Shapley

value, and try to understand them in terms of our model. To

do this, we will need a little extra terminology.

First, we say an amiable agent is one that can be added

to any consistent set of agents without causing the set to

become inconsistent. Thus an amiable agent is not the

cause of any conflicts that arise in the set of agents. For-

mally, i is amiable iff:

8C � N : IðD[C; q[CÞ�IðD[C[fig; q[C[figÞ:

Then, we say one agent matches another if adding either to

a set of agents has the same outcome. In other words, two

agents match if they are in conflict with the same sets of

agents as each other. Obviously this is a symmetrical

relationship. Formally, for agents fi; jg � N, we say i

matches j iff:

8C � ðN n fi; jgÞ : IðD[C[fig; q[C[figÞ ¼ IðD[C[fjg; q[C[fjgÞ:

Proposition 3 For all B ¼ hN; d1; . . .; dni:

1. If i is amiable in B, then i is a dummy player in G[B .

2. If i matches j in B, then i and j are symmetric in G[B .

From standard properties of the Shapley value we

obtain:

Proposition 4 For all B ¼ hN; d1; . . .; dni:

1. If i is amiable in B, then r[i ðBÞ ¼ l[i ðBÞ ¼
b[i ðBÞ ¼ 1[i ðBÞ ¼ 0.

2. If i matches j in B, then r[i ðBÞ ¼ r[j ðBÞ, l[i ðBÞ ¼
l[j ðBÞ, b[i ðBÞ ¼ b[j ðBÞ, and 1[i ðBÞ ¼ 1[j ðBÞ.

We say that one agent believes more than another agent

when the closure of the beliefs of the first agent with its

proof rules is a superset of the the closure of the beliefs of

the second agent with its proof rules. Formally, for agents

i; j 2 C, i believes more than j iff belðdjÞ � belðdiÞ. Then

we have, for example:

Proposition 5 If i believes more than j, then bi� bj

5 Non-Monotonic Believers

So far in this paper, we have assumed that the reasoning

processes employed by agents, as characterised in their belief

set D and reasoning rules qi, are classical, and in particular,

monotonic. In this section, we will explore what happens if

we assume that agents use non-monotonic reasoning [4].

Although non-monotonic reasoning is a well established

research area in the knowledge representation field, it is

perhaps less well known in the multi-agent systems area, and

so we provide a brief summary of the main ideas.

In classical logic (of which propositional logic and first-

order logic are the two key systems), deduction is mono-

tonic, in the sense that the theorems of a theory will expand

monotonically with the premises of the theory. More for-

mally, a logical deduction system ‘ is said to be monotonic

if D1 ‘ u implies D1 [ D2 ‘ u for all sets of formulae D1

and D2; this is true of both classical propositional and first-

order logic. However, some types of common sense rea-

soning do not have this property. To use a well-known

example, if we are told Tweety is a bird, then we might

conclude that Tweety can fly. However, if we are later told

that Tweety is a penguin, then we might retract this con-

clusion. The common sense reasoning we are employing

here is thus non-monotonic, since we are retracting a

conclusion (Tweety can fly) after adding more premises

(Tweety is a penguin). To formalise such reasoning, many

non-monotonic logics have been developed, of which

default logic, autoepistemic logic and circumscription are

perhaps the best known examples (see, e.g., [4] for an

introduction and key references).

Now, in our setting, if agents use classical, monotonic

forms of reasoning, then this means that adding an agent

i 2 N to a coalition C � N can only have one of three

consequences:

1. The coalition is mutually consistent before i was

added, and continue to be consistent after i is added;

2. The coalition is mutually consistent before i was

added, but the addition of i makes them inconsistent;

3. The coalition is mutually inconsistent before i was

added, and continue to be inconsistent after i is added.

Thus, adding an agent in a setting of monotonic reasoning

agents can never recover consistency, in the sense that if

Table 1 Values r[i ðB2Þ, l[i ðB2Þ, b[i ðB2Þ, and 1[i ðB2Þ for agents

i 2 f1; 2; 3; 4g

Agent r[i ðB2Þ l[i ðB2Þ b[i ðB2Þ 1[i ðB2Þ

1 1 1
8

1
10

1
12

2 1 1
8

1
10

1
12

3 1 1
8

1
10

1
12

4 7 7
8

7
10

9
12

See Example 4
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the members of C are mutually inconsistent, then adding i

can only result in continuing inconsistency. However, as

we will now see, this need not be true if we allow non-

monotonic reasoning agents.

To make the ideas precise, we use a (simplified) auto-

epistemic logic [16]. Syntactically, the language LAE of

autoepistemic logic extends classical propositional logic

with a unary modal modality K, where the expression Ku
should be read ‘‘it is known that u’’. Formally, the syntax

of LAE is given by the following grammar:

v : :¼ p j :v j v _ v j Kv

where p is a Boolean variable. The remaining classical

operators are assumed to be defined as abbreviations in the

standard way.

