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Abstract

Reactive Modules is a high-level modelling language for con-
current, distributed, and multi-agent systems, which is used in
a number of practical model checking tools. Reactive Modules
Games are a game-theoretic extension of Reactive Modules,
in which agents in a system are assumed to act strategically
in an attempt to satisfy a temporal logic formula representing
their individual goal. Reactive Modules Games with perfect
information have been closely studied, and the complexity of
game theoretic decision problems relating to such games have
been comprehensively classified. However, to date, no work
has considered the imperfect information case. In this paper
we address this gap, investigating Reactive Modules Games in
which agents have only partial visibility of their environment.

Introduction

A common technique to design or verify computer systems
is to represent their behaviour using games in which two
players—sometimes called “System” and “Environment” or
“Player” and “Opponent”—interact with each other, possibly,
for infinitely many rounds. In these games, it is assumed
that the system has a goal given in a logical form, e.g., ex-
pressed as a temporal logic formula ϕ, which the system
wishes to satisfy. Such a goal can represent either the be-
haviour of the computer system one wants to synthesize
(an automated design problem (Pnueli and Rosner 1989))
or a particular system property which one wants to check
(an automated verification problem (Clarke, Grumberg, and
Peled 2000)). In this framework, it is assumed that the sys-
tem plays against an adversarial environment, that is, that
the goal of the environment is to prevent the system from
achieving its goal. In game-theoretic terms, this means that
the problem is modelled as a zero-sum game, and hence that
its solution is given by the computation of a winning strat-
egy for either the system or the environment. From a logical
viewpoint, this assumption amounts to letting the goal of
the environment be ¬ϕ, whenever the goal of the system
is given by the temporal logic formula ϕ. A great deal of
work has been based on this idea—see, e.g., (Ghica 2009;
Walukiewicz 2004) and the references therein for surveys.

Although this paradigm has been found to be useful in a
range of settings, the zero-sum assumption is often too restric-
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tive or inappropriate. For instance, when dealing with concur-
rent systems one may have to account for several computer
components—each with its own temporal goal—that are not
necessarily in conflict. This situation leads to the definition of
a non-zero-sum n-player game (naturally modelling a multi-
agent system) rather than a two-player zero-sum game.

In the non-zero-sum n-player setting it is no longer the
computation of a winning strategy what provides a solution to
the problem under consideration, but rather, the computation
of a strategy profile (a set of strategies, one for each player
in the game) which can be regarded as in equilibrium in
the game-theoretic sense (Osborne and Rubinstein 1994): a
situation where no player wishes to deviate from the strategy
it is currently using. This problem of modelling computer
systems as non-zero-sum games instead of zero-sum ones
has already been identified, and some work has been done;
see, for instance (Bouyer et al. 2011; 2012; Chatterjee and
Henzinger 2012) for some references.

Here, we study non-zero-sum n-player games in which the
choices available to players are defined using the Simple Re-
active Modules Language (SRML), a subset of Reactive Mod-
ules (Alur and Henzinger 1999), a popular and expressive
system modelling language that is used in several practical
model checking systems (e.g., MOCHA (Alur et al. 1998)
and Prism (Kwiatkowska, Norman, and Parker 2011)). Re-
active Modules supports succinct and high-level modelling
of concurrent and multi-agent systems. In the games we
study, the preferences of system components are specified
by associating with each player in the game a temporal logic
(LTL) formula that the player desires to be satisfied. Reactive
Modules Games with perfect information (where each player
can see the entire system state) have been extensively stud-
ied (Gutierrez, Harrenstein, and Wooldridge 2015a), but in
this paper we focus on imperfect information cases. We study
the decidability and complexity of checking the existence of
Nash equilibria in Reactive Modules games with imperfect in-
formation. In our framework, one can analyse the behaviour
of open systems modelled as multi-player games using a
specification language that is close to real-world program-
ming and system modelling languages, and which already
has a number of tool implementations. However, our results
go beyond the interest in SRML itself as, more generally,
we provide complexity results that apply to a wide range of
imperfect information games with succinct representations.
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Our key results are as follows. We show that Reactive
Modules Games with imperfect information are undecidable
if three or more players are allowed. In contrast, if restricted
to two players, the games are decidable and their solution
(computing a Nash equilibrium if one exists) can be obtained
in 2EXPTIME. For the latter decidability result, we provide
a conceptually simple decision procedure based on synthe-
sis techniques for CTL∗ under imperfect information. We
also explore a number of variants of the general imperfect-
information framework. For instance, we study variants of
these games with respect to the class of strategies under con-
sideration, e.g., memoryless, myopic, polynomially bounded,
and show that such games can be solved, respectively, in
NEXPTIME, EXPSPACE, and PSPACE; we also explore
the use of a solution concept where coordinated behaviour
is allowed—in whose case strong Nash equilibrium is con-
sidered instead—and show that going from Nash to strong
Nash equilibria can be done without paying a (worst-case)
complexity cost. We then study in more detail the connection
between imperfect information and the existence of Nash
equilibria. Specifically, we provide conditions under which
the set of Nash equilibria of an imperfect-information game
can be preserved (or refined) with respect to the amount of
information that players in such a game have. Note that due
to lack of space most proofs are either omitted or sketched.

Preliminaries

Logic. We work with logics that extend propositional logic.
These logics are based on a finite set Φ of Boolean variables.
A valuation for propositional logic is a set v ⊆ Φ, with the
intended interpretation that p ∈ v means that p is true under
valuation v, while p �∈ v means that p is false under v. Let
V(Φ) = 2Φ be the set of all valuations for variables Φ; where
Φ is clear, we omit reference to it and write V .

Kripke Structures. We use Kripke structures to model the
dynamics of our systems. A Kripke structure K over Φ is
given by K = 〈S, S0,R, π〉, where S = {s0, . . .} is a finite
non-empty set of states, S0 ⊆ S is the set of initial states,
R ⊆ S× S is a total transition relation on S, and π : S → V is
a valuation function, assigning a valuation π(s) to every s ∈ S.
Where K = 〈S, S0,R, π〉 is a Kripke structure over Φ, and
Ψ ⊆ Φ, we denote the restriction of K to Ψ by K|Ψ, where
K|Ψ =〈S, S0,R, π|Ψ〉 is the same as K except that π|Ψ is the
valuation function defined as follows: π|Ψ(s) = π(s) ∩Ψ.

Runs. A run of K is a sequence ρ = s0, s1, s2, . . . where
for all t ∈ N we have (st, st+1) ∈ R. Using square brackets
around parameters referring to time points, we let ρ[t] denote
the state assigned to time point t by run ρ. We say ρ is an
s-run if ρ[0] = s. A run ρ of K where ρ[0] ∈ S0 is referred to
as an initial run. Let runs(K, s) be the set of s-runs of K, and
let runs(K) be the set of initial runs of K. Notice that a run
ρ ∈ runs(K) induces an infinite sequence ρ ∈ Vω of propo-
sitional valuations, viz., ρ = π(ρ[0]), π(ρ[1]), π(ρ[2]), . . ..
The set of these sequences, we denote by runs(K). Given
Ψ ⊆ Φ and a run ρ : N → V(Φ), we denote the restriction
of ρ to Ψ by ρ|Ψ, i.e., ρ|Ψ[t] = ρ[t] ∩Ψ for each t ∈ N.

