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Abstract. We introduce and formally study games in which the goals of
players relate to the epistemic states of players in the game. For example,
one player might have a goal that another player knows a certain proposi-
tion, while another player might have as a goal that a certain player does
not know some proposition. The formal model we use to study epistemic
games is a variation of the increasingly popular Boolean games model
in which each player controls a number of Boolean variables, but has
limited ability to see the truth values of the overall set of formulae that
hold in the game. Each player in an epistemic Boolean game has a goal,
defined as a formula of modal epistemic logic. Using such a language for
goals allows us to explicitly and compactly represent desirable epistemic
states. After motivating and formally defining epistemic Boolean games
as a concise representation of epistemic Kripke structures, we investigate
their complexity and study their properties.

1 Introduction

In our everyday lives, we all quite naturally have goals and aspirations that
relate to the epistemic states (knowledge and belief) of other agents. You want
your children to know that you love them; you want your boss to know you
work hard; the politician wants you to know he is honest; and so on. The formal
analysis of such epistemic states is of course a well-established research topic
in artificial intelligence, with modal logic and Kripke semantics being the pre-
eminent tools of choice in such work [1]. Our aim in this paper is to begin
to extend this research to the game theoretic aspects of systems in which the
motivations of players relate to the epistemic states of others. Doing so, the
following question seems very relevant: If all players act rationally to bring about
their goals, then what epistemic states will result in equilibrium? We will refer
to games in which the goals and preferences of players relate to the epistemic
states of other players as epistemic games. In the present paper, we shall restrict
our attention to knowledge, leaving the study of belief to future work.

As the basis for our study, we adapt the increasingly popular game theoretic
model of Boolean games [2–5]. More precisely, we introduce epistemic Boolean
games (ebgs). In such a game, (as in regular Boolean games), each player i is
associated with a set of Boolean variables Φi , which are under his control in the



sense that he can assign Boolean values to the variables Φi in any way that he
chooses. That is, the strategies available to a player i in an ebg are the possible
Boolean assignments that can be made to the variables Φi . The outcome of a
Boolean game is a valuation for the overall set of Boolean variables Φ, which will
be composed of the individual assignments made by the players i in the game to
their variables Φi . A player i is not assumed to have perfect information of the
game. This we formally capture by visibility sets Θi , that is, sets of propositional
formulae. If a formula ϕ is in Θi—in which case we say that “i can see ϕ”—it
means that player i can distinguish states in which ϕ holds from ones in which
this is not the case. A limit case is where every player can see every atomic
formula, in which case the game is one of perfect information.

As in regular Boolean games, each player i is assumed to have a goal that
he desires to be achieved. In conventional Boolean games, player i ’s goal γi is
represented as a formula of propositional logic. In our present work, however, the
goal is assumed to be represented as a formula of modal multi-agent epistemic
logic [1]. Thus, player i might have the goal that another player j comes to know
something (γi = Kjϕ), while player j might have a goal that another player k
does not know something (γj = ¬Kkψ). As in conventional Boolean games, the
ability of a player i to influence whether his goal is achieved lies within the
variables Φi under his control; but our ebgs bring a new twist to this story,
since the visibility sets of each player will have a part in determining whether
a players’s goal is achieved. The underlying ebg model we use (with sets of
controlled variables and visibility sets) derives in part from the work of van der
Hoek et al. on epistemic logics of propositional control [6], which in turn derives
from logics of propositional control [7].

The remainder of this paper is structured as follows. First, in the following
section we introduce ebgs. We then formalise Nash equilibria for our games,
and investigate the complexity of decision problems relating to Nash equilibria.
Sections 4 and 5 concern the conciseness of the representation of the strategic
and epistemic situations that ebgs provide with respect to Kripke structures
and regular Boolean games, respectively. We conclude in section 6 with a brief
discussion of related work and some issues for future research.

2 Epistemic Boolean Games

We adapt the basic model of Boolean games (see, e.g., [2–5]) to model partial
information.

