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Chapter 24

Multi-Agent Systems

Wiebe van der Hoek and Michael Wooldridge

We review the state of the art in knowledge representation formalisms for multi-agent
systems. We divide work in this area into two categories. In the first category are
approaches that attempt to represent the cognitive state of rational agents, and to char-
acterize logically how such a state leads a rational agent to act. We begin by motivating
this approach. We then describe four of the best-known such logical frameworks, and
discuss the possible roles that such logics can play in helping us to engineer artifi-
cial agents. In the second category are approaches based on representing the strategic
structure of a multi-agent environment, and in particular, the powers that agents have,
either individually or in coalitions. Here, we describe Coalition Logic, Alternating-
time Temporal Logic (ATL), and epistemic extensions.

24.1 Introduction

The discipline of knowledge representation focuses on how to represent and reason
about environments with various different properties, usually with the goal of mak-
ing decisions, for example about how best to act in this environment. But what are the
things that are actually doing this representation and reasoning? The now-conventional
terminology is to refer to these entities as agents. The agents may be computer pro-
grams (in which case they are called software agents) or they may be people like you
or I. The case where there is only assumed to be one agent in the environment (for
example, a single autonomous robot operating in a warehouse) is usually the simplest
scenario for knowledge representation, and often does not require techniques beyond
those described elsewhere in this book. However, where there are multiple agents in
the environment, things get much more interesting—and challenging. This is because
it becomes necessary for an agent to represent and reason about the other agents in
the environment. Again there are two possibilities. The first is that all the agents in
the environment can be assumed to share a common purpose. This might be the case,
for example, if we are designing a multi-robot system to operate in a warehouse en-
vironment. Here, we can assume the robots share a common purpose because we can
design them that way. However, the second case is again much more interesting, and
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presents many more challenges for knowledge representation. This is where the agents
comprising the system do not share the same purpose. This might be the case in, for
example, in e-commerce systems, where a software agent is attempting to buy some
particular item for as low a price as possible, while a seller agent tries to sell it for as
high a price as possible. While in one sense the agents share a common goal of en-
gaging in trade, there is obviously a fundamental difference with respect to their more
specific goals.

How should we go about representing and reasoning about environments con-
taining multiple agents? That is, what aspects of them should we be attempting to
represent? Within the multi-agent systems community, one can distinguish two dis-
tinct trends:

Cognitive models of rational action: The first main strand of research in repre-
senting multi-agent systems focuses on the issue of representing the attitudes
of agents within the system: their beliefs, aspirations, intentions, and the like.
The aim of such formalisms is to derive a model that predicts how a rational
agent would go from its beliefs and desires to actions. Work in this area builds
largely on research in the philosophy of mind.

Models of the strategic structure of the system: The second main strand of re-
search focuses not on the internal states or attitudes of agents, but on the
strategic structure of the environment: what agents can accomplish in the en-
vironment, either together or alone. Work in this area builds on models of
effectivity from the game theory community, and the models underpinning such
logics are closely related to formal games.

Inevitably, the actual divisions between these two categories are inevitably more
blurred than our rather crisp categorization suggests.

24.2 Representing Rational Cognitive States

In attempting to understand the behavior of agents in the everyday world, we fre-
quently make use of folk psychology:

Many philosophers and cognitive scientists claim that our everyday or “folk”
understanding of mental states constitutes a theory of mind. That theory is
widely called “folk psychology” (sometimes “commonsense” psychology). The
terms in which folk psychology is couched are the familiar ones of “belief” and
“desire”, “hunger”, “pain” and so forth. According to many theorists, folk psy-
chology plays a central role in our capacity to predict and explain the behavior of
ourselves and others. However, the nature and status of folk psychology remains
controversial. [117]

For example, we use statements such as Michael intends to write a paper in order
to explain Michael’s behavior. Once told this statement, we expect to find Michael
shelving other commitments and developing a plan to write the paper; we would expect
him to spend a lot of time at his computer; we would not be surprised to find him in
a grumpy mood; but we would be surprised to find him at a late night party. The
philosopher Dennett coined the phrase intentional system to refer to an entity that is
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best understood in terms of folk-psychology notions such as beliefs, desires, and the
like [25]. This was also what Hofstadter was referring to already in 1981, when he
sketched “coffee house conversation on the Turing test to determine if a machine can
think” [55], in which several students discuss AI and in which one of them states
that “you AI advocates have far underestimated the human mind, and that there are
things a computer will never, ever be able to do”. Sandy, a philosophy student puts the
following forward:

But eventually, when you put enough feelingless calculations together in a
huge coordinated organization, you’ll get something that has properties on an-
other level. You can see it—in fact you have to see it—not as a bunch of little
calculations, but as a system of tendencies and desires and beliefs and so on.
When things get complicated enough, you’re forced to change your level of de-
scription. To some extend that’s already happening, which is why we use words
such as “want”, “think”, “try”, and “hope”, to describe chess programs and other
attempts at mechanical thought.

The intentional stance is essentially nothing more than an abstraction tool. It is
a convenient shorthand for talking about certain complex systems (such as people),
which allows us to succinctly predict and explain their behavior without having to
understand or make claims about their internal structure or operation. Note that the
intentional stance has been widely discussed in the literature—let us just remark here
that Sandy of the Coffeeshop Conversation claims that the really interesting things in
AI will only begin to happen, ‘when the program itself adopts the intentional stance
towards itself’—and it is not our intention to add to this debate; see [112] for a discus-
sion and references.

If we accept the usefulness of the intentional stance for characterizing the proper-
ties of rational agents, then the next step in developing a formal theory of such agents
is to identify the components of an agent’s state. There are many possible mental
states that we might choose to characterize an agent: beliefs, goals, desires, intentions,
commitments, fears, hopes, and obligations are just a few. We can identify several
important categories of such attitudes, for example:

Information attitudes: those attitudes an agent has towards information about its
environment. The most obvious members of this category are knowledge and
belief.

Pro attitudes: those attitudes an agent has that tend to lead it to perform actions.
The most obvious members of this category are goals, desires, and intentions.

Normative attitudes: including obligations, permissions and authorization.

Much of the literature on developing formal theories of agency has been taken up with
the relative merits of choosing one attitude over another, and investigating the possible
relationships between these attitudes. While there is no consensus on which attitudes
should be chosen as primitive, most formalisms choose knowledge or belief together
with at least goals or desires.
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24.2.1 A Logical Toolkit

In attempting to axiomatize the properties of a rational agent in terms of (say) its
beliefs and desires, we will find ourselves attempting to formalize statements such as
the following

(24.1)Wiebe believes Ajax are great.

(24.2)Wiebe desires that Ajax will win.

This suggests that a logical characterization of these statements must include construc-
tions of the form

i

{
believes
desires

}
ϕ

where i is a term denoting an agent, and ϕ is a sentence. We immediately encounter
difficulties if we attempt to represent such statements in first-order logic. First of all,
the constructs mentioned above should definitely not be extensional—even if “it rains
in Utrecht” and “it rains in Liverpool” may accidentally both be true, one can believe
one without the other, desire the second but not the first, even try to achieve one while
hindering the other. Apart from this, representing such statements in first-order logic—
as binary predicates of the form Bel(i, ϕ) and Desire(i, ϕ)—will not work, because
the second term is a sentence, and not a term. By fixing the domain of the first-order
language to be itself a language, we can get around this problem, thereby obtaining a
first-order meta-language. The meta-language approach has been successfully adopted
by a number of researchers, for example, [106]. However, meta-language approaches
have also been criticized for representing mental states (see, e.g., [63] for a detailed
critique). Instead of choosing a meta-language approach, most researchers opt for a
modal approach, whereby an agent’s beliefs, desires, and the like are represented by
an indexed collection of modal operators. The semantics of these operators are gener-
ally given in terms or Kripke structures, in the by-now familiar way [19, 86, 13]. The
use of Kripke structures and their associated mathematics of correspondence theory
makes it possible to quickly generate a number of soundness results for axiomati-
zations of these logics. However, the combination of many modalities into a single
framework presents a significant challenge from a logical point of view. Completeness,
expressivity and complexity results for logics that incorporate multiple modalities into
a single framework are typically complex, and this area of research is much at the
leading edge of contemporary modal logic research [34]. Moreover, reasoning in such
enriched systems is typically computationally very hard [39]. Despite these problems,
modal approaches dominate in the literature, and in this article, we focus exclusively
on such approaches.

In addition to representing an agent’s attitudes, logics of rational agency also typ-
ically incorporate some way of representing the actions that agents perform, and the
effects of these actions. Many researchers adapt techniques from dynamic logic in
order to represent actions and their effects [42], whereas others confine themselves
to a temporal set-up. Although there is some work in establishing the exact relation
between the two approaches, this issue still deserves a better investigation.

In the next four sections, we review some of the best-known formalisms for rea-
soning about the cognitive states of rational agents:
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• Dynamic Epistemic Logic (DEL);

• Cohen and Levesque’s seminal intention logic [22];

• Rao and Georgeff’s BDI framework [91]; and

• the KARO framework of Linder et al. [70].

24.2.2 Dynamic Epistemic Logic

The first formalism we deal with, dynamic epistemic logic, is intended to capture the
interaction between the actions that an agent performs and its knowledge. Elsewhere
in this handbook is a full treatment of logics for knowledge, and we pre-suppose
some familiarity with this subject. The idea is simply to take the logical machinery
of epistemic logic [30] and augment it with a dynamic component [43], for referring
to actions. The origins of such logics for knowledge representation lie in the work
of Robert Moore [77]. Moore’s chief concern was to study the ways that knowledge
and action interact, and he identified two main issues. The first is that some actions
that produce knowledge, and therefore their effects must be formulated in terms of the
epistemic states of participants. The second is that of knowledge preconditions: what
an agent needs to know in order to be able to perform an action. A simple example
is that in order to unlock a safe, one must know the combination for the lock. Using
these ideas, Moore formalized a notion of ability. He suggested that in order for an
agent to be able to achieve some state of affairs ϕ, the agent must either:

• know the identity of an action α (i.e., have an “executable description” of an
action α) such that after α is performed, ϕ holds; or else

• know the identity of an action α such that after α is performed, the agent will
know the identity of an action α′ such that after α′ is performed, ϕ holds.

The point about “knowing the identity” of an action is that, in order for me to be able
to become rich, it is not sufficient for me simply to know that there exists some action
I could perform which would make me rich; I must either know what that action is
(the first clause above), or else to able to perform some action which would furnish
me with the information about which action to perform in order to make myself rich.
This apparently subtle distinction is rather important, and it is known as the distinction
between knowledge de re (which involves knowing the identity of a thing) and de dicto
(which involves knowing that something exists) [30, p. 101]. We will see later, when
we review more recent work on temporal logics of ability, that this distinction also
plays an important role there.

Nowadays, the term Dynamic Epistemic Logic (DEL) [11, 108] is used to refer
to formalisms that add a special class of actions—epistemic actions—to the standard
logic S5 for knowledge. The term “epistemic action” is used to refer to an action with
an epistemic component, such as learning or announcing something. Thus, in DEL,
actions themselves have an epistemic flavor: they denote an announcement, a private
message, or even the act of “suspecting” something.

There are several variants of dynamic epistemic logic in the literature. In the lan-
guage of [108], apart from the static formulas involving knowledge, there is also the
construct [α]ϕ, meaning that after execution of the epistemic action α, statement ϕ is
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Figure 24.1: Multiplying an epistemic state N, s with the action model (N, a) representing the action
L12(L1?p ∪ L1?¬p ∪ !#).

true. Actions α specify who is informed by what. To express “learning”, actions of the
form LBβ are used, where β again is an action: this expresses the fact that “coalition
B learns that β takes place”. The expression LB(α ! β), means the coalition B learns
that either α or β is happening, while in fact α takes place.

