
Towards a Logic of Social Welfare

Thomas Ågotnes1, Wiebe van der Hoek2, and Michael Wooldridge2

1 Department of Informatics, University of Bergen, agotnes@ii.uib.no
2 Department of Computer Science, University of Liverpool, {wiebe,mjw}@csc.liv.ac.uk

Abstract. We present a logic of social welfare functions. The logical language is
syntactically simple, but expressive enough to express interesting and complicated
properties of social welfare functions involving, e.g., quantification over both prefer-
ence relations and over individual alternatives, such as Arrow’s thorem.

1 Introduction

In the recent years there has been a great deal of interest in the logical aspects of societies.
For example, Alternating-time Temporal Logic (ATL) [1] and Coalition Logic (CL) [11] can
be used to reason about the strategic abilities of individual agents and of coalitions. There is
a close connection between these logics and game theory. A related field which, like game
theory, also is concerned with social interaction, is social choice theory. A key issue in
the latter field is the construction of social welfare functions, (SWFs), mapping individual
preferences into “social preferences”. Many of the most well known results in social choice
theory are impossibility results such as Arrow’s theorem [3]: there is no SWF that meets all
of a certain number of reasonable conditions. Formal logics related to social choice have
focused mostly on the logical representation of preferences when the set of alternatives is
large and on the computational properties of computing aggregated preferences for a given
representation [7–9].

In this paper, we present a formal logic which makes it possible to explicitly represent
and reason about individual preferences and social preferences. The main differences to
the logics mentioned above are as follows. First, the logical language is interpreted directly
by social welfare functions and thus that formulae can be read as properties of such func-
tions; second, that preferences are represented in a more abstract way; and, third, that the
expressive power is sufficient for interesting problems as discussed below.

Motivations for modeling social choice using logic are manyfold. In particular, logic en-
ables formal knowledge representation and reasoning. For example, in multiagent systems
[13], agents must be able to represent and reason about propositions involving other agents’
preferences and preference aggregation. For social choice theory, logic can enable tools
for, e.g., mechanically generating proofs, checking the soundness of proofs, mechanically
generating possibly interesting theorems, checking properties of particular social welfare
functions, etc.

An example of a property of (some) social welfare functions is so-called independence
of irrelevant alternatives (IIA): given two preference profiles and two alternatives, if for
each agent the two alternatives have the same order in the two preference profiles, then the
two alternatives must have the same order in the two preference relations resulting from
applying the SWF to the two preference profiles, respectively. From this example it seems
that a formal language about SWFs should be able to express:

– Quantification on several levels: over alternatives; over preference profiles, i.e., over
relations over alternatives (second-order quantification); and over agents.

– Properties of preference relations for different agents, and properties of several differ-
ent preference relations for the same agent in the same formula.

– Comparison of different preference relations.
– The preference relation resulting from applying a SWF to other preference relations.



From these points it seems that such a language would be complex (in particular, they seem
to rule out a “standard” propositional modal logic). However, perhaps surprisingly, the
language we present in this paper is syntactically and semantically rather simple; and yet
the language is, nevertheless, expressive enough to give an elegant and succinct expression
of properties such as IIA.

In the next section, we introduce preference relations and social welfare functions. We
formally define certain well known potential properties of SWFs, and give a statement of
Arrow’s theorem. In Section 3 we present the syntax and semantics of our logic, and discuss
the complexity of the model checking problem. We show how the mentioned properties can
be expressed in the logical language in Section 4. In particular, we show that we can express
the statement of Arrow’s theorem as a formula – as a result of the theorem, this formula
is valid in our logic. In Section 5 we discuss some other valid properties of the logic, and
briefly discuss how some of the properties can be expressed in the modal logic arrow logic
(which originally is about arrows and not about Arrow!). We conclude in Section 6.

2 Social Welfare Functions

Social welfare functions (SWFs) are usually defined in terms of ordinal preference struc-
tures, rather than cardinal structures such as utility functions. An SWF takes as input a
preference relation, a binary relation over some set of alternatives, for each agent, and out-
puts another preference relation representing the aggregated preferences.

