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Abstract

The productionsequencingprobleminvolvesa factorygeneratinga productsequencesuch
that when processed,the sequencewill both satisfy currentorders,and minimize overall
costs. In this paper, we argue that productionsequencingmay fruitfully be consideredas
a negotiation problem, in which productioncells within a factory negotiateover product
sequencesin orderto fairly distributecosts.Webegin by describingandformallydefiningthe
productionsequencingproblem;wetheninvestigateits complexity, andpresentananalysisof
it usingthetoolsof gameandnegotiationtheory. We thendefinea negotiationalgorithmfor
productionsequencing,anddiscusswhatassumptionsandsimplificationsmustbe madein
orderto make this algorithmsuitablefor implementation.We concludeby discussingissues
for futurework

1 Intr oduction

Multi-agenttechnologyhas,in thepastdecade,movedfrom beinga somewhatobscurerelation
of mainstreamAI andcomputerscienceto beingwhat is widely acceptedasoneof themostvi-
brantandexciting researchareasin computinggenerally. As with all new softwaretechnologies,
theratioof speculationandhypeto field tested,implementedsystemsis perhapssomewhathigh,
but thereare,nevertheless,somedocumentedmulti-agentapplications.Exampledomainsinclude
powersystemsmanagement[13], air-traffic control[11], particleacceleratorcontrol[2], telecom-
municationsnetwork management[12], spacecraftcontrol[10], computerintegratedmanufactur-
ing [7], job shopscheduling[5], andsteelcoil processingcontrol [4]. In this paper, we present
amulti-agentsolutionfor anindustrialproblemthatis bothcommonandimportant:factorypro-
ductionsequencing. Briefly, thisprobleminvolvesafactorydecidinguponthesequencein which
to processproducts,soasto bothsatisfycurrentorders,andminimizeoverall factorycosts.

Themainimport of this paperis thatproductionsequencingmaybetreatedasa multi-agent
negotiationproblem,in whichproductioncellswithin afactorynegotiateoverproductsequences
in orderto distribute costsfairly, andhenceminimize total factorycosts. Therearea number
of advantagesto suchanapproach,chief amongthembeingmodularityandflexibility. We give
a formal definition of the problemdomain,discussits complexity (in particular, we show that



the� problemis, in general,NP-complete),andpresentan analysisof it usingthe toolsof game
andnegotiationtheory. Wethendescribeanegotiationmechanismfor theproductionsequencing
problem,anddiscusswhatassumptionsandsimplificationsmight berequiredin orderto imple-
mentthismechanism.Thepaperconcludeswith adiscussionof futureresearchissues.Webegin,
in thefollowing sub-sections,by presentinganoverview of theproblemdomain,anda rationale
for treatingtheproblemasoneof negotiation.

1.1 The ProblemDomain: An Overview

Within a typical manufacturingplant, therewill be a numberof productioncells, that perform
differenttasks. Examplesof suchcells includepaint spraying,cleaning,buffering of products,
assembly, andso on. Every week, (in somefactories,every day), it is necessaryto plan how
thesecells are to be usedto fulfill productorders. Sucha plan is known asa productionse-
quence. It definestheorderin which productswill passthroughthevariousfactorycellsduring
themanufacturingprocess.

Someproductionsequencescostmorethanothersto process.To seewhy, considerthe fol-
lowing example. A factoryhasa cell thatdoespaintspraying;productsmaybesprayedin any
numberof colours,but oncethe cell hassprayeda productsomeparticularcolour, changingto
anothercolourrequiresthatthecell becleaned,nozzlesandperhapspainttanksbereplaced,and
soon. This takestime andmoney. In this example,it will becheaper, (from thepoint of view of
thepaintsprayingcell), to processtheproductionsequence���	��
���	��
�����	������ thanit would beto
processthesequence���	��
�����	���������	��
�� .

The situationis complicatedby the fact that differentcells have differentrequirementsfor
productsequences.Extendingthesimplepaintsprayingexamplegivenabove, imaginethat the
factorycontainsanotherproductioncell, for assembly. Productsthatpassthroughtheassembly
cell maybefittedwith eitherapetrolengineor adieselengine.Supposethatoneredcarrequired
a petrol engine,the other red car requireda dieselengine,andthe greencar requireda petrol
engine.Fromthepointof view of theassemblycell, therefore,it mightbecheaperto processthe
sequence �	���	��
���������	��������� ���	���������������������������	��
��
�!"��#$�����%�
thanthesequence �	���	��
���������	�����������	��
��
�!"��#$��������� ���	�����������������������
thatwould bepreferredby thepaintsprayingcell& . It is not difficult to seethat thereis in some
sensepotentialfor conflictsbetweentheproductioncellswithin a factory. Findingthecheapest
productionsequencewith respectto thewholefactory(i.e., all productioncells) is whatwe call
theproductionsequencingproblem. Solvingtheproblemis somethingof a balancingact,which
mayendup with somecellshaving to accepta productionsequencethat is, from their point of
view, sub-optimal,in orderto minimizetheoverall factorycost.

1.2 Production SequencingasNegotiation

In this paper, we proposeandformally analyzeanapproachto productionsequencingin which
finding thecheapestsequencethatsatisfiesa particularorderbecomesa multi-agentnegotiation'

Thesequence(�(*)�+-, ,%.0/21�,%3*+-4�576%/�(�+-, 89/:1�,;3*+-4�576</�(�+-, 89/�8�=7,<>%,%576-6 wouldbea solutionthatkeptbothcellshappy.



problem.? Thebasicideaof this approachis very simple. Recallthat a factoryis madeup of a
numberof cells. Eachof thesecellshasassociatedwith it a costfunction,which characterizes
thecostto thatcell of processingany productionsequence.Thesecostfunctionsimplicitly define
preferencesover productionsequences.(Recall the paint sprayingexample,above.) In multi-
agentproductionsequencing,wemakeeachcell anagent,andgetthemto negotiateaproduction
sequence.Eachagentattemptsto improveits utility by reducingcosts:it will arguefor production
sequencesthatreducethesecosts.Eventually, if wehavedesignedouragentsright, they will come
to agreeona sequencethatis, in somesense,optimal. It maynot bea globallyoptimalsolution,
but at leasta reasonableone.