The semantics of LAE are given with respect to pairs

ðD; pÞ, where D �LAE is the belief base, and p : U! B is

a classical valuation for the Boolean variables U:

ðD; pÞ � p iff pðpÞ ¼ > (for p 2 U);

ðD; pÞ � Ku iff u 2 D;

ðD; pÞ � :v iff it is not the case that ðD; pÞ � v;

ðD; pÞ � v1 _ v2 iff either ðD; pÞ � v1 or ðD; pÞ � v2 or

both.

The remaining classical connectives are defined in terms of

_ and : in the standard way.

We will say a formula of LAE is strict if all Boolean

variables appear within the scope of an autoepistemic

modality. Thus Kp is strict, while q ^ Kp is not, because q

does not appear within the scope of an autoepistemic

modality. Strict formula can be evaluated with respect to

belief sets D: we do not need to refer to the valuation

function p when evaluating such formulae. So, for strict

formulae v, we will write D � v to mean that v is true when

evaluated against belief set D.

The notion of logical consequence from an initial set of

premises I through D is naturally defined: we write I �D u.

Now, given an initial belief set D, an expansion is a set TD

that satisfies the following fixpoint equation:

TD ¼ fu j D �TD ug: ð5Þ

It is easy to see that such a set TD satisfies the following

properties:

(B1) TD is closed under propositional consequence;

(B2) u 2 TD implies Ku 2 TD;

(B3) u 62 TD implies :Ku 2 TD.

In general, starting from an initial set of beliefs D, there

may be multiple possible expansions TD, or indeed none2.

Moreover, determining questions associated with such

expansions is computationally hard—typically at the sec-

ond level of the polynomial hierarchy [8]. To keep things

simple, we will therefore consider a restricted autoepis-

temic reasoning system, which is sufficiently powerful to

allow us to express key non-monotonic properties, but

which avoids the complexities of ‘‘full’’ autoepistemic

logic.

Let us say a simple autoepistemic rule is an implication

of the form v! u, where v is a strict autoepistemic for-

mula, and u is a propositional formula. Now, following the

terminology of the present paper, we will consider agents

that are equipped with a deduction structure d ¼ hD; qi,
where D is a finite set of propositional logic formulae

representing the base beliefs of the agent, and q is a finite

set of simple autoepistemic rules.

Given an LAE deduction structure d ¼ hD; qi, we

denote the belief set associated with hD; qi by belðhD; qiÞ,
where this set is the smallest set of propositional formulae

satisfying the following fixed point equation:

belðhD; qiÞ ¼ D [ fu j v! u 2 q and D � vg ð6Þ

It should be clear that this definition represents a significant

simplification of the notion of an expansion as defined in

Eq. (5): most importantly, we are only permitting a highly

restricted form of LAE formulae in q (i.e., simple auto-

epistemic rules), and we are only permitting propositional

base beliefs D. But the key point about this construction is

that, (as we will see shortly), it permits a meaningful type

of non-monotonic reasoning, while having the following

highly desirable properties:

Proposition 6 For all LAE-deduction structures hD; qi,
the set belðhD; qiÞ is well-defined, finite, and unique, and

can be computed in polynomial time.

Let us see an example of an LAE deduction structure,

and how it achieves non-monotonic reasoning.

Example 5 Suppose

D ¼ fbirdðtweetyÞg

and

q¼fK birdðtweetyÞ^:K penguinðtweetyÞ! fliesðtweetyÞg:

Then

belðhD; qiÞ ¼ fbirdðtweetyÞ; fliesðtweetyÞg:

However, if

D ¼ fbirdðtweetyÞ; penguinðtweetyÞg

then

belðhD; qiÞ ¼ fbirdðtweetyÞ; penguinðtweetyÞg:

2 Consider the case where D ¼ f:Kp! q;:Kq! pg. In this case

there are two expansions of D: one containing p but not q, the other

containing q but not p. The set D ¼ fKpg has no expansions.
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Thus, we do not conclude that Tweety can fly if Tweety is

known to be a penguin.

So, let us suppose that we have multi-agent belief sys-

tems B ¼ ðN; d1; . . .; dnÞ with LAE deduction structures.

First, let us see a small example.

