Distributed Problem-Solving as
Concurrent Theorem Proving*

Michael Fisher! and Michael Wooldridge?

! Department of Computing, Manchester Metropolitan University,
Manchester M1 5GD, United Kingdom
M Fi sher @oc. nmu. ac. uk
2 Mitsubishi Electric Digital Library Group, 103 New Oxford St.
London WCIA 1EB, United Kingdom
m w@ll i b. com

Abstract. Our principal aim in this paper is to describe how distributed
problem solving may fruitfully be viewed as concurrent theorem prov-
ing. Not only does this approach provide an expressive representation
technique for a range of distributed problem solving algorithms, but its
powerful components allow the investigation of algorithms not yet cap-
tured within current systems.

We begin by introducing a novel agent-based approach to concurrent theo-
rem proving which will form the basis for a range of distributed problem-
solving applications, and then describe Concurrent METATEM, a multi-
agent programming language whose model of computation is closely re-
lated to that used within the theorem proving approach. An extended
case study is then presented, wherein we demonstrate how a multi-agent
planning system can be implemented within our general framework and
show how extensions and refinements of the planning system can eas-
ily be accommodated within our framework. Finally, we conclude with
a detailed discussion of related work, from both the multi-agent systems
community and the (concurrent) theorem proving community.

Topic areas: conceptual and theoretical foundations; multi-agent plan-
ning; cooperation.

1 Introduction

Problem solving is a fundamental issue in Al and, along with game-playing, is
perhaps the oldest research topic in the discipline. The view of problem solv-
ing as theorem proving has a long and influential history in Al, going back at
least to the work of Green [8]. This deductive view of problem solving has
been particularly useful in Al planning research. Distributed problem solving
(DPS), wherein a group of decentralized agents cooperate to solve problems,
is perhaps the paradigm example of multi-agent activity, and is certainly the
most-studied process in distributed Al. However, while many logic-based ap-
proaches to distributed Al have been described in the literature, we are aware

* This work was partially supported by EPSRC under grant GR/J48979.

of no work that has explicitly proposed viewing distributed problem solving as
concurrent, agent-based theorem proving. This is perhaps due to the lack of an
appropriate agent-based computational model for concurrent theorem proving.

The main aim of this paper is to propose that distributed problem solving
may usefully be treated as concurrent theorem proving. To this end, we utilise
a recently developed general framework for agent-based theorem proving, and
demonstrate how this framework may easily be implemented in a multi-agent
programming language. As an example of distributed problem solving, we con-
sider distributed planning, representing both the basic system and various ex-
tensions and refinements within our framework.

The remainder of this paper is structured as follows. In §2, we present a
general framework for concurrent theorem proving [7], and show how it can
be used as the basis for distributed problem solving. In §3, we introduce Con-
current METATEM, a multi-agent programming language whose computational
model is closely related to the agent-based theorem proving framework, mak-
ing the language well-suited to implementing the technique. In §4, we present
an extended case study, in which we show how a range of planning techniques
may be represented in terms of the concurrent theorem proving technique in-
troduced above. Finally, in §5 we discuss related work and provide concluding
remarks.

2 A Framework for Concurrent Theorem Proving

The basic idea behind the approach is easily illustrated by means of a very
simple example (from [7]). Consider the following set of propositional Horn
clauses:

l.p

2.p VgV or
3. pV gV r
4. -p vV r

Using classical resolution, it is easy to derive the empty clause from this set.
In our framework, theorem proving proceeds by allocating each clause i €
{1,...,4} to an agent, Ag;. The agents we consider are self contained reasoning
systems, encapsulating both data and behaviour, and are able to execute inde-
pendently of each other and communicate via broadcast message-passing [14].
In this theorem-proving context, these agents broadly behave as follows:

- any agent representing a clause containing just a positive literal should pass
that information (via broadcast message-passing) to all other agents;

— upon receipt of a message, agents transform their own formulae on the basis
of the information received, broadcasting any new literals generated, and
reporting any contradiction produced.

