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Abstract

Game Logic with Preferences (GLP), is a logic that
makes it possible to reason about how information or as-
sumptions about the preferences of other players can be
used by agents in order to realize their own preferences. We
extend the work done on this logic by looking at the satisfia-
bility problem for this logic. We introduce an axiom system
and show the soundness of this system.

1. Introduction

We are interested in logics that can be used for the speci-
fication, analysis, and verification of mechanisms for social
interaction [9]. Examples of such mechanisms include vot-
ing and election procedures [4], auction and trading pro-
tocols, and solutions for fair division and dispute reso-
lution [2]. These situations can be modeled as extensive
games [8, 1], and then one can use game theoretic con-
cepts to characterise properties of the protocol. One would
like to model procedures as complete and perfect informa-
tion games, because this is a simple class of games; but then
all agents have complete knowledge of each other’s prefer-
ences. This is an unrealistic assumption in many situations.

One can also model social procedures as distributed or
interpreted systems [5]. These systems are models for the
options and knowledge that agents have. Some properties
of these systems can be expressed using temporal logics [3];
temporal epistemic logics can be used for knowledge based
requirements [5], and coalition (epistemic) logics [10] can
be used for expressing abilities of coalitions of agents. Un-
fortunately, these approaches do not deal with agents’ pref-
erences at all. The assumption in these systems is that agents
know nothing about other agents’ preferences – and of
course this is also an unrealistic assumption.

In this paper we use a logic called GLP which has been
introduced for reasoning about preferences. This logic is
similar to work by Harrenstein et al [6] in that it uses pref-
erences over extensive game forms, but GLP can also look
at the consequences of knowing that a coalition of agents

act following a preference. It is interpreted over models that
do not contain agent’s preferences, but assumption on the
preferences of agents can be made within formulas. GLP is
an extension of propositional modal logic with a set of ex-
tra modal operators. These operators, written [Γ : φ0]ψ ex-
press that if it is commonly known that coalition Γ wants
to achieve φ0, then ψ holds. In a previous publication [12]
we have shown that the model checking problem for this
logic has linear computational complexity and presented an
implemented model checker1. In this paper we extend the
work on this logic by looking at the satisfiability problem
for this logic.

Section 2 defines and illustrates the logic. In section 3
we present a set of axioms and indicate why these axioms
are sound. Section 4 is the conclusion.

2. Definitions

Throughout this paper we follow coalition logic conven-
tions [10] by using Σ to denote a set of agents, Γ for a coali-
tion of agents (so Γ ⊆ Σ), X,Y ∈ Σ as variables over
agents, P for a set of propositions and π as an interpreta-
tion function for propositions. M is a model, ABC are ex-
ample agents and φ, ψ formulas.

Syntax of GLP We find it convenient to define the syntax
of GLP in several stages, beginning with (classical) proposi-
tional logic.

Definition 1 The language PL of propositional logic over
a set of propositions P is the smallest set L ⊇ P such that
for any φ ∈ L and ψ ∈ L we have that φ ∨ φ ∈ L and
¬φ ∈ L.

We use propositional logic to express properties of the out-
comes or results of games. Propositional logic is only used
for properties of terminal states, not for intermediate states
of a game or protocol. Another important detail is that
propositional formulas are not itself GLP formulas.

The logic GLP contains all connectives of propositional
logic and two additional operators. One can be used to intro-

1 available at http://www.csc.liv.ac.uk/∼sieuwert/glp



duce formulas of propositional logic in GLP, and the other
one is used to express consequences of preferences.

Definition 2 Let P be a set of propositions, and Σ a group
of agents. Let PL be the language of propositional logic
over P . The language for GLP is the smallest language L
such that for any formula φ0 ∈ PL and φ, ψ ∈ L, it is the
case that:

�φ0 ∈ L
φ ∨ ψ ∈ L

¬φ ∈ L
[Γ : φ0]ψ ∈ L

The formula [Γ : φ0]ψ has the intended reading ‘In any
game in which coalition Γ prefers φ0, ψ will hold’. One can
compare this operator with a public announcement opera-
tor as in dynamic epistemic logic [11]. The game form rep-
resents the uncertainty that there is about the outcome of
the game before the game is played. A statement [Γ : φ0]ψ
expresses that ψ holds in the situation after it has become
common knowledge that the agents in Γ want φ0 to hold
and will act according to this preference. The box operator,
�φ0, takes a propositional logic formula φ0, which can be
interpreted in a specific state, and converts it into a GLP for-
mula: it means that φ0 holds for every possible outcome. A
formula �φ0 thus express that, at the start of the protocol,
it is commonly known that the outcome state of the proto-
col that will be reached satisfies φ0.

