
Model Checking a Knowledge Exchange Scenario

Sieuwert van Otterloo Wiebe van der Hoek Michael Wooldridge
Department of Computer Science

University of Liverpool
Liverpool L69 7ZF, UK

{sieuwert,wiebe,mjw}@csc.liv.ac.uk

Abstract

We are interested in applying model checking tech-
niques to the verification of communication proto-
cols which require safe communication. Typically,
in such scenarios, one desires to demonstrate that
one party can reliably communicate information
to another party without a third party being able
to determine this information. Our approach in-
volves using the modal logic of knowledge, which
has only relatively recently been studied in the con-
text of secure protocols. We demonstrate our ap-
proach by means of a detailed case study: The Rus-
sian cards problem. This is an example of a se-
curity protocol with nontrivial requirements on the
knowledge of the agents involved. Using the Rus-
sian cards problem as an example it is shown how
the satisfaction of properties involving knowledge
can be verified in a standard model checker — in
our case, SPIN.

1 Introduction
A typical requirement in security protocols is that two agents
should be able to exchange some information without a third
agent being able to eavesdrop and learn some of the infor-
mation. One conventional way to achieve this is to let the
two parties use a key to encrypt the information, making
the decryption of the encoded message computationally in-
tractable for third parties. Another approach is to equip the
two parties with sufficient knowledge to publicly announce
some messages, after which they know both that the infor-
mation is obtained and that no other agent can have inferred
this from the message. Rather than relying on what the agents
can(not) computationally achieve, the success of the latter ap-
proach completely depends on what the agents know. In other
words, rather than the more traditional capability based pro-
tocol, there is currently also a growing interest in knowledge
based protocols. A nice and conceptually clear example of
such a protocol is given in [van Ditmarsch, 2003], where it
is referred to as the “Russian cards problem”. This problem
will serve as a case study for the work presented in this paper.

To specify epistemic properties — properties pertaining
to the knowledge of communication participants — one can

make use of a by now well-accepted modal logic for knowl-
edge [Meyer and van der Hoek, 1995; Fagin et al., 1995],
which provides modal operators Ki to represent what a spe-
cific agent i knows, and group modalities EG and CG to
represent what everybody in a group G knows, or what is
common knowledge in group G, respectively. Where log-
ics such as that proposed by Burrows, Abadi and Need-
ham (BAN, [Burrows et al., 1990]) provide a suitable tool
to reason about capability-based protocols, we believe that
Dynamic Epistemic Logic (DEL, see [Baltag et al., 2002;
van Ditmarsch et al., 2003]) is an appropriate framework to
deal with knowledge-based protocol verification. DEL pro-
vides a framework within which to reason about what agents
learn, and is an extension of epistemic logic. Since a secu-
rity protocol is robust when it is possible to prove that certain
properties hold, even when all agents intercept all messages,
we will here restrict ourselves to a version of DEL in which
all learning is the result of a public announcement.

Checking that a particular protocol satisfies certain desir-
able properties is a verification problem. One of the most suc-
cessful general approaches to verification is known as model
checking [Clarke et al., 2000]. Model checking approaches
to the analysis of capability based security protocols have
proved rather successful (for an early example, see the work
of Dolev and Yao [Dolev and Yao, 1998]). The basic idea
here is to examine all possible execution traces by the pro-
tocol under investigation, in the presence of a malicious in-
truder with well-defined capabilities. One then either deter-
mines that the protocol enforces its security guarantees, or
else obtains a sample trace of an attack on the protocol. This
has led to the discovery of a number of attacks against ex-
isting protocols (for example, Lowe [Lowe, 1996] used a
model checker for CSP to find a previously unknown error
in the Needham-Schroeder Public-Key Authentication proto-
col [Needham and Schroeder, 1978]).

One of the problems with using model checking to verify
properties involving knowledge is that existing model check-
ers are designed to verify temporal, rather than epistemic
properties. In this paper, we use and further develop ideas
from [van der Hoek and Wooldridge, 2002] to deal with this
problem. We do this by considering the “Russian cards prob-
lem” [van Ditmarsch, 2003], which will be explained in the
next section. The setting differs from problems such as the
bit transmission problem [Meyer and van der Hoek, 1995;

van der Hoek and Wooldridge, 2002] or the dining cryptog-
raphers [van der Meyden and Su, 2002], in the sense that we
also give an account of an adversarial agent, as opposed to
a co-operative agent. In Section 3 we describe how we find
solutions to this problem, and in Section 4 we present some
conclusions.

2 The Russian Cards Problem
In the Russian Cards Problem, seven cards are distributed
among three players. Alice and Bob receive each three cards,
and Caroline receives the remaining card. All of them know
the number of cards everyone has, they know their own cards,
but they do not know how the remaining cards are distributed
among the remaining players. Alice and Bob want to (com-
monly) know the deal of cards, while preventing Caroline
from finding out who has any of the cards not in Caroline’s
possession.