Linear Temporal Logic. In this paper, we mostly use Linear
Temporal Logic (LTL), an extension of propositional logic
with two modal tense operators, X (“next”) and U (“until”),
that can be used to express properties of runs, for instance,
the runs of Kripke structures. The syntax of LTL is defined
with respect to a set Φ of Boolean variables as follows:

ϕ ::= 	 | p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ

where p ∈ Φ. The remaining classical logic operators are
defined in the standard way; we also use the following abbre-
viations: Fϕ = 	 Uϕ and Gϕ = ¬F¬ϕ, for “eventually”
and “always” respectively. We interpret formulae of LTL with
respect to pairs (ρ, t), where ρ is a run of a Kripke structure
K =〈S, S0,R, π〉 and t ∈ N is a temporal index into ρ:

(ρ, t) |= 	
(ρ, t) |= p iff p ∈ π(ρ[t])
(ρ, t) |= ¬ϕ iff it is not the case that (ρ, t) |= ϕ
(ρ, t) |= ϕ ∨ ψ iff (ρ, t) |= ϕ or (ρ, t) |= ψ
(ρ, t) |= Xϕ iff (ρ, t + 1) |= ϕ
(ρ, t) |= ϕUψ iff for some t′ ≥ t : ((ρ, t′) |= ψ and

for all t ≤ t′′ < t′: (ρ, t′′) |= ϕ).

If (ρ, 0) |= ϕ, we also write ρ |= ϕ and say that ρ satisfies ϕ.
An LTL formula ϕ is satisfiable if there is some run satisfy-
ing ϕ. Moreover, a Kripke structure K satisfies ϕ if ρ |= ϕ
for all initial runs ρ of K. Finally, with |ϕ| we denote the size
of the LTL formula ϕ, given by its number of subformulae.

Reactive Modules Games

Reactive Modules. We focus on Simple Reactive Modules,
the subset of the language introduced by (van der Hoek,
Lomuscio, and Wooldridge 2006) to study the complexity of
practical ATL model checking. Agents in Reactive Modules
are known as modules. An SRML module with imperfect
information (SMRLI) consists of:

(i) an interface, which defines the module’s name, the set of
Boolean variables under the control of the module, and the
set of variables that are visible to the module; and

(ii) a number of guarded commands, which define the choices
available to the module at every state.
Guarded commands are of two kinds: those used for initial-

ising the variables under the module’s control (init guarded
commands), and those for updating these variables subse-
quently (update guarded commands). A guarded command
has two parts: a condition part (the “guard”) and an action
part, which defines how to update the value of (some of) the
variables under the control of a module. The intuitive read-
ing of a guarded command ϕ � α is “if the condition ϕ is
satisfied, then one of the choices available to the module is
to execute the action α”. We note that the truth of the guard
ϕ does not mean that α will be executed: only that such a
command is enabled for execution—it may be chosen.

Formally, a guarded command g over some set of Boolean
(visible) variables Vis is an expression

ϕ � x′1 := ψ1; · · · ; x′k := ψk

where ϕ (the guard) is a propositional formula over Vis, each
xi is a controlled variable, and each ψi is a propositional logic
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formula over Vis. Let guard(g) denote the guard of g. Thus,
in the above rule, guard(g) = ϕ. We require that no variable
appears on the left hand side of two assignment statements in
the same guarded command. We say that x1, . . . , xk are the
controlled variables of g, and denote this set by ctr(g). If no
guarded command of a module is enabled, the values of all
variables in ctr(g) are left unchanged; in SRML notation, if
needed, skip will refer to this particular case.

Formally, an SRMLI module, mi, is defined as a quadruple
mi = 〈Φi,Visi, Ii,Ui〉, where: Φi ⊆ Φ is the (finite) set of
variables controlled by mi; Visi is the (finite) set of variables
that are visible to mi, with Φi ⊆ Visi; Ii is a (finite) set of
initialisation guarded commands, such that for all g ∈ Ii, we
have ctr(g) ⊆ Φi; and Ui is a (finite) set of update guarded
commands, such that for all g ∈ Ui, we have ctr(g) ⊆ Φi. To
simplify notation, since by definition Φi ⊆ Visi, hereafter by
Visi = Ψ, where Ψ ⊆ Φ, we mean Visi = Φi ∪Ψ.

An SRMLI arena is defined to be an (n + 2)-tuple

A =〈N,Φ,m1, . . . ,mn〉
where N = {1, . . . , n} is a set of agents, Φ is a set of Boolean
variables, and for each i ∈ N, mi = 〈Φi,Visi, Ii,Ui〉 is an
SRMLI module over Φ that defines the choices available to
agent i. We require that {Φ1, . . . ,Φn} forms a partition of Φ
(so every variable in Φ is controlled by some module, and no
variable is controlled by more than one module).

The behaviour of an SRMLI arena is obtained by exe-
cuting guarded commands, one for each module, in a syn-
chronous and concurrent way. The execution of an SMRLI
arena proceeds in rounds, where in each round every mod-
ule mi = 〈Φi,Visi, Ii,Ui〉 produces a valuation vi for the
variables in Φi on the basis of a current valuation v. For each
SRMLI arena A, the execution of guarded commands induces
a unique Kripke structure, denoted by KA, which formally
defines the semantics of A. Based on KA, one can define the
sets of runs allowed in A, namely, those associated with the
Kripke structure K. Finally, we sometimes will be concerned
with the size of an arena. We say that the size of an arena
A =〈N,Φ,m1, . . . ,mn〉, denoted by |A| is |m1|+ . . .+ |mn|,
where the size of a module mi = 〈Φi,Visi, Ii,Ui〉, denoted
by |mi|, is |Φi| + |Visi| + |Ii| + |Ui|. In particular, we will
use LTL characterisations of the runs of arenas A and mod-
ules m. Such LTL formulae, denoted by TH(A) and TH(m),
respectively, are polynomial in the sizes of A and m.

Games. The model of games we consider has two compo-
nents. The first component is an arena: this defines the play-
ers, the variables they control, and the choices available to
them in every game state. The arena plays a role analogous
to that of a game form in conventional game theory (Osborne
and Rubinstein 1994, p. 201): while it defines players and
their choices, it does not specify the preferences of play-
ers. Preferences are specified by the second component of
the game: every player i is associated with a goal γi, which
will be a logical formula. The idea is that players desire to
see their goal satisfied by the outcome of the game. For-
mally, a game is given by a structure G = 〈A, γ1, . . . , γn〉
where A =〈N,Φ,m1, . . . ,mn〉 is an arena with player set N,
Boolean variable set Φ, and mi an SRMLI module defining the

choices available to each player i; moreover, for each i ∈ N,
the logical formula γi represents the goal that i aims to
satisfy. On this basis, the size of a game, |G|, is given by
|A|+ |γ1|+ . . .+ |γn|, where |γi| is the size of γi.

