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Abstract

The productionsequencingprobleminvolves a factory generatinga productsequenceuch
that when processedthe sequenceawill both satisfy currentorders,and minimize overall
costs. In this papey we amue that productionsequencingnay fruitfully be considerechs
a ngyotiation problem, in which productioncells within a factory negotiate over product
sequencem orderto fairly distribute costs.We begin by describingandformally definingthe
productiorsequencingroblem;wetheninvestigatdts compleity, andpresenananalysiof
it usingthetoolsof gameandnegotiationtheory We thendefinea negotiationalgorithmfor
productionsequencinganddiscusswhat assumptiongnd simplificationsmustbe madein
orderto male this algorithmsuitablefor implementation We concludeby discussingssues
for futurework

1 Intr oduction

Multi-agenttechnologyhas,in the pastdecademovedfrom beinga somevhatobscurerelation
of mainstreamAl andcomputerscienceto beingwhatis widely acceptedsoneof the mostvi-
brantandexciting researctareasn computinggenerally As with all new softwaretechnologies,
theratio of speculatiorandhypeto field testedjmplementedystemss perhapsomevhathigh,
but thereare,neverthelesssomedocumentednulti-agentapplications Exampledomaingnclude
powersystemsnanagemerjtL3], air-traffic control[11], particleacceleratocontrol[2], telecom-
municationsietwork managemeriL2], spacecraftontrol[10], computelintegratedmanufctur
ing [7], job shopscheduling5], andsteelcoil processingontrol [4]. In this paper we present
amulti-agentsolutionfor anindustrialproblemthatis bothcommonandimportant:factory pro-
ductionsequencingBriefly, this probleminvolvesafactorydecidinguponthesequencén which
to procesgproductssoasto bothsatisfycurrentorders,andminimize overall factorycosts.

The mainimport of this paperis thatproductionsequencingnay be treatedasa multi-agent
negotiationproblem,in which productioncellswithin afactorynegotiateover productsequences
in orderto distribute costsfairly, andhenceminimize total factory costs. Thereare a number
of advantagedo suchanapproachgchief amongthembeingmodularityandflexibility. We give
a formal definition of the problemdomain,discussits compleity (in particular we shav that



the problemis, in general NP-complete)and presentan analysisof it usingthe tools of game
andnegotiationtheory We thendescribea negotiationmechanisnior the productionsequencing
problem,anddiscussvhatassumptionandsimplificationsmight be requiredin orderto imple-
mentthis mechanismThepaperconcludesvith adiscussiorof futureresearclissuesWe begin,
in the following sub-sections)y presentinganoverview of the problemdomain,anda rationale
for treatingthe problemasoneof negotiation.

1.1 The ProblemDomain: An Overview

Within a typical manufcturingplant, therewill be a numberof productioncells that perform
differenttasks. Examplesof suchcells include paint spraying,cleaning,buffering of products,
assemblyandso on. Every week, (in somefactories,every day), it is necessaryo plan how
thesecells areto be usedto fulfill productorders. Sucha planis known asa productionse-
guence It definesthe orderin which productswill passthroughthe variousfactorycellsduring
themanuhcturingprocess.

Someproductionsequencesostmorethanothersto process.To seewhy, considerthe fol-
lowing example. A factoryhasa cell thatdoespaint spraying;productsmay be sprayedn ary
numberof colours,but oncethe cell hassprayeda productsomeparticularcolour, changingto
anothercolourrequireshatthe cell be cleanednozzlesandperhapgpainttanksbereplacedand
soon. Thistakestime andmongy. In this example,it will be cheaper(from the point of view of
the paintsprayingcell), to procesghe productionsequencéred, red, green) thanit would beto
processhesequencéred, green, red).

The situationis complicatedby the fact that differentcells have differentrequirementgor
productsequencesExtendingthe simplepaint sprayingexamplegivenabove, imaginethatthe
factorycontainsanothemroductioncell, for assembly Productshat passthroughthe assembly
cell maybefitted with eithera petrolengineor adieselengine.Suppos¢hatoneredcarrequired
a petrol engine,the otherred car requireda dieselengine,and the greencar requireda petrol
engine.Fromthe point of view of theassemblycell, thereforejt mightbecheapeto processhe
sequence

((red, petrol), (green, petrol), (red, diesel))

thanthesequence

((red, petrol), (red, diesel), { green, petrol))

thatwould be preferredby the paintsprayingcell'. It is notdifficult to seethatthereis in some
sensepotentialfor conflictsbetweerthe productioncellswithin afactory Findingthe cheapest
productionsequencavith respecto the wholefactory(i.e., all productioncells)is whatwe call
the productionsequencingroblem Solvingthe problemis somethingof a balancingact,which
may endup with somecells having to accepta productionsequencehatis, from their point of
view, sub-optimaljn orderto minimizethe overall factorycost.