Consider the simple example given above. As the agents begin executing, agent
Ag,, containing only the proposition p, broadcasts the message p to all other

agents. Once p has been received, each agent transforms its internal formula by
applying classical (unit) resolution, and the configuration becomes:

(Ag1): p
(Ag2): qV —r
(Ags): —q V —r
(Aga): 7

Agent Agy then broadcasts r as new information. After this message reaches the
other agents, they update their formulae, and the configuration becomes:

(Ag1): p
(Ag2): ¢
(Ags): —q
(Aga): 1

Finally, agent Ag> then broadcasts g, and upon receipt of this message, Ags gen-
erates a contradiction. Note that the theorem-proving activity is not dependent
upon the order in which messages are sent. If the empty clause can be derived
from the initial clauses, then it will be, as long as all messages sent are guaran-
teed to (eventually) arrive.

These agents have control over both their own execution, during which local
deduction takes place, and their own message-passing behaviour. Since broad-
cast message-passing is used as the basic communication mechanism, other
agents are able to view (and utilize) the intermediate deductions produced by
each agent. Hence, global deductions are carried out collectively by the set of
agents.

2.1 Generality and Correctness

Despite its simplicity, this approach is just as powerful as classical resolution:
communication patterns in the concurrent system match the proof steps in a
sequential resolution refutation. In the case of Horn clauses, the messages be-
tween agents correspond to positive literals while, in the case of full classical
logic, the messages themselves correspond to Horn clauses. In addition, this ap-
proach can be extended to first-order logics. In [7], we show that the technique
is in fact sound and refutation complete for classical logics; an easy extension
to the basic technique above gives completeness for classical first-order logic.

In addition to basic details relating to local deduction, each agent may also
contain information concerning behaviours not directly related to the core de-
duction process. In particular, the agents can represent and exchange informa-
tion about both the heuristics currently being employed and the global orga-
nization of the agents. This additional behaviour is useful for added control,
both in order to improve efficiency and to organize the agents in, for example
cooperative, competetive or opportunistic structures [7].

2.2 Efficiency and Implementation

One potential criticism of the technique is the use of broadcast message passing,
which is often regarded as too demanding of communication bandwidth to be
used in practice. However, in spite of the use of broadcast, the system need
not be flooded with messages. Not only is it possible to structure agents so
that related information only occurs within one agent, but also, by grouping
agents containing related parts of the problem-solving capability together, the
number of messages generated can be greatly reduced [7]. Note that branching
in the search space is here replaced by additional broadcast messages. Thus,
in architectures where broadcast is prohibitively expensive, the technique may
prove to be inefficient. But most contemporary architectures provide efficient
multicast mechanisms (indeed, many distributed operating systems are based
upon this mechanism: see, for example, [2]).

Our problem-solving framework is based on the approach described above.
Thus, when a problem-solving agent has some definite positive information,
it broadcasts this to all other agents. Similarly, once an agent receives infor-
mation, it can transform its internal representation, possibly generating further
communication.

3 Implementing the Framework

Having outlined the general model of concurrent theorem proving, we now de-
scribe the high-level programming language in which problem-solving applica-
tions will be represented. A Concurrent METATEM system [6] consists of a set
of concurrently executing agents, which communicate through asynchronous
broadcast message-passing. The internal computation mechanism for an agent
is provided by the execution of temporal logic formulae [1]. We begin by giv-
ing a brief overview of temporal logic, followed by an outline of the execution
mechanism for temporal formulae.

Temporal logic can be seen as classical logic extended with modal opera-
tors for representing temporal aspects of logical formulae. The temporal logic
we use is based on a linear, discrete model of time. Thus, time is modeled as
an infinite sequence of discrete states, with an identified starting point, called
‘the beginning of time’. Classical formulae are used to represent constraints
within individual states, while temporal formulae represent constraints between
states. As formulae are interpreted at particular states in this sequence, opera-
tors which refer to both the past and future are required. The future-time tem-
poral operators used in this paper are as follows: the sometime in the future op-
erator — ¢ is true now if ¢ is true sometime in the future; and the always in
the future operator — []¢ is true now if ¢ is true always in the future. Similarly,
connectives are provided to enable formulae to refer to the past. The only past-
time temporal operators needed for the examples in this paper are as follows:
the sometime in the past operator — & ¢ is true now if ¢ was true in the past; the
beginning of time operator — start is only true at the beginning of time; and the

strong last-time operator — @ ¢ is true if there was a last moment in time and,
at that moment, ¢ was true®.