As an attempt to a solution of the Russian Cards problem,
one might devise a complicated dialogue, in which Alice and
Bob make many cryptic comments which are helpful to them
but not really to Caroline. However, instead, we are looking
for a direct exchange solution, in which the actual dialogue is
short: Alice makes a single (true) statement from which Bob
learns which cards she has. Bob can then deduce which card
Caroline has and (truthfully) announce this. If Alice learns
Caroline’s card she can deduce which cards Bob must have.
In all such solutions, it is sufficient and necessary that Bob’s
reply to Alice is to announce which card Caroline holds. A
direct exchange is thus completely characterised by Alice’s
initial announcement. Informally a statement is a solution
if, after Alice announces this statement, Caroline does not
know any of the cards. An example of a solution in a situation
where Alice has cards 0,1 and 2 is that Alice says “I have one
of the following five sets of three cards: 0, 1 and 2, 0,3 and 4,
1, 3 and 5, 2,3 and 6 or 4,5 and 6”.

A logical description of this problem needs propositional
logic to describe a deal of cards, epistemic operators to ex-
press knowledge, and some way of dealing with the dynam-
ics of the problem. From now on A, B and C will be used
to denote the three agents. Moreover, i is a variable over the
agents, and the variables x and y range over the deck of cards
D = {0, 1, 2, 3, 4, 5, 6}. The atoms ax are used to denote that
fact that A holds card x. Similarly for bx and cx with respect
to B and C, respectively.

The fact that these propositions must represent a card deal
puts constraints on these propositions. For instance, every
card i must be held by exactly one person (O denotes ex-
clusive or):

∧
x∈D

(axObxOcx). Let us now denote the state
in which A has cards 0,1,2, B has 3,4,5 and C has 6 by
s = 012|345|6. In the sequel, we thus consider states s of
the form x0x1x2|x3x4x5|x6 where x0x1x2x3x4x5x6 is a
permutation of {0, . . . , 6} and where x0 < x1 < x2 and
x3 < x4 < x5. Let S denote the set of all such states. A val-
uation function π then translates the basic facts to our propo-
sitional atoms: for instance, we have π(s)(a0) = true and
π(s)(a3) = false.

For reasoning about knowledge, we add knowledge oper-
ators KA,KB and KC . The meaning of Kiφ is that agent i

knows that φ is true. An agent knows something if it is true
in each world that the agent considers possible. This leads us
to consider Kripke models of the form

M = 〈S,∼A,∼B ,∼C , π〉

where S and π are as defined above, and ∼i is an equiva-
lence relation, modelling what agent i considers to be indis-
tinguishable states. We then can interpret formulas on pairs
(M, s), where s is a state from S. If ϕ is true in such a pair,
we write (M, s) |= ϕ. Interpretation is according to the next
definitions.

(M, s) |= p iff π(p) = true
(M, s) |= ¬φ iff not (M, s) |= φ
(M, s) |= φ ∧ ψ iff (M, s) |= φ and (M, s) |= ψ
(M, s) |= Kiϕ iff for all t : s ∼i t implies (M, t) |= ϕ

We say that a formula ϕ is true in a model M , and write
M |= ϕ, if (M, s) |= ϕ for every state s in M .

Initially, agents cannot differentiate worlds in which they
have the same cards. Thus, our initial Kripke model is the
tuple M0 = 〈S,∼0

A,∼
0

B ,∼
0

C , π〉, where S and π are as de-
fined above, and x0x1x2|x3x4x5|x6 ∼0

A y0y1y2|y3y4y5|y6
iff {x0, x1, x2} equals {y0, y1, y2}. Similarly for the other
agents. Now let M = 〈S,∼A,∼B ,∼C , π〉 be one of our
Kripke models. The modelMφ should denote the model that
is obtained when making a public announcement inM . More
precisely, Mφ = 〈S,∼φ

A,∼
φ
B,∼

φ
C , π〉 is defined by refining

the accessibility relations in such a way that the agents learn
to distinguish φ-states from non-φ-states. In the next formula
the refined relation ∼φ is defined in terms of the previous
epistemic relation ∼.

s ∼φ
i t iff (s ∼i t and M, s |= φ ⇔M, t |= φ)

We can now define the effect of announcements. Following
recent work on dynamic epistemic logic [Baltag et al., 2002;
van Ditmarsch et al., 2003] we represent announcements in
the object language by using an update operator [φ]ψ, which
is read as “after φ becomes common knowledge between all
agents, ψ holds”.

Definition 1 Suppose M, s |= φ. Then M, s |= [φ]ψ is de-
fined as (Mφ, s) |= ψ.