Epistemic Logic Let B = {>,⊥} be the set of Boolean truth values, with “>”
being truth and “⊥” being falsity. Throughout the paper, we will use Φ to denote
a fixed, finite, non-empty set of Boolean variables, with typical members p, q , . . .
etc. A valuation is a total function v : Φ→ B, assigning truth or falsity to every
Boolean variable. Let V denote the set of all valuations (over Φ). In the interests
of brevity, we sometimes use a binary representation of valuations; for example,
if Φ = {p, q}, then the valuation 01 would be the one making p false and q true,
assuming a natural order on the propositional variables.



We make use of a multi-agent epistemic modal logic, which we will refer to
as EL [1]. The language of EL is that of the well-known multi-modal logic S5n .
The language EL extends classical propositional logic with a collection of indexed
unary modal operators Ki , where the intended interpretation of a formula Kiϕ
is that “agent i knows ϕ.” Formally, given a set Φ of propositional variables the
syntax of EL(Φ) is given by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Kiϕ,

where p is a Boolean variable in Φ and i is an agent. We assume that the re-
maining classical connectives—“∧” (conjunction), “→” (material implication),
“↔” (material bi-implication)—are defined in the standard way. The proposi-
tional fragment of EL over Φ—i.e., the set of formulae without occurrences of
the epistemic operators Ki—we denote by L(Φ).

The semantics for the epistemic logic S5n , as formulated in the language EL(Φ),
is defined with respect to tuples K = (W ,R1, . . . ,Rn , π), also referred to as S5n
Kripke structures. Here, W is a non-empty set of (possible) worlds and, for each
agent i , Ri ⊆W ×W is an equivalence relation over W . Finally, π : W ×Φ→ B
is a valuation function, indicating the truth value of every Boolean variable in
every world. For the purposes of this paper we assume W to be finite. The
formulae of EL(Φ) are interpreted with respect to pointed structures, i.e., pairs
of the form (K ,w) as follows [1, pp.18–19]: An atom p is true in (K ,w) iff
π(w , p) = >; the clauses for negation and disjunction are standard, and for
knowledge, we have

(K ,w) |=K Kiϕ iff for all worlds w ′ with Ri(w ,w
′): (K ,w ′) |=K ϕ.

Epistemic Boolean Games The standard framework of Boolean games involves
a set of agents or players, each of which has a goal formulated as a formula γi
of classical propositional logic and a set of Boolean variables she controls, in the
sense that he has the unique ability to set their value. Each player strives to
satisfy her goal by appropriately setting the values of the variables she controls.
Every such setting can be analysed as a strategic game in which the strategies
of the players are given by the ways they can assign values to the variables they
control. A profile of strategies then determines a unique truth value assignment
or valuation to all propositional variables. These are taken as the outcomes of
the game. Moreover, each player strictly prefers states that satisfy her goal to
ones that do not and is indifferent otherwise. The difficulty is that a player’s
goal γi may contain variables controlled by other players j 6= i , who will also
be trying to choose values for their variables in Φj so as to get their goals γj
satisfied, the satisfaction of which may in turn dependend on the variables Φi .

The setting we consider in this paper is similar, except that each player’s
goal is represented as a formula γi of the epistemic language EL(Φ). In order
to evaluate the players’ epistemic goals, each player is endowed with a visibility
set Θi consisting of formulae in the propositional fragment L(Φ) of EL(Φ). The
idea is that player i can completely and correctly perceive truth values of the
formulae in Θi , i.e., player i can only distinguish outcomes that differ with



respect to the truth values they assign to some of the formulae contained in Θi .
A formula of the form Kiϕ then holds in a particular outcome if ϕ holds in all
outcomes i cannot distinguish from that outcome.

Formally, we define an epistemic Boolean game for EL(Φ) (hereafter simply
“game”) as a tuple

G = (N , Φ, Φ1, . . . , Φn , γ1, . . . , γn , Θ1, . . . , Θn), where:

– N = {1, . . . ,n} is a set of agents (also called the players of the game);

– Φ = {p, q , . . .} is a finite set of Boolean variables;

– Φi ⊆ Φ is the set of Boolean variables under the unique control of i ∈ N ;

– γi is an EL(Φ) formula representing the goal of player i ∈ N ; and

– Θi ⊆ L(Φ) is a finite visibility set for player i ∈ N consisting of propositional
formulae, with the intended interpretation that player i is able to correctly
observe the truth values of the propositional formulae in Θi .