Games are played by each player i selecting a strategy σ
that will define how to make choices over time. Given an
SRMLI arena A = 〈N,Φ,m1, . . . ,mn〉, a strategy for mod-
ule mi = 〈Φi,Visi, Ii,Ui〉 is a structure σ = (Qi, q0

i , δi, τi),
where Qi is a finite and non-empty set of states, q0

i ∈ Qi is
the initial state, δi : Qi × V(Visi) → 2Qi \ {∅} is a transition
function, and τi : Qi → Vi is an output function. Note that not
all strategies for a module may comply with that module’s
specification, not even in case of perfect information. For in-
stance, if the only guarded update command of a module mi
has the form 	 � x′ := ⊥, then a strategy for mi should not
prescribe mi to set x to true under any contingency. Moreover,
if a module’s visibility set does not contain some variable p,
then no strategy for such a module can be defined depending
on the value of p. Strategies that comply with the module’s
specification (i.e., strategies in the Kripke structure induced
by the module) are called consistent. Let Σi be the set of
consistent strategies for mi. A strategy σ can be represented
by an SRML module (of polynomial size in |σ|) with variable
set Φi ∪ Qi. We write mσ for such a module specification.

Games are played by each player i by selecting a strategy
σ that will define how to make choices over time. Once every
player i has selected a strategy σ, a strategy profile �σ =
(σ1, . . . , σn) results and the game has an outcome, which we
will denote by [[�σ]]. The outcome [[�σ]] of a game with SRML
arena A = 〈N,Φ,m1, . . . ,mn〉 is defined to be the Kripke
structure associated with the SRML arena A�σ = 〈N,Φ ∪⋃

i∈N Qi,mσ1 , . . . ,mσn〉 restricted to valuations with respect
to Φ, that is, the Kripke structure KA�σ

|Φ. The outcome of a
game will determine whether or not each player’s goal is or
is not satisfied. Because outcomes are Kripke structures, in
general, goals can be given by any logic with a well defined
Kripke structure semantics. Assuming the existence of such
a satisfaction relation, which we denote by “|=”, we can say
that a goal γi is satisfied by an outcome [[�σ]] if and only if
[[�σ]] |= γi; to simplify notations, we may simply write �σ |= γi.
Moreover, if we only consider deterministic strategies, that
is, those where δi : Qi × V(Visi) → Qi, then all outcomes
are single runs and we can even write ρ(�σ) for the unique run
induced by �σ in such a case. Hereafter, we will assume that
goals are LTL formulae and that strategies are deterministic.

We are now in a position to define a preference relation �i
over outcomes for each player i with goal γi. For strategy
profiles �σ and �σ′, we say that

�σ �i �σ
′ if and only if �σ′ |= γi implies �σ |= γi.

On this basis, we also define the concept of Nash equilib-
rium (Osborne and Rubinstein 1994): given a game G =
(A, γ1, . . . , γn), a strategy profile �σ is said to be a Nash equi-
librium of G if for all players i and all strategies σ′, we have

�σ �i (�σ−i, σ
′
i ),

where (�σ−i, σ
′
i ) denotes (σ1, . . . , σi−1, σ

′
i , σi+1, . . . , σn), the

strategy profile where the strategy of player i in �σ is replaced
by σ′

i . Hereafter, let NE(G) be the set of Nash equilibria of G.
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Perfect vs. Imperfect Information

In this section, we describe a system which demonstrates two
important facts about game-like system specifications: that
imperfect information provides a more realistic framework
(when compared with perfect information games); and that
imperfect information can be used as a tool to eliminate
undesirable rational behaviours (given by Nash equilibria).

Note that the following example is intended to illustrate
the concepts introduced so far rather than to constitute a real-
life specification. Then, consider a system with two agents,
Casino and Player, who interact with each other at a casino
in Las Vegas. The two agents are playing the following game.
The game is played in two rounds, where in the first round
Casino chooses one side of a 1 dollar coin (and keeps its
choice hidden from Player) and in the second round Player
tries to guess what side of the coin was chosen by Casino.
If Player guesses correctly, Player wins; otherwise, Casino
wins. In principle, the two agents can interact for as long as
they want since there is no a priori bound on the amount of
money or time they have to play the game. Moreover, the
goals of the agents are to win the game infinitely often. Note
that under normal circumstances, neither Casino nor Player
should always win, as that outcome would be both unnatural
and rather suspicious. Of course, they do not want to always
lose the game either! We model this game, using the specific
notation of SRMLI, with the following modules—cf. general
definition given by a tuple mi =〈Φi,Visi, Ii,Ui〉—

module Casino controls {turn, coinc} under VisCasino

init
:: 	 � turn′ := 	; coin′c := ⊥
:: 	 � turn′ := 	; coin′c := 	
update
:: turn � coin′c := 	; turn′ := ⊥
:: turn � coin′c := ⊥; turn′ := ⊥
:: ¬turn � turn′ := 	

module Player controls {coinp} under VisPlayer

init
:: 	 � coin′p := 	
:: 	 � coin′p := ⊥
update
:: ¬turn � coin′p := 	
:: ¬turn � coin′p := ⊥

and goals: γCasino = GF(¬turn → ¬(coinc ↔ Xcoinp)) and
γPlayer = GF(¬turn → (coinc ↔ Xcoinp)). If the game is
with perfect information then VisCasino = Φ = VisPlayer.
Such a model has two kinds of Nash equilibria: one where
Player always wins (using the strategy below), and another
one where both agents satisfy their goals. Clearly, the former
is an undesirable modelling scenario. But, if the game has
imperfect information, e.g., with VisPlayer = {turn}, then
such “bad” equilibria disappear and only scenarios where
both agents satisfy their goals remain as rational outcomes.

coinp := � coinp := ⊥
¬coinc, ∗

coinc, ∗
coinc, ∗

¬coinc, ∗

Figure 1: A winning strategy for Player if VisPlayer = Φ.
Symbol ∗ is ¬turn. Edges if turn = 	 are loops (for skip).

Undecidability of SRMLI Games

As in many game-theoretic scenarios, the main problem re-
lated to the solution of a game is the existence of Nash equi-
libria. In our framework, such a problem is stated as follows:

Given: SRMLI G.
NONEMPTINESS: Is it the case that NE(G) �= ∅?
We say that SRMLI games are undecidable if their non-

emptiness problem is undecidable. In this section we will
show that SRMLI games are undecidable when considering
goals given by LTL formulae. In order to do so let us first
provide some preliminary technical results.