A useful shorthand is the sometimes operator �φ0, which
means that φ0 holds for some outcome. It is defined as
�φ0 = ¬�¬φ0. Where no confusion is possible, we omit
brackets and commas in the notation of a set Γ of agents,
for example writing [ABC : φ0]ψ instead of [{A,B,C} :
φ0]ψ. We use φ0, ψ0 for propositional formulas and φ, ψ for
GLP formulas to avoid confusion.

INTERPRETATION GLP is interpreted over game form in-
terpretations. These are game trees in which all leaves are
annotated with propositions. The assumption is that the
game tree is common knowledge between all agents in-
volved, but that the preferences of all agents are initially pri-
vate. A game form interpretation is a tuple (F, P, π) where
F is a game form, P a set of propositions and π an interpre-
tation function that for each leaf s returns the set of propo-
sitions that are true in that node. We can interpret proposi-
tional formulas over leaves in the following way.

π, s |= p iff p ∈ π(s)
π, s |= φ0 ∨ ψ0 iff π, s |= φ0 or π, s |= ψ0

π, s |= ¬φ0 iff not π, s |= φ0

Formulas of GLP are not interpreted over end states, but
over an entire game form. The box operator �φ0 is inter-
preted in such a way that M |= �φ0 is true if and only if

φ0 holds in every leaf ofM . Negation, disjunction and con-
junction are interpreted in the normal way. The interpreta-
tion of [Γ : φ0] is done using an update function Up. This
function takes a coalition Γ, a game form M and a formula
φ0, and returns a new game form M ′. The new game form
M ′ is a pruned version of M : the agents in Γ have less op-
tions to choose from, since they are committed to do ac-
tions that guarantee that φ0 holds, if possible. The interpre-
tation of GLP can then be finished with the following defi-
nitions.

M |= �φ0 iff for all s ∈ Z(T ) π, s |= φ0

M |= φ ∨ ψ iff M |= φ or M |= ψ
M |= ¬φ iff not M |= φ
M |= [Γ : φ0]ψ iff Up(M,Γ, φ0) |= ψ

We apologize to the reader for not defining formally the
update function. Instead we sketch and describe the update
function below. A more formal treatment of the interpreta-
tion of GLP can be found in [12]. For this publication we
have chosen to sketch the intuition behind the update func-
tion. First of all the formal treatment is quite long, secondly
because this may give more insight. Thirdly many axioms
we prove do not heavily depend on the specific update func-
tion used. This is for instance the case for distribution, re-
striction, functionality. The important insight we hope to
convey is the general priniciple of using an update func-
tion.

To define Up(M,Γ, φ0) we consider the two player ze-
rosum game in which all the agents in Γ get a payoff of one
in outcomes where φ0 holds. The other players in Σ \ Γ get
payoff one if φ0 does not hold. These coalitions are thus the
two players. Both coalitions want to maximize their pay-
off.

In two player zerosum games rational behaviour is of-
ten related to playing a Nash Equilibrium strategy [8]. Ev-
ery Nash Equilibrium of a two player zerosum game has
the same value, and this value can be computed using back-
wards induction [8]. The update function is also defined and
computed using backwards induction. Let n be a node in the
game tree controlled by an agentX ∈ Γ. This agent has sev-
eral options o0 . . . oN to chose from at this node. Some (per-
haps none) of these options lead to a subgame in which Γ
can get the payoff of one (good moves). In other options, Γ
cannot (bad moves). In the updated tree, only the good op-
tions are available to X , unless there are only bad options,
in which case all bad options are kept. For nodes controlled
by agents Y /∈ Γ, all options are kept. In this way the up-
date functionUp(M,Γ, φ0) returns a reduced tree such that
the agents of Γ are constrained in their behaviour: they must
act toward making φ0 true. A nondeterministic strategy S is
more general than S ′ if they are defined for the same coali-
tion Γ and for all nodes n controlled by Γ it is the case
that S′(n) ⊆ S(n). The update function makes no distinc-
tion between different good moves or different bad moves.



Therefore the update represents the case were Γ uses the
most general ‘good’ strategy SΓ.

We distinguish successful and unsuccessful updates. If
Up(M,Γ, φ0) |= �φ0, then the update is called success-
ful, otherwise unsuccessful. In the original definition of
GLP [12], the model Up(M,Γ, φ0) could have been differ-
ent from M even in the case of an unsuccessful update. We
have found it difficult to specify using axioms the proper-
ties of unsuccessful updates, and one line of ongoing re-
search is to investigate whether a slightly different update
function might make the problem of finding a sound and
complete proof system easier.