As usual in Boolean games, we will require that Φi ∩ Φj = ∅ for i 6= j , and that
Φ1 ∪ · · · ∪ Φn = Φ (i.e., the sets Φ1, . . . , Φn form a partition of Φ).

A choice for player i ∈ N is a function vi : Φi → B, i.e., an allocation of truth
or falsity to all the variables under i ’s control. Let Vi denote the set of choices for
player i . The intuitive interpretation we give to Vi is that it defines the actions or
strategies available to player i . An outcome is a collection of choices, one for each
player. Formally, an outcome for a game is a tuple ~v = (v1, . . . , vn) ∈ V1×· · ·×Vn .
An outcome uniquely defines an overall valuation for the variables in Φ and for
this reason we often treat outcomes for games as if they were valuations, for
example, writing ~v(p) to denote the value of variable p ∈ Φ under the assignment
corresponding to outcome ~v . We will also equivocate the set of valuations and
the set of outcomes writing V for V1 × · · · × Vn .

To model partial information, for every visibility set Θi , we define an equiv-
alence relation ∼Θi over outcomes as follows such that for all ~v , ~v ′ ∈ V:

~v ∼Θi
~v ′ iff for all ϕ ∈ Θi : ~v |= ϕ iff ~v ′ |= ϕ.

Thus, ~v ∼Θi ~v
′ if and only if ~v and ~v ′ agree on the truth value of the formulae

in Θi . In the interests of readability, where there is no possibility of confusion,
we will write ∼i instead of ∼Θi

.

One natural constraint to consider in our setting would be that Θi ⊆ Φ, i.e.,
that player i can only perceive the value of atomic propositions or propositional
variables. Such games we will refer to as atomic games. Most of the examples
in this paper pertain to this setting and we will see that they have quite a
specific structure. It would also be natural to require that Φi ⊆ Θi , i.e., a player
can see his own choice with respect to the variables he controls. However, we
will generally not place this as a requirement on games. Furthermore, if G is
such that for every player i ∈ N we have Φ ⊆ Θi , we say that G is a game of
perfect information: in a game of perfect information, every player can see every
propositional variable.



We interpret formulae of EL(Φ) with respect to pointed games, i.e., pairs (G , ~v)
consisting of a game G = (N , Φ, Φ1, . . . , Φn , γ1, . . . , γn , Θ1, . . . , Θn) and an out-
come ~v , as follows (again, we only give the epistemic clause)

(G , ~v) |=EL Kiϕ iff for all valuations ~v2 with ~v ∼Θi
~v2: (G , ~v2) |=EL ϕ.

Observe that this semantics depend on neither Φ1, . . . , Φn nor γ1, . . . , γn .
We assume that a player i strictly prefers all those outcomes that satisfy

its goal γi over all those that do not, but is indifferent between outcomes that
satisfy its goal, and is indifferent between outcomes that do not satisfy its goal.
We define for each player i a utility function ui : V1 × · · · × Vn → {0, 1} over
outcomes representing these preferences as follows.

ui(~v) =

{
1 if (G , ~v) |= γi , and

0 otherwise.

Example 1. Father (player 1) and Mother player (player 2) reason about picking
up their child Baby (player 3) from nursery: either father does this (p), or mother
(q). Assume Θ1 = Φ1 = {p}, Θ2 = Φ2 = {q}, and Θ3 = ∅. Mother wants to know
that Baby is being picked up, either by father or by herself. Father wants to know
that Mother knows, but also wishes to avoid both parents showing up at nursery.
Baby just wants to be picked up. Formally, the goals are:

γ1 = K1(K2(p ∨ q) ∧ ¬(p ∧ q))
γ2 = K2(p ∨ q) and γ3 = p ∨ q

The situation (call the game G1) is depicted in Figure 1(a). Now suppose that
Mother decides to pick up Baby, but Father does not, i.e., ¬p∧q . This obviously
fulfils the goal γ2, and even K2(p ∨ q) ∧ ¬(p ∧ q). Note, however, that Father is
still unhappy with this outcome. Indeed, it is easy to see that ¬γ1 is true in this
outcome. Note that each parent can bring about p ∨ q , but not the fact that the
spouse knows this.

