
Strategy Logics and the Game Description
Language
WIEBE VAN DER HOEK, JI RUAN AND MICHAEL WOOLDRIDGE

ABSTRACT. The Game Description Language (GDL) is a special purpose
declarative language for defining games. GDL is used in the AAAI General
Game Playing Competition, which tests the ability of computer programs to
play games in general, rather than just to play a specific game. Participants in
the competition are provided with a game specified in GDL, and then required
to play this game. Recently, there has been much interest in the use of strate-
gic cooperation logics for reasoning about game-like scenarios – Alternating-
time Temporal Logic (ATL) is perhaps the best known example. The aim of
this paper is to make a link between ATL and GDL. We show that a GDL
specification can be viewed as a specification of an ATL model, and that ATL
can thus be interpreted over GDL specifications. Our main result is that it is
possible to translate a propositional GDL specification into an “equivalent”
ATL specification, which is only polynomially larger than the original GDL
specification. As a corollary, we are able to characterise the complexity of
reasoning about GDL-specified games using ATL: it is EXPTIME-complete.

Keywords: Game Description Language, ATL, Game Playing, model checking

1 Introduction
Game playing competitions, particularly between humans and computers, have
long been part of the culture of artificial intelligence. Indeed, the victory of IBM’s
Deep Blue computer over then world champion chess player Gary Kasparov in
1997 is regarded as one of the most significant events in the history of AI. However,
a common objection to such specialised competitions and dedicated game playing
systems is that they explore only one very narrow aspect of intelligence and ratio-
nality. To overcome these objections, in 2005 AAAI introduced a general game
playing competition, intended to test the ability to play games in general, rather
than just the ability to play a single game [GL05]. Participants in the competition
are computer programs, which are provided with the rules to previously unknown
games during the competition itself; they are required to play these games, and
the overall winner is the one that fared best against overall. Participant programs
must interpret the rules of the games themselves, without human intervention. The

2 Wiebe van der Hoek, Ji Ruan and Michael Wooldridge

Game Description Language (GDL) is a special purpose computer processable
language which was developed in order to define the games to be played. Thus, a
participant had to be able to interpret game definitions expressed in GDL, and then
to play the game defined by the GDL specification.

Since GDL is a language for defining games, it seems natural to investigate the
problem of reasoning about games defined using GDL. One successful formalism
for reasoning about games is Alternating-time Temporal Logic (ATL) [AHK02].
The basic construct of ATL is the cooperation modality, 〈〈C〉〉ϕ, where C is a
collection of agents, meaning that coalition C can cooperate to achieve ϕ; more
precisely, that C have a winning strategy for ϕ. ATL has been widely applied to
reasoning about game-like multi-agent systems in recent years, and has proved to
be a powerful and expressive tool for this purpose. In this paper, we make a con-
crete link between ATL and GDL. Specifically, we show that GDL specifications
can be interpreted as specifications of an ATL model, and that ATL can thus be
interpreted over GDL specifications.

Our main result is that it is possible to translate propositional GDL specifica-
tions into ATL specifications that are equivalent up to alternating bisimulation,
and which are only polynomially larger than the original GDL specification. As
a corollary, we are able to characterise the complexity of ATL reasoning about
propositional GDL games: the problem is EXPTIME-complete. Apart from its
theoretical interest, the main application of our work, we believe, is in having
an approach to formal verification of GDL specifications: the GDL game designer
can express desirable properties of games using ATL, and then automatically check
whether these properties hold of their GDL specifications. It also seems possible
in principle to employ our results in the use of ATL as a knowledge represen-
tation formalism for game playing agents, using model checking approaches to
implement strategic reasoning. This possibility is at present of largely theoretical
interest, and we do not propose it as a practical game-playing approach!

2 Game Descriptions and Game Models
GDL is intended for specifying games [GL05]. A game specification must define
the states of the game, a unique initial state, and the players in the game (“roles”).
For every state and every player, it must also define the moves available to that
player in that state. It must also define the state transition function of the game:
how moves transform the state of play. Finally, it must define what constitutes a
win, and when a game is over. The approach adopted by GDL to represent games
succinctly is to use a logical definition of the game. We informally introduce GDL,
by way of an example (Figure 1): a version of “Tic-Tac-Toe”. In this game, two
players take turns to mark a 3×3 grid, and the player who succeeds in placing three
of its marks in a row, column, or diagonal wins. GDL uses a prefix rule notation
based on LISP. The first two lines, (role xplayer) and (role oplayer),

3

(role xplayer)
(role oplayer)
(init (cell 1 1 b))
...
(init (cell 3 3 b))
(init (control xplayer))
(<= (next (cell ?m ?n x))

(does xplayer (mark ?m ?n))
(true (cell ?m ?n b)))

...
(<= (next (control oplayer))

(true (control xplayer)))
(<= (line ?m ?x)

(true (cell ?m 1 ?x))
(true (cell ?m 2 ?x))
(true (cell ?m 3 ?x)))

...