The most well known result about SWFs is Arrow’s theorem [3]. Many variants of the
theorem appears in the literature, differing in assumptions about the preference relations.
In this paper, we take the assumption that all preference relations are linear orders, i.e., that
neither agents nor the aggregated preference can be indifferent between distinct alterna-
tives. This gives one of the simplest formulations of Arrow’s theorem (Theorem 1 below).
Cf., e.g., [4] for a discussion and more general formulations.

Formally, let A be a set of alternatives. We henceforth implicitly assume that there is
always at least two alternatives. A preference relation (over A) is, here, a total (linear) order
on A, i.e., a relation R over A which is antisymmetric (i.e., (a, b) ∈ R and (b, a) ∈ R implies
that a = b), transitive (i.e., (a, b) ∈ R and (b, c) ∈ R implies that (a, c) ∈ R), and total
(i.e., either (a, b) ∈ R or (b, a) ∈ R for every pair of alternatives a and b). We sometimes
use the infix notation aRb for (a, b) ∈ R. The set of preference relations over alternatives
A is denoted L(A). Alternatively, we can view L(A) as the set of all permutations of A.
Thus, we shall sometimes use a permutation of A to denote a member of L(A). For exam-
ple, when A = {a, b, c}, we will sometimes use the expression acb to denote the relation
{(a, c), (a, b), (c, b), (a, a), (b, b), (c, c)}. aRb means that b is preferred over a if a and b are
different. Rs denotes the non-reflexive version of R, i.e., Rs = R \ {(a, a) : a ∈ A}. aRsb
means that b is preferred over a and that a ! b.

Let n be a number of agents; we write Σ for the set {1, . . . ,n}. A preference profile for
Σ over alternatives A is a tuple (R1, . . . ,Rn) ∈ L(A)n.

A social welfare function (SWF) is a function

F : L(A)n → L(A)

mapping each preference profile to an aggregated preference relation. The class of all SWFs
over alternatives A is denoted F (A).

Commonly discussed properties a SWF F can have include:

PO ∀(R1,...,Rn)∈L(A)n∀a∈A∀b∈A((∀i∈ΣaRs
i b)⇒ aF(R1, . . . ,Rn)sb) (pareto optimality)

ND ¬∃i∈Σ∀(R1,...,Rn)∈L(A)n F(R1, . . . ,Rn) = Ri (non-dictatorship)
IIA ∀(R1,...,Rn)∈L(A)n∀(S1,...,Sn)∈L(A)n∀a∈A∀b∈A((∀i∈Σ(aRib ⇔ aSib)) ⇒ (aF(R1, . . . ,Rn)b ⇔

aF(S1, . . . ,Sn)b)) (independence of irrelevant alternatives)



Arrow’s theorem says that the three properties above are inconsistent if there are more
than two alternatives.

Theorem 1 (Arrow). If there are more than two alternatives, no SWF has all the properties
PO, ND and IIA.

We now introduce a formal language in which properties such the above can be ex-
pressed.

3 The Logic

We now present a logical language and its interpretation in SWFs. The language is syntac-
tically simple, but the representation of preferences is unconventional and we will therefore
discuss the main points before giving formal definitions.

An example of a formula is
" ! (r1 ↔ r) (1)

A formula denotes a property of a SWF. The formula (1) says that there exist (") prefer-
ences for the agents such that for all (!) pairs of alternatives, agent 1 (r1) and the aggregated
preferences (r) agree on the relative ranking of the two alternatives (i.e. on which of the two
is better than the other).