1.2 Production SequencingasNegotiation

In this paper we proposeandformally analyzean approacho productionsequencingn which
finding the cheapessequencehat satisfiesa particularorderbecomes multi-agentnegotiation

1Thesequencé(green, petrol), (red, petrol), (red, diesel)) would bea solutionthatkeptbothcellshapyy.



problem. The basicideaof this approachs very simple. Recallthata factoryis madeup of a
numberof cells. Eachof thesecells hasassociatedvith it a costfunction, which characterizes
thecostto thatcell of processingry productionsequenceThesecostfunctionsimplicitly define
preferencesver productionsequences(Recallthe paint sprayingexample,above.) In multi-
agentproductionsequencingye make eachcell anagentandgetthemto negotiatea production
sequenceEachagentattemptgo improveits utility by reducingcosts:it will arguefor production
sequencethatreducehesecosts.Eventually if we havedesigneauragentsight, they will come
to agreeon a sequencéhatis, in somesensegpptimal. It maynot bea globally optimalsolution,
but atleastareasonablene.

Thereareseveralpotentialadvantageso the multi-agentproductionsequencingpproach:

e Modularity. Ultimately, productionsequencings an optimizationproblem. If we had
available a completemathematicamodel of a factory thenwe might, in principle, use
optimizationtechniquego solve the productionsequencingroblemfor thatfactory But
suchmodelsarenot available,andattemptingto solve the problemin this way is entirely
unrealistic:the productionprocessn ary realfactoryis simply too complex. The multi-
agentapproactprovidesuswith anobvious,familiar tool to helpmanagehis compleity:
modularity It allows usto breakthe overall problemdown into sub-problem®f a more
manageablsize,in away thataccuratelyeflectsthe structureandoperatiorof thefactory
The representatiof conflicts and other interactionsbetweenthesemodularunits then
becomes realisticpossibility.

e AdequateModeling Monolithic, centralizedsolutionsto the productionsequencingprob-
lem couldnot, in general sene asadequatenodelsof the productionsequencingrocess.
Thisis becauséhey do notrepresentheorganizationaktructurenherentwithin afactory
Multi-agentapproachesffer aclearadvantagen thisrespectasthey enableusto represent
thereal-world organizationakntities(i.e., productioncells) thattake partin thegeneration
of aproductionsequence.

e Flexibility. In our discussionsvith productionmanagersye have foundit stresseaver
andover againthatfactoriesarenot staticentities. They arein a stateof almostcontinual
changewith new equipmentproductsandworking practicedeingfrequentlyintroduced.
Every time sucha changeoccurs,the costingprofile of the factory changesaccordingly
Monolithic, centralizedsystemsare simply not adaptableenoughto dealwith sucha dy-
namicdomain. In contrast,a multi-agentapproachjn which knowledgeaboutcostsis
distributedamongagentscorrespondindo productioncells, would allow changesn cost
informationto be easilyincorporated.

e Parallelism Finally, sincea multi-agentapproachs inherentlydistributed,thereis poten-
tial for parallelismin the solution. Suchparallelismmightimprove the speedwith whicha
solutionis found.

2 Formal Analysisof the Problem Domain

In this sectionwe formally definethe productionsequencingroblem,andpresentinanalysisof
it usingthetoolsof gameandnegotiationtheory We beagin by definingour notation.



2.1 Notation

We usestandardsettheoreticnotationwherepossible augmentedsfollows. The cardinalityof
asetsS is denoted#S. The setof bags (multisets)over someset S is denotedby bagS. The
numberof timesthatanelementz occursin abagb is denotedc#5b. The setof sequencesver
somesetsS is denotedseqsS. Finally, if S is anarbitrary(non-empty)set,o € seqS, andz € S,
thenoccurs(z, o) denoteghe numberof timesz occursin o.

2.2 Formal Definition of the Domain

Theproductionsequencingroblemmaybeformalizedasfollows. First, let thesetof all possible
producttypesbe P. We generallyabbreiate ‘product types’ to ‘products’, and use p (with
decorationsy’, py, . ..) to standfor membersf P. An orderis abag(multiset)of products.Let
O = bagP bethesetof all orders.We useo (with decorationsy’, o1, .. .) to standfor members
of O. If o € O, thenlet #0 denotehetotal sizeof theordero — thetotalnumberof all products
in 0. Thus

#o0 = Z p#o.

peEP

Let diff (o) C P denotethesetof differentproductsn o, i.e., diff (o) = {p | p € P andp#o >
0}. If #diff (o) = #o, thenevery productin o occursonly once,i.e., o containsno duplicate
products.

A productionsequencés simply a sequencever P; let the setof all productionsequences
be S, i.e., S = seqP. We usecs (with decorationso’, o4, ...) to standfor membersof 5. A
productionsequencer € S is saidto satisfyanordero € O, (notation: satisfies(o, 0)) iff
Vp € P, wehave p#o = occurs(p, o), i.e.,thesequence containsexactly asmary of product
p asarecontainedn o. If o € O, thenlet sat(0) C S denotethe setof productionsequences
thatsatisfyordero, i.e., sat(0) = {0 | 0 € S andsatisfies(o, 0)}.