We are now in a position to apply the well-known notion of (pure strategy)
Nash equilibrium [8] to ebgs. Formally, an outcome (v1, . . . , vi , . . . , vn) is a Nash
equilibrium if there is no player i ∈ N and choice v ′i ∈ Vi for i such that

ui(v1, . . . , v
′
i , . . . , vn) > ui(v1, . . . , vi , . . . , vn).

Thus, an outcome is a Nash equilibrium if no player can unilaterally deviate to
obtain a better outcome for themselves, under the assumption that every other
player stays with their choice. The Nash equilibria of game G will be denoted
by N (G). Observe that, in general, we have that ~v is a Nash equilibrium in G
if and only if for all players i ,

(G , ~v) 6|= γi implies (G , (v1, . . . , vi−1, v
′
i , v1+1, . . . , vn)) 6|= γi for all v ′i ∈ Vi .
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(0,1,1) (0, 0, 0)¬p
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(0,1,1) (0, 0, 1)p

q ¬q

(a) Game G1
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(1,1,1) (0, 0, 0)¬p
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(0, 1, 1) (0, 0, 1)p

q ¬q

(b) Game G2

Fig. 1. The games G1 and G2 as in Example 1. The utilities to the players of each out-
come are indicated by vectors (x , y , z ), where x represents father’s utility, y mother’s,
and z baby’s. The outcomes father and mother cannot distinguish are indicated by
solid and dotted boxes, respectively and the Nash equilibria are in bold face.

Example 1 (continued). Recall the nursery Example 1. We noted that the out-
come where ¬p∧q satisfies K2(p∨q)∧¬(p∧q). This is indeed a Nash equilibrium,
even though Father’s goal γ1 is not satisfied (Father does not know that Mother
will go). It is a Nash equilibrium, because, given this outcome, father on his own
cannot fulfil his goal: the epistemic goal K1K2(p ∨ q) cannot be satisfied in our
model. Note that, since Baby cannot influence any proposition, every outcome
has the property that it cannot unilaterally deviate and improve its outcome,
i.e., it can never prevent an outcome from being a Nash equilibrium.

Note now that knowledge is power: if we change the game to G2, in which
Θ1 = {p, q} (but keep the rest as in G1), then Father will be informed as to
whether mother satisfies her own goal by making q true, and hence ¬p ∧ q is a
Nash equilibrium for this game in which both parents and the child are happy.

3 Computational Complexity

In this section we analyse the computational complexity of a number of natural
problems relating to ebgs. First, the Model Checking problem for EL is as
follows (cf. [10]):

Model Checking:
Given: Pointed game (G , ~v) and EL formula ϕ.
Question: Is it the case that (G , ~v) |=EL ϕ?

We leave out the proof of the following due to lack of space.

Proposition 2. The Model Checking problem for EL is PSPACE-complete.

As an aside, we remark that this result may at first seem surprising, given
that the problem of model checking formulae of S5n over Kripke structures
may be solved in polynomial time [1, pp. 63–64]. There is no contradiction,



Input: Game G and outcome ~v for G
Output: “yes” if ~v ∈ N (G), “no” otherwise.

1 for i := 1 to n do
2 if (G, (v1, . . . , vi , . . . , vn)) 6|=EL γi then
3 for each v ′

i ∈ Vi do
4 if (G, (v1, . . . , v

′
i , . . . , vn)) |=EL γi then

5 return “no”
6 end if
7 end for
8 end if
9 end for

10 return “yes”

Algorithm 1: Algorithm for Membership

however: we are interpreting our EL formulae with respect to games, which can
be understood as compact representations of Kripke structures. The polynomial
time computational results for model checking over Kripke structures assumes
that each state is explicitly listed in the input to the problem, which we do
not assume. Thus, model checking S5n over Kripke structures assumes an input
that in the worst case is exponentially larger than our game representation. As a
general rule of thumb in complexity analysis, the more compact a representation
is, the higher will be the complexity of the decision problems associated with
these structures (see, e.g., [11, pp. 492–495]).

Two natural decision problems suggest themselves relating to the Nash equi-
libria of ebgs (cf. [12, pp. 8–9]). The first asks whether a given outcome ~v is a
Nash equilibrium of a game G . We call this problem Membership:

Membership:
Instance: Game G and outcome ~v for G .
Question: Is it the case that ~v ∈ N (G)?