While a formula is interpreted in a SWF, a subformula may be interpreted in additional
structures depending on which quantifiers (",",#,!) the subformula is in the scope of.
Here is a detailed description of the intended meaning of the parts of the formula (1):

r1 : A statement about the combination of a SWF F, a preference profile (R1, . . . ,Rn) and a
pair of alternatives (a, b). It says that according to the preference profile, agent 1 prefers
b (the last element in the pair) over a (the first element in the pair).

r : A statement about the combination of a SWF F, a preference profile (R1, . . . ,Rn) and
a pair of alternatives (a, b). It says that according to the preference relation resulting
from applying the SWF to the preference profile, b is preferred over a.

!(r1 ↔ r) : A statement about the combination of a SWF F and a preference profile
(R1, . . . ,Rn). It says that for every pair of alternatives, (r1 ↔ r) holds wrt. the SWF,
preference profile, and pair of alternatives.

" ! (r1 ↔ r) : A statement about a SWF F. It says that there exists a preference profile
such that for all pairs (a, b) of alternatives, b is preferred over a in the aggregation (by
the SWF) of the preference profile if and only if agent 1 prefers b over a.

3.1 Syntax

The logical language is parameterised by the number of agents n, in addition to a stock
of symbols Π = {r, s, . . .}. A symbol r ∈ Π will be used to refer to a preference profile
R ∈ L(A)n. In the example above, formula (1), we only used one symbol r, but as we
shall see it is useful to be able to reason about several different preference profiles at the
same time. Formally, we define three languages:L expresses properties of SWFs and is the
language we are ultimately interested in.L is defined in terms of L2. L2 expresses properties
of preference profiles (one for each member of Π) relative to a SWF, and is again defined
in terms of L3. L3 expresses properties of a pair (a, b) ∈ A2 relative to a SWF and some
preference profiles.

L: φ ::= "ψ | ¬φ | φ1 ∧ φ2
L2: ψ ::= !γ | ¬ψ | ψ1 ∧ ψ2
L3: γ ::= ri | r | ¬γ | γ1 ∧ γ2 where i ∈ Σ and r ∈ Π
We use the duals: "ψ ≡ ¬"¬ψ and #γ ≡ ¬ ! ¬γ, in addition to the usual derived
propositional connectives.

Note that we do not allow arbitrary nesting of the quantifiers.



3.2 Semantics

A profile function
δ : Π→ L(A)n

associates a preference profile δ(r) = (R1, . . . ,Rn) with each symbol r ∈ Π. If δ(r) =
(R1, . . . ,Rn), we write δi(r) for Ri. The set of all profile functions over A and Π is denoted
∆(A, Π) (or just ∆). L is interpreted in an SWF F ∈ F (A) as follows :

(A,F) |= "ψ ⇔ ∀δ∈∆(A,F, δ) |= ψ
(A,F) |= ¬φ ⇔ (A,F) *|= φ
(A,F) |= φ1 ∧ φ2 ⇔ (A,F) |= φ1 and (A,F) |= φ2

L2 is interpreted in an SWF F and a profile function δ as follows :

(A,F, δ) |= !γ ⇔ (∀(a,b)∈A×Aa ! b⇒ (A,F, δ, (a, b)) |= γ)
(A,F, δ) |= ¬ψ ⇔ (A,F, δ) *|= ψ
(A,F, δ) |= ψ1 ∧ ψ2 ⇔ (A,F, δ) |= ψ1 and (A,F, δ) |= ψ2

L3 is interpreted in a SWF F, a profile function δ and a pair of distinct alternatives (a, b) as
follows :

(A,F, δ, (a, b)) |= ri ⇔ (a, b) ∈ δi(r)
(A,F, δ, (a, b)) |= r ⇔ (a, b) ∈ F(δ(r))
(A,F, δ, (a, b)) |= ¬γ ⇔ (A,F, δ, (a, b)) *|= γ
(A,F, δ, (a, b)) |= γ1 ∧ γ2 ⇔ (A,F, δ, (a, b)) |= γ1 and (A,F, δ, (a, b)) |= γ2

Given a set of alternatives A, a formula is valid on A if A,F |= φ for all F ∈ F (A). A
formula φ is valid, written |= φ, if A |= φ for all A.