(<= (legal ?w (mark ?x ?y))
(true (cell ?x ?y b))
(true (control ?w)))

(<= (legal oplayer noop)
(true (control xplayer)))

...
(<= (goal xplayer 100)

(line x))
...
(<= terminal

(line x))
(<= terminal

(line o))

Figure 1. A fragment of a game in the Game Description Language

define the two players in this game. The following init lines define facts true in
the initial state of the game (all the cells are blank, and xplayer has the control
of the game). The following rule defines the effect of performing an action: if cell
(m, n) is blank (cell ?m ?n b), and xplayer marks cell (m, n), then in the
next state, it will be true that cell (m, n) is marked by x: cell ?m ?n x. The
next rule says that if the current state is in control of xplayer, then the next state
will be in control of oplayer. There are rules that define what it means to have
a line of symbols. The first rule in the second column defines when it is legal
for a player ?w to perform a mark action. The goal rule defines the aim of the
game: it says that the xplayer will get a reward of 100 if it brings about a line
marked by x. The final, terminal rules define when the game is over.

Overall, then, a GDL definition consists of a list of rules, similar to logic
programming languages. Certain operators in a GDL definition have a special
meaning: role (used to define the players of the game); init (defining initial
facts); legal (defining pre-conditions for actions); and goal (defining rewards
for agents). An additional operator, true, is sometimes used, to make explicit that
a particular expression should be true in the current state of the game. In what fol-
lows, we will formally define the interpretation of GDL specifications with respect
to game models. We begin by introducing Datalog programs.

Datalog Programs and their Semantics Let Π = {p, q, . . .} be a set of atomic
propositions. Then with `(Π) we denote the set of literals over Π: `(Π) = Π ∪
{¬p | p ∈ Π}. A Datalog rule is of the form p ⇐ `1 ∧ · · · ∧ `n where p ∈ Π and
`i ∈ `(Π) (i ≤ n). If the displayed rule is called r, we call p its head (p = hd(r))
and the body of r, bd(r), is `1 ∧ · · · ∧ `n. We will also write `i ∈ bd(r). A body
may be empty. A Datalog Program ∆ is a set of Datalog rules.

4 Wiebe van der Hoek, Ji Ruan and Michael Wooldridge

DEFINITION 1 (Stratified and Acyclic Datalog Programs). Let a Datalog pro-
gram ∆ be given. Its Dependency Graph DGraph(∆) is a labeled graph 〈Π, R, lab〉,
where Rqp iff there is a rule r ∈ ∆ with p = hd(r) and either q ∈ bd(r) (in which
case + ∈ lab(p, q)) or else ¬q ∈ bd(r) in which case − ∈ lab(p, q). Note that we
can have both− and + in lab(p, q). A Datalog program ∆ is called stratified if its
dependency graph contains no cycles with a − label. An atom p is said to be in
stratum i ∈ N if the maximum number of arcs labeled − on any path ending at p
in DGraph(∆) is i. A rule r ∈ ∆ is of stratum i if hd(r) is. A Datalog program ∆
is called acyclic if DGraph(∆) contains no cycles.

Stratification guarantees that, when computing a model for ∆, whenever we
have a literal¬q in the body of a rule r, we will consider all rules r′ with hd(r′) = q
before considering r. ∆ is acyclic iff there is a level mapping f : `(Π) → N for
which f (p) = f (¬p) and for every rule p ⇐ `1 ∧ · · · ∧ `n in ∆, f (p) > f (`i), for
all i ≤ n.

DEFINITION 2 (Stratified Model). Given a stratified Datalog program ∆, we
define its model s = DatlogPMod(∆) as follows. First of all, let t0 = {p | p ⇐∈
∆}. Suppose ti is defined, initialise si to ti and, as long as there is a rule h ⇐ bd in
stratum i such that si |= bd, add h to si. After this, put ti+1 = si. If the maximum
stratum of ∆ is k, put s = tk+1.

THEOREM 3 ([Apt90]). The model s defined in Definition 2 is a unique model
for ∆, and it does not depend on the particular stratification.

DEFINITION 4 (Completion of ∆). Given an acyclic Datalog program ∆, the
completion of ∆ is a set of formulas CP(∆) as follows. Let the definitionD(∆, p)
of p be the set of rules r in ∆ for which hd(r) = p. Then let

cp(p) = (p ↔
∨

r∈D(∆,p)

bd(r))

where every empty body bd is replaced by >. Note that, if p does not occur as a
head in any rule in ∆, we have cp(p) = ¬p. Finally, the Clark completion CP(∆)
of a Datalog program ∆ over Π is simply {cp(p) | p ∈ Π}.

THEOREM 5. Let ∆ be a set of acyclic rules, and Π be the set of atoms in con-
sideration. We have ∀p ∈ Π, p ∈ DatlogPMod(∆) iff CP(∆) |=cl p ,where
DatlogPMod(∆) is the stratified model of ∆, and the set CP(∆) is the Clark com-
pletion of ∆ and |=cl denotes consequence in classical logic.

Game Descriptions We now more formally define GDL game descriptions. We
make the following simplifications. First, we use a variable-free version of GDL,
so variables like ?m, ?n are replaced by their values. Thus (cell ?m ?n b) is
replaced by (cell 1 1 b), · · · , (cell 3 3 b). Next, while GDL permits
predicates such as (cell 1 1 b), we will assume that the state of a game is

5

characterised by a set of nullary predicates A, B, Thus, we think of a GDL
predicate (cell 1 1 b) as a nullary predicate cell 1 1 b.