In states where the formula φ is not true, the update [φ]ψ
is not defined. The reason this condition is posed is that an
update with false “knowledge” does not make sense in our
model of knowledge. According to the problem description,
B must learn the deal of cards and C should not learn any
card. These two learning goals for B and C are expressed
in the epistemic formulas bknows (‘Bob knows the deal
of cards’— note that in order to know this it is sufficient
for B to learn A’s cards) and cig (‘Caroline is, concerning
any card that she does not hold, ignorant about who holds it’).

bknows =
∧

i∈D
ai → KBai

cig =
∧

i∈D
(¬KCai ∧ ¬KCbi)

We assume that an agent making an announcement ϕ
knows it to be true. The requirement req(ϕ) of the protocol

thus stipulates thatA knowsϕ, and after the public announce-
ment that ϕ we have both bknows and cig.

req(ϕ) = ϕ ∧ [ϕ]bknows ∧ [ϕ]cig (1)

The above definition is the one we use in our model check-
ing approach. In this definition, the information obtained by
the announcement is exactly the truth of that announcement.
This is not the only available choice, and in a security setting
this will not always be a realistic assumption. In the follow-
ing paragraphs it will be shown why this is a correct choice
under our definition of a solution. The argument given is not
just applicable to this specific example but for a wide class of
multi-agent protocols with announcements.

The reason that agents can deduce more from an announce-
ment than just the truth of the proposition used in the an-
nouncement, is that the agents also know what kind of game
they are involved in. For instance, C may deduce more infor-
mation from the fact thatA knows ϕ = a0∨b0: if an outsider
would announceϕ, it would not be informative for C, but, on
the other hand, ifAwould say he knewϕ, agentC can deduce
that A must hold a0. But there is more to it: C even knows
what A wants to achieve with his statement, namely req(ϕ),
and we require that, even if we take this into account, C re-
mains ignorant. One could say that the truth of ϕ is the literal
meaning of the utterance. The performative meaning is the
stronger fact that the agent utters that formula. In the context
of a specific protocol, where all agents are aware of the pre-
cise protocol they are involved in, the performative meaning
is very close to the fact that the uttering agent knows that the
statement meets the exact knowledge goals that form the re-
quirement. For the example the literal meaning is just a0∨b0.
The performative meaning would depend on the context but it
would at least imply the stronger statement a0. For the Rus-
sian Cards problem, the fact that A uses ϕ has the performa-
tive meaning thatA knows that req(ϕ) is true. This difference
in meaning is especially important when considering adver-
sarial agents. It is not a priori clear that, even when req(ϕ) is
true in the actual world,C cannot guess the deal of cards after
it comes to believe that req(ϕ) is true. To ensure C is igno-
rant even when C is aware of the performative meaning one
would like to use, rather than (1), the following ‘recursive’
definition:

req2(ϕ) = ϕ ∧ [ϕ]bknows ∧ [KAreq2(ϕ)]cig (2)

Unfortunately req2(ϕ) is not well-defined for every ϕ. The
idea is that C can deduce fromA utteringϕ thatA thinks that
ϕ is a solution for the problem. A condition in the semantics
of the update operator is that one can only meaningfully up-
date with true formulas. However, if ϕ is not a solution, this
assumption is violated. This can be resolved if one first de-
fines what it means for a statement to be a solution. One can-
not say that ϕ is a solution if req(ϕ) is true in all worlds. For
no non-tautological formula ϕ it is the case thatM |= req(ϕ)
or M |= req2(ϕ), since ϕ will not be true in every state of
the model. One could argue that ϕ is a solution if req(φ) is
true in at least one state s. This is problematic because if A
is restricted in its use of ϕ then it is givingC information that
it is in the specific state in which it can use ϕ. Therefore we

define a formula to be a solution if it can be used whenever
true.

Definition 2 Let ϕ be a formula for which M |= ϕ↔ KAϕ.
This formula is a solution if M |= φ→ req(φ).

This definition uses our first, intuitively too weak, proposal.
The good thing however is that if ϕ is a solution, then ϕ and
req(ϕ) are equivalent. If this is the case then req

2
(ϕ) is true

and well-defined in all states where req(ϕ) holds, so we know
that under this definition of a solution, considering performa-
tive meaning will not give adversarial agents more informa-
tion.

To formally prove the equivalence and welldefinedness
claims from the previous paragraph, we use the fact that all
formulas true on the entire model are known by all agents.
This gives M |= KA(ϕ → req(ϕ)). We assumed that M |=
ϕ ↔ KAϕ. From this we derive M |= ϕ → KAreq(ϕ).
Thus, if ϕ is a solution, req2 is well-defined and true. The
statement req2 is the strongest possible conclusion C can
draw from the announcement without risking to draw an in-
correct conclusion.