Concurrent METATEM uses a set of ‘rules’, couched in temporal logic, to
represent agent’s intended behaviour. These rules are of the form:

‘past and present formula’ = ‘present or future formula’

Consider the following rules, forming a fragment of an example Concurrent
METATEM program.

start = achieves(a)
0 0al(X) = Oplanned(X)
O topgoal(Y) = subgoal(Y) V fact(Y)

Here ‘X" and ‘Y’ represent universally quantified variables. Thus, we see that
achieves(a) is made true at the beginning of time and whenever goal(X) is true
in the last moment in time, a commitment to eventually make planned(X) true
is given. Similarly, whenever topgoal(Y) is true in the last moment in time, then
either subgoal(Y) or fact(Y) must be made true.

An agent’s program rules are applied at every moment in time (i.e., at ev-
ery step of the execution) and thus execution in a Concurrent METATEM agent
can be distinguished from the logic programming approach in that refutation
is not involved in the computation process and the model for the formula con-
tained within the agent is constructed by following the temporal rules forwards
in time. Once the agent has commenced execution, it continually follows a cy-
cle of reading incoming messages, collecting together the rules that ‘fire’ (i.e.,
whose left-hand sides are satisfied by the current history), and executing one of
the disjuncts represented by the conjunction of right-hand sides of ‘fired’ rules.

Each agent contains an interface describing both the messages that the agent
will recognise and those it may send. For example, the interface

top(goal, achieves)[planned, subgoal] :

defines top to be the name of an agent in which {goal, achieves} is the set of mes-
sages the agent will accept, and {planned, subgoal} defines the set of messages
the agent can send.

For a more detailed description of the execution mechanism underlying
Concurrent METATEM, see [1, 6].

4 A Case Study: Distributed Planning

In order to provide a concrete illustration of our approach, we consider a par-
ticular variety of problem-solving, namely planning, and show how this can be
represented within our model. We begin with an overview of the Al planning

3 A number of other operators are provided in Concurrent METATEM, though as they
are not required for this paper, they will not be mentioned here; see [1, 6].

problem; our presentation is relatively standard, and is based on [9]. First, we
assume a fixed set of actions Ac = {a,...,a,}, representing the effectoric ca-
pabilities of the agent for which we are developing a plan. A descriptor for an
action a € Acis a triple (Py, Dy, Aqa), where?:

- P, C Lo is a set of sentences of first-order logic that characterize the pre-
condition of a;

- D, C Ly is a set of sentences of first-order logic that characterize those facts
made false by the performance of « (the delete list);

- As C Lo is a set of sentences of first-order logic that characterize those facts
made true by the performance of « (the add list).

A planning problem (over Ac) is then determined by a triple (A, O,), where:

- A C Ly is a set of sentences of first-order logic that characterize the initial
state of the world;

- O = {(Pa,Dq,As) | a € Ac} is an indexed set of operator descriptors, one
for each available action o; and

- v C Ly is a set of sentences representing the goal to be achieved.

A plan 7 is a sequence of actions m = (a,. .., a,). With respect to a planning
problem (A, O,v), aplanm = (a1, ..., a,) determines a sequence of n + 1 world
models Ag, Ay, ..., A, where:

Ag=A and
A =(Ai-1\Dy)UA,, forl<i<m.