DEFINITION 6. The set of atomic propositions of GDL, denoted AtGDL, is defined
as follows. It contains A, B, . . . (the set of nullary predicates); a special atom
terminal; atoms of the form legal i a (with i an agent and a an action);
and, finally, atoms reward i v (with i an agent and v a value at most 100).
We will use p, q, . . . as variables over these atoms. The set of atomic expressions
AtExprGDL of GDL, is defined as follows:

• for p ∈ AtGDL, init p, true p, next p ∈ AtExprGDL;

• for every agent i and action a, role i, does i a ∈ AtExprGDL.

LitExprGDL is AtExprGDL ∪ {not true p | true p ∈ AtExprGDL}.

A game description specifies the atoms from AtGDL that are true, either in the
initial state, or as a result of global constraints, or as the effect of performing some
joint actions in a given state.

DEFINITION 7 (Game Description Γ). A game description is a set of program-
ming rules Γ over LitExprGDL. A programming rule r is of the form h ⇐ e1 ∧
· · · ∧ em where h, the head hd(r) of the rule, is an element of AtExprGDL and each
ei (i ≤ m) in the body bd(r) of r is a literal from LitExprGDL. However, there are
some restrictions on hd(r) and bd(r), as explained below. If in the above format
m = 0, we say that r has an empty body. We can partition every game description
Γ as Γ = Γinit ∪ Γrole ∪ Γglob ∪ Γnext, where:

• Γinit is a set of init-constraints, i.e., constraints of the form (init p) ⇐.
They have an empty body and their head represents an initial constraint.

• Γrole contains all claims of the form (role x) ⇐. They specify what the
agents in the game are.

• Γglob is a set of global constraints, i.e., rules of the form (true p ⇐ e1 ∧
· · · ∧ em), where each body ei (i ≤ m, m ≥ 0) is either of the form true q or
not true q.

• Γnext contains all rules with a next(p) in the head: (next(p) ⇐ e1 ∧ · · · ∧
em) where each ei is of the form true q or not true q or does i ai.

Game Models From game specifications, we can build game models. Our game
models are based on the tree representation. For the description of Game Models
G, our approach is equivalent to that of [GL05]. Instead of roles we will refer to
a set Ag = {1, . . . , n} of agents or players. Given a set of atomic propositions
AtGDL, a Game Model is then a structure:

G = 〈S, s0, Ag, Ac1, · · · , Acn, τ, π〉

6 Wiebe van der Hoek, Ji Ruan and Michael Wooldridge

where S is a set of game states; s0 ∈ S is the initial state of G; Ag denotes the
set of agents; Aci is a set of actions for agent i; τ : Ac1 × · · · × Acn × S → S
is such that τ(〈a1, . . . , an〉, s) = u, means that if in game state s, agent i chooses
action ai, (i ≤ n), the system will transfer to its successor state u, and we require
all states, except the initial state, have only one predecessor; and π : S → 2AtGDL

is an interpretation function that gives each state a set of atomic propositions in
AtGDL. We will often abbreviate an action profile 〈a1, . . . , an〉 to ~a. (Note that we
do not include the subset T ⊆ S included in the game models of [GL05]. This
subset is supposed to denote the terminal states: we can obtain this set in G by
simply collecting all the states that satisfy terminal.)

Now we must specify when a game model G is a model for a game description
Γ; this makes precise the informal description of [GL05], and in fact represents
the first formal semantics for GDL. We compute the game model GMod(Γ) for a
game description Γ as follows. The main idea is that every state s ∈ S of GMod(Γ)
is associated with the unique model under the stratified semantics of some Datalog
Program ∆ that is derived from Γ. In particular, let δ(Γglob) be derived from
Γglob by replacing every occurrence of true p by p. Since we assume that ∆ does
not contain init or next in any body of any rule, δ(Γglob) is indeed a Datalog
Program. Also, let δ(Γinit) be {p ⇐| init p ⇐∈ Γinit}. The set Ag of agents,
and Aci of actions for agent i in GMod(Γ) are immediately read off from Γ: Ag =
{i | role i ⇐ ∈ Γrole} and Aci = {ai | does i ai occurs in Γ}. In the
following, we construct S, τ , and π step by step. First, we define s0. Put

π(s0) = DatlogPMod(δ(Γinit) ∪ δ(Γglob))

Next, suppose a game state s ∈ S has already been defined. If this is not a terminal
state, i.e., terminal 6∈ π(s), each agent should have at least one legal action
available. An action ai is legal for agent i in state s, if and only if (legal i
ai) ∈ π(s). If terminal 6∈ π(s), we define, for every profile of legal actions
〈a1, · · · , an〉, a successor u of s by first computing the atoms that need to be true
due to Γnext.