3.3 Model Checking

Most implemented systems for reasoning about cooperation are based on model check-
ing [6, 2]. Roughly speaking, the model checking problem for a given logic is as follows:
Given a formula φ of the logic, and a model/interpretation M for the logic, is it the case
that M |= φ? For our logic, we have three model checking problems, for the languages L,
L2, and L3 respectively. For example, the L model checking problem is as follows:

Given a set A of alternatives, a social welfare function F ∈ F (A), and a formula φ
of L, is it the case that (A,F) |= φ?

The model checking problems forL2 andL3 may be derived similarly. The model checking
problem forL can be understood as asking whether the property of social welfare functions
expressed by the formula φ is true of the given social welfare function F. For example,
checking whether (A,F) |= PO is exactly the problem of checking whether F has the Pareto
Optimality property.

The complexity of the model checking problem for L depends upon the representation
chosen for the function F. The simplest representation will be an extensive one, where the
function is enumerated as the set of all pairs of the form (i, o), where i is an input to F and
o = F(i) is the corresponding output. The obvious “catch” is that this representation of F
must list the value of F for every input: and there will be exponentially many (in the number
of alternatives) possible inputs. So, an alternative is to assume a succinct representation for
F. We consider one such alternative, where F is represented as a polynomially bounded
deterministic two-tape Turing machine. Roughly, this can be understood as representing F
as a program computing the social welfare function which is guaranteed to terminate with
an output in polynomial time. (Of course, it may be the case that there are F’s which cannot
be so represented.)



Now, it is easy to see that, assuming the extensive representation, the model checking
problems for L, L2, and L3 may be solved in deterministic polynomial time. However,
since the inputs are exponentially large, this result is perhaps misleading. We can show the
following.

Proposition 1. For the succinct representation of SWFs, the model checking problem for
L is NP-hard even for formulae of the form "ψ.

Proof. We reduce SAT, the problem of determining whether a given formula ξ of proposi-
tional logic over variables x1, . . . , xk is satisfied by some assignment of truth/falsity to its
Boolean variables x1, . . . , xk [10]. Given an instance ξ(x1, . . . , xk) of SAT, we create an in-
stance of model checking forL as follows. First, we create just two alternatives, A = {a, b};
for each Boolean variable xi we create an agent, and define an L2 variable ri. We then de-
fine F so that it produces the ranking (a, b). Next, we define ξ# to be the formula obtained
from ξ by systematically replacing the variable xi by ri. We then define the formula ζ that
is input to the L model checking problem to be:

ζ = "#ξ#.

That the formula ζ is true given F and A as defined iff ξ is satisfiable is now straightforward.

Notice that for the succinct representation, the model checking problems for L2 and
L3 are easily seen to be solvable in deterministic polynomial time. The general model
checking problem for L for succinct representations is also easily seen to be in ∆p

2 (the
class of problems solvable in polynomial time assuming an oracle for problems in NP).

4 Examples

The proofs of the following propositions are straightforward.
Pareto optimality can be expressed as follows:

PO = " ! ((r1 ∧ · · · ∧ rn)→ r) (2)

Proposition 2. Let F ∈ F (A). (A,F) |= PO iff F has the property PO.

Non-dictatorship can be expressed as follows:

ND =
∧

i∈Σ
"#¬(r↔ ri) (3)

Proposition 3. Let F ∈ F (A). (A,F) |= ND iff F has the property ND.

Independence of irrelevant alternatives can be expressed as follows:

IIA = " ! ((r1 ↔ s1 ∧ · · · ∧ rn ↔ sn)→ (r↔ s)) (4)

Proposition 4. Let F ∈ F (A). (A,F) |= IIA iff F has the property IIA.

4.1 Cardinality of Alternatives

The properties expressed above are properties of social welfare functions. We turn to look
now at which properties of the set of alternatives A we can express. Note that we cannot
refer to particular alternatives directly in the logical language. Properties involving cardi-
nality is often of interest, for example in Arrow’s theorem. Let:

MT2 = " (#(r1 ∧ s1) ∧#(r1 ∧ ¬s1))



Proposition 5. Let F ∈ F (A). |A| > 2 iff (A,F) |=MT2.