Thereareseveralpotentialadvantagesto themulti-agentproductionsequencingapproach:@ Modularity. Ultimately, productionsequencingis an optimizationproblem. If we had
availablea completemathematicalmodelof a factory, then we might, in principle, use
optimizationtechniquesto solve theproductionsequencingproblemfor that factory. But
suchmodelsarenot available,andattemptingto solve theproblemin this way is entirely
unrealistic:the productionprocessin any real factoryis simply too complex. Themulti-
agentapproachprovidesuswith anobvious,familiar tool to helpmanagethis complexity:
modularity. It allows us to breakthe overall problemdown into sub-problemsof a more
manageablesize,in awaythataccuratelyreflectsthestructureandoperationof thefactory.
The representationof conflicts and other interactionsbetweenthesemodularunits then
becomesa realisticpossibility.@ AdequateModeling. Monolithic, centralizedsolutionsto theproductionsequencingprob-
lem couldnot, in general,serve asadequatemodelsof theproductionsequencingprocess.
This is becausethey donot representtheorganizationalstructureinherentwithin a factory.
Multi-agentapproachesofferaclearadvantagein thisrespect,asthey enableusto represent
thereal-world organizationalentities(i.e.,productioncells)thattakepartin thegeneration
of aproductionsequence.@ Flexibility. In our discussionswith productionmanagers,we have found it stressedover
andover againthat factoriesarenot staticentities.They arein a stateof almostcontinual
change,with new equipment,products,andworkingpracticesbeingfrequentlyintroduced.
Every time sucha changeoccurs,the costingprofile of the factorychangesaccordingly.
Monolithic, centralizedsystemsaresimply not adaptableenoughto dealwith sucha dy-
namicdomain. In contrast,a multi-agentapproach,in which knowledgeaboutcostsis
distributedamongagentscorrespondingto productioncells,would allow changesin cost
informationto beeasilyincorporated.@ Parallelism. Finally, sincea multi-agentapproachis inherentlydistributed,thereis poten-
tial for parallelismin thesolution.Suchparallelismmight improvethespeedwith whicha
solutionis found.

2 Formal Analysisof the ProblemDomain

In thissection,weformally definetheproductionsequencingproblem,andpresentananalysisof
it usingthetoolsof gameandnegotiationtheory. Webegin by definingournotation.



2.1
A

Notation

We usestandardsettheoreticnotationwherepossible,augmentedasfollows. Thecardinalityof
a set B is denotedCDB . The setof bags (multisets)over someset B is denotedby bag B . The
numberof timesthatanelementE occursin a bag F is denotedECGF . Thesetof sequencesover
someset B is denotedseq B . Finally, if B is anarbitrary(non-empty)set, HJI seq B , and EKILB ,
then �$M�M�N0�	#PO-EQ�	HQR denotesthenumberof times E occursin H .

2.2 Formal Definition of the Domain

Theproductionsequencingproblemmaybeformalizedasfollows. First,let thesetof all possible
product typesbe S . We generallyabbreviate ‘product types’ to ‘products’, and use � (with
decorations:�UTV��� & ��W�W�W ) to standfor membersof S . An order is a bag(multiset)of products.LetXZY

bag S bethesetof all orders.Weuse � (with decorations:�[T*�[� & ��W\W�W ) to standfor members
of

X
. If �]I X

, thenlet C^� denotethetotalsizeof theorder � — thetotalnumberof all products
in � . Thus C^� Y`_a$b�c �dC^�0W
Let 
�! eJO	�fRhgiS denotethesetof differentproductsin � , i.e., 
�! eJO	�fR Ykj �ml��nIJS and �oC^�qpr0s

. If CG
�! etO	�9R Y C^� , thenevery productin � occursonly once,i.e., � containsno duplicate
products.

A productionsequenceis simply a sequenceover S ; let thesetof all productionsequences
be B , i.e., B Y

seq S . We use H (with decorations:H T �	H & ��W�W�W ) to standfor membersof B . A
productionsequenceHuIvB is said to satisfyan order �wI X

, (notation: #\x���!*#2yz��#{O2H�[�9R ) if f| �JImS , we have �oC^� Y �$M�M�N0�	#{OV�}�	HQR , i.e., thesequenceH containsexactlyasmany of product� asarecontainedin � . If �~I X
, thenlet #\x���O��9R�g�B denotethesetof productionsequences

thatsatisfyorder � , i.e., #\x��\O	�9R Yij H�l�HnIJB and #\x���!*#2yz��#{O2H�[�9R s .
A costfunction, M , hasthesignatureM��oB�� ��� , i.e., it takesa productionsequenceandre-

turnsarealnumberwhichrepresentsthecostof processingthatsequence.Wegenerallyassociate
costfunctionswith productioncells, in which casethe costfunction representsthe cost to that
cell of processingthe sequence.A factory, � , is definedto be an indexedsetof costfunctionsj M�� s , onefor eachcell ! in thefactory. Givena factory � Y�j M�� s it is possibleto derive a global
cost function, M-���zBk� ��� , that givesthe cost to the whole factoryof processinga particular
productionsequence: M-�PO2HQR defY _�2��b � M��<O�HQR
Clearly, a productionsequenceHJILB will begloballypreferred(i.e.,preferredfrom thepointof
view of thefactory)to aproductionsequenceH T IJB with respectto factory� if f M-�PO�HQRz��M-�PO�H T R .
Wecannow formally statetheproductionsequencingproblem.

THE PRODUCTION SEQUENCING PROBLEM (PSP): Given an order ��I X
anda

factory � , find a productionsequencethat both satisfies � and is globally optimal
with respectto M-� , i.e.,asequenceHnI�#\x���O��9R thathasthepropertythat � ��HTUI�#\x���O	�fR
suchthat M-�PO�H T Rz��M-�PO�HoR .



2.3
A

Complexity

A naivesolutionto thePSPwould involveexhaustively searchingtheset #\x���O	�fR of all production
sequencesthatsatisfyorder ��I X

, in orderto find theonewith minimumcost.It is notdifficult
to seethat thesizeof thesearchspace,Cq#\x���O��9R , will beexponentialin thenumberof different
productsin � . We presentanequationthatpreciselydefinesthesizeof #\x���O��9R . Let �:� Y ���2C^� ,
for all ����I�
�! eJO��9R . Thus �:� representsthenumberof differentproductsof type ��� containedin� . Let � Y C^� ; thus � representsthe total numberof all productsin � , i.e., the lengthof any
productionsequencethatsatisfies� . Let � Y CG
�! e�O	�fR ; thus � is thenumberof differentproducts
in � . Then Cq#\x���O��9R , thesizeof thesearchspace,is givenby:Cq#\x���O��9R Y�� �� &�� � �¡ ¢� &��£ � � �¡ �O%� &o¤ �7£�R��¥ �§¦$¦$¦ � �¨ L©hª�« &¬� & � ¬� ª � (1)

where � � � � Y �}®O%�¡ ¢��R�®7��® W
Sinceall thevariableson theright handsideareindependent,wecandonosimplification.How-
ever, for certaincases,it is possibleto simplify. Considerthecasewherethesamenumberof each
producttypeis required.In thiscase,

| �}��� T IJS , if �dC^��p r
and � T C^��p r

, then �dC^� Y � T C^� .
Let us write � for thenumberof productsrequiredof eachtype. Clearly, � Y ��� . In this case,
equation(1) reducesto Cq#\x���O��9R Y ��®��®°¯�±�²�³�´ (2)

In thecasewhere � Y � , (i.e., theordercontainsno duplicateproducts),equation(2) reducestoCq#\x���O��9R Y �}® since � Y`µ
. In thecasewhere � Yuµ

(i.e., thereis only oneproducttype), thenCq#\x���O��9R Ykµ
, irrespectiveof thesizeof � .