A (linear) plan 7 = (ay, - . -,) is said to be acceptable with respect to the prob-
lem (A, O,~) if, and only if, A;_; |= Py, foralll < i < n (ie., if the pre-
condition of every action is satisfied in the corresponding world model). A plan
m = (aa,...,0,)is correct with respect to (A, O, v) if, and only if, it is acceptable
and A, = v (i.e., if the goal is achieved in the final world state generated by
the plan). The planning problem can then be stated as follows: Given a planning
problem (A, O,~), find a correct plan for (A, O,).

We will now demonstrate how the planning problem can be solved using
the general concurrent theorem proving paradigm we described in §2. More
precisely, in §4.1 we show how a Concurrent METATEM system can be gener-
ated to solve a planning problem in a top-down (goal-driven) manner. We then
prove correctness of the approach. In §4.2, we give an alternative method for
deriving a Concurrent METATEM system, that will generate a solution to the
planning problem in a data-driven (bottom-up) fashion, while in §4.3 we con-
sider refinements of the two approaches.

* We assume a standard first-order logic Lo with logical consequence relation ‘="

top-goal(7y) <y is a top-level system goal

goal(7y) ~y is a sub-goal
achvs(A,) plan 7 achieves A
plan(y,) plan = is a correct plan for y

Table 1. Domain Predicates

4.1 Goal-Driven (Top-down) Planning

In this section, we demonstrate how, from a planning problem (A, O, v), a Con-
current METATEM system that will solve the problem in a top-down, goal-
driven fashion can be systematically derived. We begin with a discussion of
the various predicates that will be used, and an overview of the derived system
structure.

We use just four domain predicates (see Table 1). The predicate top-goal(. . .)
represents the fact that its argument (a set of £y sentences) is the top-level goal
of the system. The unary predicate goal(...) is used to represent sub-goals; its
argument is also a set of £y sentences. The achvs(...) predicate takes two ar-
guments, the first of which is a set of £y sentences, the second of which is a
plan; achvs(A',) represents the fact that plan 7, when executed from the initial
world state A, will achieve A'. Initially, we shall assume that plans are linear
(see §4.3 for more complex plans), and represent them using a PROLOG-like list
notation. Finally, the predicate plan(...) is used to communicate a plan to the
originator of the top-level goal: plan(vy,) means that plan 7, if executed in the
initial world, will achieve 7.

Given a planning problem (A, O,), the basic generated system will con-
tain |A| + |O| 4+ 1 agents: one for each element of A and O, and one ‘top-
level” agent. The top-level agent takes in a request for a plan to achieve v, and
sends out a message that creates a sub-goal . For each operator description
(Pa,DayAq) € O, an agent a is created, which encapsulates knowledge about
the pre- and post-conditions of a. This knowledge is represented by the two
rules (TO1) and (TO2). The first of these, (TO1), is essentially a rule for sub-
goaling: it is fired when a message is received indicating that a goal has been
created corresponding to the post-condition of ¢; in this case, the rule causes a
new sub-goal to be created, corresponding to the pre-conditions of a. At some
stage, a sub-goal created by this process will correspond to an initial state of
the world (otherwise, the top-level goal vy is not achievable). This is where the
third type of agent plays a part. For each sentence ¢; € A, an agent init; is cre-
ated, containing a rule which represents the fact that if ever ¢; is a sub-goal, it
can be achieved by the empty plan, ‘[]. When such a rule fires, this informa-
tion is propagated by sending the message achvs({y;},[]). These base agents can
also combine initial conditions, sending out composite ‘achvs’ messages. Within
each a agent, there will be a single (TO2) rule, characterizing the effect of ex-
ecuting a; this rule will fire when a message achvs(A’,) is received, such that

A’ matches the pre-condition of a. When fired, the rule will cause a message
achvs(A”, [| 7]) to be broadcast, where A" is the world-model obtained by
executing avin A’

We shall now describe the derived system (and in particular, the agents and
rules used) in more detail.

Top-level agent: For (A, O,~), we create a top-level agent as follows.

top-level(top-goal, achieves)[plan, goal] :
(TG1) © top-goal(vy) = goal();
(TG2) ©@uachus(A,m) A & top-goal(y) A (y C A) = plan(v,).