Proof. For the direction to the left, let A,F |=MT2. Thus, there is a δ such that there exists
(a1, b1), (a2, b2) ∈ A × A, where a1 ! b1, and a2 ! b2, such that (i) (a1, b1) ∈ δ1(r), (ii)
(a1, b1) ∈ δ1(s), (iii) (a2, b2) ∈ δ1(r) and (iv) (a2, b2) $ δ1(s). From (ii) and (iv) we get that
(a1, b1) ! (a2, b2), and from that and (i) and (iii) it follows that δ1(r) contains two different
pairs each having two different elements. But that is not possible if |A| = 2, because if
A = {a, b} then L(A) = {ab, ba} = { {(a, b), (a, a), (b, b)}, {(b, a), (a, a), (b, b)} }, so it cannot
be that δ1(r) ∈ L(A).

For the direction to the right, let |A| > 2; let a, b, c be three different elements of A. Let
δ1(r) = abc and δ1(s) = acb. Now, for any F, (A,F, δ, (a, b)) |= r1 ∧ s1 and A,F, δ, (b, c) |=
r1 ∧ ¬s1. Thus, (A,F) |=MT2, for any F.

Other interesting properties hold when the cardinality of the set of alternatives is finite
and fixed:

Example 1. Consider the case when Π = {r}, there are two agents, and three alternatives.
Then the following holds (for every A with |A| = 3):

A |= " (#(r ∧ r1 ∧ r2) ∧#(r ∧ ¬r1 ∧ r2) ∧#(r ∧ r1 ∧ ¬r2)→ !(r→ (r1 ∨ r2))

This validity says that, for any SWF and any preferences, if there exist pairs of alternatives
on which (i) both agents agree with the SWF, (ii) only agent 1 agrees with the SWF and
(iii) only agent 2 agrees with the SWF, then for every pair at least one of the agents must
agree with the SWF.

Here is a justification. There are eight “descriptors” on the form r1∧ r2∧ r,¬r1∧ r2∧ r,
etc., i.e. conjunctions of literals completely describing preferences over a pair. But, given a
SWF F and a profile function δ, aL3 formula on the form #d where d is a descriptor holds
for exactly six of the eight descriptors. To see this, observe that with three alternatives, there
are only six distinct pairs, and two different descriptors cannot be true in the same pair.
Furthermore, these six descriptors consists of three pairs of complementary descriptors,
where the complement of a descriptor is obtained by changing the sign of each literal: if d
is true in a pair (a, b), then the complement of d is true in the pair (b, a). So #d can be true
in a given SWF and profile function for only three different non-complimentary descriptors
d at the same time. In the example formula above, the three descriptors in the antecedent
of the implications are non-complimentary, and the fourth descriptor in the consequent is
non-complimentary to these three as well, so the latter cannot be true at the same time as
all the three former.

4.2 Arrow’s Theorem

We now have everything we need to express Arrow’s statement as a formula. It follows
from his theorem that the formula is valid.

Theorem 2.
|=MT2→ ¬(PO ∧ND ∧ IIA)

Proof. Let A be a set of alternatives, F ∈ F (A), and (A,F) |= MT2. By Proposition 5, A
has more than two alternatives. By Arrow’s theorem, F cannot have all the properties PO,
ND and IIA. By propositions 2, 3 and 4, (A,F) |= ¬PO ∨ ¬ND ∨ ¬IIA.

5 Logical Properties

We here take a closer look at additional universal properties of SWFs expressible in the
logic: which L formulae are valid?