NP-Completeness

We will now prove that for an importantsubsetof PSPproblems,finding an optimal sequence
is NP-complete(andhence,if P �Y NP, thenthe PSPcannotin generalbe solved in betterthan
exponentialtime). We pre-supposesomefamiliarity theconceptof NP-completeproblems[6].

Thesub-classof thePSPthatweconsideris thatin whichthecostfunction M-� for afactory� is
stepped. By this,wemeanthattheglobalcostof aproductionsequenceis determinedfrom local
properties.Formally, acostfunction M-� is steppediff thereexistssomefunction ¶M-���0S�·¸SZ� �¹�
suchthat M-�PO2HQR Y ¯»º¼�´ « &_ �  & ¶M-�PO�H½O;!%R��	H½O;! ¤ µ R�R�W
Givena steppedcostfunction M-� , we generallyuse ¶M-� to denotethefunctionwith signatureSk·S�� �¹� thatcorrespondsto it. By the term‘steppedPSP’,we meanthePSPwith steppedcost
functions;(we recasttheproblemasa decisionproblem,in thestandardway).

THE STEPPED PSP: Given an order ��I X
(over S ), a steppedcost function ¶M-�t�Sk·JS�� �¹� , anda value �§IL�¹� , determinewhetheror not thereis any production

sequenceHnI�#\x���O��9R with total costlessthan � .



If¾ weknow that M-� is stepped,thenwe canrecover thecorrespondingfunction ¶M-� from M-� in timeX O-CDS £ R . Thekey resultof thissectionis asfollows.

Theorem 1 ThesteppedPSPis NP-complete.

PROOF: (Outline)Membershipof NP is easy;completenessis by a polynomialreductionto the
travelling salesmanproblem. ¿
2.4 An Example

To illustratetheideaspresentedabove,we presenta simpleexample.A carfactory� consistsof
threeproductioncells: cell 1 doesproductassembly, cell 2 doespaintspraying,andcell 3 does
quality control. Carshave threerelevantattributes:colour(redor green),enginetype(petrolor
diesel),anddrive side(left or right). Therearethusa total of 8 differentpossibleproducts.The
costfunctionsfor eachcell aredefinedasfollows(noticethatthefactorycostfunction M-� induced
by thesecell costfunctionsis stepped, in thesensedescribedabove):M & � It costscell 1 a total of 5 units to processeachproduct,plus 5 units for every changeof

enginetype,andanadditional5 unitsfor everychangeof driveside.M%£À� It costscell 2 atotalof 5 unitsto processeveryproduct,plus5 unitsfor everycolourchange.M%¥À� It costscell 3 a total of 5 units to processevery product,plus 5 units for every changeof
enginetype.

Defineproducts� & , �{£ , and �{¥ asfollows:� & Y �%����
�%�����-�	���<���*�2����� �{£ Y ���	��
��
�!"��#$���<�\��!7��Á{��� �{¥ Y � ���	�����}��
�!"��#$���<�\�*�2������W
Now consideranorderthat requiresÂD·Ã� & , µ ·Ã�{£ , and

µ ·Ã�{¥ . Equation(1) tells us that there
areexactly12productionsequencesthatsatisfythisorder. Theseproductionsequences,together
with the correspondingcost for eachcell and the cumulative factorycost, are summarizedin
Table1.

It isnotdifficult toseefromTable1 that H & , H�£ , andH & £ aretheonlygloballyoptimalsolutions.
Thebestsequencefor agent(cell) 1 is H�£ ; for agent2, thebestsequencesare H & , H�¥ , HÅÄ , H &�Æ , H &<& ,
and H & £ ; finally, for agent3, the bestsequencesare H & , H�£ , H�Ç , and H & £ . Thereis no globally
optimalsolutionthatis locally optimalfor all agents.

2.5 GameTheoretic Analysis

Wenow presentananalysisof thePSP, usingthetoolsof gameandnegotiationtheory[3, 8]. The
ideais that sincewe intendto usenegotiationto attacka particularproblem— the PSP— we
shouldfirst determinehow well this problemmapsinto standardnegotiationtheoreticdomains.
An obviousplacetostartis [8], wherethreetypesof domainaredefined:taskorienteddomains[8,
p30];stateorienteddomains[8, p90];andworthorienteddomains[8, p155].Thedetailsof these
domainsarenotrelevantto ourdiscussion:theimportantpointis thatthePSPdoesnotcorrespond
to any of them.To seewhy, weneedto examinetheassumptionsthatunderpinthesedomains.In
eachcase,wefind it is assumedthatagentsmaychoosewhetheror not to cooperate(i.e., they are
autonomous).If thereis nocooperativesolutionthatmakesthembetteroff thanthey wouldbeon



M & O�H ± R M%£�O�H ± R M%¥�O�H ± R M-�PO�H ± RH & �2� & ��� & �%�{£����{¥�� 30 25 25 80H�£ �2� & ��� & �%�{¥����{£�� 25 30 25 80H�¥ �2� & ���{£��%� & ���{¥�� 40 25 35 100HÉÈ �2� & ���{£��%�{¥���� & � 35 30 30 95H�Ê �2� & ���{¥��%� & ���{£�� 30 30 35 95H�Ë �2� & ���{¥��%�{£���� & � 35 30 30 95HÅÄ �2�{£���� & �%� & ���{¥�� 35 25 30 90H�Ì �2�{£���� & �%�{¥���� & � 40 30 35 105H�Ç �2�{£����{¥��%� & ��� & � 30 30 25 85H &�Æ �2�{¥���� & �%� & ���{£�� 30 25 30 85H &<& �2�{¥���� & �%�{£���� & � 35 25 35 95H & £ �2�{¥����{£��%� & ��� & � 30 25 25 80

Table1: ProductionSequencesandTheirCosts

theirown (i.e.,thereis no individualrational joint solution),thencooperationwill notoccur. This
is becauseagentsareutility maximizers: they will alwaysselectthe courseof actionthat gives
thempersonallythehighestpayoff, irrespectiveof theconsequencesfor thesocietyto whichthey
belong.