We will reduce the uniform distributed synthesis prob-
lem (Finkbeiner and Schewe 2005) for LTL formulae, which
is known to be undecidable, to NONEMPTINESS with three
modules and goals given by LTL formulae. In order to define
such a reduction we need to define some behaviour preserv-
ing transformations, in particular, one that deals with the
preservation of LTL properties, which is presented next. This
transformation is needed since SRML games are concurrent
and the game for distributed synthesis is sequential instead.

LTL formula transformation

Let us start this subsection by giving some useful definitions
and notations. For ρ : N0 → 2Φ a run and d ≥ 1 an inte-
ger, we say that ρ′ : N0 → 2Φ is a d-fold inflation of ρ if
ρ′[d× t] = ρ[t] for every t ≥ 0. For a set Ψ of propositional
variables with Φ ⊆ Ψ, also say that a run ρ′ : N0 → 2Ψ a
d-fold inflation of ρ if ρ′[d × t] ∩ Φ = ρ[t] for every t ≥ 0.
Moreover, for q ∈ Ψ \ Φ, we say that a d-fold inflation ρ′ of
ρ is q-labelled if for all t ≥ 0, q ∈ ρ′[t] if and only if t is a
multiple of d, i.e. there is some t′ ∈ N with t = d× t′. Thus,
in a q-labelled, d-fold inflation ρ′ of ρ we have that ρ′[t] |= q
if and only if t is a multiple of d.

Clearly, from a run ρ′ : N0 → 2Ψ, we can define the d-fold
deflation ρ over Φ to be the run ρ : N0 → 2Φ which satisfies
that ρ[t] = ρ′[d× t]∩Φ for every t ≥ 0. Note that, for a given
run ρ′, there is a unique d-fold deflation ρ over Φ. Clearly, the
d-fold inflation and deflation can be extended to partial runs.
Moreover, for purposes that will be clear later in the paper,
for a given partial run h : {0, . . . , n} → Ψ, by hd we denote
the partial run such that |hd| = k = quot(|h|, d)—where
quot(x, y) denotes the quotient of the Euclidean division of x
by y—and defined as hd[j] = h[j × d] ∩Ψ, for each j < |hd|,
and hd[k] = lst(h) ∩Ψ.

We now define, for each d ≥ 1, a translation function τd
which maps LTL formulae ϕ over Φ to LTL formulae τd(ϕ)
over Φ∪{q}, where q /∈ Φ. Moreover, we omit the argument
d when it is clear from the context.
• τd(p) = p;
• τd(¬ϕ) = ¬τd(ϕ);
• τd(ϕ ∨ ψ) = τd(ϕ) ∨ τd(ψ);

• τd(Xϕ) = Xdτd(ϕ);
• τd(ϕUψ) = (q → τd(ϕ))U (q ∧ τd(ψ)).

Finally, to prove the Lemma 1, we use the standard seman-
tics of LTL formulae on infinite runs (Emerson 1990), which
can be extended to Kripke structures just as defined before.
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Lemma 1 (Inflation). Let Φ and Φ′ be two disjoint sets of
propositional variables with q ∈ Φ′, ρ : N0 → 2Φ a run,
d ≥ 1, and ρ′ : N0 → 2Φ∪Φ′

a q-labelled, d-fold inflation of
ρ. Then, for all LTL formulae ϕ over Φ, it holds that ρ |= ϕ
if and only if ρ′ |= τd(ϕ).

Architectures and synthesis

An architecture is a tuple A =〈P, p0, pidle,E,O〉 where:

• P is a set of processes, with p0 and pidle being the envi-
ronment and idle processes, respectively;

• (P,E) is a directed acyclic graph with p0 having no in-
coming edges and pidle being the unique vertex having no
outcoming edges;

• O = {Oe : e ∈ E} is a set of nonempty sets of output
variables where O(p1,p2) ∩O(p′

1,p
′
2)

�= ∅ implies p1 = p
′
1.

By Vr =
⋃

e∈O Oe we denote the set of all variables.
Moreover, by Ip =

⋃
p′∈P O(p′,p) we denote the set of input

variables for process p. Finally, Op =
⋃

p′∈P O(p,p′) denotes
the set of output variables for player.

A strategy for a process p is a function sp : (2Ip)∗ → 2Op

mapping each history of visible truth-assignments to a truth-
assignment of the output variables. A strategy profile �s is a
tuple of strategies, one for each non-idle process. A strategy
profile generates a run ρ(�s) over the set of variables Vr. An
implementation S is a set of strategies one for each process
in P− � P \ {p0, pidle}. We say that a profile strategy �s
is consistent with an implementation S if the strategy in S
corresponds to the one associated in �s, for each process p
in P−. Finally, for a given LTL formula ϕ, we say that an
implementation S realizes ϕ if ρ(�s) |= ϕ for all strategy
profiles �s that are consistent with S.

Definition 1. For a given architecture A and an LTL spec-
ification ϕ, the synthesis problem for A and ϕ consists of
finding an implementation S in A that realizes ϕ.

Theorem 1 ((Finkbeiner and Schewe 2005)). The uniform
distributed synthesis problem for a generic architecture A
with three players and an LTL formula ϕ is undecidable.

Undecidability

In this section, we show that the uniform distributed synthesis
problem (Finkbeiner and Schewe 2005) for LTL formulae
can be reduced to the NONEMPTINESS problem for SRMLI
games with LTL goals. To do this, we first need to introduce
some auxiliary definitions and notations.

First of all, note that the fact that an architecture A is
acyclic provides a partial order among processes, which can
be extended to a total order <P in a consistent way. Moreover,
starting from <P, we can totally order the set of variables
in a way that, for each x, y ∈ Φ, if x ∈ Φp1

, y ∈ Φp2
,

and p1 <P p2, then x <Φ y. Thus, every variable x can be
associated to a different natural number i ∈ {1, . . . , d = |Φ|},
denoting its position in the ordering <Φ, and renamed with
xi. Note that, if xi is in a variable depending on some variable
xj in the architecture, then it holds that j < i and so that

xj <Φ xi. At this point, for a given process p, we define the
corresponding module mp as follows.

module mp controls O(p) under I(p) ∪ {1, . . . , d}
init
:: i � x′i := ⊥ for xi ∈ O(p)
:: i � x′i := 	 for xi ∈ O(p)
update
:: i � x′i := ⊥ for xi ∈ O(p)
:: i � x′i := 	 for xi ∈ O(p)

We also need to keep track of the moment when variables
have to be updated. To simplify our presentation, we do this
with the use of an additional module, var, defined below.

module vard controls {1, . . . , d} under ∅
init
:: 	 � 1′ := 	; 2′ := ⊥; . . . ; d′ := ⊥
update
:: i � i′ := ⊥; (i + 1)′ := 	 for i �= d
:: d � d′ := ⊥; 1′ := 	;

We can now define the arena having all the modules de-
fined above, one per each process plus the auxiliary module
var to give turns to the variables:

AA =〈n + 2,Φ, var, mp0 , mp1
, . . . , mpn

〉.
At this point, we describe a fundamental translation Γ of

strategies, making a suitable bridge between an architecture
A and the corresponding arena AA. The translation shows
that a strategy for a process of an architecture, A, can be
represented in our framework, AA. Let s : (2Ip)∗ → 2Op

be a strategy for process p. Then, we define the strategy
Γ(s) = σ : (2Vis(mp))∗ → 2Vr(mp) such that, for any given
variable xi ∈ O(p) and history h ∈ (2Vis(mp))∗ we have:

Γ(s)(h)(xi) =

{
s(hm)(xi), if |h| ≡d i
skip, otherwise

where hd is the partial run defined from h. It is not hard to see
that, for a given strategy σ, for a module m corresponding to
process p, there is a unique strategy s with Γ(s) = σ. So, the
function Γ is bijective. Moreover, for a given implementation
�s, by overlapping of the notation, by Γ(�s) we denote the pro-
file strategy assigning Γ(s) to the module m corresponding
to the process p. We can now prove the following lemma,
which gives a further characterisation of strategy profiles in
the uniform distributed synthesis problem.

Lemma 2. Let A be an architecture with d = |Φ| variables
and AA be the corresponding SRMLI arena. Then:

1. For each profile �s it holds that ρ(�s) = ρ(Γ(�s))d;
2. For each profile �σ it holds that ρ(�σ) = ρ(Γ−1(�σ))d.

We now introduce two additional modules to AA, named
mA and mB, which will be used to make an easy connection
between the solution of NONEMPTINESS and the uniform
distributed synthesis problem. These two additional modules,
as well as var, can be removed in a more general construction.
However, we prefer to have them here, again, to simplify our
presentation. Modules mA and mB simply control one Boolean
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variable each, namely a and b respectively, which they can set
to any Boolean value they want at initialisation, and cannot
modify thereafter. Call AA′ such an SRMLI system.

Observe that whereas module var has only one pos-
sible strategy, modules mA and mB have only two possi-
ble strategies, namely, set a to true or to false, and sim-
ilarly for b. Because of this, we often can reason about
strategy profiles where we simply consider the other mod-
ules, mp0 , mp1 , . . . , mpn , and the cases given by the possible
Boolean values, and therefore strategies, for a and b.

Theorem 2. Let A be an architecture with d = |Φ| variables
and ϕ an LTL specification. Moreover, consider the SRMLI
G = 〈AA′, ψvar, ψ0, ψ1, . . . , ψn, ψA, ψB〉 such that AA′ is
the arena derived by A, ψvar = 	, ψ0 = ¬τd(ϕ), ψ1 =
. . . = ψn = τd(ϕ), and ψA = τd(ϕ) ∨ (a ↔ b) and ψB =
τd(ϕ)∨¬(a ↔ b). Then, the architecture A realizes the LTL
formula ϕ if and only if G has a Nash equilibrium.

Proof. We prove the theorem by double implication.
(⇒). Assume that A realizes ϕ. Then, there exists

a winning strategy �s−0 for p1, . . . , pn,mA,mB, var such
that ρ(s0, �s−0) |= ϕ, for all possible strategies s0 for
the environment p0. Consider the strategy Γ( �s−0) given
for the modules m1, . . .mn,mA,mB, var, and consider a
strategy σ0 for module m0. By Lemma 2, we have that
ρ(Γ−1(σ0), �s−0) = ρ(σ0,Γ( �s−0))|Φ |= τd(ϕ). Then, by
Lemma 1, we have that ρ(σ0,Γ( �s−0)) |= τd(ϕ). Moreover,
the strategy profile (σ0,Γ( �s−0)) is a Nash equilibrium. In-
deed, m1, . . . ,mn,mA,mB, var have their goal satisfied and
so have no incentive to deviate. On the other hand, assume
by contradiction that module m0 has a strategy σ

′
0 such that

ρ(σ
′
0,Γ( �s−0)) |= ¬τd(ϕ). Then, due to Lemmas 1 and 2,

we have ρ(σ
′
0,Γ( �s−0)) |= ¬τd(ϕ) and therefore �s−0 is not

winning, which is a contradiction.
(⇐). Let (σ0, �σ−0) ∈ NE(G). Because of modules mA

and mB, it must be the case that ρ(σ0, �σ−0) |= τd(ϕ).
Then, consider the strategy profile Γ−1( �σ−0). We have
that it is a winning strategy. Indeed, assume by contradic-
tion that ρ(s0,Γ

−1( �σ−0)) |= ¬τd(ϕ) for some environ-
ment strategy s0. Then, by Lemmas 1 and 2, we obtain
that ρ(Γ(s0), �σ−0) |= ¬τd(ϕ) and so the strategy Γ(s0)
incentives module m0 to deviate from the strategy pro-
file (σ0, �σ−0), which is a contradiction.

Because the uniform distributed synthesis problem is un-
decidable with three processes, we can restrict ourselves to
that setting, where m0 can be extended to take care of turns
(to eliminate var) and the behaviour of mA and mB can be
encoded into that of m1 and m2 respectively (to eliminate
mA and mB), to obtain a 3-player SRMLI.

Corollary 1. NONEMPTINESS for SRMLI games with LTL
goals is undecidable for games with more than two players.

In fact, the uniform synthesis problem is undecidable for
logics even weaker than full LTL. However, the main con-
struction heavily relies on the existence of at least three play-
ers. Because of this, we now study the case where we still
allow LTL goals, but restrict to systems with only 2 players.

Decidability of 2-Player Games

In this section, we show that SRMLI games with two players
are decidable. More importantly, we show that this class of
games can be solved using a logic-based approach: as shown
next, NONEMPTINESS for games with two players and LTL
goals can be reduced to a series of temporal logic synthesis
problems. This approach provides a mechanical solution us-
ing already known automata-theoretic techniques originally
developed for LTL and CTL∗ synthesis with imperfect in-
formation. Let us first, in the next two subsections, present
some useful technical results and notations.

On the power of myopic strategies

Myopic strategies are strategies whose transition function
do not depend on the values of the variables it reads, but
only on the states where they are evaluated at. We say that
a strategy σi = (Qi, q0

i , δi, τi) is myopic if, for every q ∈ Qi
and Ψ,Ψ′ ⊆ Visi, we have δi(q,Ψ) = δi(q,Ψ′). Myopic
strategies are powerful enough to describe any ω-regular
run—an ultimately periodic run (Sistla and Clarke 1985):
Lemma 3. For every ω-regular run ρ, if ρ = ρ(�σ) for some
profile �σ = (σ1, . . . , σn), then for every i ∈ {1, . . . , n} there
is a myopic strategy σ′

i such that ρ = ρ(�σ−i, σ
′
i ).