First – trivially – we have that

|= φ φ instance of prop. tautology (Prop1)
|= "ψ ψ instance of prop. tautology (Prop2)
|= " ! γ γ instance of prop. tautology (Prop3)

It is also easy to see that we have the K axiom, on both “level” L and L2:

|= "(ψ1 → ψ2)→ ("ψ1 → "ψ2) (K1)
|= " (!(ψ1 → ψ2)→ (!ψ1 → ψ2)

)
(K2)

However, the remainding principle of normal modal logics (cf., e.g., [5]), uniform sub-
stitution, does not hold for our logic. A counter example is the fact that the following is
valid:

"#r (5)

– no matter what preferences the agents have, the SWF will always rank some alternative
over another – while this is not valid:

"#(r ∧ r1) (6)

– the SWF will not necessarily rank any two alternatives in the same order as agent 1.
The formulae in (5) and (6) have the same pattern of quantifiers ("#), and a natural

question is then for which γ the formula "#γ is valid. Theorem 3 below partly answers
that question (both claims above about validity and non-validity of (5) and (6), respectivelly,
thus follows from that theorem). First some definitions and an intermediate result.

We shall sometimes treatL3 as the language of propositional logic, with atomic propo-
sitions

Atoms(Π,Σ) = {ri, r : r ∈ Π, i ∈ Σ}
(or just Atoms when Π and Σ is clear from context). A propositional valuation will simply
be represented as a subset V of Atoms. We reuse the |= symbol (no confusion can occur),
and write V |= γ when V is a valuation satisfying (in the classical truth-functional sense)
a formula γ ∈ L3 , as well as |= γ when V |= γ for all V ⊆ Atoms. We use Lit(Π,Σ) (or
just Lit) to denote the set of literals: Lit(Π,Σ) = Atoms(Π,Σ) ∪ {¬q : q ∈ Atoms(Π,Σ)}.
When γ ∈ L3, we use γ to denote the result of negating every occurrence of an atom in γ.3
Formally: q = ¬q when q ∈ Atoms; ¬γ = ¬γ; γ1 ∧ γ2 = γ1 ∧ γ2.

The proof of the following Lemma is straightforward.

Lemma 1. For any A,F, δ, any pair a, b ∈ A, a ! b, and any L3 formula γ:

(A,F, δ, (a, b)) |= γ⇔ (A,F, δ, (b, a)) |= γ

Theorem 3. For any k ≥ 1, and any γ1, . . . , γk ∈ L3:

|= "(#γ1 ∨ . . . ∨#γk)⇔|= γ1 ∨ γ1 ∨ · · · ∨ γk ∨ γk

Proof. Let γ1, . . . , γk ∈ L.
For the direction to the left, let A be a set of alternatives, F an SWF, and δ ∈ ∆. Note that

γ1 ∨ · · · ∨ γk = γ1 ∨ · · · ∨ γk. Let a, b ∈ A, a ! b. (A,F, δ, (a, b)) can be seen as a valuation
(over Atoms), so by the right hand side, (A,F, δ, (a, b)) |= (γ1 ∨ · · · ∨ γk) ∨ (γ1 ∨ · · · ∨ γk),
so either (A,F, δ, (a, b)) |= γ1 ∨ · · · ∨ γk or (A,F, δ, (a, b)) |= γ1 ∨ · · · ∨ γk (or both). By
Lemma 1, either (A,F, δ, (a, b)) |= γ1 ∨ · · · ∨ γk or (A,F, δ, (b, a)) |= γ1 ∨ · · · ∨ γk (or both).
Thus, there is a j such that either A,F, δ, (a, b) |= γ j or A,F, δ, (b, a) |= γ j. It follows that

3 The “overline” notation is sometimes used to denote negation, note that our use is different.



A,F, δ |= #γ j, and thus that A,F, δ |= #γ1 ∨ · · · ∨ #γk. Since A,F, δ were arbitrary, we
have that |= "(#γ1 ∨ · · · ∨#γk).