The assumptionthat agentsareutility maximizersdoesnot correspondto the PSPdomain.
Our agentshave nochoiceaboutwhetherto cooperate,andarenot, therefore,fully autonomous.
Conceptually, our factory agentssharea commongoal of finding a negotiationsequencethat
minimizesoverall costs.However, if we areto usenegotiationtheoretictechniquesfor thePSP,
then we are requiredto find conceptsin our domainthat correspondto negotiation theoretic
notionssuchasutility, paretooptimality, andsoon. Thatis whatweaimto doin thissub-section.
First, we collect togethersomeof theconceptspresentedabove, anddefinewhatwe meanby a
multi-agentproductionsequencingdomain.

Definition 1 A multi-agentproductionsequencingdomain(MPSD)is astructure�;SÍ� X �\BÎ��Ï��Ð�-�Ð�
where:@ S is a setof products;@ XZY

bag S is thesetof ordersover S ;@ B Y
seq S is thesetof productionsequencesover S ;@ ÏÑ� YijPµ ��W�W\W���� s is a setof agents, (correspondingto productioncells);@ � Y�j M�� s is afactory, i.e.,anindexedsetof costfunctions,onefor eachagent(cell) !ÑIÃÏÑ� .

Next, we definethenotionof anencounter. In thestandardgametheoreticsense,anencounter
is a particularinstantiationof a domain,togetherwith a situationin which agentshave goalsto
achieve.



Definition
Ò

2 An encounterin an MPSD �;SÍ� X �\BÎ��Ï��Ð�-�Ð� is simply an order, i.e., a memberof
theset

X
.

Sincewe can,in principle,computethecostto any agentof any productionsequence,andthere
will bea finite (if somewhat large)numberof productionsequencesthatsatisfya particularen-
counter, wecancomputetheworst thataparticularagentcandowith respectto anencounter.

Definition 3 If ! is an agentin an MPSD �;SÍ� X �\B���ÏÑ�Ð�"�U� , thenthe worst that ! cando in en-
counter ��I X

(notation: ÓÎ���	#��:�;O	�fR ) is definedÓÎ���	#��:�%O	�fR Y�ÔDÕ�ÖÅj M��<O�HoR×l�HnI�#\x���O��9R s .

Thebestthat ! candowith respectto order � is denotedF���#��2�;O��9R ; theformaldefinitionof F���#��:�%O	�fR
is similar to thatof ÓÎ���	#��:�%O��9R , andis thereforeomitted.Next, wedefinethenotionof adeal. The
rationalebehindthis terminologywill becomeclearwhenwe discussnegotiationmechanismsin
section3.

Definition 4 A deal in an MPSD �<SØ� X �\B���Ï��U�"�Ð� with respectto an encounter�kI X
is a

productionsequencethatsatisfies� , i.e.,amemberof theset #\x���O��9R .
Next, wecandefinetheutility of adealwith respectto someencounter.

Definition 5 Theutility of a deal H for someagent!zI�ÏÑ� with respectto anencounter� (nota-
tion: N{��!:�°!:�-Ù�Ú� O�HoR ) is definedto bethedifferencebetweentheworstthat ! cando in � , andthecost
to ! of H : N{��!:�°!:�-Ù Ú� O�HoR Y ÓÎ���	#��2�;O��9R} ÛM��<O�HQR .
Since � is generallyunderstoodfrom context, weusuallyomit referenceto it.

Definition 6 Let H and HT bedealsfor someencounterin anMPSD �;SÍ� X �\B���ÏÑ�Ð�"�Ð� . Then:@ H is saidto weaklydominateHÐT fromthepointof view of group �¨g�ÏÑ� , (notation: HnÜÞÝhHT )
if f

| !ÀIt� , N0��!:�°!:��Ù���O2HQRÀßàN0��!:�°!:�-Ù$�%O2HT7R , i.e., if every agentin � doesat leastaswell in H asit
doesin HT ;@ H is saidto dominateHT from the point of view of group �LgáÏ�� (notation: HZâãÝ�HÐT ) if fHZÜÞÝ�HT and �!�I�� for whom N{�-!:�°!:��Ù$��O�HQR]p�N{�-!:�°!:��Ù$��O�HT°R , i.e., if every agentin � doesat
leastaswell in H asin HT , andat leastoneagentdoesbetterin H thanin HT .

(Whenreferringto thesetof all agents,we simply write Ü or â , ratherthan Üãä9Ý or âÞä�Ý .) We
cannow definethewell-known gametheoreticnotionof paretooptimalityfor ourdomain[3].

Definition 7 A dealH is saidto beparetooptimalif f thereexistsnootherdealHT suchthat HTUâ¢H .

Paretooptimality is an importantconceptin gametheory. To seewhy, supposea groupof au-
tonomous(utility maximizing)agentsareattemptingto negotiate,andthey comeacrossa deal
that is paretooptimal. Thenthey maywell have to fix uponthis solution,because,by definition,
choosinganothersolutionwould makesomeagentworseoff — andnoutility maximizingagent
wouldagreeto beingmadeworseoff. Thus,negotiationalgorithmsareoftendesignedto generate
paretooptimalsolutions.But unfortunatelyfor us,suchsolutionsarenotnecessarilyideal:



Theorå em 2 With respectto thePSP, (1)globaloptimalityimpliesparetooptimality, but (2)pareto
optimalitydoesnot imply globaloptimality.

PROOF: For (1), supposenot. Thenthereexistssomeglobally optimaldeal H that is not pareto
optimal. If H is notparetooptimal,thenthereexistssomeotherdeal H T in whicheveryagentdoes
at leastaswell asin H , andsomeagentactuallydoesbetter. But this impliesthat M-�{O�H T Rz��M-�{O�HQR ,
in which caseH is not globally optimal. But this is a contradiction,so the assumptionmustbe
false.For (2), theintuition is easy. Paretooptimalitysaysthatthereis nootherdealthatincreases
theutility of oneagentwithoutreducingtheutility of atleastoneotheragent.But togetaglobally
optimalsolution,oneagentmight have to accepta worsedeal,in orderto maximizethesumof
theutilities, andhenceminimize M-� . Hereis asimpleexampleto illustratethis. Supposewehave
threeagents,1, 2, and3, andonly two possibledeals,H & and H�£ , with costfunctionsdefinedthus:M & O�H & R Y µ r M%£$O�H & R Y µ r M%¥�O2H & R Y µ rM & O�H�£�R Y µ$æ M%£$O�H�£�R Y æ M%¥�O2H�£�R Y æ
In this example, M-�PO2H & R Y�ç r

and M-�PO�H�£�R Y Â æ , henceH�£ is thegloballyoptimalsolution.But H &
is paretooptimal,sincealthoughH�£ increasestheutility of agents2 and3, it decreasestheutility
of agent1. ¿
This theoremindicatesthat, ideally, we seeknegotiationstrategiesthatareoptimal in a stronger
sensethanparetooptimality. Finally, we candefinethe negotiation set for an encounter. The
negotiationset intuitively representsthe ‘reasonable’dealsthat an agentcould proposeduring
negotiation.