The agent top-level will accept a ‘request” for a plan in the form of a message
top-goal(vy), where v is the goal, as above. The rule (TG1) then simply propagates
«v as a sub-goal. The predicate top-goal would be given to the system by a user.
Rule (TG2) simply characterizes the plan predicate: 7 is a correct plan for «y if
m achieves . When the top-level agent is informed of a plan 7 that achieves the
top-level goal v, it sends a message plan(vy,), indicating that a plan for the goal
has been found. Thus, rule (TG1) represents the input to the system, whereas
(TG2) represents the output.

Base agents: Given an initial world model A = {¢1,...,¢n}, we generate m
agents, inity,...,init,, each containing a rule (TB1) showing that the initial
conditions are achieved by the empty plan, together with a rule allowing the
combination of relevant initial conditions (TB2).

init;(goal)[achvs] :

(TB1) goal(ip;) = achvs({i}, []);
(TB2) ©@uachvs(A',[]) A (p;i & A") = achvs((A" U {pi}),[])-

Action agents: For each operator description (Py,Dq,As) € O, where A, =
{¢1,...,om} and Py = {¢1,...,9,}, we create an agent « as follows.

a(goal, achvs)[goal , achvs] :

(To1) goal(p1) V -+ V goal(pm) = goal(sh1) A -+ A goal(¢y);
(TO2) @achvs(A',) A (Py C A') = achvs(((A'\ Dy) U An), [| 7).

Rule (TO1) generates sub-goals: if a sub-goal is received that matches against
the post-condition of e, then this rule causes the pre-conditions of a to be prop-
agated as sub-goals. Rule (TO2) defines the effect that action a has upon an
arbitrary state that satisfies its pre-condition. This rule effectively restricts us to
linear plans — we consider non-linear planning in §4.3.

It is important to note that, while this approach may seem inefficient at first,
achvs messages are only initiated for members of A that are required for one of
the possible plans.

Correctness In this section, we prove that the approach to top-down plan-
ning discussed above is correct, in that: (i) any plan generated by the system
is correct, and (ii) a system is guaranteed to eventually generate a plan for the
top level goal . Alternaively, the correctness of this planning approach can be
established via correspondence to the (complete) concurrent theorem-proving
system [7].

Theorem 1. Any plan generated by the system given above is correct. More precisely,
if the message achvs(A',) is broadcast in a system derived from a problem (A, O,),
then 7 is a correct plan for A'.

Proof. By induction on the structure of plans. The base case is where 7 is empty;
amessage achvs(A’, []) will only be sent by an init; agent, in which case A is true
in the initial world, and will clearly be achieved by the empty plan. Next, sup-
pose that 7 is of the form [a | #'], and that if achvs(A”,n') is sent, then 7' is
correct for A", If achvs(A', [a | 7']) is subsequently sent, then it must originate
from a (TO2) rule within the agent . In this case, it is easy to see from inspec-
tion of (TO2) that [« | #'] is correct for A’.

Theorem 2. If there exists a solution to the problem (A, O,~), then eventually, a sys-
tem derived as above will find it. More precisely, if there exists a solution to (A, O,~),
and the message top-goal(vy) is sent, then eventually a message achvs(~y, w) will be sent.

Proof. By induction on the length of successful plans. The base case is that v is
directly achieved by the initial conditions of the system, and thus goal(y) gen-
erates an appropriate achvs(A’, []) message (where v C A’). Assuming that all
problems requiring plans of length n — 1 can be solved, we assume that the
plan ay,...,a, achieves the goal . Here, the message goal(-y) reaches agent
o, which recognises v and broadcasts appropriate subgoals. By the induction
hypothesis, the subgoals will be solved and achvs(A”, 7) will eventually be re-
ceived by o, (where P, C A"). The o, agent will then broadcast the solution to

.

Theorems 1 and 2 together imply that a Concurrent METATEM program de-
rived from problem (A, O, v) using the above scheme will be totally correct.