For the direction to the right, we show the contrapositive. Assume that there is a propo-
sitional valuation V such that V *|= γ1 ∨ γ1 ∨ · · · ∨ γk ∨ γk. Then V |= ¬(γ1 ∨ · · · ∨ γk) and
V |= ¬(γ1 ∨ · · · ∨ γk). The latter is equivalent to V |= ¬(γ1 ∨ · · · ∨ γk). Now, let A = {a, b}
(a ! b), and let F and δ be defined as follows:

δi(r) =
{

ab ri ∈ V
ba otherwise F(δ(r)) =

{
ab r ∈ V
ba otherwise

It can easily be seen, by induction over the formula, that V and (a, b) agrees on every L3
formula, i.e. that for every γ ∈ L3

V |= γ⇔ (A,F, δ, (a, b)) |= γ (7)

Thus, we have that (A,F, δ, (a, b)) |= ¬(γ1 ∨ · · · ∨ γk). But since V |= ¬(γ1 ∨ · · · ∨ γk), we
also get (A,F, δ, (a, b)) |= ¬(γ1 ∨ · · · ∨ γk) from (7), and thus that A,F, δ, (b, a) |= ¬(γ1 ∨
· · · ∨ γk) from Lemma 1. Since (a, b) and (b, a) are the only pairs of distinct elements from
A, we have that A,F, δ |= !¬(γ1 ∨ · · · ∨ γk). From K2 and Prop2 and Prop3 we get that
A,F, δ |= !¬γ1 ∧ · · · ∧ !¬γk. This is, again by propositional reasoning, is the same as
A,F, δ |= ¬(#γ1 ∨ · · · ∨#γk). Thus, we have established that *|= "(#γ1 ∨ · · · ∨#γk).

Some applications showing both directions of Theorem 3:

|= "#q for any q ∈ Lit: Both the individual agents and the SWF will always rank some
alternative above some other and, conversely, some alternative below some other. (5)
above is an instance. Justification: if q ∈ Lit, then q = ¬q, so |= q ∨ q holds.

*|= "#(q1 ∧ q2) when q1 ! q2 ∈ Lit: we are not guaranteed that there is a pair of alterna-
tives ranked in the same order by two agents and/or the SWF. (6) above is an instance.
Justification: if q1 ! q2 ∈ Lit, then q1 ∧ q2 = ¬q1 ∧ ¬q2. But it is not the case that
(q1 ∧ q2) ∨ (¬q1 ∧ ¬q2) is a propositional tautology.

|= "(!(r1 ∨ r2)→ #(r1 ∧ ¬r2)): if, given preferences of agents and a SWF, for any two
alternatives it is always the case that either agent 1 or agent 2 prefers the second al-
ternative over the first, then there must exist a pair of alternatives for which the two
agents disagree. Justification: the formula in question is equivalent to "(#γ1 ∨ #γ2),
where γ1 = ¬r1 ∧¬r2 and γ2 = r1 ∧¬r2. γ1 = ¬¬r1 ∧¬¬r2 and γ2 = ¬r1 ∧¬¬r2, so
γ1 ∨ γ2 ∨ γ1 ∨ γ2 is a propositional tautology.

The following theorem characterises all valid formulae on the form "!γ: γ is a propo-
sitional tautology.

The proof of the following Theorem is straightforward.

Theorem 4.
|= " ! γ⇔|= γ

Properties involving other combinations of quantifiers include:

|= "#(r1 ∧ r2): There exist preference relations such that agents 1 and 2 agrees on some
pair of alternatives.

*|= "#(r1 ∧ r): There does not necessarily exist preference relations such that agent 1 and
the SWF agrees on some pair of alternatives.

|= " ! (r1 ↔ r2): There exist preference relations such that agents 1 and 2 always agrees.
*|= " ! (r1 ↔ r): There does not necessarily exist preference relations such that agent 1

and the SWF always agrees.



5.1 Arrow Logic for Arrow’s logic

The modal logic arrow logic is designed to reason about any object that can be graphically
represented as an arrow [12]. Arrows typically represent a transition triggered by the exe-
cution of an action or a computer program, or even the dynamic meaning of a discourse,
which explains the popularity of arrow logic among computer scientists, philosophers, and
linguists. However, arrows can also be thought of as representing a preference, which jus-
tifies using arrow logic for our study as well. In this section, we only describe how the
language and semantics of arrow logic can be used to represent properties of language L3:
all definitions and notation used in this section are taken from [12].