What is important to observe about myopic strategies is
that once they are defined for a given module, the same
myopic strategies can be defined for all modules with (at
least) the same guarded commands. This observation is used
to show the following result about the preservation of myopic
strategies in games with imperfect information.
Lemma 4. Let mi = 〈Φi,Visi, Ii,Ui〉 be an SRMLI module
of a game with variable set Φ. If σi is a myopic strategy of
module mi then σi is also a strategy of m′

i =〈Φi,Visi
′, Ii,Ui〉,

for every set Visi ⊆ Visi
′ ⊆ Φ.

Moreover the following lemma, whose proof relies on
Lemmas 3 and 4, is key to obtain the decidability result for
two-player games presented later. Informally, it states that if a
player has a winning strategy, then such a strategy is winning
even if the other player has perfect information.
Lemma 5. Let G be an SRMLI game with two modules, m1 =
〈Φ1,Vis1, I1,U1〉 and m2 = 〈Φ2,Vis2, I2,U2〉, and i, j ∈
{1, 2}. Then, σi is a winning strategy of player i for ϕ if and
only if σi is a winning strategy for ϕ in the game G′ where
m′

j =〈Φj,Φ, Ij,Uj〉, with i �= j.

From synthesis to Nash equilibria

The behaviour of reactive modules can be characterised in
LTL using formulae that are polynomial in the size of the
modules. Then, given a module mi, we will write TH(mi)
for such an LTL formula, which satisfies, for all runs ρ, that
ρ is a run of mi iff it is a run satisfying TH(mi). Observe
that TH(mi) is a satisfiable formula and, in particular, it is
satisfied by any module or Kripke structure whose runs are
exactly those of mi. Moreover, we use the following notation.
For a synthesis problem with imperfect information, where ϕ
is the formula to be synthesised, I is the set of input variables,
E ⊆ I is the set of visible input variables, and O is the
set of output variables, we write SYN(ϕ, O, E, I). We will
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consider synthesis problems where ϕ is an LTL or a CTL∗
formula. In particular, in case ϕ is a CTL∗ formula, we use
the standard notation and semantics in the literature (Emerson
1990): informally, the CTL∗ formula Eψ means “there is a
path where formula ψ holds” whereas the CTL∗ formula Aψ
means “on all paths, formula ψ holds.”

With the above in mind, consider the algorithm in Figure 2,
which can be used to solve NONEMPTINESS in the setting
we are considering, where the input SRMLI game is

G2 = ({1, 2},Φ1,Φ2,m1,m2, γ1, γ2)

and the following abbreviations are used
• coop = γ1 ∧ γ2 ∧ TH(m1) ∧ TH(m2)

• block1 = TH(m1) → (¬γ1 ∧ TH(m2))

• block2 = TH(m2) → (¬γ2 ∧ TH(m1))

• nodev1 = A TH(m1) → (E γ2 ∧A¬γ1 ∧A TH(m2))

• nodev2 = A TH(m2) → (E γ1 ∧A¬γ2 ∧A TH(m1))

where each formula characterises the following situations:
for coop, the case where both γ1 and γ2 are satisfied while
respecting the behaviour of both modules, m1 and m2; for
block1/block2, the case where ¬γ1/¬γ2 is satisfied while
respecting the behaviour of module m2/m1, provided that
the behaviour of m1/m2 is respected too—i.e., a case where
module 2/1 “blocks” or prevents module 1/2 from achieving
its goal; for nodev1/nodev2, the case where ¬γ1/¬γ2 is sat-
isfied in all possible runs, with at least one satisfying γ2/γ1,
while respecting the behaviour of module m2/m1, provided
that the behaviour of module m1/m2 is respected too—i.e.,
a case where module 2/1 ensures that module 1/2 has no
incentive to deviate from any run satisfying nodev1/nodev2
to another run that also satisfies such a formula.

Nonemptiness(G2)
1. if coop is satisfiable then

return “yes”
2. if SYN(block1, Φ2, Vis2, Φ1) and

SYN(block2, Φ1, Vis1, Φ2) then
return “yes”

3. if SYN(nodev1, Φ2, Vis2, Φ1) or
SYN(nodev2, Φ1, Vis1, Φ2) then
return “yes”

4. return “no”

Figure 2: Algorithm for NONEMPTINESS in 2-player games.

Using Nonemptiness(G2), which in turn makes use of
algorithms for LTL satisfiability (PSPACE-complete) as well
as CTL∗ and LTL synthesis with imperfect information (both
2EXPTIME-complete), one can show that, in a two-player
SRMLI game with LTL goals, there exists a Nash equilibrium
if and only if one of the following three cases holds:

1. both players have their goals satisfied; or
2. both players have winning strategies for the negation of

the other player’s goal; or
3. some player, say i, has a winning strategy for the negation

of the other player’s goal, while at least one of the runs
allowed by such a winning strategy satisfies player i’s goal.

Theorem 3. NONEMPTINESS for two-player SRMLI games
with LTL goals is 2EXPTIME-complete.

Sketch of the proof. To prove the correctness (soundness and
completeness) of the algorithm we first assume that there is
a Nash equilibrium and check that at least one of the three
possible cases that deliver a positive answer is successfully
executed. In particular, for steps 2 and 3, we use the fact that,
because of Lemma 5, we can assume that when checking
block1/nodev1 (resp. block2/nodev2) only player 2 (resp. 1)
has imperfect information—the “verifier” in the associated
synthesis game—whereas the other player—the “falsifier”
in the associated synthesis game—has perfect information.
In addition, we also check that if a game does not have a
Nash equilibrium, then steps 1–3 fail, and therefore step 4
is executed, thus delivering again the correct answer. For
hardness we reduce from the LTL synthesis problem.

From Nash to strong Nash equilibria

Even though Nash equilibrium is the best-known solution
concept in non-cooperative game theory (Osborne and Rubin-
stein 1994), it has been criticised on various grounds—most
importantly, because it is not in fact a very stable solution
concept. In order to address this problem, other solution con-
cepts have been proposed, among them being the notion of
strong Nash equilibrium. Strong Nash equilibrium consid-
ers the possibility of players forming coalitions in order to
deviate from a strategy profile. Formally, a strategy profile
�σ = (σ1, . . . , σn), with N = {1, . . . , n}, is a strong Nash
equilibrium if for each C ⊆ N and set of strategies σ′

C of C,
there is i ∈ C such that

�σ �i (�σ−C, σ
′
C).

Then, in a strong Nash equilibrium a coalition of players C
has an incentive to deviate if and only if every player i in
such a coalition has an incentive to deviate. Let sNE(G) be
the set of strong Nash equilibria of an SRMLI game G and
S-NONEMPTINESS be NONEMPTINESS, but with respect to
sNE(G). Then, we can prove the following.
Theorem 4. S-NONEMPTINESS for two-player SRMLI
games with LTL goals is 2EXPTIME-complete.