An alternative approach is to define a safe communication
using common knowledge [van Ditmarsch, 2003]. A require-
ment using a common knowledge operator C is

reqC(ϕ) = ϕ ∧ [ϕ]Cbknows ∧ [KAϕ][Ccig]Ccig (3)

The use of common knowledge is a sufficient but not nec-
essary step to avoid the problems around literal and perfor-
mative meaning. This approach generates the same answers:
Each safe communication according to Van Ditmarsch is also
what we call a solution. An advantage of his formalisation is
that this formula has only to be checked in a single state. A
disadvantage is that the formula contains a more complicated
nesting of knowledge operators.

3 Model Checking and the Russian Cards
Problem

We now turn to the key contribution of this paper: the use
of model checking to automatically verify properties of the
Russian Cards problem. Model checking was developed as
a technique for automatically verifying that finite state sys-
tems satisfy requirements expressed in the language of tem-
poral logic [Clarke et al., 2000]. The term ‘model checking’
arises from the fact that the state transition system of a finite
state system can be understood as a model (in fact, a Kripke
structure) for temporal logic. Verifying that a system satisfies
certain requirements, where these requirements are expressed
in temporal logic, can then be understood as a problem of
checking that the formula representing the requirements is re-
alised in the model. In our work, we make use of the SPIN
model checker for Linear-time Temporal Logic [Holzmann,
1997]. SPIN takes as input a system S described using the
PROMELA modelling language, and a formulaφ of LTL, and
checks whether or not the formula is realised in the system;
if the answer is “no”, then it produces an execution trace of
S that falsifies φ. While SPIN has been widely used for the
verification of LTL properties, it is not currently equipped to
deal with LTL formulas that contain knowledge modalities.

In previous work [van der Hoek and Wooldridge, 2002], we
explored the use of SPIN for model checking temporal knowl-
edge properties of systems, by finding local propositions to
stand for knowledge modalities in formulas.

LTL is a modal propositional logic which allows to spec-
ify properties of linear sequences of states — runs. Each
PROMELA specification defines a set of runs, and SPIN
checks whether the LTL formula holds for all runs. The
PROMELA specification itself does not have to be linear
(two different states can be reachable from the same state)
but properties that must refer to two different runs containing
the current state cannot be expressed in LTL. One can use any
boolean expression in the PROMELA specification as propo-
sitions in the LTL formula. It is custom to define the propo-
sitions one wants to use as macro’s and this style has been
adopted in our code. Two additional operators extend the lan-
guage to talk about runs: � (always) and � (sometime) . Let
r be a run of the system and s a state in r: then (r, s) |= �φ
if φ is true in all states of r following s. Finally, (r, s) |= �φ
if there is some state in r after s that satisfies φ.

Before one can apply modelchecking to prove properties
of any protocol, one must obtain a formal specification im-
plementing the protocol. This is difficult because the for-
mal model specified in Section 2 defines the epistemic rela-
tions directly, while this is not possible in most specification
languages. In PROMELA one can only define the dynamic
transitions directly. Epistemic relations can be derived by us-
ing the interpreted systems model of knowledge [Fagin et al.,
1995].

For each process i, we can define an equivalence relation
∼i, as follows: s ∼i t iff all variables accessible to i have
the same value in s and t. For the purpose of knowledge, the
program counter of each process, which is used to remem-
ber which is the next computation step, is also considered an
accessible variable for the corresponding process.

The definition of knowledge states that something is known
if it is true in any reachable state that cannot be distinguished
by the agent. In the next definition I is the set of runs defined
by a PROMELA model, r is a run and s a state in r.

Definition 3 (I, r, s) |= Kiφ if and only if ∀t ∈ I with t ∼i

s : (I, r, t) |= φ.

A very important question is how one can be sure that the
epistemic relations in the PROMELA specification are ex-
actly the same as in our formalisation of the Russian Cards
Problem. We have constructed the PROMELA specification
as a message passing system in which all messages are stored
in variables accessible to all agents that have received the
message [Fagin et al., 1995]. A standard binary representa-
tion for every formula has been used, ensuring that no infor-
mation is contained in the way formulas are written. The de-
cisions regarding the task of each module, the representation
of cards and the representation of statements are explained
below. Once these decisions have been made the implemen-
tation is fairly straightforward, and this gives us good reason
to believe that the specification we use indeed implements the
protocol we want to check.

Modelling the Russian Cards Problem in PROMELA
The specification that models the Russian cards problem can
be retrieved by appending all code fragments in this pa-
per. Nearly identical lines are sometimes replaced by “. . . ”.
Alternatively, the specification can be downloaded from
www.csc.liv.ac.uk/˜sieuwert/. First the general
approach and design decisions are discussed, then the detailed
code is presented with comments.