Definition 8 The negotiationset for an encounter��I X
in someMPSD �;SÍ� X �\B���ÏÑ�Ð�"�Ð� is

denotedèãB�Ú , andis definedto bethesetof paretooptimaldealsfor � .

(As above,we generallyomit referenceto � .) It would be‘unreasonable’of anagentto propose
adealthatwasnotparetooptimalsinceby definition,theagentcouldhaveproposedanotherdeal
thatmadeoneagentbetteroff without makingany otheragentworseoff £ . An obviouscorollary
of Theorem2 is that thenegotiationsetfor any encounteris guaranteedto benon-empty:there
will alwaysbea globallyoptimalsolution,which,by Theorem2, mustbeparetooptimal.

2.6 Back to the Example

Let usreturnto theexamplethatwepresentedin section2.4.Wecananalyzeeachof thesolution
sequencesto this problemusingtheterminologyandtechniquesjust introduced.First, notethat
theworst thatagent1 cando is cost40 (sequencesH�¥ and H�Ì ). Theworst thatagent2 cando is
cost30(sequencesH�£ , HÉÈ , H�Ê , H�Ë , H�Ì , and H�Ç ). Finally, theworstthatagent3 candois cost35( H�¥ ,H�Ê , H�Ì , and H &<& ). Knowing theworstthatanagentcandoallowsusto computetheutility for that
agentof eachsequence;this in turn allows us to determinewhetheror not a sequenceis pareto
optimal. Theseresultsaresummarizedin Table2. Thenegotiationset, èãB , thusconsistsof just
3 deals:H & , H�£ , and H & £ .é

Notethat individual rationalityhasnomeaningin ourdomain(cf. [8, p39]).



H & H�£ H�¥ HÉÈ H�Ê H�Ë HÅÄ H�Ì H�Ç H &�Æ H &<& H & £N0��!:�°!:�-Ù & O�H ± R 10 15 0 5 10 5 5 0 10 10 5 10N0��!:�°!:�-Ù�£[O�H ± R 5 0 5 0 0 0 5 0 0 5 5 5N0��!:�°!:�-Ù�¥[O�H ± R 10 10 0 5 0 5 5 0 10 5 0 10

paretooptimal? · · ·
Table2: Propertiesof ProductionSequences

3 NegotiationMechanismsfor the MPSD

Thusfar, wehavesaidverylittle aboutthenegotiationprocessthatmightbeusedin theMPSD.In
this section,we addressthis issue.We begin with aninformal discussionof how thenegotiation
processmight work. We thenconsidersomedesirablepropertiesof a negotiationmechanism
for the MPSD, and in section3.2, we formally definea negotiationalgorithm. However, this
algorithmmakescertainassumptionsaboutagentsthatareunrealisticin practice.Therefore,in
section4, weconsidertheimplementationaspectsof thealgorithm,andin particular, we suggest
how it mightbemadesuitablefor implementation.

As we observed in section1.2, the intuition behindour work is that theprocessof finding a
productionsequencemight usefullybe viewedasa negotiationproblem,in which factorycells
negotiateoverproductionsequencesin orderto minimizetheir local costs,andhence,it is hoped,
reduceglobal, or factorycosts.But what,exactly, aretheagentsto negotiateover? Whatpropos-
alsareagentsgoingto makeduringthenegotiationprocess?Thereareat leasttwo possibilities:@ agentsnegotiateover individualproductsin orderto incrementallydevelopanoptimalpro-

ductionsequence;@ agentsnegotiateoverentireproductionsequencesin orderto find onethatminimizescosts.

Let usbriefly considerthefirst possibility. Theideahereis thatsomeagentwill begin by propos-
ing oneparticularproduct,which it desiresto bethefirst productin thesequence.Otheragents
will thenmake counteroffers,until agreementis somehow reached.The agentsthenmove on
to negotiatethesecondproductin thesequence,andsoon,until anentiresequenceis developed
that satisfiescurrentorders. Thereareseveral obvious drawbacksto this approach.First, and
perhapsmostimportantly, it requiresthatagentsmakevery local decisions,with theultimateaim
of satisfyingaglobal requirement[1, pp21–22].It seemsdifficult to deviseheuristicsappropriate
to the domainthat might beusedby anagentin orderto meetthis requirement.Secondly, this
methoddoesnot correspondto our intuitionsabouthow humanssolve the problem. Typically,
humanswill startwith an entiresequencethat approximatesto optimality, andtheniteratively
refinethis sequence.For thesereasons,we focusin this paperon thesecondapproach,in which
agentsnegotiateover entireproductionsequences.Of course,this approachhasproblemsof its
own: wediscussthesein section4.

3.1 Desideratafor an MPSD NegotiationMechanism

As we notedin section1.2, a multi-agentapproachto productionsequencinghasseveral inher-
ent advantagesover a monolithic approach(e.g.,flexibility , modularity). In addition,an ideal
negotiationmechanismfor theMPSDwouldsatisfycertainotherproperties(cf. [8, pp20–22]):



Simplicity:ê We seeka negotiationmechanismthatwill minimizethetime takento reachagree-
menton a deal. Realistically, it maynot bepossibleto find a tractable(polynomialtime)
negotiationmechanismfor theMPSD.Perhapsthebestwecanhopefor is an‘anytime’ ne-
gotiationmechanism(cf. [9]): onethatcausestheagentsto quickly find some(sub-optimal)
solution,andwill thenmonotonicallyimprovesolutionquality, aslongastheagentsareal-
lowedto continuenegotiating.

Efficiency: The purposeof the PSPis to find a productionsequencethat minimizes,asfar as
possible,thecostto a factoryof processinga particularorder. This is a very realproblem:
even small improvementsin day-to-dayproductionsequencingleadto significantreduc-
tionsin factoryrunningcosts.Ideally, wethereforeseekanegotiationmechanismthatwill
leadto agreementon a globally optimal deal. Realistically, it may be that we cando no
betterthan,say, paretooptimality.

It is worthnotingthat,becauseof thenatureof ourdomain,someof theattributesof negotiation
asdiscussedin negotiationandgametheoryarenot relevantfor our purposes[8, pp20–21].For
example,a key conceptin negotiationtheoryis stability, asrepresentedin thepropertyof Nash
equilibrium [8, p190]. Two negotiationstrategies # and # T aresaid to be in Nashequilibrium
iff underthe assumptionthat oneagentis using # , anotheragentcando no betterthanuse #\T ,
andvice versa.This propertyis relevantbecauseof thestandardgametheoreticassumptionthat
agentsareutility maximizers:they eachhave theirown goals,andwill try to achieve thesegoals
at the expenseof otheragents,if necessary. Henceanagentwill alwayschoosea strategy that
maximizesits own utility. This notion is not relevant in the MPSDdomainbecauseour agents
will all bedesignedto meetthecommongoalof reducingtotal factorycosts.For thesamereason,
wecanignorethewholeissueof deception[8, pp53–85]:ouragentswill not try to deceiveother
agentsbecause,if they did so,they might improvetheirown utility at theexpenseof thefactory.