To make the discussion concrete, assume we have two agents, 1 and 2, and that
they commonly know that a letter on their table contains either the information p or
¬p (but they do not know, at this stage, which it is). Agent 2 leaves the room for a
minute, and when he returns, he is unsure whether or not 1 read the letter. This action
would be described as

L12(L1?p ∪ L1?¬p ∪ !#)

which expresses the following. First of all, in fact nothing happened (this is denoted
by !#). However, the knowledge of both agents changes: they commonly learn that 1
might have learned p, and he might have learned ¬p.

Although this is basically the language for DEL as used in [108], we now show
how the example can be interpreted using the appealing semantics of [11]. In this se-
mantics, both the uncertainty about the state of the world, and that of the action taking
place, are represented in two independent Kripke models. The result of performing
an epistemic action in an epistemic state is then computed as a “cross-product”, see
Fig. 24.1. Model N in this figure represents that it is common knowledge among 1
and 2 that both are ignorant about p. The triangular shaped model N is the action
model that represents the knowledge and ignorance when L12(L1?p ∪L1?¬p ∪ !#) is
carried out. The points a, b, c of the model N are also called actions, and the formulas
accompanying the name of the actions are called pre-conditions: the condition that has
to be fulfilled in order for the action to take place. Since we are in the realm of truthful
information transfer, in order to perform an action that reveals p, the pre-condition p
must be satisfied, and we write pre(b) = p. For the case of nothing happening, only the
precondition # need be true. Summarizing, action b represents the action that agent 1
reads p in the letter, action c is the action when ¬p is read, and a is for nothing hap-
pening. As with ‘static’ epistemic models, we omit reflexive arrows, so that N indeed
represents that p or ¬p is learned by 1, or that nothing happens: moreover, it is com-
monly known between 1 and 2 that 1 knows which action takes place, while for 2 they
all look the same.

Now let M,w = 〈W,R1, R2, . . . , Rm, π〉, w be a static epistemic state, and M, w
an action in a finite action model. We want to describe what M,w ⊕ M, w = 〈W ′, R′

1,
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R′
2, . . . , R

′
m, π ′〉, w′, looks like—the result of ‘performing’ the action represented by

M, w in M,w. Every action from M, w that is executable in any state v ∈ W gives rise
to a new state in W ′: we let W ′ = {(v, v) | v ∈ W,M, v |= pre(v)}. Since epistemic
actions do not change any objective fact in the world, we stipulate π ′(v, v) = π(v).
Finally, when are two states (v, v) and (u, u) indistinguishable for agent i? Well, he
should be both unable to distinguish the originating states (Riuv), and unable to know
what is happening (Riuv). Finally, the new state w′ is of course (w, w). Note that this
construction indeed gives N, s⊕N, a = N ′, (s, a), in our example of Fig. 24.1. Finally,
let the action α be represented by the action model state M, w. Then the truth definition
under the action model semantics reads that M,w |= [α]ϕ iff M,w |= pre(w) implies
(M,w) ⊕ (M, w) |= ϕ. In our example: N, s |= [L12(L1?p ∪ L1?¬p ∪ !#)]ϕ iff
N ′, (s, a) |= ϕ.

Note that the accessibility relation in the resulting model is defined as

(24.3)Ri(u, u)(v, v) ⇔ Riuv & Riuv.

This means that an agent cannot distinguish two states after execution of an ac-
tion α, if and only if he could not distinguish the ‘sources’ of those states, and he does
not know which action exactly takes place. Put differently: if an agent knows the dif-
ference between two states s and t , then they can never look the same after performing
an action, and likewise, if two actions α and β take place in a state s, they will give
rise to new states that can be distinguished.

Dynamic epistemic logics provide us with a rich and powerful framework for
reasoning about information flow in multi-agent systems, and the possible epistemic
states that may arise as a consequence of actions performed by agents within a sys-
tem. However, they do not address the issues of how an agent chooses an action, or
whether an action represents a rational choice for an agent. For this, we need to con-
sider pro-attitudes: desires, intentions, and the like. The frameworks we describe in
the following three sections all try to bring together information-related attitudes (be-
lief and knowledge) with attitudes such as desiring and intending, with the aim of
providing a more complete account of rational action and agency.

24.2.3 Cohen and Levesque’s Intention Logic

One of the best known, and most sophisticated attempts to show how the various com-
ponents of an agent’s cognitive makeup could be combined to form a logic of rational
agency is due to Cohen and Levesque [22]. Cohen and Levesque’s formalism was
originally used to develop a theory of intention (as in “I intended to. . . ”), which the
authors required as a pre-requisite for a theory of speech acts (see next chapter for a
summary, and [23] for full details). However, the logic has subsequently proved to be
so useful for specifying and reasoning about the properties of agents that it has been
used in an analysis of conflict and cooperation in multi-agent dialogue [36, 35], as
well as several studies in the theoretical foundations of cooperative problem solving
[67, 60, 61]. This section will focus on the use of the logic in developing a theory of
intention. The first step is to lay out the criteria that a theory of intention must satisfy.

When building intelligent agents—particularly agents that must interact with
humans—it is important that a rational balance is achieved between the beliefs, goals,
and intentions of the agents.
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For example, the following are desirable properties of intention: An au-
tonomous agent should act on its intentions, not in spite of them; adopt intentions
it believes are feasible and forego those believed to be infeasible; keep (or com-
mit to) intentions, but not forever; discharge those intentions believed to have
been satisfied; alter intentions when relevant beliefs change; and adopt sub-
sidiary intentions during plan formation. [22, p. 214]

Following [15, 16], Cohen and Levesque identify seven specific properties that
must be satisfied by a reasonable theory of intention:

1. Intentions pose problems for agents, who need to determine ways of achieving
them.

2. Intentions provide a “filter” for adopting other intentions, which must not con-
flict.

3. Agents track the success of their intentions, and are inclined to try again if their
attempts fail.

4. Agents believe their intentions are possible.

5. Agents do not believe they will not bring about their intentions.

6. Under certain circumstances, agents believe they will bring about their inten-
tions.

7. Agents need not intend all the expected side effects of their intentions.

Given these criteria, Cohen and Levesque adopt a two tiered approach to the problem
of formalizing a theory of intention. First, they construct the logic of rational agency,
“being careful to sort out the relationships among the basic modal operators” [22,
p. 221]. On top of this framework, they introduce a number of derived constructs,
which constitute a “partial theory of rational action” [22, p. 221]; intention is one of
these constructs.

Syntactically, the logic of rational agency is a many-sorted, first-order, multi-modal
logic with equality, containing four primary modalities; see Table 24.1. The semantics
of Bel and Goal are given via possible worlds, in the usual way: each agent is assigned
a belief accessibility relation, and a goal accessibility relation. The belief accessibility
relation is euclidean, transitive, and serial, giving a belief logic of KD45. The goal rela-
tion is serial, giving a conative logic KD. It is assumed that each agent’s goal relation is
a subset of its belief relation, implying that an agent will not have a goal of something

Table 24.1. Atomic modalities in Cohen and Levesque’s logic

Operator Meaning

(Bel iϕ) agent i believes ϕ
(Goal iϕ) agent i has goal of ϕ
(Happens α) action α will happen next
(Done α) action α has just happened
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it believes will not happen. Worlds in the formalism are a discrete sequence of events,
stretching infinitely into past and future. The system is only defined semantically, and
Cohen and Levesque derive a number of properties from that. In the semantics, a num-
ber of assumptions are implicit, and one might vary on them. For instance, there is a
fixed domain assumption, giving us properties as ∀x(Bel i ϕ(x)) → (Bel i ∀xϕ(x)).
Also, agents ‘know what time it is’, we immediately obtain from the semantics the
validity of formulas like 2 : 30PM/3/6/85 → Bel i2 : 30PM/3/6/85.

The two basic temporal operators, Happens and Done, are augmented by some
operators for describing the structure of event sequences, in the style of dynamic
logic [41]. The two most important of these constructors are “ ; ” and “ ? ”:

α;α′ denotes α followed by α′

ϕ? denotes a “test action” ϕ

Here, the test must be interpreted as a test by the system; it is not a so-called
‘knowledge-producing action’ that can be used by the agent to acquire knowledge.

The standard future time operators of temporal logic, “ ! ” (always), and “♦”
(sometime) can be defined as abbreviations, along with a “strict” sometime operator,
Later:

♦α =̂ ∃x · (Happens x;α?)

!α =̂ ¬♦¬α

(Later p) =̂ ¬p ∧ ♦p

A temporal precedence operator, (Before pq) can also be derived, and holds if p holds
before q. An important assumption is that all goals are eventually dropped:

♦¬(Goal x (Later p))

The first major derived construct is a persistent goal.

(P-Goal i p) =̂ (Goal i (Later p)) ∧
(Bel i ¬p) ∧


Before

((Bel i p) ∨ (Bel i ! ¬p))
¬(Goal i (Later p))





So, an agent has a persistent goal of p if:

1. It has a goal that p eventually becomes true, and believes that p is not currently
true.

2. Before it drops the goal, one of the following conditions must hold:
(a) the agent believes the goal has been satisfied;

(b) the agent believes the goal will never be satisfied.

It is a small step from persistent goals to a first definition of intention, as in “intending
to act”. Note that “intending that something becomes true” is similar, but requires a
slightly different definition; see [22]. An agent i intends to perform action α if it has a
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persistent goal to have brought about a state where it had just believed it was about to
perform α, and then did α.

(Intend i α) =̂ (P-Goal i

[Done i (Bel i (Happens α))?;α]
)

Cohen and Levesque go on to show how such a definition meets many of Bratman’s
criteria for a theory of intention (outlined above). In particular, by basing the defin-
ition of intention on the notion of a persistent goal, Cohen and Levesque are able to
avoid overcommitment or undercommitment. An agent will only drop an intention if
it believes that the intention has either been achieved, or is unachievable.

A critique of Cohen and Levesque’s theory of intention is presented in [102]; space
restrictions prevent a discussion here.

24.2.4 Rao and Georgeff’s BDI Logics

One of the best-known (and most widely misunderstood) approaches to reasoning
about rational agents is the belief-desire-intention (BDI) model [17]. The BDI model
gets its name from the fact that it recognizes the primacy of beliefs, desires, and inten-
tions in rational action. The BDI model is particularly interesting because it combines
three distinct components:

• A philosophical foundation.
The BDI model is based on a widely respected theory of rational action in

humans, developed by the philosopher Michael Bratman [15].

• A software architecture.
The BDI model of agency does not prescribe a specific implementation. The

model may be realized in many different ways, and indeed a number of different
implementations of it have been developed. However, the fact that the BDI model
has been implemented successfully is a significant point in its favor. Moreover,
the BDI model has been used to build a number of significant real-world ap-
plications, including such demanding problems as fault diagnosis on the space
shuttle.

• A logical formalization.
The third component of the BDI model is a family of logics. These logics

capture the key aspects of the BDI model as a set of logical axioms. There are
many candidates for a formal theory of rational agency, but BDI logics in vari-
ous forms have proved to be among the most useful, longest-lived, and widely
accepted.