FΓ(〈a1, . . . , an〉, s) = { p⇐ | ∃ (next(p) ⇐ bd) ∈ Γnext

& π(s) ∪ {does i ai | i ≤ n} |=cl bd}

So, FΓ(〈a1, . . . , an〉, s) computes those atoms that need to be true in the next
state (the F is for ‘forward’), given that each agent i performs ai. Now we add:

u = τ(〈a1, . . . , an〉, s) and π(u) = DatlogPMod(FΓ(〈a1, . . . , an〉, s) ∪ δ(Γglob))

We illustrate the main idea by the Tic-Tac-Toe example. As control xplayer
∈ δ(Γinit), using Γglob, we then get (legal xplayer (mark 1 1)) ∈
π(s0), and (legal oplayer noop) ∈ π(s0). We also see that terminal 6∈

7

π(s0), because the bodies of all the global rules with head terminal can not be
satisfied. Thus we have an action profile ~a = 〈mark 1 1,noop〉. It is easy to
verify that (cell 1 1 x) and (control oplayer)∈ FΓ(~a, s0).

Atoms of the form does i ai are not added to the game model GMod(Γ) – they
are only used to calculate different successors for a given game state s. So, they
incorporate a kind of hypothetical reasoning of the form: “suppose player i were
to do ai, what would be the resulting next state?”

It is now easy to verify that GMod(Γ) is indeed a game model for Γ, if we give
the following truth definitions. Let G = 〈S, s0, Ag, Ac1, · · · , Acn, τ, π〉 be a game
model. Let {i1, . . . , ik} = Ag′ be a set of agents ⊆ Ag, each ix with an action ax

(x ≤ k). Then we say that t is an i1 : a1, . . . ik : ak successor of s if there is a choice
for the agents j in Ag\Ag′ for an action bj from Acj such that τ(〈c1, . . . , cn〉, s) = t,
where cv = ax if v = ix ∈ Ag′, and cv = bj if v = j ∈ Ag \ Ag′. For a game state s
we define s |=GDL p iff p ∈ π(s): the other connectives are straightforward.

• G |=GDL init p iff s0 |=GDL p

• G |=GDL true p⇐ bd iff ∀s, s |=GDL bd ⇒ s |=GDL p

• G |=GDL next(p) ⇐ true p1∧ . . . true pn∧does i1 a1∧· · ·∧does ik ak
iff ∀s, t : (s |=GDL p1 ∧ · · · ∧ pn and t is an i1 : a1, . . . ik : ak successor of s
⇒ t |=GDL p).

It is straightforward to verify that GMod(Γ) |=GDL Γ.

Alternating-time Temporal Logic (ATL) We now want to introduce a logic for
reasoning about games defined using GDL. For this, we believe Alternating-time
Temporal Logic is ideally suited [AHK02]. The key construct in ATL is 〈〈C〉〉Tϕ,
where C is a coalition, (a set of agents), and Tϕ a temporal formula, meaning
“coalition C can act in such a way that Tϕ is guaranteed to be true”. Temporal
formulas are built using the unary operators g, 2, ♦, and U , where gmeans
“in the next state”, 2 means “always”, ♦ means “eventually”, and the binary
operator U means “until”. The syntax of ATL formulas, (with respect to a set of
agents Ag, and a set of atomic propositions Φ), is given by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈〈C〉〉 fϕ | 〈〈C〉〉2ϕ | 〈〈C〉〉ϕU ϕ

where p ∈ Φ is a propositional variable and C ⊆ Ag is a set of agents.
ATL has a number of equivalent semantics; since moves, or actions, play such

a prominent role in game playing, we use Action-based Alternating Transition
Systems . An Action-based Alternating Transition System (AATS) is a tuple

A = 〈Q, q0, Ag, Ac1, . . . , Acn, ρ, τ, Φ, π〉

8 Wiebe van der Hoek, Ji Ruan and Michael Wooldridge

where: Q is a finite, non-empty set of states; q0 ∈ Q is the initial state; Ag =
{1, . . . , n} is a finite, non-empty set of agents; Aci is a finite, non-empty set of
actions, for each i ∈ Ag, where Aci ∩ Acj = ∅ for all i 6= j ∈ Ag; ρ : AcAg → 2Q

is an action precondition function, which for each action a ∈ AcAg defines the set
of states ρ(a) from which a may be executed; τ : Ac1 × · · · × Acn × Q → Q is a
partial system transition function, which defines the state τ(~a, q) that would result
by the performance of ~a from state q – note that, as this function is partial, not all
joint actions are possible in all states (cf. the precondition function above); Φ is a
finite, non-empty set of atomic propositions; and π : Q → 2Φ is an interpretation
function, which gives the set of atomic propositions satisfied in each state: if p ∈
π(q), then this means that the propositional variable p is satisfied in state q.

It is required that AATSs satisfy the following coherence constraints: (Non-
triviality) agents always have at least one legal action – ∀q ∈ Q, ∀i ∈ Ag, ∃a ∈
Aci s.t. q ∈ ρ(a); and (Consistency) the ρ and τ functions agree on actions that
may be performed: ∀q, ∀~a = 〈a1, · · · , an〉, (~a, q) ∈ dom τ iff ∀i ∈ Ag, q ∈ ρ(ai).