A costfunction ¢, hasthesignaturec : S — IR, i.e., it takesa productionsequencandre-
turnsarealnumberwhichrepresentthecostof processinghatsequenceWe generallyassociate
costfunctionswith productioncells, in which casethe costfunction representshe costto that
cell of processinghe sequenceA factory, f, is definedto be anindexed setof costfunctions
{¢;}, onefor eachcell 7 in thefactory Givenafactoryf = {¢;} it is possibleto derive a global
costfunction ¢; : S — IR, thatgivesthe costto the whole factory of processing particular
productionsequence:

¢r(0) = 3 cio)

C; Ef

Clearly, aproductionsequence € S will beglobally preferred(i.e., preferredrom the point of
view of thefactory)to a productionsequence’ € S with respecto factoryf iff c;(o) < ¢;(o”).
We cannow formally statethe productionsequencingroblem.

THE PRODUCTION SEQUENCING PROBLEM (PSP): Givenanordero € O anda
factory f, find a productionsequencehat both satisfieso andis globally optimal
with respecto ¢, i.e.,asequence € sat(o) thathasthepropertythat Ao’ € sat(o)
suchthates(o') < ¢s (o).



2.3 Complexity

A naive solutionto the PSPwould involve exhaustvely searchinghesetsat (o) of all production
sequencethatsatisfyordero € O, in orderto find the onewith minimumcost. It is notdifficult

to seethatthe sizeof the searchspace#sat (o), will be exponentialin the numberof different
productsin o. We presenian equationthat preciselydefinesthe sizeof sat(0). Lett; = p;#o,

for all p; € diff (o). Thust; representshe numberof differentproductsof type p; containedn

0. Let n = #o; thusn representshe total numberof all productsin o, i.e., the lengthof ary

productionsequencéhatsatisfies. Letk = #diff (0); thusk is thenumberof differentproducts
in 0. Then#sat(0), thesizeof thesearchspacejs givenby:

#Sat(o):<z><nt—2t1>(n—(g%—tg))“.(n—if_lltj) 1)
(1)=&

Sinceall thevariableson theright handsideareindependentyve cando no simplification.How-
ever, for certaincasesit is possibleto simplify. Considethecasewherethesamenumberof each
producttypeis required.In thiscasey¥p, p’ € P, if p#o0 > 0 andp’'#o0 > 0, thenp#o = p'#o.
Let uswrite ¢ for the numberof productsrequiredof eachtype. Clearly, n = kt. In this case,
equation(1) reducego

where

n!
#sat(o) = P (2)
In thecasewheren = k, (i.e.,theordercontainsno duplicateproducts) equation(2) reduceso
#sat(0) = n! sincet = 1. In thecasewherek = 1 (i.e., thereis only oneproducttype),then
#sat(o) = 1, irrespectve of thesizeof n.

NP-Completeness

We will now prove thatfor animportantsubsetof PSPproblems finding an optimal sequence
is NP-completqandhence,if P # NP, thenthe PSPcannotin generalbe solvedin betterthan
exponentialime). We pre-suppossomefamiliarity the conceptof NP-completgroblemd6].

Thesub-clas®f thePSPthatwe considets thatin whichthecostfunctionc, for afactoryf is
steppedBy this,we meanthattheglobal costof a productionsequencés determinedrom local
properties Formally, acostfunction¢; is steppedff thereexistssomefunction¢; : P x P — IR
suchthat

(#a)-1
er(0)= 3 ¢lo(i),o(i+1)).
=1
Givenasteppedostfunction ¢;, we generallyusec; to denotethe functionwith signatureP x
P — IR thatcorrespondso it. By theterm ‘steppedPSP’,we meanthe PSPwith steppectost
functions;(we recasthe problemasa decisionproblem,in the standardvay).

THE STEPPED PsSP: Givenanordero € O (over P), a steppedcostfunction ¢; :
P x P — IR, andavaluek € IR, determinewvhetheror notthereis ary production
sequence € sat(o) with total costlessthank.



If we know thatc; is steppedthenwe canrecover the correspondindgunction ¢; from ¢; in time
O(# P?). Thekey resultof this sectionis asfollows.

Theorem 1 ThesteppedPSPis NP-complete.

PROOF: (Outline) Membershipof NP is easy;completeness by a polynomialreductionto the
travelling salesmaproblem.O

2.4 An Example

To illustratetheideaspresente@bove, we presenta simpleexample.A carfactoryf consistsof

threeproductioncells: cell 1 doesproductassemblycell 2 doespaintspraying,andcell 3 does
guality control. Carshave threerelevantattributes: colour (red or green),enginetype (petrol or

diesel),anddrive side(left or right). Therearethusatotal of 8 differentpossibleproducts.The
costfunctionsfor eachcell aredefinedasfollows (noticethatthefactorycostfunction ¢; induced
by thesecell costfunctionsis steppedin the sensadescribedibove):

c; : It costscell 1 a total of 5 unitsto processachproduct,plus 5 units for every changeof
enginetype,andanadditional5 unitsfor every changeof drive side.

¢y ¢ It costscell 2 atotal of 5 unitsto proces®very product,plus5 unitsfor every colourchange.

c3 : It costscell 3 atotal of 5 unitsto processevery product,plus 5 units for every changeof
enginetype.

Defineproductsp,, p2, andps; asfollows:
p1 = (red, petrol, left) po = (red, diesel, right) p3 = (green, diesel, left).