We first prove the upper bound for the Membership problem; we postpone
the lower bound for the moment.

Proposition 3. Membership for ebgs is in PSPACE.

Proof. First observe that from Proposition 2, the model-checking problem for EL
is PSPACE-complete. Let G be the game and let ~v = (v1, . . . , vi , . . . , vn) be the
outcome given in the problem instance. Then, Algorithm 1 decides the problem in
PSPACE. The loop on lines (1)–(9) checks whether any player has a beneficial
deviation: if it finds such a beneficial deviation, the algorithm returns “no”
(line 5), indicating ~v 6∈ N (G). We claim that the overall algorithm operates
in PSPACE. To see this, observe that for each player i ∈ N we carry out a
single PSPACE check (line 2, Proposition 2) followed by a loop (lines 3–7) that
iterates through all elements of Vi , in each case carrying out a PSPACE check
(Proposition 2 again). The loop on lines 3–7 is in PSPACE as a consequence of



the fact that
PSPACE = PSPACEPSPACE.

Since PSPACE is closed under sequential PSPACE operations, the outer loop op-
erates in PSPACE. We conclude that the overall algorithm operates in PSPACE.

The second problem simply asks whether there exist any Nash equilibria for
a given ebg G . We call this problem Non-Emptiness:

Non-Emptiness:
Instance: Game G .
Question: Is it the case that N (G) 6= ∅?

The proofs of the following propositions are left out due to lack of space.

Proposition 4. Non-Emptiness for ebgs is PSPACE-complete.

Given this, we can prove the lower bound for the Membership problem:

Proposition 5. Membership for ebgs is PSPACE-hard.

4 Epistemic Boolean Games versus Kripke Structures

The semantics we have given to EL in terms of epistemic Boolean games is very
close to Kripke semantics, with outcomes for games essentially playing the role
of possible worlds. Let us make this idea both explicit and precise. We argue
that Boolean games of incomplete information can represent the same situations
modelled by S5n Kripke structures and, moreover, that they sometimes can do
so significantly more concisely.

We adapt the standard definition of bisimulation for modal logic [13, pp.64–
67] to games and Kripke structures. Given a game G for EL(Φ) and a Kripke
structure K for EL(Φ′), for any Ψ ⊆ Φ∩Φ′, we say that G and K are Ψ -bisimilar
if there exists a relation

Z ⊆ V ×W

such that for all outcomes ~v and all possible worlds w :

– if Z(~v ,w), then for all p ∈ Ψ , we have ~v(p) = π(w , p);
– if Z(~v ,w) and for some i ∈ N and ~v ′ we have ~v ∼i ~v

′, then there is some
w ′ such that Z(~v ′,w ′) and Ri(w ,w

′); and
– if Z(~v ,w) and for some i ∈ N and w ′ we have Ri(w ,w

′), then there is some
~v ′ such that Z(~v ′,w ′) and ~v ∼i ~v

′.

We write (G , ~v) ∼=Ψ (K ,w) to mean that there is a Ψ -bisimulation relation Z
between G and K such that Z(~v ,w). If Φ = Φ′ = Ψ we omit the subscript in ∼=Ψ .
The key point about bisimulations is the following, readily established result.

Proposition 6. Let Ψ ⊆ Φ. If (G , ~v) ∼=Ψ (K ,w), then for all formulae ϕ ∈
EL(Ψ) we have:

(G , ~v) |=EL ϕ iff (K ,w) |=K ϕ.



We easily show that for every game G there exists a bisimilar Kripke structure
KG . Given an ebg G = (N , Φ, Φ1, . . . , Φn , γ1, . . . , γn , Θ1, . . . , Θn), we define the
Kripke structure KG = (W G ,RG

1 , . . . ,R
G
n , π

G) induced by G as follows.

– W G = V, i.e., W G is the set of outcomes for G ;
– RG

i (~v , ~v ′) iff ~v ∼i ~v
′; and

– for all ~v and p ∈ Φ, we have πG(~v , p) = ~v(p).

Then it is immediate by construction that we have:

Proposition 7. Let G be a game, ~v an outcome, and KG be the Kripke struc-
ture induced by G. Then, (G , ~v) ∼=Φ (KG , ~v).