Intuitively, an agent’s beliefs correspond to information the agent has about the
world. These beliefs may be incomplete or incorrect. An agent’s desires represent
states of affairs that the agent would, in an ideal world, wish to be brought about.
(Implemented BDI agents require that desires be consistent with one another, although
human desires often fail in this respect.) Finally, an agent’s intentions represent desires
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that it has committed to achieving. The intuition is that an agent will not, in gen-
eral, be able to achieve all its desires, even if these desires are consistent. Ultimately,
an agent must therefore fix upon some subset of its desires and commit resources to
achieving them. These chosen desires, to which the agent has some commitment, are
intentions [22]. The BDI theory of human rational action was originally developed by
Michael Bratman [15]. It is a theory of practical reasoning—the process of reasoning
that we all go through in our everyday lives, deciding moment by moment which ac-
tion to perform next. Bratman’s theory focuses in particular on the role that intentions
play in practical reasoning. Bratman argues that intentions are important because they
constrain the reasoning an agent is required to do in order to select an action to per-
form. For example, suppose I have an intention to write a book. Then while deciding
what to do, I need not expend any effort considering actions that are incompatible
with this intention (such as having a summer holiday, or enjoying a social life). This
reduction in the number of possibilities I have to consider makes my decision making
considerably simpler than would otherwise be the case. Since any real agent we might
care to consider—and in particular, any agent that we can implement on a computer—
must have resource bounds, an intention-based model of agency, which constrains
decision-making in the manner described, seems attractive.

The BDI model has been implemented several times. Originally, it was realized
in IRMA, the Intelligent Resource-bounded Machine Architecture [17]. IRMA was
intended as a more or less direct realization of Bratman’s theory of practical reason-
ing. However, the best-known implementation is the Procedural Reasoning System
(PRS) [37] and its many descendants [32, 88, 26, 57]. In the PRS, an agent has data
structures that explicitly correspond to beliefs, desires, and intentions. A PRS agent’s
beliefs are directly represented in the form of PROLOG-like facts [21, p. 3]. Desires
and intentions in PRS are realized through the use of a plan library.1 A plan library, as
its name suggests, is a collection of plans. Each plan is a recipe that can be used by the
agent to achieve some particular state of affairs. A plan in the PRS is characterized by a
body and an invocation condition. The body of a plan is a course of action that can be
used by the agent to achieve some particular state of affairs. The invocation condition
of a plan defines the circumstances under which the agent should “consider” the plan.
Control in the PRS proceeds by the agent continually updating its internal beliefs, and
then looking to see which plans have invocation conditions that correspond to these
beliefs. The set of plans made active in this way correspond to the desires of the agent.
Each desire defines a possible course of action that the agent may follow. On each con-
trol cycle, the PRS picks one of these desires, and pushes it onto an execution stack,
for subsequent execution. The execution stack contains desires that have been chosen
by the agent, and thus corresponds to the agent’s intentions.

The third and final aspect of the BDI model is the logical component, which gives
us a family of tools that allow us to reason about BDI agents. There have been sev-
eral versions of BDI logic, starting in 1991 and culminating in Rao and Georgeff’s
1998 paper on systems of BDI logics [92, 96, 93–95, 89, 91]; a book-length survey
was published as [112]. We focus on [112].

Syntactically, BDI logics are essentially branching time logics (CTL or CTL*, de-
pending on which version you are reading about), enhanced with additional modal

1In this description of the PRS, I have modified the original terminology somewhat, to be more in line
with contemporary usage; I have also simplified the control cycle of the PRS slightly.
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operators Bel, Des, and Intend, for capturing the beliefs, desires, and intentions of
agents respectively. The BDI modalities are indexed with agents, so, for example, the
following is a legitimate formula of BDI logic

(Bel i (Intend j A ♦ p)) → (Bel i (Des j A ♦ p))

This formula says that if i believes that j intends that p is inevitably true eventually,
then i believes that j desires p is inevitable. Although they share much in common
with Cohen–Levesque’s intention logics, the first and most obvious distinction be-
tween BDI logics and the Cohen–Levesque approach is the explicit starting point of
CTL-like branching time logics. However, the differences are actually much more fun-
damental than this. The semantics that Rao and Georgeff give to BDI modalities in
their logics are based on the conventional apparatus of Kripke structures and pos-
sible worlds. However, rather than assuming that worlds are instantaneous states of
the world, or even that they are linear sequences of states, it is assumed instead that
worlds are themselves branching temporal structures: thus each world can be viewed
as a Kripke structure for a CTL-like logic. While this tends to rather complicate the
semantic machinery of the logic, it makes it possible to define an interesting array of
semantic properties, as we shall see below.

Before proceeding, we summarize the key semantic structures in the logic. In-
stantaneous states of the world are modeled by time points, given by a set T ; the set
of all possible evolutions of the system being modeled is given by a binary relation
R ⊆ T × T . A world (over T and R) is then a pair 〈T ′, R′〉, where T ′ ⊆ T is a
non-empty set of time points, and R′ ⊆ R is a branching time structure on T ′. Let W
be the set of all worlds over T . A pair 〈w, t〉, where w ∈ W and t ∈ Tw, is known as
a situation. If w ∈ W , then the set of all situations in w is denoted by Sw. We have
belief accessibility relations B, D, and I , modeled as functions that assign to every
agent a relation over situations. Thus, for example:

B : Agents → ℘(W × T × W).

We write Bw
t (i) to denote the set of worlds accessible to agent i from situation 〈w, t〉:

Bw
t (i) = {w′ | 〈w, t, w′〉 ∈ B(i)}. We define Dw

t and Iw
t in the obvious way. The

semantics of belief, desire and intention modalities are then given in the conventional
manner:

• 〈w, t〉 |= (Bel i ϕ) iff 〈w′, t〉 |= ϕ for all w′ ∈ Bw
t (i).

• 〈w, t〉 |= (Des i ϕ) iff 〈w′, t〉 |= ϕ for all w′ ∈ Dw
t (i).

• 〈w, t〉 |= (Intend i ϕ) iff 〈w′, t〉 |= ϕ for all w′ ∈ Iw
t (i).

The primary focus of Rao and Georgeff’s early work was to explore the possible inter-
relationships between beliefs, desires, and intentions from the perspective of semantic
characterization. In order to do this, they defined a number of possible interrelation-
ships between an agent’s belief, desire, and intention accessibility relations. The most
obvious relationships that can exist are whether one relation is a subset of another:
for example, if Dw

t (i) ⊆ Iw
t (i) for all i, w, t , then we would have as an interaction

axiom (Intend i ϕ) → (Des i ϕ). However, the fact that worlds themselves have
structure in BDI logic also allows us to combine such properties with relations on
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the structure of worlds themselves. The most obvious structural relationship that can
exist between two worlds—and the most important for our purposes—is that of one
world being a subworld of another. Intuitively, a world w is said to be a subworld
of world w′ if w has the same structure as w′ but has fewer paths and is otherwise
identical. Formally, if w,w′ are worlds, then w is a subworld of w′ (written w 0 w′)
iff paths(w) ⊆ paths(w′) but w,w′ agree on the interpretation of predicates and con-
stants in common time points.

The first property we consider is the structural subset relationship between ac-
cessibility relations. We say that accessibility relation R is a structural subset of
accessibility relation R̄ if for every R-accessible world w, there is an R̄-accessible
world w′ such that w is a subworld of w′. Formally, if R and R̄ are two accessibility
relations then we write R ⊆sub R̄ to indicate that if w′ ∈ Rw

t (i), then there exists some
w′′ ∈ R̄w

t (i) such that w′ 0 w′′. If R ⊆sub R̄, then we say R is a structural subset
of R̄.

We write R̄ ⊆sup R to indicate that if w′ ∈ Rw
t (i), then there exists some w′′ ∈

R̄w
t (i) such that w′′ 0 w′. If R ⊆sup R̄, then we say R is a structural superset of R̄.

In other words, if R is a structural superset of R̄, then for every R-accessible world w,
there is an R̄-accessible world w′ such that w′ is a subworld of w.

Finally, we can also consider whether the intersection of accessibility relations is
empty or not. For example, if Bw

t (i) ∩ Iw
t (i) 2= ∅, for all i, w, t , then we get the

following interaction axiom:

(Intend i ϕ) → ¬(Bel i ¬ϕ).

This axiom expresses an inter-modal consistency property. Just as we can undertake a
more fine-grained analysis of the basic interactions among beliefs, desires, and inten-
tions by considering the structure of worlds, so we are also able to undertake a more
fine-grained characterization of inter-modal consistency properties by taking into ac-
count the structure of worlds. We write Rw

t (i) ∩sup R̄w
t (i) to denote the set of worlds

w′ ∈ R̄w
t (i) for which there exists some world w′′ ∈ Rw

t (i) such that w′ 0 w′′. We
can then define ∩sub in the obvious way.

Putting all these relations together, we can define a range of BDI logical systems.
The most obvious possible systems, and the semantic properties that they correspond
to, are summarized in Table 24.2.

24.2.5 The KARO Framework

The KARO framework (for Knowledge, Actions, Results and Opportunities) is an
attempt to develop and formalize the ideas of Moore [76], who realized that dynamic
and epistemic logic can be perfectly combined into one modal framework. The basic
framework comes with a sound and complete axiomatization [70]. Also, results on
automatic verification of the theory are known, both using translations to first order
logic, as well as in a clausal resolution approach. The core of KARO is a combination
of epistemic (the standard knowledge operator Ki is an S5-operator) and dynamic
logic; many extensions have also been studied.

Along with the notion of the result of events, the notions of ability and opportunity
are among the most discussed and investigated in analytical philosophy. Ability plays
an important part in various philosophical theories, as, for instance, the theory of free
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Table 24.2. Systems of BDI logic

Name Semantic
condition

Corresponding formula schema

BDI-S1 B ⊆sup D ⊆sup I (Intend i E(ϕ)) → (Des i E(ϕ)) → (Bel i E(ϕ))
BDI-S2 B ⊆sub D ⊆sub I (Intend i A(ϕ)) → (Des i A(ϕ)) → (Bel i A(ϕ))
BDI-S3 B ⊆ D ⊆ I (Intend i ϕ) → (Des i ϕ) → (Bel i ϕ)
BDI-R1 I ⊆sup D ⊆sup B (Bel i E(ϕ)) → (Des i E(ϕ)) → (Intend i E(ϕ))
BDI-R2 I ⊆sub D ⊆sub B (Bel i A(ϕ)) → (Des i A(ϕ)) → (Intend i A(ϕ))
BDI-R3 I ⊆ D ⊆ B (Bel i ϕ) → (Des i ϕ) → (Intend i ϕ)
BDI-W1 B ∩sup D 2= ∅ (Bel i A(ϕ)) → ¬(Des i ¬A(ϕ))

D ∩sup I 2= ∅ (Des i A(ϕ)) → ¬(Intend i ¬A(ϕ))
B ∩sup I 2= ∅ (Bel i A(ϕ)) → ¬(Intend i ¬A(ϕ))

BDI-W2 B ∩sub D 2= ∅ (Bel i E(ϕ)) → ¬(Des i ¬E(ϕ))
D ∩sub I 2= ∅ (Des i E(ϕ)) → ¬(Intend i ¬E(ϕ))
B ∩sub I 2= ∅ (Bel i E(ϕ)) → ¬(Intend i ¬E(ϕ))

BDI-W3 B ∩ D 2= ∅ (Bel i ϕ) → ¬(Des i ¬ϕ)
D ∩ I 2= ∅ (Des i ϕ) → ¬(Intend i ¬ϕ)
B ∩ I 2= ∅ (Bel i ϕ) → ¬(Intend i ¬ϕ)

Source: [91, p. 321].

will and determinism, the theory of refraining and seeing-to-it, and deontic theories.
Following Kenny [62], the authors behind KARO consider ability to be the complex
of physical, mental and moral capacities, internal to an agent, and being a positive
explanatory factor in accounting for the agent’s performing an action. Opportunity, on
the other hand, is best described as circumstantial possibility, i.e., possibility by virtue
of the circumstances. The opportunity to perform some action is external to the agent
and is often no more than the absence of circumstances that would prevent or interfere
with the performance. Although essentially different, abilities and opportunities are
interconnected in that abilities can be exercised only when opportunities for their ex-
ercise present themselves, and opportunities can be taken only by those who have the
appropriate abilities. From this point of view it is important to remark that abilities are
understood to be reliable (cf. [18]), i.e., having the ability to perform a certain action
suffices to take the opportunity to perform the action every time it presents itself. The
combination of ability and opportunity determines whether or not an agent has the
(practical) possibility to perform an action.