Example 6 Suppose we have a multi-agent belief system B

with N ¼ f1; 2; 3g, D1 ¼ fpg, D2 ¼ ;, D3 ¼ fqg, q1 ¼ ;,
q2 ¼ f:Kq! :pg, and q3 ¼ ;. Now, D[f1;2g ¼ fpg,
q[f1;2g ¼ f:Kq! :pg, and so belðhD[f1;2g; q[f1;2giÞ ¼
fp;:pg. and so m[Bðf1; 2gÞ ¼ 1: players 1 and 2 are incon-

sistent. However, if we add player 3, we have:

D[f1;2;3g ¼ fp; qg, q[f1;2;3g ¼ f:Kq! :pg, hence bel

ðhD[f1;2;3g; q[f1;2;3giÞ ¼ fp; qg, and so m[Bðf1; 2; 3gÞ ¼ 0.

Thus, adding player 3 transforms the coalition from incon-

sistency to consistency, intuitively by giving them an addi-

tional piece of information that allows them to avoid

applying the single autoepistemic rule :Kq! :p.

Example 6 serves as a proof of the following (contrast

with Proposition 2):

Proposition 7 There exist LAE multi-agent belief sys-

tems B for which the corresponding game G[B ¼ hN; m[Bi is

not monotone.

In fact, the autoepistemic reasoning framework we have

defined is rich enough to capture all simple cooperative

games (contrast with Proposition 2):

Proposition 8 For every simple cooperative game G ¼
hN; mi there exists an LAE multi-agent belief system B such

that G � G[B .

Proof Given G, we construct an LAE multi-agent belief

system B and show that G � G[B . Let WG denote the set of

winning coalitions in G:

WG ¼ fC � N j mðCÞ ¼ 1g:

For each player i 2 N, define a Boolean variable xi, and in

addition define one further variable z. Given a coalition

C � N, define an LAE formula wC as follows:

wC ¼
^
i2C

Kxi

 !
^

^
j2ðNnCÞ

:Kxj

0
@

1
A:

Now define an LAE formula WWG
characterising the set of

all winning coalitions of G:

WWG
¼
_

C2WG

wC:

For each agent i 2 N, define Di ¼ fxi; zg. Now define a

single autoepistemic rule r as follows:

r ¼ WWG
! :z

and set qi ¼ frg for all i 2 N. We now claim that:

8C � N : mðCÞ ¼ 1 iff m[BðCÞ ¼ 1:

To see this, observe that for all C � NðC 6¼ ;Þ, we have

hD[C; q[Ci � WWG
iff C 2 WG. Now, since z 2 D[C, for all

C � NðC 6¼ ;Þ, we have fz;:zg � belðhD[C; q[CiÞ iff

C 2 WG. Thus IðD[C; q[CÞ ¼ 1 iff C 2 WG.

Recall that in Sect. 4 we asked whether it is the case that

every simple cooperative game is induced by some multi-

agent belief system composed of monotonic reasoners, and

found that the answer was no. The above result shows that

if we allow agents to be non-monotonic reasoners then it is

possible to induce every simple cooperative game from

some multi-agent belief system.

Next, recall that, when discussing monotonic reasoning

agents, we showed that taking the union of a set of beliefs

would always give rise to at least as much inconsistency as

taking the intersection (Proposition 1). We now show that

this does not hold for non-monotonic believers.

Proposition 9 There exist LAE multi-agent belief sys-

tems B such that S\ðBÞ[S[ðBÞ.

Let us now consider the complexity of computing the

various inconsistency measures with respect to LAE belief

systems. We have the following result, which can be

understood as saying that computing power indices such as

b[i ðBÞ is in the same complexity class as computing these

indices in many other cooperative game settings [5]:

Proposition 10 Given an LAE multi-agent belief system

B ¼ hN; d1; . . .; dni and an agent i 2 N, the problem of

computing r[i ðBÞ is #P-complete. It follows that computing

l[i ðBÞ and b[i ðBÞ is #P-complete with respect to Turing

reductions.

Proof For membership, consider a non-deterministic

Turing machine that first guesses a coalition C � N and

then accepts iff the following condition is satisfied:

9fu;:ug 2 belðhD[C; q[CiÞ:

Computing belðhD[C; q[CiÞ can be done in polynomial time,

and so the condition can be evaluated in polynomial time.

The number of accepting computations of the Turing

machine is exactly the number of coalitions C � N such

that IðhD[C; q[CiÞ ¼ 1, and so computing ri is in #P.