A specification in SPIN consists of multiple processes that
operate in parallel. Each agent in a multi agent system can
be modelled as a separate process and this leads to the defi-
nition of three processes: A(), B() and C(). Every process
X() has access to a variable x denoting its hands of cards.
Based on their respective cards A() must make a statement
and B() and C() must listen to and interpret the statement.
That statement is stored in the variable disj, accessible to
all three processes. Process B() moreover has a variable ba
in which he stores his calculated hand of A().

Another process is needed to generate a deal of cards, since
no single agent can be said to be in control of the deal of
cards. The process responsible for determining the deal of
cards is called deal(). The next table shows all processes
with their accessible variables.

process variables
deal() a,b,c
A() a,disj
B() b, ba, disj
C() c,disj

In each run all processes perform the same steps but on a
different deal of cards. The next table sums up what each pro-
cess does. The labels END indicate the points in the execution
of B and C where their knowledge must be tested. Naturally
these labels are placed at the end of their specification since
we are interested in the knowledge state after the announce-
ment.

process actions
deal() set up a deal in a,b and c

signal A()
A() wait for signal from deal()

choose φ and place in disj
wait until φ is true
signal B(), signal C()

B() wait for signal from A()
let ba be a hand from
disj for which no card is both in b and ba
END: do nothing

C() wait for signal from A()
END: do nothing

When choosing a representation or a data structure for a
certain kind of information there is often a trade-off in read-
ability of the program code and computational efficiency.
With current model checkers only relatively small models
can be checked. In most examples of protocols one abstracts
away from the actual value of variables to achieve a model
with a suitable number of states [Dams, 2002]. If one is
interested in the exact contents of messages, for instance to
see whether specific statements are safe in the Russian Cards

problem, one cannot make this abstraction. Therefore we
have opted for a binary representation that allows us to store
hands of cards in single bytes. This keeps memory consump-
tion low and also allows for a single instruction overlap tests
by means of bitwise operators. The next macro’s make use
of the binary shift operator � to generate the bit pattern of
each card. The macro overlap returns true if its arguments
have any card in common. noverlap is the negation of
overlap.

#define card(j) (1<<(j))
#define overlap(i,j) (((i)&(j))!=0)
#define noverlap(x,y) (((x)&(y))==0)

All variables are declared to be global, since local variables
are not sharable between processes and it is not possible to
refer to them in LTL formulas.

byte disj[7];
byte a=0,b=0,c=0; ba=0;

The bytes a,b and c are used to store cards the cards of
the players in. Only seven bits of these bytes are used. Syn-
chronisation between the processes is done by the use of syn-
chronous channels.

chan dealtoa=[0] of{byte};
chan atoc=[0] of{byte};
chan atob=[0] of{byte};

These channels are suitable for passing bytes. The values
that are broadcast are not significant. Channel xtoy is used
for synchronising between process x and process y: x sends
a number and y will wait for that number. Deal() is the only
process that does not have to wait for other processes so it is
the first one to do something. It puts cards in the variables a,
b and c. In the code below a card x is chosen and assigned to
any player that has not received its maximal number of cards
yet. The counters na,nb and nc are used to keep track of the
number of cards each player has.

active proctype deal(){
byte na=0,nb=0,nc=0; byte x;
do
::na+nb+nc==7 ->break
::na+nb+nc<7 ->
if
::noverlap(a|b|c,card(0))->x=card(0)
...
::noverlap(a|b|c,card(6))->x=card(6)
fi;
//select someone to give the card to.
if
:: na<3 -> a=a+x; na++
:: nb<3 -> b=b+x; nb++
:: nc<1 -> c=c+x; nc++
fi

od;
dealtoa!a;

}

Process A() waits for a signal from process deal() and
then it sets a statement in disj. The code shown writes the
formula ((a0 ∧ a1 ∧ a2) ∨ (a0 ∧ a3 ∧ a4) ∨ (a1 ∧ a3 ∧ a5) ∨
(a4 ∧ a5 ∧ a6) ∨ (a2 ∧ a3 ∧ a6)). Only one formula φ can
be tested at the same time. After writing the formula process
A()waits until its cards are equal to one of the possibilities in
the formula. The process will either continue immediately, or

block forever. The reason for this is that the other processes
do not alter disj (they are not doing anything because they
waiting for signals). If the run ends here both END labels will
never be reached, and because we refer to these labels in the
properties later it means that the properties are only tested
for runs in which disj is true, as intended. The reason that
A() is only allowed to make one statement, and does not
have statements covering all situations, is that the goal of this
implementation is to verify statements. This verification is
more efficient if the statements are tested separately.