Let i be a variable over a set of agents {1, . . . , n}. Actions in the set Ac are either
atomic actions (Ac = {a, b, . . .}) or composed (α, β, . . .) by means of confirmation
of formulas (confirm ϕ), sequencing (α;β), conditioning (if ϕ then α else β)
and repetition (while ϕ do α). These actions α can then be used to build new for-
mulas to express the possible result of the execution of α by agent i (the formula
[doi (α)]ϕ denotes that ϕ is a result of i’s execution of α), the opportunity for i to per-
form α (〈doi (α)〉#) and i’s capability of performing the action α (Aiα). The formula
〈doi (α)〉ϕ is shorthand for ¬[doi (α)]¬ϕ, thus expressing that one possible result of
performance of α by i implies ϕ.

With these tools at hand, one has already a rich framework to reason about agent’s
knowledge about doing actions. For instance, a property like perfect recall

Ki[doi (α)]ϕ → [doi (α)]Kiϕ
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can now be enforced for particular actions α. Also, the core KARO already guaran-
tees a number of properties, of which we list a few:

1. Ai confirm ϕ ↔ ϕ.

2. Aiα1;α2 ↔ Aiα1 ∧ [doi (α1)]Aiα2 or Aiα1;α2 ↔ Aiα1 ∧ 〈doi (α1)〉Aiα2.

3. Ai if ϕ then α1 else α2 fi ↔ ((ϕ ∧ Aiα1) ∨ (¬ϕ ∧ Aiα2)).

4. Ai while ϕ do α od ↔ (¬ϕ ∨ (ϕ ∧ Aiα ∧ [doi (α)]Ai while ϕ do α od))
or Ai while ϕ do α od ↔ (¬ϕ∨(ϕ∧Aiα∧〈doi (α)〉Ai while ϕ do α od)).

For a discussion about the problems with the ability to do a sequential action (the
possible behavior of the items 2 and 4 above), we refer to [70], or to a general solution
to this problem that was offered in [48].

Practical possibility is considered to consist of two parts, viz. correctness and fea-
sibility: action α is correct with respect to ϕ iff 〈doi (α)〉ϕ holds and α is feasible iff
Aiα holds.

PracPossi (α, ϕ)〈doi (α)〉ϕ ∧ Aiα.

The importance of practical possibility manifests itself particularly when ascribing
—from the outside—certain qualities to an agent. It seems that for the agent itself
practical possibilities are relevant in so far as the agent has knowledge of these possi-
bilities. To formalize this kind of knowledge, KARO comes with a Can-predicate and
a Cannot-predicate. The first of these predicates concerns the knowledge of agents
about their practical possibilities, the latter predicate does the same for their practical
impossibilities.

Cani (α, ϕ)
5= KiPracPossi (α, ϕ) and

Cannoti (α, ϕ)
5= Ki¬PracPossi (α, ϕ).

The Can-predicate and the Cannot-predicate integrate knowledge, ability, oppor-
tunity and result, and seem to formalize one of the most important notions of agency.
In fact it is probably not too bold to say that knowledge like that formalized through
the Can-predicate, although perhaps in a weaker form by taking aspects of uncertainty
into account, underlies all acts performed by rational agents. For rational agents act
only if they have some information on both the possibility to perform the act, and its
possible outcome. It therefore seems worthwhile to take a closer look at both the Can-
predicate and the Cannot-predicate. The following properties focus on the behavior of
the means-part of the predicates, which is the α in Cani (α, ϕ) and Cannoti (α, ϕ).

1. Cani (confirm ϕ,ψ) ↔ Ki (ϕ ∧ ψ).

2. Cannoti (confirm ϕ,ψ) ↔ Ki (¬ϕ ∨ ¬ψ).

3. Cani (α1;α2, ϕ) ↔ Cani (α1, PracPossi (α2, ϕ)).

4. Cani (α1;α2, ϕ) → 〈doi (α1)〉Cani (α2, ϕ) if i has perfect recall regarding α1.

5. Cani (if ϕ then α1 else α2 fi, ψ) ∧ Kiϕ ↔ Cani (α1, ψ) ∧ Kiϕ.
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6. Cani (if ϕ then α1 else α2 fi, ψ) ∧ Ki¬ϕ ↔ Cani (α2, ψ) ∧ Ki¬ϕ.

7. Cani (while ϕ do α od, ψ)∧Kiϕ ↔ Cani (α, PracPossi (while ϕ do α od,
ψ)) ∧ Kiϕ.

In Actions that make you change your mind [69], the authors of KARO look at
specific atomic actions. At that the agents can perform, i.e., doxastic actions of ex-
panding, contracting or revising its beliefs (we have now both knowledge (Ki) and
belief (Bi)). Those actions are assumed to have the following general properties:

• |= 〈doi (α)〉# realizability

• |= 〈doi (α)〉χ → [doi (α)]χ determinism

• |= 〈doi (α;α)〉χ ↔ 〈doi (α)〉χ idempotence

Realizability of an action implies that agents have the opportunity to perform the
action regardless of circumstances; determinism of an action means that performing
the action results in a unique state of affairs, and idempotence of an action implies that
performing the action an arbitrary number of times has the same effect as performing
the action just once.

Then, specific definitions for the three actions are given, and related to the AGM
framework of belief revision [4]. As an illustration, we list some properties, written
in one object language, of the action of revising one’s beliefs (here, ϕ is an objective
formula):

• [doi (revise ϕ)]Biϕ.

• [doi (revise ϕ)]Biϑ → [doi (expand ϕ)]Biϑ .

• ¬Bi¬ϕ → ([doi (expand ϕ)]Biϑ ↔ [doi (revise ϕ)]Biϑ).

• Ki¬ϕ ↔ [doi (revise ϕ)]Bi⊥.

• Ki (ϕ ↔ ψ) → ([doi (revise ϕ)]Biϑ ↔ [doi (revise ψ)]Biϑ).

In [74], the KARO-authors show how motivational attitudes can be incorporated
in their framework. The most primitive notion here is that agent i wishes ϕ (Wiϕ),
from which it has to select some (if so, Ciϕ becomes true). In order to define what a
goal is, a higher order notion of implementability is first defined:

♦iϕ ⇔ ∃k ∈ N ∃a1, . . . , ak ∈ AtPracPossi (a1; . . . ; ak, ϕ)).

Now the notion of a goal in KARO is as follows:

Goaliϕ
5= Wiϕ ∧ ¬ϕ ∧ ♦iϕ ∧ Ciϕ.

It is easily seen that this definition of a goal does not suffer from effects as being
closed under consequence. In [74], these motivational attitudes are also ‘dynamized’,
in the sense that actions, like committing and decommitting are added, with which an
agent can change its motivational attitudes. Semantically, this is supported by letting
the agents maintain an “agenda”. Space does not permit us to investigate this issue
further.

fai3 v.2007/09/05 Prn:11/09/2007; 12:00 F:fai3024.tex; VTEX/Dovile p. 16
aid: 3024 pii: S1574-6526(07)03024-6 docsubty: REV



W. van der Hoek, M. Wooldridge 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

24.2.6 Discussion

Undoubtedly, formalizing the informational and motivational attitudes in a context
with evolving time, or where agents can do actions, have greatly helped to improve
our understanding of complex systems. At the same time, admittedly, there are many
weaknesses and open problems with such approaches.

To give one example of how a formalization can help us to become more clear
about the interrelationship between the notions defined here, recall that Rao and
Georgeff assume the notion of belief-goal compatibility, saying

Goaliϕ → Biϕ

for formulas ϕ that refer to the future.
Cohen and Levesque, however, put a lot of emphasis on their notion of realizability,

stating exactly the opposite:

Biϕ → Goaliϕ.

By analyzing the framework of Cohen and Levesque more closely, it appears that they
have a much weaker property in mind, which is

Goaliϕ → ¬Bi¬ϕ.

To mention just one aspect in which the approach mentioned here are still far from
completed, we recall that the three frameworks allow one to reason about many agents,
but are in essence still one-agent systems. Where notions as distributed and common
knowledge are well understood epistemic notions in multi-agent systems, their moti-
vational analogues seem to be much harder and are yet only partially understood (see
Cohen and Levesque’s [24] or Tambe’s [104] on teamwork).

24.2.7 Cognitive Agent Logics in Practice

Broadly speaking, logic has played a role in three aspects of software development.

• as a specification language;

• as a programming language; and

• as a verification language.

In the sections that follow, we will discuss the possible use of logics of rational agency
in these three processes.

Specification

The software development process begins by establishing the client’s requirements.
When this process is complete, a specification is developed, which sets out the func-
tionality of the new system. Temporal and dynamic logics have found wide applica-
bility in the specification of systems. An obvious question is therefore whether logics
of rational agency might be used as specification languages.

A specification expressed such a logic would be a formula ϕ. The idea is that such a
specification would express the desirable behavior of a system. To see how this might
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work, consider the following formula of BDI logic (in fact from [112]), intended to
form part of a specification of a process control system.

(Bel i Open(valve32)) → (Intend i (Bel j Open(valve32))).

This formula says that if i believes valve 32 is open, then i should intend that j believes
valve 32 is open. A rational agent i with such an intention can select a speech act to
perform in order to inform j of this state of affairs. It should be intuitively clear how a
system specification might be constructed using such formulae, to define the intended
behavior of a system.

One of the main desirable features of a software specification language is that it
should not dictate how a specification should be satisfied by an implementation. It
should be clear that the specification above has exactly these properties. It does not
dictate how agent i should go about making j aware that valve 32 is open. We simply
expect i to behave as a rational agent given such an intention.

There are a number of problems with the use of such logics for specification. The
most worrying of these is with respect to their semantics. The semantics for the modal
connectives (for beliefs, desires, and intentions) are given in the normal modal logic
tradition of possible worlds [19]. So, for example, an agent’s beliefs in some state
are characterized by a set of different states, each of which represents one possibility
for how the world could actually be, given the information available to the agent. In
much the same way, an agent’s desires in some state are characterized by a set of
states that are consistent with the agent’s desires. Intentions are represented similarly.
There are several advantages to the possible worlds model: it is well studied and well
understood, and the associated mathematics of correspondence theory is extremely
elegant. These attractive features make possible worlds the semantics of choice for
almost every researcher in formal agent theory. However, there are also a number
of serious drawbacks to possible worlds semantics. First, possible worlds semantics
imply that agents are logically perfect reasoners (in that their deductive capabilities
are sound and complete), and they have infinite resources available for reasoning. No
real agent, artificial or otherwise, has these properties.

Second, possible worlds semantics are generally ungrounded. That is, there is usu-
ally no precise relationship between the abstract accessibility relations that are used to
characterize an agent’s state, and any concrete computational model. As we shall see
in later sections, this makes it difficult to go from a formal specification of a system
in terms of beliefs, desires, and so on, to a concrete computational system. Similarly,
given a concrete computational system, there is generally no way to determine what
the beliefs, desires, and intentions of that system are. If temporal modal logics of ratio-
nal agency are to be taken seriously as specification languages, then this is a significant
problem.