Now consideranorderthatrequires2 x p;, 1 x py, and1 x p3. Equation(1) tells usthatthere
areexactly 12 productionsequencethatsatisfythis order Theseproductionsequencedpgether
with the correspondingostfor eachcell and the cumulative factory cost, are summarizedn
Tablel.

It is notdifficult to seefrom Tablel thato,, 05, ando;, aretheonly globally optimalsolutions.
Thebestsequencéor agent(cell) 1 is o5; for agent2, thebestsequenceareos, o3, 07, 019, 011,
andos; finally, for agent3, the bestsequencesareo;, 0,5, 09, andoy,. Thereis no globally
optimalsolutionthatis locally optimalfor all agents.

2.5 GameTheoretic Analysis

We now presentinanalysisof the PSR usingthetoolsof gameandnegotiationtheory[3, 8]. The
ideais that sincewe intendto usenegotiationto attacka particularproblem— the PSP— we
shouldfirst determinehow well this problemmapsinto standarchegotiationtheoreticdomains.
An obviousplaceto startis [8], wherethreetypesof domainaredefined:taskorienteddomaing8,
p30]; stateorienteddomaing8, p90]; andworth orienteddomaing8, p155]. Thedetailsof these
domainsarenotrelevantto ourdiscussiontheimportantpointis thatthePSPdoesnotcorrespond
to ary of them.To seewhy, we needto examinetheassumptionghatunderpinthesedomains.n
eachcasewefind it is assumedhatagentsnaychoosewhetheror notto cooperatdi.e.,they are
autonomous)If thereis no cooperatre solutionthatmakesthembetteroff thanthey wouldbeon



ci(on) c2(on) c3(on) cp(on)

o1 (p1,P1, P2, P3) 30 25 25 80
oy (p1,P1,P3, P2) 25 30 25 80
o3 (p1, P2, P1, P3) 40 25 35 100
oy (p1, P2, p3, P1) 35 30 30 95
o5  (p1, p3, P1, P2) 30 30 35 95
o6 (p1, D3, P2, 1) 35 30 30 95
o7 (P2, P1,P1, P3) 35 25 30 90
os (P2, P1, D3, P1) 40 30 35 105
o9 (P2, p3, D1, P1) 30 30 25 85
010 (Ps, P1, 1, P2) 30 25 30 85
o1 (Ps, P1, D2, P1) 35 25 35 95

o1 (ps, P2, P1, P1) 30 25 25 80

Tablel: ProductionSequenceandTheir Costs

theirown (i.e.,thereis noindividual rationaljoint solution),thencooperatiomwill notoccur This
is becausagentsare utility maximizes. they will alwaysselectthe courseof actionthatgives
thempersonallythehighestpayof, irrespectve of the consequencdsr the societyto whichthey
belong.

The assumptiorthat agentsare utility maximizersdoesnot correspondo the PSPdomain.
Our agentshave no choiceaboutwhetherto cooperateandarenot, therefore fully autonomous.
Conceptually our factory agentssharea commongoal of finding a negotiation sequencehat
minimizesoverall costs.However, if we areto usenegotiationtheoretictechniquedor the PSP
thenwe are requiredto find conceptsin our domainthat correspondo negotiation theoretic
notionssuchasultility, paretooptimality, andsoon. Thatis whatwe aimto doin this sub-section.
First, we collecttogethersomeof the conceptpresentedbove, anddefinewhatwe meanby a
multi-agentproductionsequencinglomain

Definition 1 A multi-agentproductionsequencinglomain(MPSD)is a structure

(P,0,S8,Aq,f)
where:
e P isasetof products
e O = bagP isthesetof ordersoverP;
e S = seqP isthesetof productionsequencesverP;
e Ag ={1,...,1} isasetof agents(correspondingo productioncells);

e f ={c;} isafactoryi.e.,anindexedsetof costfunctions,onefor eachagentcell)i € Ag.

Next, we definethe notion of anencounter In the standardgametheoreticsensean encounter
is a particularinstantiationof a domain,togetherwith a situationin which agentshave goalsto
achieve.



Definition 2 An encountein anMPSD (P, O, S, Ag, f) is simply an order i.e., a memberof
thesetO.

Sincewe can,in principle,computethe costto arny agentof any productionsequenceandthere
will beafinite (if somavhatlarge) numberof productionsequencethat satisfya particularen-
counteywe cancomputetheworst thata particularagentcando with respecto anencounter

Definition 3 If i is anagentin an MPSD (P, O, S, Ag, f), thentheworst thati cando in en-
countero € O (notation:worst;(0)) is definedworst;(0) = max{c;(o) | o € sat(0)}.

Thebestthat: candowith respecto ordero is denotedbest;(o); theformaldefinitionof best; (o)
is similarto thatof worst;(0), andis thereforeomitted. Next, we definethe notionof adeal The
rationalebehindthis terminologywill becomeclearwhenwe discusseggotiationmechanism
section3.

Definition 4 A dealin an MPSD (P, O, S, Ag, f) with respectto an encountero € O is a
productionsequencehatsatisfie, i.e.,amemberof the setsat (o).

Next, we candefinethe utility of adealwith respecto someencounter

Definition 5 Theutility of adeals for someagent; € Ag with respecto anencountewo (nota-
tion: utility? (o)) is definedto bethedifferencebetweertheworstthati candoin o, andthe cost
toi of o: utility? (o) = worst;(0) — ¢;(o).