Given an agent i ∈ Ag and a state q ∈ Q, we denote the options available to i in
q – the actions that i may perform in q – by options(i, q) = {a | a ∈ Aci and q ∈
ρ(a)}. For a coalition C, we define options(C, q) =

⋃

{options(i, q) | i ∈ C}. We
then say that a strategy for an agent i ∈ Ag is a function σi : Q → Aci which must
satisfy the legality constraint that σi(q) ∈ options(i, q) for all q ∈ Q. A strategy
profile for a coalition C = {i1, . . . , ik} ⊆ Ag is a tuple of strategies 〈σ1, . . . , σk〉,
one for each agent i ∈ C. We denote by ΣC the set of all strategy profiles for
coalition C ⊆ Ag; if σC ∈ ΣC and i ∈ C, then we denote i’s component of σC by
σi

C. Given a strategy profile σC ∈ ΣC and state q ∈ Q, let out(σC, q) denote the
set of possible states that may result by the members of the coalition C acting as
defined by their components of σC for one step from q:

out(σC, q) = {q′ | τ(~a, q) = q′ where (~a, q) ∈ dom τ and σi
C(q) = ai for i ∈ C}

Notice that the set out(σAg, q) is a singleton. Also, out(·, ·) only deals with one-
step successors, and we interchangeably write out(σC, q) and out(AcC, q): for
the one step future, a strategy carries the same information as an action. A q0-
computation is an infinite sequence of states λ = q0, q1, If u ∈ N, then we
denote by λ[u] the component indexed by u in λ.

Given a strategy profile σC for some coalition C, and a state q ∈ Q, we define
comp(σC, q) to be the set of possible runs that may occur if every agent i ∈ C
follows the corresponding strategy σi, starting when the system is in state q ∈
Q. That is, the set comp(σC, q) will contain all possible q-computations that the
coalition C can “enforce” by cooperating and following the strategies in σC.

comp(σC, q) = {λ | λ[0] = q and ∀u ∈ N : λ[u + 1] ∈ out(σC, λ[u])}.

Again, note that for any state q ∈ Q and any grand coalition strategy σAg, the set

9

comp(σAg, q) will be a singleton, consisting of exactly one infinite computation.
We can now give the rules defining the satisfaction relation “|=” for ATL, which

holds between pairs of the form A, q (where A is an AATS and q is a state in A),
and formulas of ATL. We only give the coalitional cases, and we will assume
standard abbreviations for logical connectives:

A, q |= 〈〈C〉〉 fϕ iff ∃σC ∈ ΣC , such that ∀λ ∈ comp(σC, q), we have A, λ[1] |= ϕ;

A, q |= 〈〈C〉〉2ϕ iff ∃σC ∈ ΣC , such that ∀λ ∈ comp(σC, q), we have A, λ[u] |= ϕ

for all u ∈ N;

A, q |= 〈〈C〉〉ϕU ψ iff ∃σC ∈ ΣC , such that ∀λ ∈ comp(σC, q), there exists some
u ∈ N such that A, λ[u] |= ψ, and for all 0 ≤ v < u, we have A, λ[v] |= ϕ.

The following is from [AHKV98].

DEFINITION 8 (Alternating Bisimulation). Let A1 = 〈Q1, q1, Ag, Ac1
1, . . . ,

Ac1
n , ρ1, τ1, Φ, π1〉 andA2 = 〈Q2, q2, Ag, Ac2

1, . . . , Ac2
n , ρ2, τ2, Φ, π2〉 be two AATS’s.

Then a relation R ⊆ Q1 × Q2 is called an alternating bisimulation if Rq1q2 and,
for every two states t1 and t2 for which Rt1t2,we have:

1. For all p ∈ Φ, p ∈ π(t1) iff p ∈ π(t2).

2. For every coalition C ⊆ Ag, and every ac1
C ∈ options(C, t1), there exists

ac2
C ∈ options(C, t2) such that for every t′2 ∈ out(ac2

C, t2), there is a t′1 ∈
out(ac1

C, t1) so that Rt′1t′2.

3. For every coalition C ⊆ Ag, and every ac2
C ∈ options(C, t2), there exists

ac1
C ∈ options(C, t1) such that for every t′1 ∈ out(ac1

C, t1), there is a t′2 ∈
out(ac2

C, t2) so that Rt′1t′2.

Note that the set of agents in both structures are the same, while the actions in
both structures do not have to be the same, since in ATL, one cannot directly refer
to actions in the object language. We have:

THEOREM 9 ([AHKV98]). Let A1 and A2 be such that there is an alternating
bisimulationR between them, with Rq1q2. Then, for all ATL-formulas ϕ:

A1, q1 |= ϕ ⇔ A2, q2 |= ϕ

Transformation from Game Models to AATSs Given a game model G = 〈S,

s0, Ag, Ac1, · · · , Acn, τ, π〉 and a set of atomic propositions AtGDL, we can define
an associated AATSAG = 〈Q, q0, Ag, Ac1 ∪ {fin1}, . . . , Acn ∪ {finn}, ρ, τ ′, Φ, π′〉
with the same sets of agents Ag and such that Φ is constructed from AtGDL in the
following manner.