4.2 Data-Driven (Bottom-up) Planning

The operation of most implemented planners corresponds to the basic approach
developed in the preceding section, in that they are goal-driven. Of course,
there is an alternative, whereby a plan is developed in a data-driven manner.
Many of the concepts are similar to the top-down planner (e.g., the various do-
main predicates retain their meaning). For this reason, our presentation will be
somewhat more terse. Given a planning problem (A, O,), we now generate a
Concurrent METATEM system containing |O|+2 agents: one top-level agent, (as
above), one agent for A, and one agent for each element of O. The system works
by forward chaining from the initial state of the world, generating all possible

plans and their consequences. Eventually, the desired plan will be generated.
However, given that there are |O|! simple linear plans possible for operators
O, it is not difficult to see that this form of plan generation will, in general, be
impractical.

Top-level agent: This agent simply awaits a plan achieving the goal .

top-level(top-goal, achvs)[plan] :
(BG1) ©@auachus(A',m) A & top-goal(y) A (y C A') = plan(y,).

Base agents: Given the initial world A = {¢1,...,¥n}, we now generate an
agent, init which broadcasts all the relevant initial information®. Again, the
agent contains a rule allowing the combination of relevant initial conditions
(BB2).

init()[achvs] :
(BB1) start = A, achus({¢i},[]);
(BB2) @achus(A',[]) A (pi & A") = achus((A" U {¢i}), [])-

Action agents: For each operation descriptor (Py,Dqo,Aq) € O we generate an
agent a, as follows:

a(achvs)[achvs] :
(BO1) @achvs(A',m) A (Py C A") = achvs(((A'\ Dq) U Ag), [| 7]).

The rule (BO1) is identical to (TO2), above. Thus, there are no rules for decom-
posing a goal to produce sub-goals. Goals can only be solved by the required
combination of plan elements being generated bottom-up.

Again, the correctness of this approach can be easily shown.

4.3 Refinements

We will now briefly outline a few possible refinements to the basic planning
mechanisms discussed in the previous sub-sections.

Uni-directional top-down planning: When considering simple linear plans, gen-
erated using the top-down approach in §4.1, there is often no need to pass mes-
sages back through the action agents to achieve the final plan. Now, we extend
the goal predicate with a second argument in which the partial plan for the cur-
rent goal is stored. If the top-level agent broadcasts goal(7, []), then each action
agent need only have the following rule for producing subgoals.

goal(y,m) A (Aa Ny #0) = goal(]\ i, [a | 7).

i=1

5 We here choose to use one base agent, rather than m base agents, in order to reinforce
the fact that information can be distributed amongst agents in a variety of ways.

Thus, if any post-condition of the action occurs within a goal, then a new sub-
goal corresponding to the pre-condition is generated and the current partial
plan is extended with the action.

Each base agent now broadcasts the plan if it can reduce the goal com-
pletely:

goal(p;,m) = plan(x).

In this way, once a goal is completely decomposed, the second argument to goal
must hold the plan that achieves the goal.

Non-linear planning: The top-down and bottom-up planners sketched above
generate basic linear plans. An obvious extension is to develop non-linear plans.
To provide this extension, we simply allow the preconditions of an action to be
satisfied by states derived from different routes. Thus, assuming P, is a set of n
literals, 1, . . ., on, we simply change (BO1)/(TO1) to be

Ouachvs(Ay, m) A (p1 € A1) A
O uchvs(A, 1) A (g € A A = achvs(((A\Da)UA), [| [T, - -, m]])
A= AL U---UA, Aconsistent(A)

where consistent checks the satisfiability of a set of (usually ground) sentences.

Grouping and Efficiency: Until now, we have not considered the possibility of
providing any additional structure within the agent space. Here, we briefly
outline a mechanism, based upon grouping [11, 6], whereby detailed structure
can be provided, limiting the extent of broadcast communication. The idea un-
derlying the notion of an agent group is that each agent may be a member of
several groups, and when an agent sends a message, that message is, by de-
fault, broadcast to all the members of its group(s), but to no other agents. Thus,
if such groups are constructed appropriately, then the communication between
groups will be more restrained than the communication within groups. In this
case, it would be natural to implement such a scheme by limiting each group to
one processor if possible.