3.2 A NegotiationMechanism

In this section,we presenta negotiationalgorithmfor theMPSD.This algorithmis anextended
andadaptedversionof theMonotonicConcessionProtocol[8], in whichagentsuseageneralized
versionof theZeuthenstrategy [14]. We begin with a generaloverview of themechanism,and
thengivea rigorousdefinitionusingthenotationandterminologyof previoussections.

Overview

Thebasicideais quitesimple.Negotiationproceedsin rounds, andonthefirst round,everyagent
takesanactive partby proposingsomedeal. If a dealhasbeenproposedthatmakesevery agent
happy, thennegotiationendssuccessfully. Otherwise,negotiationproceedsto anotherround,in
whichsomesubsetof thecurrentlyactiveagentsmustconcede. For suchconcedingagents,there
arethreepossibilities:@ theagentis ableto proposeadealthatrepresentsa ‘true’ concession,in whichcaseit does

so;@ the agentis unableto make a ‘true’ concession,but is neverthelessableto make another
proposal,in whichcaseit doesso;in thiscase,theagentwill in somesensebe‘backtrack-
ing’;



@ the agenthasexhaustedthe setof all dealsit could propose,in which caseit withdraws,
andplaysno furtherpartin negotiation.

Agentsthatdo not concedein someroundput forwardthesamedealon thenext round. In this
way, negotiationproceedswith agentsconcedingandpossiblywithdrawing,until finally, they find
a dealuponwhich they agree.Intuitively, theagentsinvolvedin suchnegotiationaresearching
throughthe negotiationset èÞB , in anattemptto find a mutuallyacceptabledeal. Theaim is to
find heuristicsthatguidethesearchto anefficientsolutionasquickly aspossible.Onexamining
thebasicalgorithm,asdescribedabove, it becomesapparentthattherearethreekey questionsto
beanswered:@ how is anagentto chooseits firstproposal, andany backtrack proposal?@ onany givenround,whoshouldconcede?@ if anagentconcedes,thenhowmuch shouldit concede?

In the sub-sectionsthat follow, we presentsolutionsto thesethreeproblems,and then give a
formalstatementof theentirenegotiationmechanism.

What Should the First ProposalBe?

Whennegotiationbegins,anagentmustselectfrom thenegotiationset èãB somedealto propose.
It hasnonegotiationhistoryto guideits choice.Similarly, whenanagentis forcedto ‘backtrack’
duringnegotiation,becauseit cannotmakeaconcession,it mustsuggestadealthatis notsimply
a modificationof theproposalsit hasalreadymade.In orderto make sucha selection,we shall
assumea set ëd�½gàèãB of dealsthatare‘on thetable’: dealsthathave previously beenproposed
by agent! . At thestartof negotiation,thissetwill beempty. Theintuition is that,whenconceding
or backtracking,anagentis not allowedto proposea dealthat it haspreviouslyput forward. LetF%� T� be the setof dealsin èÞB which give agent ! theequalbestpayoff from all thedealsin the
negotiationsetthatarenot ‘on thetable’, i.e., thathavenotpreviouslybeenproposedby ! .F%� T� Y�j HLl�H�I�èãBÃ àëd� and M��<O�HQR Y�Ô�ì*íUj M��;O2H T RÞl�H T I�èãBÃ àëd� sfs W
In addition,it seemsreasonableto requirethat ! only proposesdealsin F%��� thatminimizefactory
costs.Theset F%��� containsonly dealsthathave thisadditionalproperty.F%��� Yij H�l�HnImF%� T� and M-�PO�HQR Y�Ôqì�íUj M-�PO2H T Rãl�H T ImF%� T� sfs
An agent ! ’s first proposal,and any ‘backtrack’ proposalthat it makeswill be requiredto be
membersof the set F%��� (with respectto sets ëd� and èãB ). The set F%��� will representthe best
proposalsthatagent ! is still ableto make..

Who ShouldConcede?

Thesolutionwe proposefor this problemis a generalizedversionof theso-calledZeuthenstrat-
egy, originally proposedin [14], anddescribedin [8, pp43–49].Intuitively, theproblemfacedby
every agentat every roundis: shouldI concedeor not? How is anagentto make this decision?
Zeuthen’s ideawasthat the agentwith the least to lose from concessionshouldbe the oneto
concede.To put it anotherway, the agentthat shouldconcedeis the onefor whom conceding



representsî the least risk. Zeuthensuggestedthat agent ! could quantify its willingnessto risk
conflictat round � of negotiationin thefollowing way [8, p43]:��!*#�� ³� Y utility agent! losesby conceding

utility agent! losesby notconceding
W

The utility an agentlosesby not concedingis definedto be the utility of that agent’s currently
proposeddeal.(Intuitively, if anagentdoesnotconcede,it maycauseconflict,andlosethewhole
of its utility.) To determinetheutility anagentlosesby conceding,we let theagentassumethe
worst. This is a standardideain gametheory, andis embodiedin suchfundamentalconceptsas
theminimaxprinciple [3]. Fromthepoint of view of anagent ! , theworst thatcanhappenif it
concedesis that it will endup having to carryout thecurrentlyproposeddealthat is worst from
its point of view. Writing H ³� for thedealproposedby agent ! at round � in theprotocol,we thus
definethewillingnessof agent! to ‘risk conflict’ at round � , (denoted��!*#�� ³� ), as:��!*#�� ³� Y ïð ñ µ

if N0��!:�°!:�-Ù$�%O2H ³� R Y rò ³ �¹ó � ³�ô � ¯�¼\õ� ´ «Pöo÷ùø�ú ò ³ �ûó � ³»ô � ¯»¼\õü ´2ý ¬ b ä9Ý�þò ³ �ûó � ³»ô � ¯�¼ õ� ´ otherwise.

How Much ShouldbeConceded?

Supposeëd� is thesetof dealsthathave beenproposedby agent! throughrounds
µ

to � , andthat
at round � , agent ! proposeddeal H ³� . Agent ! thendiscoversthat it mustconcede.Whatshould! ’s next proposal,H ³�ÿ &� , be? Ideally, ! would find a deal in èãB that representsa true, sensible
concession.Wesuggestthatsuchaconcessionshouldenjoy thefollowing properties:

1. H ³�ÿ &� �IÛëd�
Proposingadealthatyouproposedearlieris pointless.

2. H ³�ÿ &� âãä9Ý «�ú �7þ½H ³�
Thisconditionstatesthat ! really is makingaconcession:thedealit will proposeis at least
asgoodfor every otheragentasits currentoffer, andactuallybetterfor at leastoneother
agent.A subtletyof this conditionis thata concedingagentcannotproposea concession
dealthat improvesthe lot of the restof thegroupby ‘rearranging’their utilities: it hasto
makeat leastoneagentbetteroff, andeveryotheragentnoworseoff. Therationalebehind
this conditionis thatif anagentdid rearrangetheutilities, thenit would make someagent
worseoff thanits previouslyproposeddeal,which would rule out thatagentacceptingthe
new offer.