An arrow frame is a tuple F = 〈W,R〉 where W, the universe of F , is a set of arrows.
Sometimes, it is convenient to think about an arrow a as having as start a0 and end a1.
Moreover, R is a set of relations on W, which we will discuss shortly. Given a set of atomic
propositions P denoting basic properties, in line with standard modal logic, we can then
base a modelM = 〈F ,V〉 on a frame F by adding a valuation function V : P→ 2W , with
the meaning that V(p) collects those arrows that satisfy property p. For our purposes, we
will take P = Atoms, representing the agents’ preferences ri and the collective preference
r, whereM, a |= ri is meant to mean that according to agent i, alternative a1 is preferred
over a0. And similarlyM, a |= r denotes that the welfare function has decided upon judging
a1 better than a0.

In ‘basic’ arrow logic, there are three relations in R. We follow the notation of [12] and
denote them by C ⊆ W ×W ×W, and R ⊆ W ×W and I ⊆ W, respectively. For three
arrows a, b and c, when Cabc, we say that a is the composition of b and c. Putting it a bit
more formal: Cabc iff a0 = b0, b1 = c0 & c1 = a1. The relation R holds between a and b if b
is the inverse of a: Rab iff a0 = b1 & b0 = a1. Finally, Ia denotes that a is a reflexive arrow:
Ia iff a0 = a1.

Naturally, in the language for basic arrow logic, we have an operator for each of these
relations:

ϕ := p | δ | ¬ϕ | ϕ ∨ ϕ | ϕ ◦ ϕ | ⊗ϕ

We now immediately give the truth definition of a formula in an arrow:
M, a |= p iff a ∈ V(p)
M, a |= δ iff Ia
M, a |= ¬ϕ iff notM, a |= ϕ
M, a |= ϕ ∨ ψ iff M, a |= ϕ orM, a |= ψ
M, a |= ϕ ◦ ψ iff for some b, c(Cabc&M, b |= ϕ&M, c |= ψ)
M, a |= ⊗ϕ iff for some b(Rab&M, b |= ϕ)
Recall that P = {r1, r2, . . . , rn, r, . . .}, and thatM, a |= p means that according to p, alter-

native a1 is better than a0, where p either refers to one of the agents, or to the aglomorated
result.

Properties of Preferences It appears that most properties we used for preferences have an
straightforward translation in arrow logic. We list the following:

1. transitivity. This property is expressed by (p ◦ p)→ p
2. asymmetry This is p→ ⊗¬p
3. linearity This becomes p ∨ ⊗p
4. irreflexivity This is ¬δ
5. pareto opimality

(∧
ri ≤ nri

)
→ r

6. at most n + 1 alternatives This is ¬ (5 ◦ (5 ◦ (· · · ◦ 5 . . . )))
︸!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!︸

n×5



Arrow logics are ususally proven complete wrt an algebra. This would mean, in our
context, that it might be possible to use algebras as the underlying structures to represent
individual and collective preferences. Then, δ is used to take us from one algebra to another,
and F determines the collective preference, in each of the algebras.

6 Conclusions

We have presented a logic of social welfare functions, which is syntactically simple but
which can express interesting and complicated properties, involving quantification on sev-
eral levels, such as Arrow’s theorem.

In Section 5 we discussed in depth several properties of the logic. These seem to be a
good starting point for a complete axiomatisation of the logic, which remains to be found.
Also of importance is to investigate the complexity of the satisfiability problem. Further
possibilities for future work include the expression of additional results from social choice
theory in general, and in particular relaxing the assumptions about linear orders for the
preference relations and the expression of more general variants of Arrow’s theorem. The
relationship between our logic and arrow logic could also be investigated further.
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