Sinceo is generallyunderstoodrom context, we usuallyomit referencedo it.
Definition 6 Leto ando’ bedealsfor someencountein anMPSD(P, O, S, Ag, f). Then:

e o issaidtoweaklydominates’ from thepointof view of groupg C Ag, (notation:o >, o')
iffVi € g, utility; (o) > wutility;(o'), i.e., if everyagentin g doesatleastaswell in o asit
doesin o’';

e o is saidto dominates’ from the point of view of groupg C Ag (notation:o >, o') iff
o =, o' and3i € g for whomutility; (o) > wutility; ('), i.e., if every agentin g doesat
leastaswell in o asin o', andatleastoneagentdoesbetterin o thanin o'.

(Whenreferringto the setof all agentswe simply write > or -, ratherthan> 4, or > 4,.) We
cannow definethewell-known gametheoreticnotion of paretooptimalityfor our domain[3].

Definition 7 A dealo is saidto beparetooptimaliff thereexistsnootherdeals’ suchthato' > o.

Paretooptimality is animportantconceptin gametheory To seewhy, supposea group of au-

tonomougutility maximizing)agentsare attemptingto negotiate,andthey comeacrossa deal

thatis paretooptimal. Thenthey maywell have to fix uponthis solution,becauseby definition,

choosinganothersolutionwould make someagentworseoff — andno utility maximizingagent
wouldagreeto beingmadeworseoff. Thus,negotiationalgorithmsareoftendesignedo generate
paretooptimalsolutions.But unfortunatelyfor us, suchsolutionsarenot necessarilydeal:



Theorem 2 With respectothePSP(1) globaloptimalityimpliesparetooptimality, but (2) pareto
optimality doesnotimply globaloptimality.

PROOF: For (1), supposenot. Thenthereexists someglobally optimaldealo thatis not pareto
optimal. If ¢ is notparetooptimal,thenthereexistssomeotherdeals’ in which every agentdoes
atleastaswell asin o, andsomeagentactuallydoesbetter But thisimpliesthat ¢ (o') < ¢; (o),
in which caseo is not globally optimal. But this is a contradiction so the assumptiormustbe
false.For (2), theintuition is easy Paretooptimality saysthatthereis no otherdealthatincreases
theutility of oneagenwithoutreducingheutility of atleastoneotheragent.Butto getaglobally
optimal solution,oneagentmight have to accepta worsedeal,in orderto maximizethe sumof
theutilities, andhenceminimize ¢;. Hereis asimpleexampleto illustratethis. Supposeve have
threeagents], 2, and3, andonly two possibledealsg; ando,, with costfunctionsdefinedthus:

61(0'1) = 10 62(0'1) = 10 63(0'1) = 10
61(0'2) = 15 02(0'2) = 5 63(0'2) = 5

In this example,c; (1) = 30 and¢s(o3) = 25, henceo, is theglobally optimalsolution. But oy
is paretooptimal,sincealthougho, increaseshe utility of agent2 and3, it decreasethe utility
of agentl. O

This theoremindicatesthat, ideally, we seeknegotiationstratgiesthatareoptimalin a stronger
sensehan paretooptimality. Finally, we candefinethe ngyotiation setfor an encounter The
negotiation setintuitively representshe ‘reasonabledealsthat an agentcould proposeduring
negotiation.

Definition 8 The negotiationset for an encountern € O in someMPSD (P, O, S, Ag, f) is
denotedVS°, andis definedto bethe setof paretooptimaldealsfor o.

(As above, we generallyomit referencdo o.) It would be ‘unreasonabledf anagentto propose
adealthatwasnot paretooptimalsinceby definition,theagentcouldhave proposednotherdeal
thatmadeoneagentbetteroff without makingary otheragentworseoff?. An obviouscorollary
of Theorem2 is thatthe negotiationsetfor ary encounteis guaranteedo be non-empty:there
will alwaysbea globally optimalsolution,which, by Theorem2, mustbe paretooptimal.

2.6 Backto the Example

Let usreturnto theexamplethatwe presentedh section2.4. We cananalyzesachof thesolution
sequencet this problemusingtheterminologyandtechniquegust introduced.First, notethat
theworstthatagentl cando is cost40 (sequences; andog). Theworstthatagent2 candois

cost30(sequences,, 04, 05, 06, 08, @andoy). Finally, theworstthatagent3 candois cost35 (o3,

os, 0g, andoy1). Knowing theworstthatanagentcando allows usto computethe utility for that
agentof eachsequencethis in turn allows usto determinewhetheror not a sequenceés pareto
optimal. Theseresultsaresummarizedn Table2. Thenegotiationset, NS, thusconsistof just
3deals:oy, 09, andos.

2Notethatindividual rationality hasno meaningn our domain(cf. [8, p39]).