Another distinction we can make is that between abilities
and side-effects. A formula of the form [Γ : φ0]ψ is an abil-
ity if ψ = �φ0. Otherwise it is a side-effect. We have found
it easier to reason about abilities than about side-effects. For
instance the axioms minimax and grand coalition are only
about abilities.

Example The example protocol given here is a voting pro-
tocol for three agents (A, B, and C) that have to choose be-
tween three alternatives (x, y, and z). The requirements are
that exactly one alternative is chosen and any group of two
agents can force any outcome (majority rules). This is for-
malized in the next formulas. Let Γ ⊆ {A,B,C} and u, v
variables over the options O = {x, y, z}.

�(x ∨ y ∨ z) at least one alternative
∧

u,v∈O,u6=v �¬(u ∧ v) at most one alternative

|Γ| > 1 ⇒
∧

u∈O [Γ : u]�u majority decides

In Figure 1, a protocol P1 is depicted which satisfies
these requirements – it is in fact a smallest protocol that
satisfies the requirements, as one can verify by testing all
smaller trees. It works in two steps. First,A can say whether
B or C can make a choice. Then, either B or C can indi-
cate which of the three destinations is chosen. The protocol
may seem strange because A cannot directly support a cer-
tain outcome. What is the best action forA depends on what
B and C will do. In this protocol it is thus important for A
to know what the others do, while C and B need no infor-
mation about the other agents. The next GLP formulas illus-
trate this peculiarity of protocol P1.

P1 |= [AB : x]�x
P1 |= [B : x][A : x]�x
P1 6|= [A : x][B : x]�x

To illustrate the meaning of the update function, the up-
dated model Up(P1, {B}, x) is illustrated in figure 2. One
can see that in this model, A can guarantee x by choos-
ing its left option. Therefore,Up(P1, {B}, x) |= [A : x]�x
and thus P1 |= [B : x][A : x]�x.

A

B C

x y z x y z

Figure 1. A voting protocol P1

A

B C

x x y z

Figure 2. Updated model Up(P1, {B}, x)

3. Proof system

In this section we present two reasoning rules and sev-
eral axioms. The notation used is that M |= φ means that φ
holds for model M . The notation |= φ means that M |= φ
for any model M and in this case we say that φ is valid. If
one can construct a proof for φ using the reasoning rules and
axioms below, we say that φ is derivable and write ` φ. Our
major concern in this section is the soundness of the sys-
tem proposed here. Soundness means that for any formula
φ we can show that ` φ implies that |= φ.

The system described uses only two reasoning rules:
Modus Ponens and Necessitation. It is not hard to see that
these are valid. Since these rules are also present in the sys-
tem K of modal logic[7], we have omitted these proofs.

φ φ→ ψ

ψ
(MP )

φ

[Γ : ψ0]φ
(Nec)

The following is a list of axiom schemes. We claim that
all these axiom schemes are valid. Most of these axioms are
valid. In these schemes, φ, χ and ψ stand for any proposi-
tion and Γ, Γ1 for arbitrary coalitions. Σ is the coalition of



all agents. τ is an instance of a propositional logic proposi-
tion.

1. ` τ tautology

2. ` �τ box tautology

3. ` �φ0 → �φ0 box seriality

4. ` �(φ0 → ψ0) → (�φ0 → �ψ0) box distribution

5. ` [Γ : χ0](φ→ ψ) → ([Γ : χ0]φ → [Γ : χ0]ψ) distri-
bution

6. ` �φ0 → ([Γ : φ0]ψ → ψ) donothing

7. ` [Γ : φ0]ψ → [Γ : φ0][Γ : φ0]ψ projection

8. ` [Γ : φ0]¬ψ → ¬[Γ : φ0]ψ functionality

9. ` �φ0 → [Γ : ψ0]�φ0 restriction

10. ` �φ0 → [Σ : �φ0]�φ0 grand coalition

11. ` [Γ : φ0]�φ0 ↔ ¬[Σ\Γ : ¬φ0]�¬φ0 minimax

12. ` [Γ1 : φ0][Γ2 : φ0]�φ0) → [Γ1 ∪ Γ2 : φ0]�φ0 com-
bination

13. ` [Γ : φ0]�φ0 → [Γ2 \ Γ : ψ][Γ : φ0]�φ0 preserva-
tion

14. ` [Γ : φ0]�φ0 → [Γ : (φ0 ∨ ψ0)] � φ0 generality

15. ` [Γ : φ0]�ψ0 → [Γ : ψ0]�ψ0 effectivity

Proofs of Soundness

|= τ (tautology)