active proctype A(){
dealtoa?a;
disj[0]=card(0)+card(1)+card(2);
disj[1]=card(0)+card(3)+card(4);
disj[2]=card(1)+card(3)+card(5);
disj[3]=card(4)+card(5)+card(6);
disj[4]=card(2)+card(3)+card(6);
//only proceed if formula is true
a==disj[0]||a==disj[1]||a==disj[2]||
a==disj[3]||a==disj[4]||a==disj[5]||
a==disj[6];
atob!0;
atoc!0;

}

Agent B waits until A signals that it has made a statement.
Then,B will non-deterministically choose a hand of cards for
agentA that is consistent with its own cards. After this choice
it reaches the statement skip with the label END attached to
it.

active proctype B(){
atob?0;
if
::disj[0]!=0&&noverlap(disj[0],b)
-> ba=disj[0]
...

::disj[6]!=0&&noverlap(disj[6],b)
-> ba=disj[6]

fi;
END:skip

}

Agent C waits for a signal from agent A and reaches its
END state. There is nothing to do for this agent because the
knowledge properties on this agent refer to the knowledge of
this agent according to the given definition. The knowledge of
for instance A’s cards does not have to be explicitly available
inside this process.

active proctype C(){
atoc?0; //check if A is ready
END:skip //here the properties must hold

}

The LTL formulas that are evaluated use propositions to
express basic facts. These propositions are defined in the fol-
lowing macro’s and correspond to the propositions in the log-
ical formalisation of section 2. Two propositions about the
labels in the program will be used to make the step from dy-
namic epistemic to temporal epistemic logic.

#define c_end C[3]@END
#define b_end B[2]@END
#define a_0 ((a&1)!=0)
#define a_1 ((a&2)!=0)

...
#define c_5 ((c&32)!=0)
#define c_6 ((c&64)!=0)

Capturing the Protocol Requirements We now consider
the requirements that we wish to check. They are captured in
Linear Temporal Logic, enriched by the knowledge modali-
ties that we introduced earlier. The update operator used in
the requirement is not available in the enriched LTL, but one
can refer to the knowledge after the update by using temporal
operators. The requirement 1 thus breaks down in three parts,
ϕ, bknows and cig , which have to be tested at the end label
of the corresponding process. On a system where a formula
φ is passed as a message, one can replace an update formula
[φ]ψ by an epistemic LTL formula �(L → ψ) where L is a
label only reached after φ has been announced. This provides
a translation from dynamic epistemic logic to epistemic LTL.

The truth of ϕ, appearing in equation 1, has been coded
explicitly in the specification of process A(). Since it is clear
from the specification that only runs in which φ is true termi-
nate successfully we have not provided a separate LTL prop-
erty to test this.

In the logical analysis much attention has been given to the
question of what we should update with. Because of the def-
inition of knowledge we are using, which is defined on the
existing runs, this is much easier to handle in a model check-
ing situation. Agent C learns that it is in one of the situations
in whichA can utter the formula, which seems a good way of
modelling thatA knows thatϕmeetsA’s intention to commu-
nicate using a solution: KAreq2(ϕ). In our implementation
agent A uses a strategy in which it uses ϕ whenever true, so
there is no actual difference between learning A’s use of ϕ
and just the announcement ϕ by an outsider.

The formula bknows is an example of a positive knowl-
edge requirement, which often occurs between adversarial
agents. Because an explicit procedure for obtaining the value
has been supplied in the specification code, it is sufficient to
test that this procedure assures that B()’s guess of A()’s card
is correct. This is expressed in the following LTL formula,
which we have used.

�(atB(END) → ba = a) (4)

An interesting question is how close the correspondence
between checking bknows using formula 4 and the general
method [van der Hoek and Wooldridge, 2002] available for
model checking is. The general method asks the user to find
local propositions which correspond to the knowledge for-
mula. The method can then prove the suitability of these lo-
cal formulas. Instead of coming up with a local formula for
each card x, describing the local states in which ax is true,
we have introduced a procedure for determining the value of
all propositions. We check the suitability of that procedure
instead of checking local propositions. The method is thus
similar except that we do more of the work in the specifica-
tion instead of in the LTL formulas. This variant on the local
propositions method is in our opinion acceptable in situations
where one does not start with a given formal specification, but
only with an informal protocol description. The advantage of

the above formula is that by working in the specification one
can avoid having to mention all the cards explicitly. Check-
ing one procedure is much more elegant than checking a local
proposition for each card.

To see that the truth of bknows indeed follows from the
truth of formula 4, assume that the model checker cannot
find any counterexample to the formula. This shows that
the variables a and ab are equal in each end state of pro-
cess B(). We have not specified any propositions refer-
ring to the variable ba, but it is not unreasonable to as-
sume a set similar to the propositions referring to A’s cards:
ba0, ba1, . . . ba6. Using these propositions we can express the
model checking result in LTL logic extended with knowledge
operators. The model checking result can be expressed as
I |= �(atB(END) → (ax ↔ bax)).