01 02 03 04 O35 0O 07 Og 09 0190 011 012
utility;(0,) 10 156 0 5 10 5 5 0 10 10 5 10
utilityp(c,) 5 0 5 0 0O 0O 5 0 O 5 5 5
utilitys3(o,) 10 10 0 5 0 5 5 0 10 5 0 10

paretooptimal? x X X

Table2: Propertieof ProductionSequences

3 Negotiation Mechanismsfor the MPSD

Thusfar, we have saidverylittle aboutthenegotiationprocesghatmightbeusedn theMPSD.In
this section we addresshis issue.We beagin with aninformal discussiorof how the negotiation
procesamight work. We then considersomedesirablepropertiesof a negotiation mechanism
for the MPSD, andin section3.2, we formally definea negotiationalgorithm. However, this
algorithmmalkescertainassumptiongaboutagentghatareunrealisticin practice. Therefore,n
sectiord, we consideitheimplementatioraspect®f thealgorithm,andin particular we suggest
how it mightbe madesuitablefor implementation.

As we obsenedin sectionl.2,theintuition behindour work is thatthe processof finding a
productionsequencenight usefully be viewed asa negotiationproblem,in which factorycells
negotiateover productionsequencem orderto minimizetheirlocal costsandhenceijt is hoped,
reduceglobal, or factorycosts.But what,exactly, aretheagentgo negotiateover? Whatpropos-
alsareagentgyoingto make duringthe negotiationprocess? hereareatleasttwo possibilities:

e agentegotiateoverindividual productsin orderto incrementallydevelopanoptimalpro-
ductionsequence;

e agent:egotiateoverentire productionsequencei orderto find onethatminimizescosts.

Let usbriefly considetthefirst possibility Theideahereis thatsomeagentwill begin by propos-
ing oneparticularproduct,which it desireso bethefirst productin the sequenceOtheragents
will thenmalke counteroffers, until agreements someha reached.The agentsthenmove on
to negotiatethe secondoroductin the sequenceandsoon, until anentiresequencés developed
that satisfiescurrentorders. Thereare several obvious dravbacksto this approach.First, and
perhapsnostimportantly it requireshatagentanake verylocal decisionswith theultimateaim
of satisfyinga globalrequiremenfl, pp21-22].It seemdlifficult to devise heuristicsappropriate
to the domainthat might be usedby an agentin orderto meetthis requirement.Secondly this
methoddoesnot correspondo our intuitions abouthow humanssolve the problem. Typically,
humanswill startwith an entire sequencehat approximateso optimality, andtheniteratively
refinethis sequencelor thesereasonsye focusin this paperon the secondapproachin which
agentsneggotiateover entire productionsequencesOf course this approachhasproblemsof its
own: we discusghesen sectior4.

3.1 Desideratafor an MPSD Negotiation Mechanism

As we notedin sectionl.2, a multi-agentapproacho productionsequencindnasseveralinher
entadwantagesover a monolithic approach(e.qg., flexibility, modularity). In addition,an ideal
negotiationmechanisnfor the MPSDwould satisfycertainotherpropertieqcf. [8, pp20-22]):



Simplicity: We seeka neggotiationmechanisnthatwill minimizethetime takento reachagree-
menton a deal. Realistically it may not be possibleto find a tractable(polynomialtime)
negotiationmechanisnfor theMPSD.Perhapshebestwe canhopefor is an‘anytime’ ne-
gotiationmechanisnfcf. [9]): onethatcausesheagentdo quickly find somgsub-optimal)
solution,andwill thenmonotonicallyymprove solutionquality, aslong astheagentsareal-
lowedto continuenegotiating.

Efficiency: The purposeof the PSPis to find a productionsequencehat minimizes,asfar as
possible the costto a factoryof processing particularorder Thisis a very realproblem:
even smallimprovementsin day-to-dayproductionsequencindeadto significantreduc-
tionsin factoryrunningcosts.ldeally, we thereforeseeka negotiationmechanisnthatwill
leadto agreemenbn a globally optimal deal. Realistically it may be thatwe cando no
betterthan,say paretooptimality.

It is worth notingthat,becausef the natureof our domain,someof the attributesof negotiation
asdiscussedn negotiationandgametheoryarenot relevantfor our purpose$8, pp20-21].For
example,a key conceptin neggotiationtheoryis stability, asrepresenteth the propertyof Nash
equilibrium[8, p190]. Two negotiationstratgliess and s’ are saidto be in Nashequilibrium
iff underthe assumptiorthat one agentis using s, anotheragentcando no betterthanuses’,
andvice versa.This propertyis relevantbecaus®f the standardgametheoreticassumptiorthat
agentsareutility maximizers:they eachhave their own goals,andwill try to achiere thesegoals
at the expenseof otheragentsjf necessaryHencean agentwill alwayschoosea stratgy that
maximizesits own utility. This notionis not relevantin the MPSD domainbecauseur agents
will all bedesignedo meetthecommorgoalof reducingtotal factorycosts.For thesamereason,
we canignorethewholeissueof deceptiori8, pp53—-85].our agentswill nottry to deceve other
agentdecausef they did so,they mightimprove their own utility atthe expenseof thefactory

3.2 A Negotiation Mechanism

In this section,we presenta nggotiationalgorithmfor the MPSD. This algorithmis an extended
andadaptedersionof theMonotonicConcessioProtocol[8], in whichagentaiseageneralized
versionof the Zeuthenstrategy [14]. We begin with a generalovervien of the mechanismand
thengive arigorousdefinitionusingthe notationandterminologyof previoussections.