3. M-�PO2H ³�ÿ &� Rz��M-�PO2H ³� R
Thisconditionrequiresthatthedealimprovesthelot of thewholefactory:thereis nopoint
in proposinga dealthatmakessomeagentbetteroff at the expenseof the whole factory.
(Notethatcondition(3) is not impliedby condition(2); nor is (2) impliedby (3).)

4. undertheassumptionthatat round � ¤ µ
, agent ! proposesH ³�ÿ &� , andthat

| �~ILÏÑ� , �L�Y !
impliesthat � proposesH ³ª at round � ¤ µ

, then ���DIÃÏÑ� for whom ��!*#�� ³�ÿ &¬ �w��!*#�� ³�ÿ &�
The third condition requiresthat the concessionmadeby the agentwill be sufficient to
changethebalanceof risk within thegroup: undertheassumptionthatevery otheragent
proposesthe samedeal,thenon the next round,somebodyelsewill have to concede.If



wedid notmakethisa requirement,thenoneagentmightbeforcedto concederoundafter
rounduntil finally, it hasconcededenoughto shift thebalanceof risk. This would conflict
with thesimplicity criterion,andsothis requirementstatesthat ! mustconcedeenough, so
thaton thenext roundit neednotconcede.

5. M��<O�H ³�ÿ &� R Y Ôqì�íÐj M��<O�HQRÞl�HnI�èãB and H satisfiesconditions(1)–(4)
s
.

This final conditionstatesthat thedeal ! will offer is theminimal concessionthat ! could
make: the new offer is the leastcostdealthat ! couldproposewhich satisfiedconditions
(1)–(4).

Thesefourpropertiesrepresentheuristics, which(hopefully)guidethesearchtoasolution.It may
be that a concedingagent ! is unableto find a dealthat satisfiestheseconditions. In this case,
thatagentmust‘backtrack’,by recomputingF%��� . If F%��� is non-empty, thentheagentproposesany
memberof thisset;if F%��� is empty, thentheagentwithdrawsfrom negotiation.

It is worth notingthat, in thetwo agentcase,conditions(1)–(3)arenot required[8, p44]. It
is the potentialpresenceof moreagentsthat introducesthe needto focusan agent’s proposal-
makingprocessthroughheuristics.

The NegotiationAlgorithm

Thealgorithmwill usethefollowing variables:@ �zI~��è is a roundcounter;@ ëd��gÛèãB representsthesetof dealsproposedby agent! thusfar, for all !ÑIÃÏÑ� ;@ ÏÞM��-!����^g Ï�� representsthe setof agentsstill active in negotiation,i.e., thesetof agents
thathavenotyetexhaustedthesetof dealsthey canpossiblypropose.

Thenegotiationalgorithmis thenasfollows:

1. Set � to 1.

2. For eachagent!ÑIÃÏÑ� , set ëd� to � .
3. Set Ï×M���!���� to ÏÑ� .

4. For eachagent!ÑIÃÏÑ� , computeF%��� .
(Notethat F%��� is guaranteedto benon-emptyat thisstage.)

5. For eachagent!ÑIÃÏÑ� , non-deterministicallyselectadeal H}&� from F%��� .
6. For eachagent!ÑIÃÏÞM��-!���� , set ëd� to ëd��� j H ³� s .
7. Checkfor agreement.This is doneby first computingtheagreementset:j Hml�HÃI �� b ä9Ý ëd� and

| �qIÃÏ��U����H T IÛë ¬ suchthat N0��!:�°!:�-Ù ¬ O�HQRzßiN{�-!:�°!:��Ù ¬ O2H T R s
Thatis, theagreementsetcontainsall thosedealsthathavebeenproposed,suchthatthose
dealsmakeeveryagent� at leastaswell off asadealpreviouslyproposedby � .
If theagreementsetis non-empty, thenagreementhasbeenreached,andnegotiationends
with theagentsacceptingany memberof theagreementset.



8. For eachagent!ÑIÃÏÞM��-!���� , compute��!*#�� ³� .
9. Let � be the setof agentssuchthat

| !qI�� , ��!*#�� ³� YvÔ�ì*íUj ��!*#�� ³¬ l���I�Ï×M���!���� s , i.e., the
agentswith the(equal)leastwillingnessto ‘risk conflict’.

10. For eachagent!ÑIÃ� :@ if ! canmakeaconcessiondeal,thatsatisfiesthepropertieslistedearlier, thenset H ³�ÿ &�
— thedeal ! will proposeon thenext round— to besucha deal;@ if ! cannotmakeaconcessiondeal,thencomputeF%��� :

– if F%���h�Y � (i.e., theagenthasnot exhaustedthedealsit couldpossiblypropose),
thenset H ³�ÿ &� to beany memberof F%��� ;

– if F%��� Y � , thenset Ï×M���!���� to Ï×M���!����   j ! s (i.e., ! withdrawsfrom negotiation).

11. For eachagent!ÎInÏÞM���!����À �� , set H ³�ÿ &� to be H ³� , i.e.,everyotheragent’soffer will remain
unchanged.

12. Set � to � ¤ µ
.

13. Goto(6).

Steps(1) to (5) representinitializationfor thefirst roundof negotiation.Steps(8)and(9) represent
the processof decidingwho will concede;step(10) defineswhat suchconcedingagentswill
do. Using this algorithm,agentswill systematicallysearchthe negotiationset, looking for an
agreementdeal. It is not difficult to seethat thealgorithmthereforehasthefollowing important
property:

Theorem 3 After a finite numberof steps,the agreementsetwill be non-empty, andthus the
negotiationalgorithmis guaranteedto terminatewith agreement.