Implementation

Once given a specification, we must implement a system that is correct with respect to
this specification. The next issue we consider is this move from abstract specification
to concrete computational system. There are at least two possibilities for achieving
this transformation that we consider here:

1. somehow directly execute or animate the abstract specification; or
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2. somehow translate or compile the specification into a concrete computational
form using an automatic translation technique.

In the subsections that follow, we shall investigate each of these possibilities in turn.

Directly executing agent specifications. Suppose we are given a system specifica-
tion, ϕ, which is expressed in some logical language L. One way of obtaining a
concrete system from ϕ is to treat it as an executable specification, and interpret the
specification directly in order to generate the agent’s behavior. Interpreting an agent
specification can be viewed as a kind of constructive proof of satisfiability, whereby we
show that the specification ϕ is satisfiable by building a model (in the logical sense)
for it. If models for the specification language L can be given a computational interpre-
tation, then model building can be viewed as executing the specification. To make this
discussion concrete, consider the Concurrent METATEM programming language [33].
In this language, agents are programmed by giving them a temporal logic specification
of the behavior it is intended they should exhibit; this specification is directly executed
to generate each agent’s behavior. Models for the temporal logic in which Concurrent
METATEM agents are specified are linear discrete sequences of states: executing a
Concurrent METATEM agent specification is thus a process of constructing such a se-
quence of states. Since such state sequences can be viewed as the histories traced out
by programs as they execute, the temporal logic upon which Concurrent METATEM is
based has a computational interpretation; the actual execution algorithm is described
in [12]. A somewhat related language is the IMPACT framework of Subrahmanian et
al. [103]. IMPACT is a rich framework for programming agents, which draws upon
and considerably extends some ideas from logic programming. Agents in IMPACT are
programmed by using rules that incorporate deontic modalities (permitted, forbidden,
obliged [75]). These rules can be interpreted to determine the actions that an agent
should perform at any given moment [103, p. 171].

Note that executing Concurrent METATEM agent specifications is possible primar-
ily because the models upon which the Concurrent METATEM temporal logic is based
are comparatively simple, with an obvious and intuitive computational interpretation.
However, agent specification languages in general (e.g., the BDI formalisms of Rao
and Georgeff [90]) are based on considerably more complex logics. In particular, they
are usually based on a semantic framework known as possible worlds [19]. The tech-
nical details are somewhat involved for the purposes of this article: the main point
is that, in general, possible worlds semantics do not have a computational interpreta-
tion in the way that Concurrent METATEM semantics do. Hence it is not clear what
“executing” a logic based on such semantics might mean.

In response to this issue, a number of researchers have attempted to develop exe-
cutable agent specification languages with a simplified logical basis, that has a compu-
tational interpretation. An example is Rao’s AgentSpeak(L) language, which although
essentially a BDI system, has a simple computational semantics [88]. The 3APL
project [45] is also an attempt to have a agent programming language with a well-
defined semantics, based on transition systems. One advantage of having a thorough
semantics is that it enables one to compare different agent programming languages,
such as AgentSpeak(L) with 3APL [44] or AGENT-0 and 3APL [46]. One complica-
tion in bridging the gap between the agent programming paradigm and the formal sys-
tems of Sections 24.2.3–24.2.5, is that the former usually take goals to be procedural

fai3 v.2007/09/05 Prn:11/09/2007; 12:00 F:fai3024.tex; VTEX/Dovile p. 19
aid: 3024 pii: S1574-6526(07)03024-6 docsubty: REV



20 24. Multi-Agent Systems

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

(a plan), whereas goals in the latter are declarative (a desired state). A programming
language that tries to bridge the gap in this respect is the language GOAL [64].

GOLOG [66, 97] and its multiagent sibling CONGOLOG [65] represent another rich
seam of work on logic-oriented approaches to programming rational agents. Essen-
tially, GOLOG is a framework for executing a fragment of the situation calculus; the
situation calculus is a well known logical framework for reasoning about action [73].
Put crudely, writing a GOLOG program involves expressing a logical theory of what
action an agent should perform, using the situation calculus; this theory, together
with some background axioms, represents a logical expression of what it means for
the agent to do the right action. Executing such a program reduces to constructively
solving a deductive proof problem, broadly along the lines of showing that there is
a sequence of actions representing an acceptable computation according to the the-
ory [97, p. 121]; the witness to this proof will be a sequence of actions, which can
then be executed.

Compiling agent specifications. An alternative to direct execution is compilation. In
this scheme, we take our abstract specification, and transform it into a concrete compu-
tational model via some automatic synthesis process. The main perceived advantages
of compilation over direct execution are in run-time efficiency. Direct execution of
an agent specification, as in Concurrent METATEM, above, typically involves manip-
ulating a symbolic representation of the specification at run time. This manipulation
generally corresponds to reasoning of some form, which is computationally costly.
Compilation approaches aim to reduce abstract symbolic specifications to a much sim-
pler computational model, which requires no symbolic representation. The ‘reasoning’
work is thus done off-line, at compile-time; execution of the compiled system can then
be done with little or no run-time symbolic reasoning.

Compilation approaches usually depend upon the close relationship between mod-
els for temporal/modal logic (which are typically labeled graphs of some kind), and
automata-like finite state machines. For example, Pnueli and Rosner [85] synthesize
reactive systems from branching temporal logic specifications. Similar techniques
have also been used to develop concurrent system skeletons from temporal logic spec-
ifications. Perhaps the best-known example of this approach to agent development is
the situated automata paradigm of Rosenschein and Kaelbling [99]. They use an epis-
temic logic to specify the perception component of intelligent agent systems. They
then used an technique based on constructive proof to directly synthesize automata
from these specifications [98].

The general approach of automatic synthesis, although theoretically appealing,
is limited in a number of important respects. First, as the agent specification lan-
guage becomes more expressive, then even offline reasoning becomes too expensive
to carry out. Second, the systems generated in this way are not capable of learning
(i.e., they are not capable of adapting their “program” at run-time). Finally, as with
direct execution approaches, agent specification frameworks tend to have no concrete
computational interpretation, making such a synthesis impossible.

Verification

Once we have developed a concrete system, we need to show that this system is cor-
rect with respect to our original specification. This process is known as verification,
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and it is particularly important if we have introduced any informality into the devel-
opment process. We can divide approaches to the verification of systems into two
broad classes: (1) axiomatic; and (2) semantic (model checking). In the subsections
that follow, we shall look at the way in which these two approaches have evidenced
themselves in agent-based systems.

Axiomatic approaches. Axiomatic approaches to program verification were the first
to enter the mainstream of computer science, with the work of Hoare in the late
1960s [47]. Axiomatic verification requires that we can take our concrete program,
and from this program systematically derive a logical theory that represents the be-
havior of the program. Call this the program theory. If the program theory is expressed
in the same logical language as the original specification, then verification reduces to
a proof problem: show that the specification is a theorem of (equivalently, is a logical
consequence of) the program theory. The development of a program theory is made
feasible by axiomatizing the programming language in which the system is imple-
mented. For example, Hoare logic gives us more or less an axiom for every statement
type in a simple PASCAL-like language. Once given the axiomatization, the program
theory can be derived from the program text in a systematic way.

Perhaps the most relevant work from mainstream computer science is the specifi-
cation and verification of reactive systems using temporal logic, in the way pioneered
by Pnueli, Manna, and colleagues [72]. The idea is that the computations of reactive
systems are infinite sequences, which correspond to models for linear temporal logic.
Temporal logic can be used both to develop a system specification, and to axiomatize a
programming language. This axiomatization can then be used to systematically derive
the theory of a program from the program text. Both the specification and the program
theory will then be encoded in temporal logic, and verification hence becomes a proof
problem in temporal logic.

Comparatively little work has been carried out within the agent-based systems
community on axiomatizing multi-agent environments. We shall review just one ap-
proach. In [111], an axiomatic approach to the verification of multi-agent systems was
proposed. Essentially, the idea was to use a temporal belief logic to axiomatize the
properties of two multi-agent programming languages. Given such an axiomatization,
a program theory representing the properties of the system could be systematically
derived in the way indicated above. A temporal belief logic was used for two rea-
sons. First, a temporal component was required because, as we observed above, we
need to capture the ongoing behavior of a multi-agent system. A belief component
was used because the agents we wish to verify are each symbolic AI systems in
their own right. That is, each agent is a symbolic reasoning system, which includes
a representation of its environment and desired behavior. A belief component in the
logic allows us to capture the symbolic representations present within each agent. The
two multi-agent programming languages that were axiomatized in the temporal belief
logic were Shoham’s AGENT0 [101], and Fisher’s Concurrent METATEM (see above).
Note that this approach relies on the operation of agents being sufficiently simple
that their properties can be axiomatized in the logic. It works for Shoham’s AGENT0
and Fisher’s Concurrent METATEM largely because these languages have a simple
semantics, closely related to rule-based systems, which in turn have a simple logi-
cal semantics. For more complex agents, an axiomatization is not so straightforward.
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Also, capturing the semantics of concurrent execution of agents is not easy (it is, of
course, an area of ongoing research in computer science generally).

Semantic approaches: model checking. Ultimately, axiomatic verification reduces to
a proof problem. Axiomatic approaches to verification are thus inherently limited by
the difficulty of this proof problem. Proofs are hard enough, even in classical logic; the
addition of temporal and modal connectives to a logic makes the problem considerably
harder. For this reason, more efficient approaches to verification have been sought. One
particularly successful approach is that of model checking [20]. As the name suggests,
whereas axiomatic approaches generally rely on syntactic proof, model checking ap-
proaches are based on the semantics of the specification language.

The model checking problem, in abstract, is quite simple: given a formula ϕ of
language L, and a model M for L, determine whether or not ϕ is valid in M , i.e.,
whether or not M |=L ϕ. Model checking-based verification has been studied in
connection with temporal logic. The technique once again relies upon the close re-
lationship between models for temporal logic and finite-state machines. Suppose that
ϕ is the specification for some system, and π is a program that claims to implement ϕ.
Then, to determine whether or not π truly implements ϕ, we take π , and from it gen-
erate a model Mπ that corresponds to π , in the sense that Mπ encodes all the possible
computations of π ; determine whether or not Mπ |= ϕ, i.e., whether the specification
formula ϕ is valid in Mπ ; the program π satisfies the specification ϕ just in case the
answer is ‘yes’. The main advantage of model checking over axiomatic verification is
in complexity: model checking using the branching time temporal logic CTL [20] can
be done in polynomial time, whereas the proof problem for most modal logics is quite
complex.

In [95], Rao and Georgeff present an algorithm for model checking BDI logic.
More precisely, they give an algorithm for taking a logical model for their (proposi-
tional) BDI agent specification language, and a formula of the language, and deter-
mining whether the formula is valid in the model. The technique is closely based on
model checking algorithms for normal modal logics [40]. They show that despite the
inclusion of three extra modalities (for beliefs, desires, and intentions), into the CTL
branching time framework, the algorithm is still quite efficient, running in polynomial
time. So the second step of the two-stage model checking process described above can
still be done efficiently. However, it is not clear how the first step might be realized
for BDI logics. Where does the logical model characterizing an agent actually comes
from—can it be derived from an arbitrary program π , as in mainstream computer sci-
ence? To do this, we would need to take a program implemented in, say, JAVA, and
from it derive the belief, desire, and intention accessibility relations that are used to
give a semantics to the BDI component of the logic. Because, as we noted earlier, there
is no clear relationship between the BDI logic and the concrete computational models
used to implement agents, it is not clear how such a model could be derived.