10 Wiebe van der Hoek, Ji Ruan and Michael Wooldridge

DEFINITION 10. Define a translation t : AtGDL → AtATL, where we assume that
for every nullary predicate A in AtGDL there is an atom pA in AtATL.

t(A) = pA t(reward i v) = reward(i, v)
t(legal i ai) = legal(i, ai) t(terminal) = terminal

For every p in AtGDL, add t(p) to Φ. To keep track of the actions and state
transitions, we add done(i, ai) to Φ for each does(i,ai) in consideration, and
pold for each p∈ AtGDL. We also add init to Φ to indicate the inital state of a game.
Finally, we add a special atom z⊥ to Φ. This atom denotes a special ‘zink state’,
z, which we add to AG in order to make it a proper AATS. The idea is that z is the
only sucessor of every terminal state and itself. The other elements of AG are:

• Q = S ∪ {z}, where z is a sink state, and q0 = s0;

• ρ : AcAg → 2Q is the action precondition function, which agrees, for each
agent, with legal(i, ai), i.e. ρ(ai) = {q | q |= legal(i, ai) ∧ ¬terminal}.
Moreover, ρ(fini) = {z} ∪ {q | q |= terminal}, for every agent i.

• τ ′ : Ac1 × · · · × Acn × Q → Q is exactly as τ , but we have some additional
transitions: τ ′(〈fin1, . . . , finn〉, q) = z, for all q ∈ {z} ∪ {q | q |= terminal};

• π′ : Q → 2Φ is such that π′(q) is the minmal set satisfying the following
conditions:

– init ∈ π(q0), and z⊥ ∈ π(z),

– π′(q) ⊇ {t(p) | p ∈ π(q)} for all q ∈ Q \ {z},

– ∀q, q′ ∈ Q \ {z} and an action profile ~a = 〈a1, · · · , an〉 such that
q′ = τ ′(~a, q), we require ∀i ∈ Ag, done(i, ai) ∈ π′(q′), and {t(p)old |
p ∈ π(q)} ⊆ π′(q′). Moreover ∀i ∈ Ag, done(i, fini) ∈ π′(z).

Our intuition behind π′ is that each state, except q0 and z , has exactly one done-
proposition for each agent to record the action made in its unique predecessor, and
a set of pold to record the atomic propositions that is true in the same predecessor.

Define the translation T : GDL → ATL as follows:

T (init p⇐) = init → t(p)
T (true p ⇐ e1 ∧ · · · ∧ em) =

〈〈〉〉2(¬z⊥ ∧ T (e1) ∧ · · · ∧ T (em) → t(p))
T (next p⇐ e1 ∧ · · · ∧ em ∧ does i1 a1 ∧ · · · ∧ does ik ak) =

〈〈〉〉2(¬z⊥ ∧ T (e1) ∧ · · · ∧ T (em) →
〈〈{i1, . . . ik}〉〉 g(T (p) ∧ done(i1, a1) ∧ · · · ∧ done(ii, ak)))

11

where t : AtGDL → AtATL is as in Definition 10, and for an GDL expression ei, we
stipulate: T (ei) = t(p) if ei = true p, and ¬t(p) if ei = not true p.

THEOREM 11. Let Γ be a GDL game description, and G = GMod(Γ) its game
model. Then, for each rule r, for all s ∈ S and all e ∈ AtExprGDL,

G |=GDL r iff AG |= T (r) and G, s |=GDL e iff AG, s |= T (e)

3 Game Descriptions and ATL Specifications
We now have a link between GDL and ATL: for every GDL game description
Γ, we can compute the game model GMod(Γ); and we can associate such game
models with ATL models. In this section, we take this link one stage further. We
show how, from a game description Γ, we can systematically construct an ATL
formula ΓATL that completely and correctly characterises the game described by
Γ. We define the formula ΓATL as the conjunction of several component formulas:

ΓATL = INIT ∧MEM ∧ STRAT ∧ DONE ∧ ONE ACT ∧ LEGAL ∧ TERM

We start with INIT. Let S0 = DatlogPMod(δ(Γinit) ∪ δ(Γglob)), which gives
the minimal set of atomic consequences (using the global rules) of all init p
formulas. Consider:

INIT = init∧ 〈〈〉〉 g〈〈〉〉2¬init ∧Pat ∧
∧

pold∈AtATL(Γ)

¬pold ∧¬terminal∧¬z⊥ ∧Ndone

where Pat =
∧

p∈S0

p ∧
∧

p/∈S0

¬p, and Ndone =
∧

i∈Ag

∧

a∈Aci∪{fini}

¬done(i, a).

The intended use of an atom pold is that it records the old, i.e. previous, truth-
value of p. This is captured by the principle MEM:

MEM = 〈〈〉〉2
∧

p∈AtATL(Γ)

∧

x=t(p),¬t(p)

(x ∧ ¬terminal → 〈〈〉〉 gxold)

Let bd1, bd2, . . . be variables over possible bodies of rules, that is, conjunctions
of literals, but not including any does i a. We assume that atoms does i a only
occurs in rules which have a head of the form next p. This is their intended use:
to enable players to compute the next state, given the moves of all players. Let x ∈
AtGDL(Γ). Now suppose that all the rules r in Γ with hd(r) ∈ {x, next x} are the

following:

r1 : x ⇐ bd1

. . . x ⇐ . . .

rh : x ⇐ bdh

s1 : next x ⇐ bd′1 ∧ does i11 a11 ∧ · · · ∧ does im1 am1
.