Everything that is true in all states of every run in the
system I is commonly known by all agents, so in par-
ticular it is known by process B() in all states in all
runs: I |= �KB(atB(END) → KB(ax ↔ bax)). Be-
cause knowledge distributes over implication this gives I |=
�(KBatB(END) → (KBax ↔ KBbax)). The variable ba is
part of B()’s state, giving I |= �(bax ↔ KBbax)), and B()
knows when it is in its end state, giving I |= �(atB(END) ↔
KBatB(END)). Since x was chosen arbitrarily, we have
proven

I |= �(atB(END) → bknows)

Checking the Absence of Knowledge So far, we have been
concerned with establishing the presence of knowledge —
that after the public announcement by A is made, B knows
the deal. But we also need to show the absence of knowl-
edge, i.e., that C does not know the deal after the announce-
ment. This is more problematic than establishing the presence
of knowledge. One can show that a certain piece of knowl-
edge is not present by attempting to verify that the knowledge
is present [van der Hoek and Wooldridge, 2002]. This veri-
fication will fail, and result in a counterexample. The coun-
terexample shows that in a certain local state the statement φ
is not necessarily true, so it cannot be known (Kxφ does not
hold in state s).

But more often, one wants to prove the absence of knowl-
edge in a set of states S instead of just a single state s. All
states in the set can for example correspond to the same time
point for a certain agent in the protocol, but have different
values for the variables. A suitable definition of truth in a set
of states is that the formula must be true in all members of the
set: (I, S) |= φ ⇔ ∀s ∈ S (I, s) |= φ. The set S can for
instance correspond to all global states in which agent x is at
a certain label in its specification. In the above notation we
implicitly quantify over all runs, using:

Definition 4 (I, s) |= φ ⇔ ∀r(s ∈ r ⇒ (I, r, s) |= φ)

One example of an absence of knowledge formula is ¬KCa0.
This formula states that C does not know that A has card 0.
The entire statement cig is a conjunction of 14 statements like
this. The statement must hold in the end state of any run.
Let S be the set of states in which C has reached their end
state. One way to prove absence of knowledge of a formula
is to show that there is at least one indistinguishable run in

which the formula is not true. In the example, one can do
this by letting SPIN verify that a0 is true in all states in S.
If the verification fails, a counterexample run r will result,
containing a state s which is in S but in which a0 is not true.
This tells us ¬∀s ∈ S (I, s) |= a0 One might call this weak
absence of knowledge, because it shows one s ∈ S in which
a0 is not true, i.e., in the local state of C corresponding to s
the formula is thus not known. If agent C has a unique local
state in all states of set S this is indeed a proof thatC does not
know a0. But if C has more than one local state this is not a
complete proof. It is not the same thing as (I, s) |= ¬KCa0,
which we might call strong absence of knowledge.

From the definition of knowledge in a set of states one
might get the impression that one needs a counterexample for
each member of the set. We obtain the following.

(I, S) |= ¬Kxφ ⇔

∀s ∈ S ∀r(s ∈ r ⇒ (I, r, s) |= ¬Kxφ) (5)

In formula 5 containing universal quantification one can do
an expansion based on formula 6, which is derived from the
definition of knowledge and negation.

(I, r, s) |= ¬Kxφ ⇔

∃s′, r′(s′ ∈ r′ ∧ s′ ∼x s ∧ (I, r′, s′) |= ¬φ) (6)

We see that proving ¬Kxφ on a set of states S involves find-
ing a counterexample (r′, s′) for each state s in S. However,
if s ∼x t and both are in S, then the same r′, s′ is also a coun-
terexample for t. This is true because s′ ∼x s and s ∼x t
implies s′ ∼x t. It is sufficient to find one counterexample
(r′, s′) for each different local state of the agent x. The num-
ber of local states that agent x might have when the system
state is in S will often be much smaller than S itself. Agent
C for instance has only 7 different end states, one for each
card.

The agent for which we want to prove absence of knowl-
edge is agent C. The set of states S consists all the states in
which agent C reaches its end state. On this set C is required
to have no knowledge of all propositions ai and bi.

cig =
∧

i∈D

(¬KCai ∧ ¬KCbi)

SPIN is much slower at verifying large formulas, therefore
we verify this requirement by verifying each of the fourteen
conjuncts separately. In the following paragraphs the steps
needed for verification of ¬KCa0 are explained.