Consider the simple top-down planning approach outlined in §4.1. Here,
even if a plan never requires certain operators or initial conditions, broadcast
messages will still be sent to these irrelevant items. If we are able to partition the
agents space so that agents we are certain will not be needed in the final plan
are excluded from a group, then broadcast communication may be effectively
limited. The small the group produced, the less communication is required.

As a simple example of this, consider the set of clauses presented in §2. By
grouping clauses 2 and 3 together into a sub-group which can receive messages,
but not send them, we can ensure that messages relating to p and r are allowed
through to Ags and Ags, while g messages will never be allowed out of this
sub-group. In this way, communication regarding g is localised and broadcast
message-passing is reduced.

While grouping has many practical advantages, it can obviously lead to in-
completeness. It is important that any heuristics used to group agents together
are shown to retain the correctness of the problem-solving system. Thus, much
of our current work, particularly with respect to concurrent theorem-proving,
is centred around the development of appropriate heuristics.

Multi-agent aspects: While we have considered very simple agents whose rules
are derived directly from the planning problem being solved, the model of dis-
tributed problem-solving we use is suitable for introducing more powerful con-
trol capabilities within the agents. Although it is initially counter-intuitive to
add extra complexity to the problem-solving agents, this additional behaviour
is often required not only to refine the specific behaviour of individual agents,
but also to support organisation within the system as a whole.

While we will not consider the details of refined behaviour here, we note
that techniques for representing and controlling agent-based systems in Con-
current METATEM have already been investigated [6]. In particular, agents can
not only implement alternative internal problem-solving mechanisms, but can
cooperate (for example sharing results and incorporating the benefits of cooper-
ative search) or compete with other agents. With competition comes the ability
to adapt, in a limited fashion, to changing circumstances. Combining both co-
operation and competition, together with both agent grouping structures and
the dynamic creation of new agents, we can begin to develop simple, yet evolv-
ing, agent societies capable of performing problem-solving [6].

5 Concluding Remarks and Related Work

We have introduced a model for distributed problem-solving, based upon an
agent-based approach to concurrent theorem-proving. While space precludes
both a longer discussion of the elements of the model and its application to
other problem-solving domains, we believe the use of this model to represent
varieties of distributed planning shows the potential for this approach. In addi-
tion to providing a consistent basis for distributed problem solving, this frame-
work allows for the development of flexible and open agent-based systems, the
use of broadcast communication being vital to the latter. While the utility of a
logic-based approach for proving the correctness of distributed problem solv-
ing systems is clear in the case of planning, a wide range of further applications
can be re-cast in this framework. In this way, the difficulties often encountered
in establishing the correctness of dynamic distributed problem solvers may be
alleviated.

Our future work in this area is to continue developing implementations and
refinements of the approach (a prototype system already exists), to extend it to a
wider range of distributed problem solving applications, and to show how such
distributed systems can be formally derived from their single process counter-
parts. In addition, we are actively developing heuristics which can be used not
only to group agents appropriately, but also to distribute information amongst
agents.

Finally, we briefly consider related work in the section below.

5.1 Related Work

Our approach to concurrent theorem proving and distributed problem solv-
ing is somewhat similar to the blackboard model [5]. However, there are also
significant differences: perhaps most importantly, our model allows for true
concurrency, in that agents execute in parallel, and communicate via message-
passing, rather than via globally accessible data structure. In terms of Smith’s
general classification of distributed problem solving, our framework is based
on result sharing (as opposed to task-sharing) [13].

With respect to the underlying model of concurrent theorem-proving, while
other systems share some features with our approach, the particularly close link
between the operational model, communication and deduction, the possibility
of dynamic creation, and the openness of the system makes it significantly dif-
ferent from previous systems.