Overview

Thebasicideais quitesimple.Negotiationproceedsn rounds andonthefirst round,every agent
takesanactive partby proposingsomedeal. If adealhasbeenproposedhatmakesevery agent
happy, thennegotiationendssuccessfully Otherwise hegotiationproceedso anotheround,in
which somesubsebf the currentlyactive agentamustconcede For suchconcedingagentsthere
arethreepossibilities:

¢ theagents ableto proposea dealthatrepresentsa ‘true’ concessionin which caset does
So;

¢ the agentis unableto make a ‘true’ concessionbut is neverthelessableto make another
proposaljn which caseit doesso;in this casetheagentwill in somesensee ‘backtrack-

ing’;



e the agenthasexhaustedhe setof all dealsit could propose,jn which caseit withdraws,
andplaysno furtherpartin negotiation.

Agentsthatdo not conceddan someroundput forward the samedealon the next round. In this
way, negotiationproceedsvith agentsoncedingandpossiblywithdraving, until finally, they find
a dealuponwhich they agree.Intuitively, the agentsnvolvedin suchnegotiationare searching
throughthe negotiationset NS, in anattemptto find a mutually acceptablaleal. Theaimis to
find heuristicghatguidethe searchto an efficient solutionasquickly aspossible.On examining
thebasicalgorithm,asdescribedabore, it becomespparenthattherearethreekey questiondo
beanswered:

e how is anagentto choosadts first proposal andarny badtrack proposaP
e onary givenround,whoshouldconcede

¢ if anagentconcedeshenhowmud shouldit concede?

In the sub-sectionghat follow, we presentsolutionsto thesethree problems,andthengive a
formal statemenof the entirenegotiationmechanism.

What Shouldthe First ProposalBe?

Whennegotiationbggins,anagentmustselectfrom the negotiationset NS somedealto propose.
It hasno negotiationhistoryto guideits choice.Similarly, whenanagents forcedto ‘backtrack’

duringnegotiation,becausdé cannotmake aconcessionif mustsuggest dealthatis notsimply

a modificationof the proposalst hasalreadymade.In orderto make sucha selectionwe shall

assumasetT; C NS of dealsthatare‘on thetable’: dealsthathave previously beenproposed
by agenti. At thestartof negotiation,thissetwill beempty Theintuitionis that,whenconceding
or backtrackinganagentis not allowedto proposea dealthatit haspreviously put forward. Let

bp; bethe setof dealsin NS which give agenti the equalbestpayof from all the dealsin the

negotiationsetthatarenot‘on thetable’,i.e., thathave not previously beenproposeddy .

bp; = {0 | o € NS — T; andc;(c) = min{c;(¢") | o' € NS — T;}}.

In addition,it seemgeasonabléo requirethat: only proposeslealsin bp; thatminimizefactory
costs.Thesetbp; containsonly dealsthathave this additionalproperty

bp; = {o | o € bpj andey (o) = min{cs(o”) | o' € bpi}}

An agenti’s first proposal,and ary ‘backtrack’ proposalthatit makeswill be requiredto be
membersof the set bp; (with respectto sets7T; and NS). The setbp; will representhe best
proposalghatagent: is still ableto male..

Who Should Concede?

The solutionwe proposéor this problemis a generalizedrersionof the so-calledZeutherstrat-
egy, originally proposedn [14], anddescribedn [8, pp43—49].Intuitively, the problemfacedby
every agentat every roundis: shouldl concedeor not? How is anagentto make this decision?
Zeuthens ideawasthat the agentwith the leastto lose from concessiorshouldbe the oneto
concede.To put it anotherway, the agentthat shouldconcedes the onefor whom conceding



representshe leastrisk. Zeuthensuggestedhat agent: could quantify its willingnessto risk
conflictatroundt of negotiationin thefollowing way [8, p43]:

; _utility agent; losesby conceding

et = utility agent; losesby notconceding

The utility anagentlosesby not concedings definedto be the utility of thatagents currently
proposedleal. (Intuitively, if anagentdoesnotconcedeit maycauseconflict,andlosethewhole
of its utility.) To determinegthe utility anagentlosesby concedingwe let the agentassumehe
worst Thisis a standarddeain gametheory andis embodiedn suchfundamentatonceptsas
the minimax principle[3]. Fromthe point of view of anagent:, the worstthatcanhappenf it

concedess thatit will endup having to carry outthe currentlyproposediealthatis worstfrom

its point of view. Writing ¢! for the dealproposedy agent: atround¢ in the protocol,we thus
definethewillingnessof agent; to ‘risk conflict’ atroundt¢, (denotedrisk/), as:

tility; (o) —min{ utility; (o})|j€ A .
utility; (a}) m{é{yzzty(aj)la 9} otherwise.
utility;(of)

1 if utility;(cf) =0
risk! = { (@:)

How Much Should be Conceded?