Sketch of the proof. A two-player SRMLI game G has a
strong Nash equilibrium iff G has a Nash equilibrium. The
(⇒) direction is trivial. For the other direction, (⇐), we only
need to check the case where |C| = 2 and neither player
has its goal achieved. In such a case, if there is a beneficial
deviation where both players get their goals achieved, say to
a strategy profile σ′

C = (σ′
1, σ

′
2), then we obtain a profile that

is, in particular, both a Nash equilibrium and a strong Nash
equilibrium—as both players get their goals achieved.

What we can learn from (the proof of) Theorem 4 is that
cooperation in this setting does not help from the point of
view of the existence of equilibria. Instead, it may help to ob-
tain better equilibria. This is because if there is a profile that
is not a strong Nash equilibrium but it is a Nash equilibrium,
necessarily, it is one where neither player achieves its goal.
However, as such a profile is not a strong Nash equilibrium,
there must be another one where both achieve their goals.
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Games with Memoryless Nash Equilibria
Another way of obtaining a class of SRMLI games that is
decidable is by restricting the kind of strategies the players
in the game are allowed to use, rather than by restricting the
number of players in the game. This is the issue that we study
in this section. We consider the class of games where a Nash
equilibrium strategy profile can be defined only in terms of
memoryless strategies. We do not restrict the strategies the
players may use to deviate. More specifically, in this section,
we show that the NONEMPTINESS problem for this class of
SRMLI games is NEXPTIME-complete.

The solution to this variant of the general problem is given
by the non-deterministic algorithm presented in Figure 3.

Nonemptiness(G)
1. Guess �σ
2. If �σ ∈ NE(G) then return “yes”
3. return “no”

Figure 3: Algorithm to solve NONEMPTINESS in SRMLI
games with Nash equilibria in memoryless strategies.

Whereas step 1 can be done in NEXPTIME, step 2 can
be done in EXPTIME, leading to an NEXPTIME algorithm.
Moreover, hardness in NEXPTIME follows from the fact that
the satisfiability problem for Dependency Quantified Boolean
Formulae (DQBF) can be reduced to NONEMPTINESS for this
class of games. The non-deterministic algorithm in Figure 3
relies on the following intermediate results.
Lemma 6. Let G be a game with memoryless Nash equilibria.
If �σ ∈ NE(G), for some �σ = (σ1, . . . , σi, . . . , σn), then σi is
at most exponential in the size of G, for every σi in �σ.

Sketch of the proof. First, construct the Kripke structure in-
duced by G. Such a structure, denoted by KG, is at most expo-
nential in the size of G. Because we only consider (equilibria
in) memoryless strategies, such strategies cannot be bigger
than |KG|, thus at most exponential in the size of G.

Lemma 6 is used to do step 1 of the algorithm in Figure 3.
In addition, the lemma below—which relies on the fact that
LTL model checking, say for an instance K |= ϕ where K
is a model and ϕ an LTL formula, is polynomial in |K| and
exponential in |ϕ|—is used to do step 2 of the algorithm.
Lemma 7. Let G = (A, γ1, . . . , γn) be a game with memory-
less Nash equilibria and �σ a strategy profile in G. Checking
whether �σ ∈ NE(G) can be done in time exponential in |A|
and exponential in |γ1|+ . . .+ |γn|.

Then, Lemmas 6 and 7 can be used to show:
Theorem 5. NONEMPTINESS for SRMLI games with memo-
ryless Nash equilibria is NEXPTIME-complete.

Sketch of the proof. This NONEMPTINESS problem is solved
using the non-deterministic algorithm in Figure 3. That the
algorithm runs in NEXPTIME follows from the fact that if
a Nash equilibrium exists, due to Lemma 6, such a strategy
profile can be guessed in NEXPTIME and verified to be a
Nash equilibrium in EXPTIME, using Lemma 7. For hard-
ness, we reduce from the satisfiability problem for DQBF,
which is known to be NEXPTIME-complete.

Bounded Rationality

Another interesting game-theoretic setting, which is com-
monly found in the literature, is the one where we assume
that the agents in the system have only “bounded rationality.”
This is modelled, for instance, by assuming that the number
of rounds of the game is finite or that strategies are of some
bounded size. From the computational point of view, a nat-
ural assumption is that strategies are at most polynomial in
the size of the module specifications they are associated with.
Under this latter assumption, we can use the algorithm in
Figure 3 to show these games can be solved in PSPACE.

Since strategies are polynomially bounded, step 1 can be
done in NPSPACE by guessing �σ. Furthermore, step 2 can
also be done in NPSPACE: whenever a goal γj is not satisfied
by �σ, we can check in NPSPACE if there is a polynomially
bounded strategy σ′

j such that ρ(�σ−j, σ
′
j ) |= γj. For hardness,

we use a reduction from the LTL model checking problem
for compressed words (Markey and Schnoebelen 2003).
Theorem 6. NONEMPTINESS for SRMLI games G with
strategies polynomially bounded by |G| is PSPACE-complete.

Local Reasoning

Another decidable, and simple, class of SRMLI games with
LTL goals where the reasoning power of the players is also
restricted is the class of games where only myopic strate-
gies are allowed. Such games, which we call myopic SRMLI
games, can be solved in EXPSPACE. A particular feature of
this class of games is that in this setting players cannot be
informed by the behaviour of other players in the game. As
a consequence, all reasoning must be done in a purely local
way. Indeed, these are “zero-knowledge” games with respect
to the information that could be obtained from each module’s
environment, that is, from the other modules in the system.

Firstly, given a myopic SRMLI game G = (A, γ1, . . . , γn),
let ϕA =

∧
i∈N TH(mi) be the LTL formula characterising

the behaviour of the modules in A. Now, to check if there is a
strategy profile in myopic strategies we check if the following
Quantified LTL (QPTL) formula is satisfiable:

∨
W⊆N

(
ϕA ∧ ∃Φ1, . . . ,Φn.

( ∧
i∈W

γi ∧
∧

j∈N\W

(
∀Φj.¬γj

)))

such that ∃Φi stands for ∃p1
i , . . . , p

|Φi|
i , where Φi is the set

of Boolean variables {p1
i , . . . , p

|Φi|
i }, and similarly for ∀Φi.

Such a formula is in ΣQPTL
2 . Therefore, by (Sistla, Vardi, and

Wolper 1987), its satisfiability problem is in EXPSPACE
and has an ω-regular (ultimately periodic) model. Moreover,
the formula is satisfied by all runs satisfying the modules’
specifications (given by ϕA) where a set of “winners” (given
by W) get their goals achieved and a set of “losers” (given by
N \W) cannot deviate. The semantics of QPTL (Sistla, Vardi,
and Wolper 1987) ensures that models of such a formula
have a game interpretation using the definition of myopic
strategies. Finally, for hardness, we use a reduction from the
satisfiability problem of ΣQPTL

2 formulae. Formally, we have:
Theorem 7. NONEMPTINESS for myopic SRMLI games is
EXPSPACE-complete.
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Refinement and Preservation of Equilibria
In this section, we show that the monotonic increase of play-
ers’ knowledge may only induce an increase in the number
of strategy profiles in the set of Nash equilibria of a game
with imperfect information, if any. For instance, this situation
is illustrated with the following example.
Example 1. Consider the two-player SRMLI game G =
(Φ = {p, q},m1,m2, γ1 = p ↔ Xq, γ2 = p ↔ X¬q) such
that module m1/m2 controls variable p/q and has visibility
set Φ1/Φ2 and can set p/q to any Boolean value at all rounds
in the game. Moreover, consider the game G′, defined just
as G save that m2 has visibility set Φ. It is easy to see that
whereas NE(G) = ∅, we have that NE(G′) �= ∅.