The property must hold at the end of each run, when pro-
cess C() is at the label END. At this label,C has seven differ-
ent states, because it can have seven different cards. In each
of these states a different proposition from the set T = {c0,
c1, c2, c3, c4, c5, c6} is true. It could be the case that some
of these local states are unreachable. For instance, if ϕ = a0

then c0 will always be false. If checking the formula �¬cx

does not result in a counterexample run, the state cx should be
removed from set T . In most cases, and also for the formula
φ that is present in the program listing all of these local states
are reachable.

For all reachable local states one must find a counterexam-
ple run, in which the agent is in the local state but the formula
is not true. These counterexamples can be found by using
SPIN to check and disprove the following formulas, for all
i ∈ D:

�((atC(END) ∧ ci) → a0)

Finding these seven counterexamples takes seven runs of
SPIN and proves C’s ignorance of the fact that A holds card
0. A complete proof of all fourteen conjuncts would require
98 runs of SPIN. The number of runs depends on the number
of local states and one needs a set of propositions enumerat-
ing all local states in order to write down the requirement.

4 Conclusions
It is possible to use model checking to prove knowledge prop-
erties of protocol specification, even using a standard model
checker such as SPIN. A translation from dynamic epistemic
logic to LTL formulas can be made and the transformation is
efficient when proving presence of knowledge. It is less effi-
cient when proving absence of knowledge for a set of states,
since the number of times one needs to run SPIN depends on
the number of local states of the ignorant agent; and the num-
ber of states will of course be exponential in the number of
bits that make up that agent’s local state.

One important consequence is that adversarial multi agent
systems are more difficult to model check, because establish-
ing the absence of knowledge typically arises in the adversar-
ial case. In co-operative agent systems one can sometimes
get away with the easier to prove notion of weak absence of
knowledge.

In future work, we intend to refine our techniques to de-
velop a general methodology for model checking knowledge,
and we intend to apply this methodology to larger and more
realistic scenarios.

References
[Baltag et al., 2002] A. Baltag, L.S. Moss, and S. Solecki.

The logic of public announcements, common knowledge
and private suspicions. Originally presented at TARK 98,
accepted for publication in Annals of Pure and Applied
Logic, 2002.

[Burrows et al., 1990] M. Burrows, M. Abadi, and R. M.
Needham. A logic of authentication. ACM Transactions
on Computer Systems, 8:18–36, 1990.

[Clarke et al., 2000] E. M. Clarke, O. Grumberg, and D. A.
Peled. Model Checking. The MIT Press: Cambridge, MA,
2000.

[Dams, 2002] Dennis Dams. Abstraction in software model
checking: Principles and practice. In Dragan Bosnacki and
Stefan Leue, editors, SPIN, volume 2318 of Lecture Notes
in Computer Science. Springer, 2002.

[Dolev and Yao, 1998] D. Dolev and A. Yao. On the security
of public key protocols. IEEE Transactions on Information
Theory, 29(2):198–208, 1998.

[Fagin et al., 1995] Ronald Fagin, Joseph Y. Halpern, Yoram
Moses, and Moshe Y. Vardi. Reasoning about knowledge.
The MIT Press: Cambridge, MA, 1995.

[Holzmann, 1997] Gerard J Holzmann. The model checker
Spin. IEEE Trans. on Software Engineering, 23:279–295,
May 1997.

[Lowe, 1996] G. Lowe. Breaking and fixing the Needham-
Schroeder public-key protocol using FKR. In Tools and
Algorithms for the Construction and Analysis of Systems
(TACS), volume 1055 of LNCS, pages 147–166. Springer-
Verlag, 1996.

[Meyer and van der Hoek, 1995] J.-J. Ch. Meyer and
W. van der Hoek. Epistemic Logic for AI and Computer
Science. Cambridge University Press: Cambridge,
England, 1995.

[Needham and Schroeder, 1978] R. Needham and
M. Schroeder. Using encryption for authenticationin
large networks of computers. Communcations of the
ACM, 21(12):993–999, 1978.

[van der Hoek and Wooldridge, 2002] W. van der Hoek and
M. Wooldridge. Model checking knowledge and time. In
D. Bos̆nac̆ki and S. Leue, editors, Model Checking Soft-
ware, Proceedings of SPIN 2002 (LNCS Volume 2318),
pages 95–111. Springer-Verlag: Berlin, Germany, 2002.

[van der Meyden and Su, 2002] Ron van der Meyden and
Kaile Su. Symbolic model checking the knowledge of the
dining cryptographers. submitted, 2002.

[van Ditmarsch et al., 2003] H. P. van Ditmarsch, W. van der
Hoek, and B. Kooi. Concurrent epistemic dynamic logic.
Accepted for Autonomous Agents and Multi Agent Sys-
tems, 2003.

[van Ditmarsch, 2003] H. P. van Ditmarsch. The russian
cards problem: a case study in cryptography with public
announcements, 2003. Accepted for Studia Logica.