One approach to this problem was presented in [113], where an imperative pro-
gramming language called MABLE was presented, with an explicit BDI semantics.
Model checking for the language was implemented by mapping the language to the
input language for the SPIN model checking system [56], and by reducing formulae
in a restricted BDI language to the Linear Temporal Logic format required by SPIN.
Here, for example, is a sample claim that may be made about a MABLE system, which
may be automatically verified by model checking:
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claim
[]
((believe agent2

(intend agent1
(believe agent2 (a == 10))))

->
<>(believe agent2 (a == 10))

);

This claim says that it is always ([]) the case that if agent 2 believes that agent 1
intends that agent 2 believes that variable a has the value 10, then subsequently (<>),
agent 2 will itself believe that a has the value 10. MABLE was developed primarily
as a testbed for exploring possible semantics for agent communication, and was not
intended for large-scale system verification.

Several model checkers for logics combining knowledge, time, and other modal-
ities have become developed in recent years. For example, using techniques similar
to those used for CTL model checkers [20], Raimondi and Lomuscio implemented
MCMAS, a model checker that supports a variety of epistemic, temporal, and deon-
tic logics [87, 71]. Another recent approaches to model checking multi-agent systems
is [49], which involves model checking temporal epistemic logics by reducing the
model checking problem to a conventional LTL model checking problem.

24.3 Representing the Strategic Structure of a System

The second main strand of research that we describe focuses not on the cognitive states
of agents, but on the strategic structure of the environment: what agents can achieve,
either individually or in groups. The starting point for such formalisms is a model of
strategic ability.

Over the past three decades, researchers from many disciplines have attempted to
develop a general purpose logic of strategic ability. Within the artificial intelligence
(AI) community, it was understood that such a logic could be used in order to gain
a better understanding of planning systems [31, 68, 5]. The most notable early ef-
fort in this direction was Moore’s dynamic epistemic logic, described above [76, 77].
Moore’s work was subsequently enhanced by many other researchers, perhaps most
notably, Morgenstern [78, 79]. These distinctions also informed later attempts to in-
tegrate a logic of ability into more general logics of rational action in autonomous
agents [115, 112] (see [114] for a survey of such logics).

In a somewhat parallel thread of research, researchers in the philosophy of ac-
tion developed a range of logics underpinned by rather similar ideas and motivations.
A typical example is that of Brown, who developed a logic of individual ability in the
mid-1980s [18]. Brown’s main claim was that modal logic was a useful tool for the
analysis of ability, and that previous—unsuccessful—attempts to characterize ability
in modal logic were based on an over-simple semantics. Brown’s account of the se-
mantics of ability was as follows [18, p. 5]:

[An agent can achieve A] at a given world iff there exists a relevant cluster of
worlds, at every world of which A is true.
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Notice the ∃∀ pattern of quantifiers in this account. Brown immediately noted that
this gave the resulting logic a rather unusual flavor, neither properly existential nor
properly universal [18, p. 5]:

Cast in this form, the truth condition [for ability] involves two metalinguis-
tic quantifiers (one existential and one universal). In fact, [the character of the
ability operator] should be a little like each.

More recently, there has been a surge of interest in logics of strategic ability, which
has been sparked by two largely independent developments: Pauly’s development of
Coalition Logic [83, 82, 81, 84], and the development of ATL by Alur, Henzinger, and
Kupferman [8, 38, 27]. Although these logics are very closely related, the motivation
and background to the two systems is strikingly different.

24.3.1 Coalition Logic

Pauly’s Coalition Logic was developed in an attempt to shed some light on the
links between logic—and in particular, modal logic—and the mathematical theory
of games [80]. Pauly showed how the semantic structures underpinning a family of
logics of cooperative ability could be formally understood as games of various types;
he gave correspondence results between properties of the games and axioms of the
logic, gave complete axiomatizations of the various resulting logics, determined the
computational complexity of the satisfiability and model checking problems for his
logics, and in addition, demonstrated how these logics could be applied to the formal
specification and verification of social choice procedures. The basic modal operator
in Pauly’s logic is of the form [C]ϕ, where C is a set of agents (i.e., a subset of the
grand coalition Σ), and ϕ is a sentence; the intended reading is that “C can cooperate
to ensure that ϕ”.

The semantics of cooperation modalities are given in terms of an effectivity func-
tion, which defines for every coalition C the states that C can cooperate to bring about;
the effectivity function E : S → (P(Σ) → P(P(S))), gives, for any state t and coali-
tion C a set of sets of end-states EC(t), with the intended meaning of S ∈ EC(t) that C
can enforce the outcome to be in S (although C may not be able to pinpoint the exact
outcome that emerges with this choice; this generally depends on the choices of agents
outside C, or ‘choices’ made by the environment). This effectivity function comes on
a par with a modal operator [C] with truth definition

t |= [C]ϕ iff for some S ∈ EC(t): for all s(s |= ϕ iff s ∈ S).

In words: coalition is effective for, or can enforce ϕ if there is a set of states S
that it is effective for, i.e., which it can choose, which is exactly the denotation of ϕ:
S = !ϕ!. It seems reasonable to say that C is also effective for ϕ if it can choose a set
of states S that ‘just’ guarantees ϕ, i.e., for which we have S ⊆ !ϕ!. This will be taken
care of by imposing monotonicity on effectivity functions: we will discuss constraints
on effectivity in the end of this section.

In games and other structures for cooperative and competitive reasoning, effectivity
functions are convenient when one is interested in the outcomes of the game or the
encounter, and not so much about intermediate states, or how a certain state is reached.
Effectivity is also a level in which on can decide whether two interaction scenarios are
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Figure 24.2: Two games G1 and G2 that are the same in terms of effectivity. H is an imperfect information
game: see Section 24.3.3.

the same. The two games G1 and G2 from Fig. 24.2 are “abstract” in the sense that
they do not lead to payoffs for the players but rather to states which satisfy certain
properties, encoded with propositional atoms p, q and u. Such atoms could refer to
which player is winning, but also denote other properties of an end-state, such as some
distribution of resources, or “payments”. Both games are two-player games: in G1,
player A makes the first move, which he choses form L (Left) and R (Right). In that
game, player E is allowed to chose between l and r , respectively, but only if A plays
R: otherwise the game ends after one move in the state satisfying p. In game G2, both
players have the same repertoire of choices, but the order in which the players choose
is different. It looks like in G1 player A can hand over control E, why the converse
seems to be true for G2. Moreover, in G2, the player who is not the initiator (i.e.,
player A), will be allowed to make a choice, no matter the choice of his opponent.

Despite all these differences between the two games, when we evaluate them with
respect to what each coalition can achieve, they are the same! To become a little more
precise, let us define the powers of a coalition in terms of effectivity functions E.
In game G1, player A’s effectivity gives EA(ρ1) = {a, c, d}. Similarly, player E’s
effectivity yields {{a, c}, {a, c}}: he can enforce the game to end in a or c (by playing l),
but he can also force be the end-state among a and d (by playing r). Obviously, we
also have E{A,E}(ρ1) = {{a}, {c}, {d}}: players A and E together can enforce the game
to end in any end-state. When reasoning about this, we have to restrict ourselves to the
properties that are true in those end states. In coalition logic, what we have just noted
semantically would be described as:

G1 |= [A]p ∧ [A](q ∨ u) ∧ [E](p ∨ q) ∧ [E](p ∨ u) ∧
[A,E]p ∧ [A,E]q ∧ [A,E]r.

Being equipped with the necessary machinery, it now is easy to see that the game
G2 verifies the same formula, indeed, in terms of what propositions can be achieved,
we are in a similar situation as in the previous game: E is effective for {p, q} (by
playing l) and also for {p, u} (play r). Likewise, A is effective for {p} (play L) and for
{q, u} (play R). The alert reader will have recognized the logical law (p ∧ (q ∨ r)) ≡
((p ∧ q) ∨ (p ∧ u)) resembling the ‘equivalence’ of the two games: (p ∧ (q ∨ r))
corresponds to A’s power in G1, and ((p∧q)∨(p∧u)) to A’s power in G2. Similarly,
the equivalence of E’s powers is reflected by the logical equivalence (p ∨ (q ∧ r)) ≡
((p ∨ q) ∧ (p ∨ u)).
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At the same time, the reader will have recognized the two metalinguistic quantifiers
in the use of the effectivity function E, laid down in its truth-definition above. A set of
outcomes S is in EC iff for some choice of C, we will end up in S, under all choices of
the complement of C (the other agents). This notion of so-called α-effectivity uses the
∃∀-order of the quantifiers: what a coalition can establish through the truth-definition
above, their α-ability, is sometimes also called ∃∀-ability. Implicit within the notion
of α-ability is the fact that C have no knowledge of the choice that the other agents
make; they do not see the choice of C (i.e., the complement of C), and then decide
what to do, but rather they must make their decision first. This motivates the notion
of β-ability (i.e., “ ∀∃ ”-ability): coalition C is said to have the β-ability for ϕ if for
every choice σC available to C, there exists a choice σC for C such that if C choose
σC and C choose σC , then ϕ will result. Thus C being β-able to ϕ means that no
matter what the other agents do, C have a choice such that, if they make this choice,
then ϕ will be true. Note the “ ∀∃ ” pattern of quantifiers: C are implicitly allowed to
make their choice while being aware of the choice made by C. We will come back
to information of other player’s moves in Section 24.3.3, and to the pairs of α and β
ability in Section 24.3.4.

We end this section by mentioning some properties of α-abilities. The axioms for
[C]ϕ based on α-effectivity (or effectivity, for short) are summarized in Fig. 24.3;
see also Pauly’s [83]. The two extreme coalitions ∅ and the grand coalition Σ are of
special interest. [Σ]ϕ expresses that some end-state satisfies ϕ, whereas [∅]ϕ holds if
no agent needs to do anything for ϕ to hold in the next state.

Some of the axioms of coalition logic correspond to restrictions on effectivity
functions E : S → (P(Σ) → P(P(S))). First of all, we demand that ∅ /∈ EC (this
guarantees axiom ⊥). The function E is also assumed to be monotonic: For every coali-
tion C ⊆ Σ , if X ⊆ X′ ⊆ S, X ∈ E(C) implies X′ ∈ E(C). This says that if a coalition
can enforce an outcome in the set X, it also can guarantee the outcome to be in any
superset X′ of X (this corresponds to axiom (M)). An effectivity function E is C-maxi-
mal if for all X, if X /∈ E(C) then X ∈ E(C). In words: If the other agents C cannot
guarantee an outcome outside X (i.e, in X), then C is able to guarantee to be it in X.
We require effectivity functions to be Σ-maximal. (This enforces axiom (N—Pauly’s
symbol for the grand coalition is N ): if the empty coalition can not enforce an outcome
satisfying ϕ, the grand coalition Σ can enforce ϕ. The final principle governs the for-
mation of coalitions. It states that coalitions can combine their strategies to (possibly)
achieve more: E is superadditive if for all X1, X2, C1, C2 such that C1 ∩ C2 = ∅,

(⊥) ¬[C]⊥
(N) (¬[∅]¬ϕ → [Σ]ϕ)

(M) [C](ϕ ∧ ψ) → [C]ψ
(S) ([C1]ϕ1 ∧ [C2]ϕ2) → [C1 ∪ C2](ϕ1 ∧ ϕ2)

where C1 ∩ C2 = ∅
(MP) from ϕ and ϕ → ψ infer ψ
(Nec) from ϕ infer [C]ϕ

Figure 24.3: The axioms and inference rules of Coalition Logic.
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X1 ∈ E(C1) and X2 ∈ E(C2) imply that X1 ∩ X2 ∈ E(C1 ∪ C2). This obviously
corresponds to axiom (S).

24.3.2 Strategic Temporal Logic: ATL

In Coalition Logic one reasons about the powers of coalitions with respect to final
outcomes. However, in many multi-agent scenarios, the strategic considerations con-
tinue during the process. It would be interesting to study a representation language for
interaction that is able to express the temporal differences in the two games G1 and
G2 of Fig. 24.2. Alternating-time Temporal Logic (ATL) is intended for this purpose.