By definition, a tautology τ evaluates to true under all as-
signments of truth values to the atoms p, q occurring in
the formula. We consider tautologies τ(p, q, . . .) where the
atoms p, q are replaced by formulas �φ0. The formula with
substitutions τ(�φ0, . . .) is thus true regardless of the truth
values of �φ0, . . .. Therefore this axiom is sound.

|= �τ (box tautology)

Because τ is a propositional tautology, it is true in all end
nodes of any game form interpretation. Therefore �τ holds
in any game form interpretation. This axiom is thus valid.

|= �φ0 → �φ0 (seriality)

Let M be any game form interpretation and suppose M |=
�φ0. Model M has at least one end state s. Because M |=
�φ0 we know that π, s |= φ0. Since there is a state in which
φ0 holds, M |= �φ0.

|= �(φ0 → ψ0) → (�φ0 → �ψ0) (box distribution)

Let M be any game form interpretation and suppose M |=
�(φ0 → ψ0) and M |= �φ0. Let s be any terminal state
of M . From the assumptions we know that π, s |= φ0 and

π, s |= φ0 → ψ0. This implies that π, s |= ψ0. Since we
have shown this for an arbitrary end state s, we conclude
M |= �ψ0.

|= [Γ : χ0](φ → ψ) → ([Γ : χ0]φ → [Γ : χ0]ψ) (distribution)

Let M be any game form interpretation and suppose M |=
[Γ : χ0](φ → ψ) and m |= [Γ : χ0]φ. From the as-
sumptions we know that Up(M,Γ, χ0) |= (φ → ψ)
and Up(M,Γ, χ0) |= φ. Using modus ponens we derive
Up(M,Γ, χ0) |= ψ and thus we concludem |= [Γ : χ0]ψ.

|= �φ0 → ([Γ : φ0]ψ → ψ) (donothing)

LetM be any model such thatM |= �φ0. The update func-
tion removes ‘bad moves’ of agents X ∈ Γ. Since φ0 holds
in every possible outcome, there are no ‘bad moves’ and
thus Up(M,Γ, φ0) = M . Therefore Up(M,Γ, φ0) |= ψ
implies that M |= ψ.

|= [Γ : φ0]ψ → [Γ : φ0][Γ : φ0]ψ (projection)

Let M be any game form interpretation and assume
M |= [Γ : φ0]ψ. In that case Up(M,Γ, φ0) |= ψ.
In the model Up(M,Γ, φ0), agents in coalition Γ are
doing whatever they can to ensure φ0. Another up-
date with the same formula does not lead to further
pruning: Up(Up(M,Γ, φ0),Γ, φ0) = Up(M,Γ, φ0).
Therefore Up(Up(M,Γ, φ0),Γ, φ0) |= ψ and thus
M |= [Γ : φ0][Γ : φ0]ψ.

|= [Γ : φ0]¬ψ ↔ ¬[Γ : φ0]ψ (functionality)

Let M = (Σ, N, T, I) be any game form interpretation. In
the model Up(M,Γ, φ0), either ψ holds, or ¬ψ holds. In
the first case M 6|= [Γ : φ0]¬ψ andM 6|= ¬[Γ : φ0]ψ. In the
second case M |= [Γ : φ0]¬ψ and M |= ¬[Γ : φ0]ψ. The
statements on both sides of the double arrow are thus equiv-
alent.

|= �φ0 → [Γ : ψ0]�φ0 (restriction)

Let M be any game form interpretation and suppose M |=
�φ0. This means that in every state s of M we have π, s |=
φ0. The set of states S′ of the model Up(M,Γ, ψ0) is a
subset of the states S of M . Let s′ ∈ S′. Since s′ ∈ S
we know that π, s |= φ0. Since s′ is an arbitrary state of
Up(M,Γ, ψ0), we can conclude that Up(M,Γ, ψ0)�φ0.

|= �φ0 → [Σ : �φ0]�φ0 (grand coalition)

Let M be any game form interpretation and suppose M |=
�φ0. This means there is a path n0n1 . . . ne in the tree as-
sociated with the model M from the root to a state ne

where π, ne |= φ0. Using induction, one can show that
at every node ni the agent that controls node ni) has



an option (namely ni+1) that guarantees φ0. By defini-
tion of the update function, this means that in the updated
model Up(M,Σ, φ0), only actions that guarantee φ0 are
preserved. Therefore, in every outcome of Up(M,Σ, φ0),
φ0 holds and thus Up(M,Σ, φ0) |= �φ0.

|= [Γ : �φ0]�φ0 ↔ ¬[Σ\Γ : �¬φ0]�¬φ0 (minimax)