In the DARES distributed reasoning system [10], agents cooperate to prove
theorems. As in our model, information (set of clauses) is distributed amongst
agents and local deduction occurs purely within an agent, but the agent can
broadcast requests for further information. By contrast to our approach, not
only is the number of agents static, but the opportunity for more sophisticated
structuring of the agent space within the DARES system is absent. Further, the
broadcast mechanism is not pervasive — it is only used to solicit new data when
an agent stalls.

While the agents within the DARES system are all of the same type, one
of the suggestions of that work was to consider different ‘specialist’ agents
within the system. This form of system has been developed using the TEAM-
WORK approach, a general framework for the distribution of knowledge-based
search [4]. While the number of agents within TEAMWORK is more fluid than in
DARES, and more sophisticated structuring is provided through the concept of
‘teams’, the control within the system is centralised through the use of ‘supervi-
sor’ agents. Also, in contrast to our model, less reliance is placed on broadcast
communication.

The clause diffusion approach to concurrent theorem-proving [3] also parti-
tions sets of clauses amongst agents. Unlike our framework, new clauses gener-
ated may be allocated to other agents. Thus, while new information generated
in our approach is distributed by broadcast message-passing, this is achieved in
clause diffusion via the migration of clauses. In contrast to our approach, clause
diffusion is not primarily intended as a basis for the development of dynamic
cooperative agent-based systems.

References

1. H. Barringer, M. Fisher, D. Gabbay, G. Gough, & R. Owens. METATEM: An Intro-
duction. Formal Aspects of Computing, 7(5):533-549, 1995.

@

10.

11.

12.

13.

14.

K. Birman. The Process Group Approach to Reliable Distributed Computing. TR91-
1216, Dept. of Computer Science, Cornell University, 1991.

M. Bonacina & J. Hsiang. The Clause-Diffusion Methodology for Distributed De-
duction. Fundamenta Informaticae, 24:177-207, 1995.

J. Denzinger. Knowledge-Based Distributed Search using Teamwork. In Proceedings
of the First International Conference on Multi-Agent Systems (ICMAS), San Francisco,
USA, 1995.

R. Englemore & T. Morgan (eds) Blackboard Systems. Addison-Wesley, 1988.

M. Fisher. A Survey of Concurrent METATEM — The Language and its Applica-
tions. In First International Conference on Temporal Logic (ICTL), Bonn, Germany, 1994.
(Published in Lecture Notes in Computer Science, vol. 827, Springer-Verlag).

M. Fisher. An Alternative Approach to Concurrent Theorem-Proving. In Parallel
Processing for Artificial Intelligence, 3, Elsevier B.V., (in press).

C. Green. Application of Theorem Proving to Problem Solving. In Proceedings of
International Joint Conference on Al, 1969.

V. Lifschitz. On the Semantics of STRIPS. In Reasoning About Actions & Plans, Mor-
gan Kaufmann Publishers: San Mateo, CA, 1986.

D. MacIntosh, S. Conry, & R. Meyer. Distributed Automated Reasoning: Issues in
Coordination, Cooperation, and Performance. IEEE Transactions on Systems, Man
and Cybernetics, 21(6):1307-1316, 1991.

T. Maruichi, M. Ichikawa, and M. Tokoro. Modelling Autonomous Agents and
their Groups. In Y. Demazeau and J. P. Muller, editors, Decentralized Al 2 — Proceed-
ings of the 2™ European Workshop on Modelling Autonomous Agents and Multi-Agent
Worlds (MAAMAW '90). Elsevier /North Holland, 1991.

D. A. Plaisted and S. A. Greenbaum. A Structure-Preserving Clause Form Transla-
tion. Journal of Symbolic Computation, 2(3):293-304, September 1986.

R. Smith & R. Davis. Frameworks for Cooperation in Distributed Problem Solving.
IEEE Transactions on Systems, Man and Cybernetics, 11(1):61-70, 1981.

M. Wooldridge & N. Jennings. Intelligent agents: Theory and practice. The Knowl-
edge Engineering Review, 10(2):115-152, 1995.

This article was processed using the IXTgX macro package with LLNCS style