For hardness we reduce #SAT: the problem of comput-

ing the number of satisfying assignment for a given

propositional formula u. Without loss of generality, we can

assume that the #SAT instance u is in CNF; assume

varsðuÞ ¼ fx1; . . .; xkg. Now, denote by u
 the strict LAE
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formula obtained from u by systematically replacing each

positive literal xi that occurs in u by Kxi and each negative

literal :xi by :Kxi. Observe that since u is assumed to be

in CNF, the formula u
 that we obtain through this

transformation is indeed a strict LAE formula. We now

define a multi-agent belief system Bu as follows. For each

variable xi 2 varsðuÞ we create an agent ai, and also create

one additional agent akþ1. In addition to the variables

fx1; . . .; xkg we create a new variable z. For all 1� i� k we

define Di ¼ fxi; zg, and qi ¼ ;. Finally we define Dkþ1 ¼ ;
and qkþ1 ¼ fu
 ! :zg. We now claim that r[kþ1ðBuÞ is

exactly the number of satisfying assignments for the #SAT

instance u. To see this, first observe that for all

C � fa1; . . .; akg, IðD[C; q[CÞ ¼ 0 since D[C is a set of

positive literals and q[C ¼ ;. Now, for all C � fa1; . . .; akg,
swingðC; akþ1Þ ¼ 1 iff the propositional assignment

p : fx1; . . .; xkg ! f>;?g

defined by:

pðxiÞ ¼
> if ai 2 C

? otherwise

�

is such that p � u. Thus r[kþ1ðBuÞ is exactly the number of

satisfying assignments for the #SAT instance u.

6 Related Work and Conclusions

In contemporary multi-agent systems research, argumen-

tation is perhaps the key approach to handling inconsis-

tency [2, 19]. Argumentation can be understood as being

concerned with developing techniques for deriving justifi-

able, rational conclusions from knowledge bases that

contain inconsistencies. Argumentation is not, however,

primarily concerned with understanding the structure or

source of inconsistency, which is the aim of the present

paper. In argumentation research, the aim instead is largely

to understand what counts as a rational position in the

presence of inconsistency.

Recent work on measuring inconsistency in logical

knowledge bases is closely related to the present paper [9,

12–14]. However, this work is focused on measuring the

inconsistency of a logical theory, rather than multi-agent

inconsistency. Measuring inconsistency has proven to be a

useful tool in analysing various information types [11]. We

should also note recent work by Ågotnes et al. [1] on using

power indices from cooperative game theory to analyse

how knowledgeable individual agents are with respect to a

particular formula of epistemic logic. They use the setting

of possible worlds semantics to analyse knowledge, but the

ideas are similar to ours. The basic idea is to use cooper-

ative solution concepts to try to quantify the extent to

which an agent ‘‘contributes’’ to knowledge of a particular

fact. The key difference is that we focus on quantifying

inconsistency, essentially by pooling the knowledge of

agents in the system. While there are several well-known

models of mutual knowledge used in the literature of

possible worlds semantics [7], these models do not admit

the possibility of inconsistency: if an agent is considered to

know something, then that thing must be true. Our

approach is somewhat similar in that we use a model of

belief but the relationship is superficial. Our work uses a

sentential model of belief, based on that proposed by [15].

We began this paper by citing Bond and Gasser [3] and

their argument that a key challenge in multi-agent systems

is to be able to recognise and reconcile disparate view-

points. The work we have presented so far provides a

mechanism for recognising inconsistency. A natural ques-

tion to ask at this point is how this helps us in reconciling

different viewpoints. In this section we give one answer to

this question, showing how the inconsistency measures can

potentially reduce the computational effort in reconciling

the beliefs of a set of agents. The approach we consider for

reconciling beliefs is argumentation, in particular, the

argumentation-based persuasion dialogue studied in [17].

This dialogue is a process by which two agents with

inconsistent sets of base beliefs Di can establish a consis-

tent set of beliefs3. Parsons et al. [17] proves that the

number of messages exchanged by the agents in this pro-

cess is proportional to the size of the agents’ sets of base

beliefs, but looking at the proof in detail reveals that this is

a loose upper limit—the number of moves is bounded by

the size of the belief base because in the worst case the

agents will disagree on every formula in the belief base and

have to work through the resolution process for each one in

turn. In fact, the number of messages exchanged is deter-

mined by the number of inconsistencies—the agents will

have to go through one round of persuasion for each pair of

formulae that are inconsistent.

Now, consider that a set of agents is trying to identify a

coalition that will engage in some task. The choice of

possible coalitions will depend on what abilities different

agents can bring to the task. However, if we make the

reasonable assumption that the agents will need to reach

consensus about their beliefs in order to complete their

task, then since the amount of effort this will require is

dependent on the number of inconsistencies, using the

Banzhaf index bi (which we recall identifies the proportion

of inconsistencies that an agent is responsible for) can be

3 Exactly how they achieve this isn’t relevant here, but in essence

they recursively construct a grounded extension [6] so that when the

dialogue terminates both agents agree on the acceptability of a

common set of beliefs.
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used to help select coalition members, and hence can

reduce the work that coalitions then have to do.

Of course, computing bi is not cheap, but it is a com-

putation cost, not a communication cost (unlike the cost of

resolving the inconsistency). In domains in which com-

munication is expensive, it may well be worth selecting

coalitions to minimise inconsistencies, rather than

attempting to resolve inconsistencies at run-time.
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