Notice that the construction of the set of worlds in KG makes the exponential
blow up of size in moving from games G to Kripke structures explicit. The
previous result essentially tells us that for every game G there is an “equivalent”
Kripke structure K , where equivalence is measured in terms of bisimulation.

Likewise, for every finite Kripke structure K = (W ,R1, . . . ,Rn , π) for EL(Φ),
a Φ-bisimilar ebg GK exists. This ebg, however, is defined on an extended
language, which also involves propositional variables for every possible world w ∈
W . Assuming without loss of generality that W ∩ Φ = ∅, we let Ψ = Φ ∪W .
Moreover, define for every w ∈W a formula χ(w) as follows.

χ(w) = w ∧
∧

w ′ 6=w

¬w ′ ∧
∧

π(w ,p)=>

p ∧
∧

π(w ,p)=⊥

¬p

Let for each possible world w the outcome ~vw : Ψ → B such that for all p ∈ Ψ ,

~vw (p) =

{
> if either π(w , p) = > or p = w ,

⊥ otherwise.

Note that the formula χ(w) characterises outcome ~vw , in the sense that

(G , ~vw ) |= χ(w ′) if and only if w = w ′.

Given K = (W ,R1, . . . ,Rn , π), we define for each agent i and each world w ,

θKi (w) =
∨

Ri (w ,w ′)

χ(w ′).

Intuitively, θKi (w) characterises (in L(Ψ)) the set of worlds that player i can-
not distinguish from w in K along with their interpretation of the propositional
variables. That is, if θKi (w) is in player i ’s visibility set, i can distinguish worlds
that are in {w ′ ∈W : Ri(w ,w

′)} from those that are not. Moreover, as K is an
S5n model, each Ri is an equivalence relation. Hence, Ri(w ,w

′) implies θKi (w) =
θKi (w ′). The game GK = (N , ΦK , ΦK

1 , . . . , Φ
K
n , γ

K
1 , . . . , γ

K
n , Θ

K
1 , . . . , Θ

K
n ) induced

by K is now defined such that ΦK = Φ ∪W and for each agent i ,

ΘK
i = {θKi : w ∈W }.
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Fig. 2. S5 Kripke structure with no bisimilar atomic game models.

The choices for ΦK
1 , . . . , Φ

K
n and γK1 , . . . , γ

K
n are arbitrary. Observe, however, that

the game GK does not in general represent the situation much more concisely
than the Kripke structure K .

Now define the relation Z such that for all ~v ∈ V and all w ∈W ,

Z(~v ,w) if and only if ~v = ~vw .

We find that Z is witness to the fact that GK and K are Φ-bisimilar, giving us
the following result (proof left out due to lack of space).

Proposition 8. Let K be a Kripke structure, w a world, and let GK be the
game induced by K . Then, (GK , ~vw ) ∼=Φ (K ,w).

However, if we restrict ourselves to atomic games, i.e., games with visibility
sets Θi that consist of propositional variables, Proposition 8 (or the converse of
Proposition 6) does not hold.

Proposition 9. There are Kripke structures K over N , Φ for which there is no
atomic game G over N , Φ such that G ∼= K .

Proof. Consider the S5n Kripke structure K with N = {1, 2} and Φ = {p} as
depicted in Figure 2. (Both R1 and R2 are equivalence relations, but for clarity
we have not drawn the reflexive arrows). Note that K1p ∨ K1¬p means that 1
knows the value of p. In K , this is true in s, but not in t or u. Hence we have
K , s |=K K1p∧¬K2(K1p∨K1¬p). However, we claim that in any atomic game G
and any valuation ~v we have

(G , ~v) |=EL K1p → K2(K1p ∨K1¬p)

To see the latter, suppose that (G , ~v) |=EL K1p. This means not only that
~v(p) = >, but also that p ∈ Θ1. To appreciate the latter, observe that p 6∈ Θ1

would imply that there is some ~u, which only differs from ~v in that it assigns ⊥
to p rather than >, and, since ~v and ~u agree on all other variables (in particular
those in Θ1), for which ~v ∼i ~u . But this in turn implies that (G , ~v) |=EL ¬Kip,
a contradiction. But since p ∈ Θ1, it is obvious that G |=EL K1p ∨ K1¬p, and
hence we have (G , ~v) |=EL K2(K1p ∨K1¬p). So there is no (G , ~v) that satisfies
K1p ∧ ¬K2(K1p ∨ K1¬p), and hence, by Proposition 2, there is no (G , ~v) for
which (G , ~v) ∼= (K , s).