sk : next x ⇐ bd′k ∧ does ik1 ak1 ∧ · · · ∧ does imk amk

12 Wiebe van der Hoek, Ji Ruan and Michael Wooldridge

We map all these rules for x to an ATL formula ϕ(x). For this, we first translate the
symbols from GDL to those of ATL using the function t defined in Definition 10.
Then we let function told be exactly like t, except for the predicate atoms: told(p) =
t(p)old = pold. For each such atom x, we can now define an ATL constraint MIN(x),
as follows:

MIN(x) = x ↔

∨

i≤h

t(bdi) ∨
∨

j≤k

(told(bd′j) ∧ done(ij1 , aj1) ∧ · · · ∧ done(ijm , ajm))

And,, if x does not occur in a head of any rule in Γ, we define MIN(x) = ¬x.
The stratification semantics of Γ is now captured by the following constraint:

STRAT = 〈〈〉〉2
∧

p∈AtGDL(Γ)

(¬init ∧ ¬z⊥ → MIN(p))

The following constraint makes sure that for all non-initial states, some action
is done by each agent:

DONE = 〈〈〉〉2(¬init →
∧

i∈Ag

∨

ai∈Aci∪{fini}

done(i, ai))

and only one action is done, as each state only has one predecessor:

ONE ACT = 〈〈〉〉2
∧

i∈Ag,ai 6=bi∈Aci∪{fini}

(done(i, ai) → ¬done(i, bi))

One assumption for playing GDL games is that each agent must play legal moves.
This is captured by the following principal:

LEGAL = 〈〈〉〉2
∧

i∈Ag,ai∈Aci

∧

x=i,Ag

(legal(i, ai) ∧ ¬terminal ↔ 〈〈x〉〉 gdone(i, ai))

This principle says that, when an action ai is legal for agent i, and the current state
is not a terminal state, then agent i should have a strategy to enforce it, and vice
versa.

When a terminal state is reached, no further ‘real’ moves are played:

TERM = 〈〈〉〉2
∧

i∈Ag

(terminal ∨ z⊥) ↔ 〈〈〉〉 g(z⊥ ∧ done(i, fini)))

It is straightforward to conceive a Game Model as an ATL model. The following
is essentially a soundness result for our transformation. Let Γ be a game descrip-
tion, and GMod(Γ) its game model, with initial state s0; recall that AGMod(Γ) is

13

the AATS system that is obtained from GMod(Γ) by interpreting it as an AATS
structure. Then:

AGMod(Γ), s0 |= ΓATL

Given this construction, we can state a main result of this paper. In the follow-
ing, we add a requirement resulting in uniform AATS structures:

(uni) ∀s ∈ Q∀C ⊆ Ag∀σC ∀s′, s′′ ∈ out(σC, s)∀i ∈ C∀ai ∈ Aci :

(done(i, ai) ∈ π(s′) ⇔ done(i, ai) ∈ π(s′′))

This requirement says that, in the outcome states of a coalition C executing a
strategy, for the agents in C, the related done propositions are uniformally true or
false. Easy to see that AGMod(Γ) satisfies this requirement.

LEMMA 12. Satisfability checking with respect to uniform AATSs is in EXP-
TIME.

Suppose we are given a game description Γ. On the one hand, this gives rise
to a game model GMod(Γ). This model can also be interpreted as an ATL model
AGMod(Γ). Now, the result is this: every model for ΓATL is bisimilar withAGMod(Γ).
Moreover, the transformation of the GDL description Γ into the ATL specification
ΓATL can be done in polynomial time.

THEOREM 13. Let G = GMod(Γ) be the model for a game description Γ, and let
A1 = 〈Q1, q1, Ag, {Aci|i ∈ Ag}, ρ1, τ1, Φ, π1, 〉 be its associated AATS structure.
LetA2 = 〈Q2, q2, Ag, {Aci|i ∈ Ag}, ρ2, τ2, Φ, π2, 〉 be an arbitrary uniform AATS
for ΓATL. There exists an alternating bisimulation R between A1 and A2, with
Rq1q2.

Proof. (Sketch) We define a relationR ⊆ Q1 × Q2 as follows:

Rz1z2 iff π1(z1) = π2(z2)

Using INIT, one readily sees that Rq1q2. Suppose we have established Rz1z2
for some z1 ∈ Q1 and z2 ∈ Q2 (cf Figure 2). Suppose A1, z1 6|= terminal. By
assumption, we then also have A2, z2 6|= terminal. Take an arbitrary coalition C
with a joint action ac1

C ∈ options(C, z1), and consider U1 = out(ac1
C, z1) ⊆ Q1 in

A1. We need to find ac2
C ∈ options(C, z2) such that for every u2 ∈ out(ac2

C, z2),
there is a u1 ∈ U1 so that Ru1u2.