Let M = (Σ, N, T, I) be any game form interpretation.
The game in which Γ ‘wins’ payoff 1 if the outcome sat-
isfies φ0 and Σ\Γ ‘wins’ 1 if ¬φ0 holds in the outcome is
finite and thus determined. One of the two coalitions must
have a winning strategy. If Γ has a winning strategy, then
[Γ : �φ0]�φ0. Otherwise [Σ\Γ : �¬φ0]�¬φ0.

|= [Γ1 : φ0][Γ2 : φ0]�φ0 → [Γ1∪Γ2 : φ0]�φ0 (combination)

Let M be any model and let M |= [Γ1 : φ0][Γ2 : φ0]�φ0.
This means that Up(Up(M,Γ1, φ0),Γ1, φ0) |= �φ0. So
there is a nondeterministic strategy for Γ1 and one for Γ2

such that when both are adhered to, an outcome that makes
φ true is guaranteed. These two strategies can be combined
into one strategy for Γ1∪Γ2, and therefore this larger coali-
tion has a strategy for ensuring φ. Thus [Γ1 ∪ Γ2 : φ0]�φ0.

|= [Γ : φ0]�φ0 → [Γ2 \ Γ : ψ0][Γ : φ0]�φ0 (preservation)

Let M be any game form interpretation and assume M |=
[Γ : φ0]�φ0. This means that Γ has a strategy S such that
using strategy S ensures an outcome satisfying �φ0. In the
model after the update Up(M,Γ2 \ Γ, ψ0) this strategy can
still be applied, and will still guarantee φ0. In this model, Γ
can thus achieve φ0 and therefore M |= [Γ2 \ Γ : ψ0][Γ :
φ0]�φ0.

|= [Γ : φ0]�φ0 → [Γ : (φ0 ∨ ψ0)] � φ0 (generality)

Let M be any game form interpretation and assume M |=
[Γ : φ0]�φ0. This means that Γ has a strategy S that en-
sures φ0. This strategy makes (φ0 ∨ ψ0) hold. In the up-
dated modelM ′ = Up(M,Γ, φ0∨ψ0) the coalition Γ plays
a most general strategy and thus a strategy that is as least as
general than S. Therefore the outcomes that were part of
Up(M,Γ1, φ0) are still present in M ′ and thus M ′ |= �ψ0.

` [Γ : φ0]�ψ0 → [Γ : ψ0]�ψ0 (effectivity)

Let M be any game form interpretation and assume M |=
[Γ : φ0]�ψ0. This means that Γ has a strategy S that en-
sures ψ0. Which means M |= [Γ : ψ0]�ψ0.

4. Conclusion

This paper looks into the problem of finding an axioma-
tization for the logic GLP. This is still work in progress. We
have presented a system of axioms that is sound. We have
not proven completeness of this system but hope to do that
in the future.

References

[1] K. Binmore. Fun and Games: A Text on Game Theory. D.
C. Heath and Company: Lexington, MA, 1992.

[2] S Brahms and D Taylor. Fair division: from cake cutting to
dispute resolution. Cambridge University Press, 1996.

[3] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Check-
ing. The MIT Press: Cambridge, MA, 2000.

[4] V. Conitzer and T. Sandholm. Complexity of mechanism de-
sign. In Proceedings of the Uncertainty in Artificial Intelli-
gence Conference (UAI), Edmonton, Canada., 2002.

[5] R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning
about knowledge. The MIT Press: Cambridge, MA, 1995.

[6] B. Harrenstein, W. van der Hoek, J.-J. Ch. Meyer, and C. Wit-
teveen. On modal logic interpretations of games. In Procs
ECAI 2002, volume 77, pages 28–32, Amsterdam, July 2002.

[7] J.-J. Ch. Meyer and W. van der Hoek. Epistemic Logic for AI
and Computer Science. Cambridge University Press: Cam-
bridge, England, 1995.

[8] M. J. Osborne and A. Rubinstein. A Course in Game Theory.
The MIT Press: Cambridge, MA, 1994.

[9] M. Pauly. Logic for Social Software. PhD thesis, University
of Amsterdam, 2001. ILLC Dissertation Series 2001-10.

[10] W. van der Hoek and M. Wooldridge. Cooperation, knowl-
edge, and time: Alternating-time temporal epistemic logic
and its applications. Studia Logica, 75(4):125–157, 2003.

[11] H. P. van Ditmarsch. Knowledge Games. PhD thesis, Uni-
versity of Groningen, Groningen, 2000.

[12] S. van Otterloo, W. van der Hoek, and M. Wooldridge. Pref-
erences in game logics. In AAMAS 2004, New York, July
2004.