More specifically, in this section, we present a general
result about the preservation of Nash equilibria, provided that
no player’s knowledge about the overall system is decreased.
A key technical result to prove this is that a player’s deviation
is a “zero-knowledge” process, which can be implemented in
our game-theoretic framework using only myopic strategies,
as stated by the following lemma.
Lemma 8. Let G be an SRMLI game and �σ �∈ NE(G). Then,
there is a player j and a myopic strategy σ′

j for player j such
that ρ(�σ) �|= γj and ρ(�σ−j, σ

′
j ) |= γj.

Using Lemma 8, we can show that the power a module mj
has to beneficially deviate from a strategy profile is neither
increased by giving such a module more knowledge by in-
creasing its visibility set Visj nor decreased by giving such a
module less knowledge by decreasing its visibility set Visj
(as long as all guarded commands are kept). Formally, the
next theorem about the preservation of Nash equilibria holds.
Theorem 8. Let G and G′ be two SRMLI games, with
• G = ((N,Φ,m1, . . . ,mn), γ1, . . . , γn) and
• G′ = ((N,Φ,m′

1, . . . ,m′
n), γ1, . . . , γn),

such that for each i ∈ N we have mi =〈Φi,Visi, Ii,Ui〉, and
m′

i =〈Φi,Visi
′, Ii,Ui〉, and Visi ⊆ Visi

′. Then,
NE(G) ⊆ NE(G′).

Proof. We prove that, under the assumptions of the theorem,
if �σ ∈ NE(G) then �σ ∈ NE(G′). First, observe that if �σ is a
strategy profile in G, then so is in G′, since for each player j
and strategy σj of j in G, such a strategy σj is also available
to j in G′. Now, suppose, for a contradiction, that �σ ∈ NE(G)
and �σ �∈ NE(G′). Then, because of Lemma 8, we know that
there is a player j and a myopic strategy σ′

j of j such that
ρ(�σ) �|= γj and ρ(�σ−j, σ

′
j ) |= γj. And, due to Lemma 4, we

know that σ′
j is a myopic strategy that is available to player j

in both G and G′. However, this means that player j could
also beneficially deviate in G and therefore that �σ is not a
Nash equilibrium of G, which is a contradiction.

Since we know that NONEMPTINESS with LTL goals is
decidable in 2EXPTIME for perfect-information games, but
undecidable for imperfect-information games, one can also
show that, in general, the other direction, namely in which
NE(G′) ⊆ NE(G), does not hold, as otherwise we would
have NE(G) = NE(G′) under the assumptions of the theorem.
Alternatively, a counter-example to such an equality can be
shown, e.g., as the one given by Example 1 above.

Related Work, Conclusions, and Future Work

Imperfect information in logic-based games. There is a
long tradition in logic and theoretical computer science of
using logic-based games to characterise complexity classes,
using both perfect and imperfect information games; see, e.g.,
(Stockmeyer and Chandra 1979; Peterson, Reif, and Azhar
2001). In this paper, we obtain similar results, in particular,
in a multi-player imperfect information setting. A summary
of our results from this viewpoint is in Table 1.

General case Memoryless Poly. Bound. Myopic

n-Pl Undecidable NEXPTIME-c PSPACE-c EXPSPACE-c

2-Pl 2EXPTIME-c NEXPTIME PSPACE EXPSPACE

Table 1: Summary of results for n-player games (n-Pl) and
2-player games (2-Pl). Abbreviations, with X a complexity
class: X-c means X-complete and X means in X.

Imperfect information in logics for strategic reasoning.
Although logics for games have been studied since at least
the 1980s (Parikh 1985), recent interest in the area was
prompted by the development of logics to reason about strate-
gic ability; see, e.g., (Alur, Henzinger, and Kupferman 2002;
Chatterjee, Henzinger, and Piterman 2010; Gutierrez, Har-
renstein, and Wooldridge 2014; Mogavero et al. 2014). Some
of these logics are even able to express the existence of Nash
equilibria for games in which players have LTL goals. Also,
some variations that can deal with imperfect information have
been already studied (van der Hoek and Wooldridge 2003;
Ågotnes et al. 2015). However, a comprehensive study under
imperfect information is far from complete.

Solving games with imperfect information. There is
much work in the multi-agent systems community on solv-
ing incomplete information games (e.g., poker), although
this work does not use logic (Sandholm 2015). The main
challenge in this work is dealing with large search spaces:
naive approaches fail even on the most trivial cases. It would
be interesting to explore if such problems can be addressed
using logic-based methods—techniques developed for veri-
fication, e.g., model checking, have been usefully applied
in similar settings. Other issues for future work include
more work on mapping out the complexity landscape of our
games (see Table 1), and on practical implementations; see,
e.g., (Lomuscio, Qu, and Raimondi 2009; Cermák et al. 2014;
Toumi, Gutierrez, and Wooldridge 2015).

On iBG and SRMLI games. Our model of study, SRMLI
games, is a natural extension of the iBG model as de-
fined in (Gutierrez, Harrenstein, and Wooldridge 2015b).
There are many reasons from theoretical and practical view-
points to consider the more general model given by SRMLI
games, for instance, in the verification of multi-agent sys-
tems (Wooldridge et al. 2016). In particular, while players
in iBG have unrestricted powers (as used for synthesis or
satisfiability), players in SRMLI games can have restricted be-
haviour (as needed to model real-world multi-agent systems).
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Ågotnes, T.; Goranko, V.; Jamroga, W.; and Wooldridge, M.
2015. Knowledge and ability. In Handbook of Epistemic
Logic. College Publications.
Alur, R., and Henzinger, T. A. 1999. Reactive Modules.
Formal Methods in System Design 15(1):7–48.
Alur, R.; Henzinger, T.; Mang, F.; Qadeer, S.; Rajamani, S.;
and Tasiran, S. 1998. MOCHA: modularity in model check-
ing. In International Conference on Computer-Aided Verifi-
cation (CAV), volume 1427 of LNCS, 521–525. Springer.
Alur, R.; Henzinger, T. A.; and Kupferman, O. 2002.
Alternating-time temporal logic. Journal of the ACM
49(5):672–713.
Bouyer, P.; Brenguier, R.; Markey, N.; and Ummels, M. 2011.
Nash equilibria in concurrent games with Büchi objectives. In
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