PROOF: Assumeagreementis never reached.Steps(8) to (10)ensurethat,onevery round,some
non-emptysubsetof active agentswill eitherwithdraw or elseproposedealsthat they have not
previously suggested.An agent ! will only withdraw if ëd� Y èÞB , i.e., if ! hasproposedall
possibledeals.Eventually, therefore,every agentwould proposeall possibledeals.But in this
case,where ëd� Y èãB for all !×I�ÏÑ� , theagreementsetwould benon-empty, andsoagreement
wouldhavebeenreached.Thustheassumptionis false. ¿
3.3 That ExampleAgain

Let usnow dry runthenegotiationalgorithmusingtheexamplepresentedin sections2.4and3.3.
We begin by setting � to 1 and ëd� to � , for all ! I¢ÏÑ� . Thevariable ÏÞM��-!���� is setto ÏÑ� . Every
agentmustthenchoosea first deal,which in turn requirescomputingF%��� for !�I jPµ ��Â0� ç s

(recall
thatthenegotiationset, èãB , is

j H & ��H�£$�	H & £ s ). Wehave:F%� & Y�j H�£ s F%�{£ Y�j H & �	H & £ s F%�{¥ Y�j H & �	H�£$�	H & £ s W
The algorithmis non-deterministic,in that every agent ! is allowed to chooseat randomsome
memberof F%��� . Supposethatagent1 choosesH�£ (it hasnochoice),agent2 choosesH & , andagent
3 choosesH & £ . Thereis noagreement,andsowecomputeeveryagent’s willingnessto risk:



��!*#�� && Y
	� ��!*#�� &£ Y�µ ��!*#�� &¥ Y r W
Agent3 mustconcede.Agents1 and2 putforwardtheirpreviousproposalsonround2,andagent
3 attemptsto computea concessiondeal.Thereareonly two possibilitiesin thenegotiationset:H & and H�£ . However, neitherof theserepresentsa ‘true’ concession,soagent3 mustrecomputeF%�{¥ . Clearly, F%�{¥ will now containH & and H�£ , soagent3 non-deterministicallyselectsoneof these
for round2. Supposeit selectsH & . Weupdatetheroundcounterto 2, andmoveto thenext round.

On this round,agent1 proposesH�£ , while agents2 and3 proposeH & . Agreementhasnot yet
beenreached,andso we compute��!*#�� £� , for !qI jPµ ��Â0� ç s

: we find that the risk valuesremain
unchanged.Agent3 mustconcedeoncemore. Theagentagaintries to find a concessiondeal,
but fails. It thereforerecomputesF%�{¥ , whichnow containsjust H�£ , whichbecomesagent3’snext
proposal.Theroundcounter� is updatedto 3.

In round3, agents1 and3 proposeH�£ , andagent2 proposesH & . We find that therisk values
remainunchangedoncemore,andsoagent3 is requiredto concedeyetagain.As agent3 cannot
make a ‘true’ concession,it recomputesF%�{¥ , but this time findsit is empty: it hasexhaustedthe
setof all dealsit couldpropose.Agent3 thereforedropsout of negotiation,and Ï×M���!���� is settojPµ ��Â s . Theroundcounteris updatedto 4.

On round4, agents1 and2 put forwardthesamedealsthey proposedon thepreviousround:H�£ and H & respectively. Oncomputingrisk, wefind:��!*#�� È& Y 	� ��!*#�� È£ Y�µ W
Agent 1 mustconcede.It cannotmake a ‘true’ concession,sincethe dealit currentlyoffers is
globally optimal. However, recomputingF%� & gives two possibilities: H & and H & £ . Whichever
of theseproposalsagent1 makes, agreementwill be reachedon round 5, as agents2 and 3
have both previously proposeddealsthat make them no betteroff. Note that all of the three
original possibilities( H & , H�£ , and H & £ ) wereglobally optimal, andso negotiationwasboundto
concludewith a globallyoptimalsolution.However, H & and H & £ (thetwo possibleconclusionsto
thealgorithm)representfair costdistributions,whencomparedto H�£ .
4 From Theory to Practice

As we notedearlier, this paperis not simply an abstractstudy. The PSPis a real-world prob-
lem, for which we intendto implementa negotiation-basedsolution. Our aim in this sectionis
thereforeto considerhow well thetheoryof negotiation— asrepresentedin thealgorithmabove
— matchesup to the computationalreality. In particular, we discusswhat simplificationsand
assumptionsmustbemadein orderto make thealgorithmamenableto implementation.

To seethe practicalproblemsassociatedwith the algorithm,consideran agentcomputing
the utility of a dealwith respectsomeencounter. This computationrequiresthat the agentis
able to determineboth the costof the deal,and the worst that it could do with respectto the
encounter. Computingthecostof adealis donevia anagent’scostfunction, M�� . It is unlikely that
a real factorycouldfind a simplemathematicalfunctionthatgivesthecostof a dealto a factory
cell. Thecomputationof costis thereforelikely to bedoneusingheuristicsdeterminedthrough
experience.Suchheuristicsobviously introducethepossibilityof error into thecomputationof
cost. In somefactories,with particularlycomplex productsandproductionprocesses,it maybe
thatnocostinformationcanbereliablyobtained:in thiscase,thecomputationof costbecomesan



educated� guess.With respectto finding theworstanagentcoulddo in anencounter, we cansee
similar problems.An agentcannotenumerateall possibleproductionsequencesin orderto find
theworst;evenif it couldenumeratethem,thecostinformationis obtainedby heuristicmethods.
Sotheworstanagentcoulddo in anencounterwouldalsohave to becomputedheuristically.

The computationof utility is the foundationupon which the algorithm is constructed:an
agent’s decisionmakingrestsentirely uponthe determinationof this value. Clearly, if thereis
any elementof uncertaintyassociatedwith the value, thenthe algorithmlosesits desirable—
provable— properties.An obviousquestionis thenhow well thealgorithmperformswhensuch
uncertaintyis present.

To summarize,thereare two key problemsassociatedwith the algorithmfrom a practical
pointof view:@ it assumesthat we can allocateeachagent(productioncell) an accuratecost function,

whereasin practice,costswouldbeestimatedheuristically;@ it assumesthatagentshave unlimitedreasoning(computational)ability, in that,for exam-
ple,they cansearchthroughthesetof all productionsequencesin orderto find theonethat
maximizestheir cost,or representstheminimumconcessiondeal,etc.

5 Concluding Remarks

Wehavepresentedtheproductionsequencingproblem:acommon,importantproblemthatoccurs
in factoriesthroughouttheworld, andgivena formaldefinitionthisproblem.We proposedsolv-
ing this problemusingnegotiation,andto this end,we recasttheproblemdomainin negotiation
theoreticterms.We thenpresenteda negotiationalgorithmfor theproblem,basedon theMono-
tonic ConcessionProtocolwith Zeuthenstrategy, asdescribedin [8]. However, we found that
many of theassumptionsthatunderpinthis theoreticallyattractive strategy make it unworkable
in practice.

With respectto futurework, therearemany obviousissuesto beaddressed.For example,as
weobservedin theprecedingsection,it isnotclearhow thealgorithmwill performin thepresence
of uncertainty:experimentalinvestigationis requiredin ordertosettlethequestion.Also,weneed
moreexperiencewith domain-specificnegotiationheuristicsfor theMPSD.Again,experimental
investigationwouldbeappropriatein orderto determinetheperformanceof suchheuristics.
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