Although it is similar to Coalition Logic, ATL emerged from a very different
research community, and was developed with an entirely different set of motiva-
tions in mind. The development of ATL is closely linked with the development of
branching-time temporal logics for the specification and verification of reactive sys-
tems [29, 28, 109]. Recall that CTL combines path quantifiers “A” and “E” for ex-
pressing that a certain series of events will happen on all paths and on some path
respectively, and combines these with tense modalities for expressing that something
will happen eventually on some path (♦), always on some path (!) and so on. Thus,
for example, using CTL logics, one may express properties such as “on all possible
computations, the system never enters a fail state” (A ! ¬fail). CTL-like logics are of
limited value for reasoning about multi-agent systems, in which system components
(agents) cannot be assumed to be benevolent, but may have competing or conflicting
goals. The kinds of properties we wish to express of such systems are the powers that
the system components have. For example, we might wish to express the fact that
“agents 1 and 2 can cooperate to ensure that the system never enters a fail state”. It is
not possible to capture such statements using CTL-like logics. The best one can do is
either state that something will inevitably happen, or else that it may possibly happen:
CTL-like logics have no notion of agency.

Alur, Henzinger, and Kupferman developed ATL in an attempt to remedy this defi-
ciency. The key insight in ATL is that path quantifiers can be replaced by cooperation
modalities: the ATL expression 〈〈C〉〉ϕ, where C is a group of agents, expresses the
fact that the group C can cooperate to ensure that ϕ. (Thus the ATL expression 〈〈C〉〉ϕ
corresponds to Pauly’s [C]ϕ.) So, for example, the fact that agents 1 and 2 can ensure
that the system never enters a fail state may be captured in ATL by the following for-
mula: 〈〈1, 2〉〉 ! ¬fail. An ATL formula true in the root ρ1 of game G1 of Fig. 24.2 is
〈〈A〉〉 ! 〈〈E〉〉 ! q: A has a strategy (i.e., play R in ρ1) such that in the next time, E has
a strategy (play l) to enforce u.

Note that ATL generalizes CTL because the path quantifiers A (“on all paths. . . ”)
and E (“on some paths. . . ”) can be simulated in ATL by the cooperation modalities
〈〈∅〉〉 (“the empty set of agents can cooperate to. . . ”) and 〈〈Σ〉〉 (“the grand coalition of
all agents can cooperate to. . . ”).

One reason for the interest in ATL is that it shares with its ancestor CTL the compu-
tational tractability of its model checking problem [20]. This led to the development
of an ATL model checking system called MOCHA [9, 6]. With MOCHA, one specifies
a model against which a formula is to be checked using a model definition language
called REACTIVE MODULES [7]. REACTIVE MODULES is a guarded command lan-
guage, which provides a number of mechanisms for the structured specification of

fai3 v.2007/09/05 Prn:11/09/2007; 12:00 F:fai3024.tex; VTEX/Dovile p. 27
aid: 3024 pii: S1574-6526(07)03024-6 docsubty: REV



28 24. Multi-Agent Systems

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

models, based upon the notion of a “module”, which is basically the REACTIVE SYS-
TEMS terminology for an agent. Interestingly, however, it is ultimately necessary to
define for every variable in a REACTIVE MODULES system which module (i.e., agent)
controls it. The powers of agents and coalitions then derive from the ability to control
these variables: and as we noted in the introduction, this observation was a trigger for
[54] to develop a system for propositional control, CL-PC, as a system in its own right.
We will come briefly back to this idea in Section 24.3.4.

ATL has begun to attract increasing attention as a formal system for the specifica-
tion and verification of multi-agent systems. Examples of such work include formal-
izing the notion of role using ATL [100], the development of epistemic extensions to
ATL [50, 52, 51], and the use of ATL for specifying and verifying cooperative mecha-
nisms [84].

To give a precise definition of ATL, we must first introduce the semantic structures
over which formulae of ATL are interpreted. An alternating transition system (ATS)
is a 6-tuple

S = 〈Π,Σ,Q, π, δ〉, where:

• Π is a finite, non-empty set of Boolean variables;

• Σ = {a1, . . . , an} is a finite, non-empty set of agents;

• Q is a finite, non-empty set of states;

• π : Q → 2Π gives the set of Boolean variables satisfied in each state;

• δ : Q × Σ → 22Q
is the system transition function, which maps states and

agents to the choices available to these agents. Thus δ(q, a) is the set of choices
available to agent a when the system is in state q. We require that this function
satisfy the requirement that for every state q ∈ Q and every set Q1, . . . ,Qn of
choices Qi ∈ δ(q, ai), the intersection Q1 ∩ · · · ∩ Qn is a singleton.

One can think of δ(q, a) as the possible moves agent a can make in state q. Since
in general he cannot determine the next state on his own, each specific choice that a
makes at q yields a set of possible next states Qa , which can be further constrained
by the choices of the other agents. Indeed, the constraint that Q1 ∩ · · · ∩ Qn gives a
singleton {q ′} resembles that the system as a whole is deterministic: once every agent
a has made a decision Qa at q, the next state q ′ of q is determined.

The games G1 and G2 of the previous section can be conceived of as special cases
of alternating transition system: turn based synchronous systems, where, at every deci-
sion point (state) of the system, exactly one agent is responsible for the next state. For
instance, we have, in G1 that δ(ρ1, A) = {{a}, {b}}, and δ(ρ1, E) = {{a, b}}, denoting
that E leaves the choice in ρ1 to A. To make G1 a real transition system, the transition
function should specify choices for every state, also for the leaves a, c and d. One could
do this for instance by looping those states to themselves: δ(a, A) = δ(a, E) = {{a}}.
In order to reason about them as leaves, one could add a proposition end that is true
in exactly those states. Turn based systems satisfy the following property (cf. [52]),
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which is not valid in ATL in general:

〈〈Σ〉〉 !ϕ →
∨

a∈Σ
〈〈a〉〉 !ϕ.

An ATL formula, formed with respect to an alternating transition system S =
〈Π,Σ,Q, π, δ〉, is then defined by the following grammar:

ϕ ::= # | p | ¬ϕ | ϕ ∨ ϕ | 〈〈C〉〉 !ϕ | 〈〈C〉〉 !ϕ | 〈〈C〉〉ϕUϕ
where p ∈ Π is a Boolean variable, and C ⊆ Σ is a set of agents. We assume the
remaining connectives (“⊥”, “→”, “←”, “↔”, “∧”) are defined as abbreviations in
the usual way, and define 〈〈C〉〉 ♦ϕ as 〈〈C〉〉#Uϕ.

To give the semantics of ATL, we need some further definitions. For two states
q, q ′ ∈ Q and an agent a ∈ Σ , we say that state q ′ is an a-successor of q if there
exists a set Q′ ∈ δ(q, a) such that q ′ ∈ Q′. Intuitively, if q ′ is an a-successor of q,
then q ′ is a possible outcome of one of the choices available to a when the system is
in state q. We denote by succ(q, a) the set of a successors to state q, and say that q ′ is
simply a successor of q if for all agents a ∈ Σ , we have q ′ ∈ succ(q, a); intuitively, if
q ′ is a successor to q, then when the system is in state q, the agents Σ can cooperate
to ensure that q ′ is the next state the system enters.

A computation of an ATS 〈Π,Σ,Q, π, δ〉 is an infinite sequence of states λ =
q0, q1, . . . such that for all u > 0, the state qu is a successor of qu−1. A computation
λ ∈ Qω starting in state q is referred to as a q-computation; if u ∈ N, then we denote
by λ[u] the uth state in λ; similarly, we denote by λ[0, u] and λ[u, ∞] the finite prefix
q0, . . . , qu and the infinite suffix qu, qu+1, . . . of λ, respectively.

Intuitively, a strategy is an abstract model of an agent’s decision-making process;
a strategy may be thought of as a kind of plan for an agent. Formally, a strategy fa for
an agent a ∈ Σ is a total function fa : Q+ → 2Q, which must satisfy the constraint
that fa(λ · q) ∈ δ(q, a) for all λ ∈ Q∗ and q ∈ Q. Given a set C ⊆ Σ of agents, and
an indexed set of strategies FC = {fa | a ∈ C}, one for each agent a ∈ C, we define
out(q, FC) to be the set of possible outcomes that may occur if every agent a ∈ C
follows the corresponding strategy fa , starting when the system is in state q ∈ Q.
That is, the set out(q, FC) will contain all possible q-computations that the agents C
can “enforce” by cooperating and following the strategies in FC . Note that the “grand
coalition” of all agents in the system can cooperate to uniquely determine the future
state of the system, and so out(q, FΣ) is a singleton. Similarly, the set out(q, F∅) is
the set of all possible q-computations of the system.

We can now give the rules defining the satisfaction relation “|=” for ATL, which
holds between pairs of the form S, q (where S is an ATS and q is a state in S), and
formulae of ATL:

S, q |= #;

S, q |= p iff p ∈ π(q) (where p ∈ Π);

S, q |= ¬ϕ iff S, q 2|= ϕ;

S, q |= ϕ ∨ ψ iff S, q |= ϕ or S, q |= ψ ;
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S, q |= 〈〈C〉〉 !ϕ iff there exists a set of strategies FC , such that for all
λ ∈ out(q, FC), we have S, λ[1] |= ϕ;

S, q |= 〈〈C〉〉 !ϕ iff there exists a set of strategies FC , such that for all
λ ∈ out(q, FC), we have S, λ[u] |= ϕ for all u ∈ N;

S, q |= 〈〈C〉〉ϕUψ iff there exists a set of strategies FC , such that for all
λ ∈ out(q, FC), there exists some u ∈ N such that S, λ[u] |= ψ , and for all
0 # v < u, we have S, λ[v] |= ϕ.

Pauly’s Coalition Logic is then the fragment of ATL in which the only cooperation
modalities allowed are of the form 〈〈C〉〉 ! [81, 82, 38]. The truth of a Coalition Logic
formula is determined on an ATS by using the first five items of the definition for
satisfaction above. The satisfiability problem for ATL is EXPTIME-complete [27, 110],
while for Coalition Logic it is PSPACE-complete in the general case [81, p. 63].

A number of variations of ATL have been proposed over the past few years, for
example, to integrate reasoning about obligations into the basic framework of coop-
erative ability [116], to deal with quantification over coalitions [3], adding the ability
to refer to strategies in the object language [107], and adding the ability to talk about
preferences or goals of agents [2, 1]. In what follows, we will focus on one issue that
has received considerable attention: the integration of knowledge and ability.

24.3.3 Knowledge in Strategic Temporal Logics: ATEL

The semantics of Coalition Logic and of ATL assume that agents have perfect informa-
tion about the game. This is immediately apparent in the notion of strategy in ATL: by
having an agent decide his next action given an element of Q+, this makes two strong
assumptions. First of all the agents have perfect information about the state they are
in, which obviously is an idealized assumption: typically, agents do not know exactly
what the state is. They may be unsure about certain facts in the state they are in, but
also about the mental states of other agents, which is crucial in any strategic decision
making. Secondly, the definition of a strategy assumes that the agents have perfect
recall: they remember exactly what has happened in reaching the current state, so that
they can make different decisions even in identical states.

We first address the issue of imperfect information. The paper [52] adds modalities
for knowledge to ATL to obtain ATEL (Alternating-time Temporal Epistemic Logic).
For every individual i, add an operator Ki to the language (Kiϕ is read as “i knows ϕ”),
and for every coalition G, add operators EG (everybody in G knows), DG (it is dis-
tributed knowledge in G), and CG (it is common knowledge in C).2 The following
examples of what can be expressed in ATEL are taken from [52].