It follows from ac1
C ∈ options(C, z1) that A1, z1 |= legal(i, a1

i) for all i ∈
C, a1

i ∈ ac1
C. Therefore, A2, z2 |= legal(i, a1

i) for all i ∈ C, a1
i ∈ ac1

C. And by
LEGAL, we have A2, z2 |= 〈〈i〉〉 gdone(i, a1

i) for all i ∈ C, a1
i ∈ ac1

C. So, for all
i ∈ C, a1

i ∈ ac1
C, there is ac2

i ∈ options(i, z2) such that for all x ∈ out(ac2
i , z2) ⊆

Q2, A2, x |= done(i, ai). Let ac2
C be an action profile that consisits of a2

i for all
i ∈ C and U2 = out(ac2

C, z2) ⊆ Q2. It is easy to see that for all x ∈ U2, we have

14 Wiebe van der Hoek, Ji Ruan and Michael Wooldridge

U1 = out(ac1
C, z1)

U2 = out(ac2
C, z2)

A1, z1

A2, z2

u1

u2

R
R

~a

~a′

Figure 2. Alternating bisimulation betweenA1 and A2

x |= done(i, ai) for i ∈ C. We pick an arbitrary u2 ∈ U2. We are done if we can
show that there is a u1 ∈ U1 for which Ru1u2.

By DONE and ONE ACT, there is one and only one done(i, a) true in u2 for
each i ∈ Ag. We already know u2 |= done(i, a1

i) for i ∈ C, and we assume
u2 |= done(j, b1

j) for all j ∈ Ag \ C. It follows that z2 |= 〈〈Ag〉〉 gdone(j, b1
j) for

all j ∈ Ag \ C, and by LEGAL, we have z2 |= legal(j, b1
j) for all j ∈ Ag \ C,

hence z1 |= legal(j, b1
j) for all j ∈ Ag \ C. Now go back to A1 and consider

u1 = out(~a, z1), where ~a consists of the actions ai such that z1 |= legal(i, ai).
We claim that this u1 is the state we are looking for: it satisfies A1, u1 |= p iff
A2, u2 |= p, for all p ∈ Φ. The other direction is proven in a similar way. �

One way of interpreting the result above is as follows: GDL can be viewed
as a model specification language, suitable for use in a model checker [CGP00].
This gives rise to the formal decision problem of ATL model checking problem
over GDL game descriptions, which can be described as follows: Given an ATL
formula ϕ and a GDL game description Γ, is it the case that AGMod(Γ) |= ϕ?

THEOREM 14. ATL model checking over propositional GDL game descriptions
is EXPTIME-complete.

Proof. Membership in EXPTIME follows from the Theorem 13 and Lemma 12
(cf. [WLWW06]). Given game description Γ, and ATL formula ϕ, construct ΓATL,
and then check whether ΓATL ∧ ¬ϕ is unsatisfiable; the correctness of this proce-
dure follows from Theorem 13. EXPTIME-hardness may be proved by reduction
from the problem of determining whether a given player has a winning strategy in
the two-player game PEEK-G4 [SC79, p.158]. Enocding PEEK-G4 in GDL is a
straightforward exercise in GDL programming, and the question of whether there
exists a winning strategy is directly encoded in an ATL formula to model check
(cf. [HLW05]). �

15

Note that, although this seems a negative result, it means that interpreting ATL
over GDL specifications is no more complex than interpreting ATL over apparently
simpler model specification languages such as the Simple Reactive Systems Lan-
guage [HLW05]. We refer to [HKV97] for related complexity results for model
checking symbolically-represented systems.

4 Conclusion
There is much interest in the connections between logic and games, and in particu-
lar in the use of ATL-like logics for reasoning about multi-agent systems. Here, we
investigated the connections between ATL and the Game Description Language,
a declarative language specifically intended for defining games. We first demon-
strated that GDL can be understood as a specification language for ATL models,
and subsequently that it is possible to succinctly characterise GDL game descrip-
tions directly as ATL formulas, and that, as a corollary, the problem of interpreting
ATL formulas over GDL descriptions is EXPTIME-complete. Our work, we be-
lieve, could be applied to formal verification of GDL specifications: the GDL game
designer can express properties of games using ATL, and then automatically check
whether these properties hold of their GDL specifications.

Acknowledgment We would like to thank Dirk Walther and two anonymous re-
viewers for comments and helpful suggestions.

BIBLIOGRAPHY
[AHK02] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. Journal of the ACM,

49(5):672–713, 2002.
[AHKV98] R. Alur, T. Henzinger, O. Kupferman, and M. Vardi. Alternating refinement relations. In Interna-

tional Conference on Concurrency Theory, pages 163–178, 1998.
[Apt90] K. Apt. Introduction to logic programming. In J. van Leeuwen, editor, Handbook of Theoretical

Computer Science, pages 494–574. Elsevier, 1990.
[CGP00] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, 2000.
[GL05] M. Genereseth and N. Love. General game playing: Overview of the AAAI competition. Technical

report, Stanford University, Stanford, 2005.
[HKV97] David Harel, Orna Kupferman, and Moshe Y. Vardi. On the complexity of verifying concurrent

transition systems. In International Conference on Concurrency Theory, pages 258–272, 1997.
[HLW05] W. van der Hoek, A. Lomuscio, and M. Wooldridge. On the complexity of practical ATL model

checking. In Proceedings AAMAS, 2006.
[SC79] L. J. Stockmeyer and A. K. Chandra. Provably difficult combinatorial games. SIAM Journal of

Computing, 8(2):151–174, 1979.
[WLWW06] D. Walther, C. Lutz, F. Wolter, and M. Wooldridge. ATL satisfiability is indeed ExpTime-complete.

Journal of Logic and Computation, 16:765–787, 2006.