The upshot of this discussion is that atomic games induce Kripke structures
with a very particular structure. Specifically, they induce Kripke structures in
which: (i) the set of worlds corresponds exactly to the set of possible valuations;



(ii) the accessibility relations Ri are derived solely from the visibility sets Θi

that consist of propositional variables; and (iii) which variables agents can see,
which variables they can manipulate, and what goals they have, is all common
knowledge. Issues like this (in the closely related model of interpreted systems
for knowledge [1, pp.103–114]) were studied in depth by Lomuscio [14].

5 Epistemic Boolean Games versus Boolean Games

What distinguishes epistemic Boolean games from regular Boolean games is the
language in which the players’ goals are phrased, viz., the language of EL and raw
propositional logic, respectively. Otherwise, the strategic structure of epistemic
Boolean games is very similar to that of regular Boolean games. Rather, in
this section, we argue that for every epistemic Boolean game a corresponding
regular Boolean game can be found that is in an important sense strategically
equivalent to it. However, we also show that, in the case of atomic games, the
regular Boolean game may be exponentially larger than the epistemic Boolean
game it corresponds to.

Given a set Φ of propositional variables the set of 2|Φ| outcomes are deter-
mined by the set of valuations. As the only role of the visibility sets in ebgs is
to enable the evaluation of the epistemic formulae in EL(Φ), it can now easily be
seen that for every epistemic Boolean game there is a regular Boolean game with
the same strategic properties. (The claim in the opposite direction is trivial.)

Let G = (N , Φ, Φ1, . . . , Φn , γ1, . . . , γn , Θ1, . . . , Θn) be an epistemic Boolean
game. Associate with each outcome ~v a propositional formula χ(~v) in much the
same way as in the previous section.

χ(~v) =
∧

~v(p)=>

p ∧
∧

~v(p)=⊥

¬p.

Now consider the regular Boolean game G ′ = (N , Φ, Φ1, . . . , Φn , γ
′
1, . . . , γ

′
n),

where for each player i ,

γ′i =
∨

(G,~v)|=ELγi

χ(~v).

We then have that for players i and all outcomes ~v ,

(G , ~v) |=EL γi if and only if (G , ~v) |=EL γ′i .

Hence, G and G ′ agree on the players, strategies, and outcomes. Moreover, each
goal γi induces the same preferences over the outcomes in G as γ′i does in G ′.
Accordingly, G and G ′ could justifiably be said to be strategically equivalent.

It should be observed though, that the size of γ′i , as defined above, is expo-
nential in the size of γi . This raises the obvious question of whether we are in fact
gaining anything by using the epistemic language: can we find an equivalence
preserving translation τ from epistemic formulae to propositional formulae such
that τ(ϕ) is guaranteed to be of size polynomial in the size of ϕ? If the answer



was “yes”, then this would indicate that our epistemic language was somewhat
redundant, in terms of raw expressive power and succinctness. In fact, there is a
compelling complexity theoretic argument that the epistemic language is expo-
nentially more succinct than the propositional language on our game structures:

Proposition 10. If P 6= PSPACE, then the epistemic language is exponentially
more succinct than the propositional language over game structures.

Proof. Recall that model checking for the epistemic language over our game
structures is PSPACE-complete, while the model checking problem for the propo-
sitional language is in P. Now, suppose there exists a polynomial time computable
equivalence preserving translation τ from the epistemic language to the propo-
sitional language. The existence of such a translation would imply PSPACE=P:
to solve a PSPACE hard model checking problem for the epistemic language, we
could apply the polynomial time translation τ and apply the polynomial time
model checking algorithm for the resulting formula, yielding a polynomial time
decision procedure for the PSPACE-hard model checking problem. We conclude
that no such translation can exist unless P=PSPACE.

Note that it is considered highly unlikely that PSPACE=P.
Thus, the epistemic language provides concrete benefits with respect to suc-

cinctness. We might also note that the use of epistemic modalities of course
provides benefits with respect to naturalness of expression and the readability
of formulae when compared to the use of raw propositional logic.