Performing actions and knowledge interfere in at least two ways: for some actions,
in order to be able to do them properly, some knowledge is required, and, on the other
hand, actions may add to an agent’s knowledge. We have already mentioned knowl-
edge pre-conditions in Section 24.3. We can formulate knowledge pre-conditions quite
naturally using ATEL and its variants, and the cooperation modality naturally and el-
egantly allows us to consider knowledge pre-conditions for multi-agent plans. The
requirement that, in order for an agent a to be able to eventually bring about state

2A more detailed exposition on epistemic logic is given in Chapter 15 of this Handbook.
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of affairs ϕ, it must know ψ , might, as a first attempt, be specified in ATEL as:
〈〈a〉〉 ♦ϕ → Kaψ . This intuitively says that knowing ψ is a necessary requirement
for having the ability to bring about ϕ. However, this requirement is too strong. For
instance, in order to be able to ever open the safe, I do not necessarily in general
have to know the key right now. A slightly better formulation might therefore be
〈〈a〉〉 !ϕ → Kaψ . As an overall constraint of the system, this property may help
the agent to realize that he has to possess the right knowledge in order to achieve ϕ.
But taken as a local formula, it does not tell us anything about what the agent should
know if he wants to bring about ϕ the day after tomorrow, or “sometime” for that
matter. Taken as a local constraint, a necessary knowledge condition to bring about ϕ
might be (¬〈〈a〉〉 !ϕ)UKaψ . This expresses that our agent is not able to open the safe
until he knows its key. The other way around, an example of an ability that is gener-
ated by possessing knowledge is the following, expressing that if Bob knows that the
combination of the safe is s, then he is able to open it (o), as long as the combination
remains unchanged.

(24.4)Kb(c = s) → 〈〈b〉〉(〈〈b〉〉 ! o)U¬(c = s).

One of the properties of the most widely embraced systems for knowledge is intro-
spection, of which the positive variant says Kaϕ → KaKaϕ. Another well-accepted
principle of knowledged has it that from Kaϕ and Ka(ϕ → ψ) it follows that Kaψ .
Such idealized properties have been criticized since they assume agents to be perfect
reasoners who know all consequences of their knowledge in a blow. One may also use
ATEL-formulas to model limited reasoners, i.e., reasoners that do not make all infer-
ences in one strike, but where this behavior can be approximated over time. Positive
introspection might then look like

(24.5)Kaψ → 〈〈a〉〉 ! KaKaψ.

As a final example, in security protocols where agents a and b share some common
secret (a key Sab, for instance), what one typically wants is (24.6), expressing that a
can send private information to b, without revealing the message to another agent c:

(24.6)Kaϕ ∧ ¬Kbϕ ∧ ¬Kcϕ ∧ 〈〈a, b〉〉 ! (Kaϕ ∧ Kbϕ ∧ ¬Kcϕ).

Semantically, ignorance of the agents is usually modeled by specifying that each
agent is unable to distinguish certain states: the more states he considers undistin-
guishable from a given state, the weaker his knowledge in that state. In game theory,
such an indistinguishibility relation is often called a partition [10]. Take the game H
in Fig. 24.2, for example. The dashed line labeled with agent A denotes that this agent
does not know what E’s move was: A cannot distinguish state x from y. It seems rea-
sonable that do require strategies of agents to be uniform: if an agent does not know
whether he is in state s or s′, he should make the same decision in both. But there is
more to adding knowledge to decision making. Let us assume that atom p in game H
denotes a win for A. Then, in the root ρ we have that "E#! 〈〈A〉〉 ! p: saying that
whichever strategy E plays in ρ, in the next state A will be able to reach a winning
state in the next state. Note that this is even true if we restrict ourselves to uniform
strategies! We even have H, x |= KA〈〈A〉〉 ! p, saying that A knows that he has a win-
ning strategy in x. This, of course, is only true in the de dicto reading of knowledge
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of A: he knows in x that he has a uniform strategy to win, but he does not know which
one it is! To obtain a de re type of reading of knowledge of strategies, work is still in
progress, but we refer to [58] and the recent [105, 59].

Having discussed the issue of imperfect information in a state of the game, there
is also the question how to represent what an agent knows about the past: in order
to relate this to the example of DEL in Section 24.2.2, we present this for a system
with operators for knowledge and change, not necessarily cooperation modalities. In
a synchronous system, agents are aware of a clock and they know what time it is: in
a game, this would mean that they know how many moves have played. In a game
with perfect recall, agents recall what they have experienced: however, they need not
be aware of the time, and also not aware of moves that does not have an impact on
their information. In a logical language for knowledge and time one might expect that
perfect recall corresponds to

(24.7)Kiϕ → !Kiϕ.

But this can in general not be. First of all, ϕ might refer to some specifics of the
moment of evaluation. For instance, knowing that it is Wednesday should not imply
that I always know that it is Wednesday. Moreover, ϕ might refer to i’s ignorance,
i.e., ϕ might be ¬Kiϕ. Then, if (24.7) would hold, the agent would for ever know
that he does not know ϕ. Since in most logics of knowledge, ¬Kiϕ is equivalent to
Ki¬Kiϕ, scheme (24.7) would give ¬Kiψ → !¬Kiψ , a rather pessimistic principle!
It appears that the proper characterization for perfect recall is

Ki !ϕ → !Kiϕ.

For a further discussion about this scheme and perfect recall, we refer to [30]. Let
us finally mention that Bonanno [14] studies a property about memory in games that
is weaker than perfect recall. He calls a game a Von Neumann game if for every two
states that an agent cannot distinguish in a game, the number of predecessors in that
game must be the same. This would mean that an agent knows how many moves have
been played, but not necessarily which ones. Let P be a temporal operator denoting
‘always in the past’, and ! ‘always in the future’, then the epistemic temporal property
characterizing Von Neumann games is

Kiϕ → !KiPKiϕ.

Going back to DEL of Section 24.2.2, our example of Fig. 24.1 is rich enough
to show that DEL in general does not satisfy perfect recall. To see this, let α be
L12(L1?p ∪ L1?¬p ∪ !#). We then have N, s |= K2[α]¬(K1p ∨ K1¬p) (2 knows
that if nothing happens, 1 will not find out whether p), but not N, s |= [α]K2¬(K1p∨
K1¬p). We do have in general the following weaker form of perfect recall, however.
Let M,w be a static epistemic state, and α an action, represented by some action state
M, w. Let A be the set of actions that agent i cannot distinguish from M, w. Then we
have

(24.8)M,w |=
∧

β∈A

Ki[β]ϕ → [α]Kiϕ.

In words, in order for agent i to ‘remember’ what holds after performance of an
action α, he should already now in advance that it will hold after every epistemically
possible execution of that action.
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24.3.4 CL-PC

Both ATL and Coalition Logic are intended as general purpose logics of cooperative
ability. In particular, neither has anything specific to say about the origin of the pow-
ers that are possessed by agents and the coalitions of which they are a member. These
powers are just assumed to be implicitly defined within the effectivity structures used
to give a semantics to the languages. Of course, if we give a specific interpretation to
these effectivity structures, then we will end up with a logic with special properties.
In [54], a variation of Coalition Logic was developed that was intended specifically to
reason about control scenarios, as follows. The basic idea is that the overall state of a
system is characterized by a finite set of variables, which for simplicity are assumed to
take Boolean values. Each agent in the system is then assumed to control some (pos-
sibly empty) subset of the overall set of variables, with every variable being under the
control of exactly one agent. Given this setting, in the Coalition Logic of Propositional
Control (CL-PC), the operator ♦Cϕ means that there exists some assignment of values
that the coalition C can give to the variables under its control such that, assuming
everything else in the system remains unchanged, then if they make this assignment,
then ϕ would be true. The box dual !Cϕ is defined in the usual way with respect to
the diamond ability operator ♦C . Here is a simple example:

Suppose the current state of the system is that variables p and q are false,
while variable r is true, and further suppose then agent 1 controls p and r , while
agent 2 controls q. Then in this state, we have, for example: ♦1(p ∧ r), ¬♦1q,
and ♦2(q ∧ r). Moreover, for any satisfiable propositional logic formula ψ over
the variables p, q, and r , we have ♦1,2ψ .

The ability operator ♦C in CL-PC thus captures contingent ability, rather along the
lines of “classical planning” ability [68]: ability under the assumption that the world
only changes by the actions of the agents in the coalition operator ♦C . Of course, this
is not a terribly realistic type of ability, just as the assumptions of classical planning are
not terribly realistic. However, in CL-PC, we can define α effectivity operators 〈〈C〉〉αϕ,
intended to capture something along the lines of the ATL 〈〈C〉〉 !ϕ, as follows:

〈〈C〉〉α =̂ ♦C!C̄ϕ.

Notice the quantifier alternation pattern ∃∀ in this definition.
One of the interesting aspects of CL-PC is that, by using this logic, it becomes

possible to explicitly reason in the object language about who controls what. Let i be
an agent, and let p be a system variable; let us define ctrl(i, p) as follows:

ctrl(i, p) =̂ (♦ip) ∧ (♦i ¬p).

Thus ctrl(i, p) means that i can assign p the value true, and i can also assign p the
value false. It is easy to see that if ctrl(i, p) is true in a system, then this means that
the variable p must be under the control of agent i. Starting from this observation, a
more detailed analysis of characterizing control of arbitrary formulae was developed,
in terms of the variables controlled by individual agents [54]. In addition, [54] gives a
complete axiomatization of CL-PC, and shows that the model checking and satisfiabil-
ity problems for the logic are both PSPACE-complete. Building on this basic formalism,
[53] investigates extensions into the possibility of dynamic control, where variables
can be “passed” from one agent to another.
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24.3.5 Applications of Strategic Cooperation Logics

One of the fascinating aspects of coalition logic is its use in social choice theory,
and in particular in the specification, development, and verification of social choice
procedures. Consider the following scenario, adapted from [81].

Two individuals, A and B, are to choose between two outcomes, p and q. We
want a procedure that will allow them to choose that will satisfy the following
requirements. First, we definitely want an outcome to be possible—that is, we
want the two agents to bring about either p or q. We do not want them to be able
to bring about both outcomes simultaneously. Similarly, we do not want either
agent to dominate: we want them both to have equal power.

The first point to note is that we can naturally axiomatize these requirements using
coalition logic:

〈〈A,B〉〉 ! x, x ∈ {p, q}
¬〈〈A,B〉〉 ! (p ∧ q)

¬〈〈x〉〉 ! p, x ∈ {A,B}
¬〈〈x〉〉 ! q, x ∈ {A,B}

It should be immediately obvious how these axioms capture the requirements as stated
above. Now, given a particular voting procedure, a model checking algorithm can be
used to check whether or not this procedure implements the specification correctly.
Moreover, a constructive proof of satisfiability for these axioms might be used to syn-
thesize a procedure; or else announce that no implementation exists.

24.4 Conclusions

In this paper, we have motivated and introduced a number of logics of rational agency;
moreover, we have investigated the role(s) that such logics might play in the develop-
ment of artificial agents. We hope to have demonstrated that logics for rational agents
are a fascinating area of study, at the confluence of many different research areas, in-
cluding logic, artificial intelligence, economics, game theory, and the philosophy of
mind. We also hope to have illustrated some of the popular approaches to the theory
of rational agency.

There are far too many research challenges open to identify in this article. Instead,
we simply note that the search for a logic of rational agency poses a range of deep
technical, philosophical, and computational research questions for the logic commu-
nity. We believe that all the disparate research communities with an interest in rational
agency can benefit from this search.
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