6 Related Work and Conclusions

In this paper, we formally defined and investigated games in which the goals of
players relate to the epistemic states of other players. In such a game, a player
will be strategically motivated to act in such a way as to bring about states
of knowledge—or indeed ignorance—in other players. We formally defined epis-
temic Boolean games, an extension to the now well-established Boolean games
model in which players have goals represented not as propositional logic formu-
lae, but as formulae of modal epistemic logic. We then investigated the compu-
tational complexity of questions relating to Nash equilibria in such games.

Our research is closely related to several other papers that have appeared
in the literature. In [15] we also considered Boolean games with visibility sets,
but the setting in that paper is very different: goals are propositional rather
than epistemic, and the focus is rather on identifying verifiable Nash equilibria;
equilibria that players know to be equilibria.

Van Otterloo et al. introduced knowledge condition games [16]. Knowledge
condition games are extensive form games, in which state sets are explicitly
listed. The basic question considered in the work of van Otterloo et al. is when
sets of players in extensive form games are able to act in such a way as to bring
about a state of knowledge; the basic result relating to this problem is that the
problem is Σp

2 -complete. Because the problem relates to strategic ability, van



Otterloo also considered the use of the strategic ability logic ATL [17] and its
epistemic variant ATEL [18]. The work differs from the present paper in that
we consider a Boolean games framework, with visibility sets implicitly defining
epistemic accessibility relations; we also allow for players to have goals explicitly
represented as formulae of epistemic logic.

Ågotnes and van Ditmarsch also considered closely related issues [19]. They
introduced public announcement games. The foundation for their study was the
growing body of work on dynamic epistemic logic (DEL) [20]. In dynamic epis-
temic logic, agents are allowed to make announcements, which may be simple
objective statements about the state of the world (e.g., “p is true”) or may
be more complex announcements involving statements about the knowledge or
ignorance of agents (e.g., “I don’t know p”). Ågotnes and van Ditmarsch inves-
tigated how players in a game could use such announcements to bring about
states of knowledge. The main difference is that the announcements considered
by Ågotnes and van Ditmarsch are much richer than the mechanisms available
to players in our games for bringing about epistemic states; and the semantics
are correspondingly much more technically involved than in our setting. Our set-
ting offers a much more compact representation for epistemic games than that of
Ågotnes and van Ditmarsch, and one that is much closer to computational mod-
els. Additionally, we are able to prove results relating to (e.g.) the complexity of
Nash equilibria that were not considered in [19].

Finally, and perhaps the closest to the present paper is the work of Grant
et al. on Boolean games in which players have (possibly incorrect) beliefs about
the value of certain variables, and where an external principal is able to make
announcements about these variables in order to influence the beliefs of the
players within the game, and hence the rational choices that they subsequently
make [21]. The model of belief studied by Grant et al is much more restricted
than the model of knowledge we use in the present paper (every player simply
believes every proposition is either true or false).

Several avenues suggest themselves for future work. First, we might look at
richer computational models than simply setting variables to be true or false. For
example, we might model games using a practical system specification language
such as Reactive Modules [22], and, correspondingly, allow for richer strate-
gies as in the Alternating-time Temporal Logic [17]. This would bring the setting
of epistemic games much closer to practical systems, and would make it possible
to model practical protocols and systems. Second, we might consider the use
of mixed (probabilistic) strategies. If players are permitted to use randomised
strategies, then the set N (G) can be replaced by a probability distribution over
outcomes. In this case, instead of asking whether, for example, player i knows
ϕ in all outcomes, we can ask what the probability is that player i comes to
know ϕ, assuming that players play Nash equilibrium strategies.

Third, the epistemic concept we have worked with in this paper is knowledge,
in the sense of S5 modal logic [1]. It would also be interesting to consider the use
of belief, e.g., in the sense of the modal logic KD45. Finally, it looks worthwhile
to see whether the exponential blow-up when moving from games to Kripke



models, can be avoided by adopting a slightly different perspective on Kripke
models, as proposed in [9], viewing them as compositions of smaller agent models.
Acknowledgements: Harrenstein and Wooldridge were supported by the ERC
under Advanced Investigator Grant 291528 (“RACE”).
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