Suppose€T; is the setof dealsthathave beenproposedy agent: throughroundsl to ¢, andthat
atround¢, agent; proposeddeals!. Agent: thendiscoversthatit mustconcede Whatshould
i’s next proposal,citt, be? Ideally, i would find a dealin NS thatrepresents true, sensible
concessionWe suggesthatsucha concessiorshouldenjoy thefollowing properties:

1. ot & T;
Proposinga dealthatyou proposecearlieris pointless.

2. O';H—l >‘Ag—{i} Jf

This conditionstateghat: reallyis makinga concessionthedealit will proposes atleast
asgoodfor every otheragentasits currentoffer, andactuallybetterfor at leastoneother
agent. A subtletyof this conditionis thata concedingagentcannotproposea concession
dealthatimprovesthelot of the restof the groupby ‘rearranging’their utilities: it hasto
make atleastoneagentbetteroff, andevery otheragentnoworseoff. Therationalebehind
this conditionis thatif anagentdid rearrangehe utilities, thenit would make someagent
worseoff thanits previously proposedieal,which would rule outthatagentacceptinghe
new offer.

3. ¢(07"") < ¢s(o)

This conditionrequireshatthedealimprovesthelot of thewholefactory:thereis no point
in proposinga dealthat makessomeagentbetteroff at the expenseof the whole factory
(Notethatcondition(3) is notimplied by condition(2); noris (2) implied by (3).)

4. undertheassumptionthatat round¢ + 1, agent; proposes:™, andthatVk € Ag, k # i
impliesthatk proposes atroundt + 1, then3;j € Ag for whomrisk/*! < risk/*'

The third conditionrequiresthat the concessiommadeby the agentwill be sufficient to
changethe balanceof risk within the group: underthe assumptiorthat every otheragent
proposeghe samedeal,thenon the next round, somebodyelsewill have to concede.If



we did not make this arequirementthenoneagentmight beforcedto concedeoundafter
rounduntil finally, it hasconcedeanoughto shift the balanceof risk. This would conflict
with the simplicity criterion,andsothis requiremenstatesghati mustconcedesnough so
thaton thenext roundit neednotconcede.

5. ci(o!™) = min{¢;(0) | o € NS ando satisfieconditions(1)—(4)}.

This final conditionstateghatthe deal: will offer is the minimal concessionthat: could
make: the new offer is the leastcostdealthat : could proposewhich satisfiedconditions

(1)-(4).
Thesdour propertiesepresenheuristics which (hopefully)guidethesearcho asolution.It may
be thata concedingagent: is unableto find a dealthat satisfiestheseconditions. In this case,
thatagentmust‘backtrack’,by recomputingp;. If bp; is non-emptythentheagentproposesry
memberof this set;if bp; is empty thentheagentwithdravs from negotiation.

It is worth notingthat, in thetwo agentcase conditions(1)—(3) arenot required[8, p44]. It
is the potentialpresenceof moreagentsthat introducesthe needto focusan agents proposal-
makingprocesshroughheuristics.

The Negotiation Algorithm
Thealgorithmwill usethefollowing variables:
e ¢ € IN isaroundcounter
e T; C NS representthesetof dealsproposedy agent; thusfar, for all ; € Ag;

e Active C Ag representshe setof agentsstill active in negotiation,i.e., the setof agents
thathave notyet exhaustedhe setof dealsthey canpossiblypropose.

Thenegotiationalgorithmis thenasfollows:
1. Sett to 1.
2. Foreachagenti € Ag, setT; to ().
3. SetActive to Ag.
4

. For eachagenti € Ag, computebp;.
(Notethatbp; is guaranteetb be non-emptyatthis stage.)

ol

. Foreachagent; € Ag, non-deterministicallgelectadeals; from bp;.

6. Foreachagenti € Active, setT; to T; U {o}}.

7. Checkfor agreementThisis doneby first computingthe agreemenstet

{o|oe |J T;andVj € Ag, 3o’ € T; suchthatutility; (o) > utility; (')}
1€ Ag

Thatis, theagreemensetcontainsall thosedealsthathave beenproposedsuchthatthose
dealsmalke every agent; atleastaswell off asa dealpreviously proposedy ;.

If theagreemensetis non-emptythenagreemenhasbeenreachedandnegotiationends
with theagentsacceptingany memberof theagreemenset.



8. For eachagenti € Active, computerisk;.

9. Let g bethe setof agentssuchthatVi € g, risk{ = min{risk} | j € Active}, i.e.,the
agentswith the (equal)leastwillingnessto ‘risk conflict’.

10. For eachagenti € g:

e if i canmake aconcessionleal thatsatisfieshepropertiedistedearliet thenseto! ™
— thedeal: will proposeonthenext round— to besuchadeal;

e if 4 cannotmake a concessiomeal, thencomputebp;:

— if bp; # 0 (i.e.,theagenthasnot exhaustedhe dealsit couldpossiblypropose),
thenseto! ™ to beary memberof bp;;

— if bp; = 0, thensetActive to Active — {1} (i.e., s withdravs from negotiation).

11. For eachagenti € Active — g, seto’

unchanged.

*1to beot, i.e., every otheragents offer will remain

12. Setttot + 1.

13. Goto(6).

Stepq1)to (5) represeninitializationfor thefirst roundof negotiation. Stepq8) and(9) represent
the processof decidingwho will concede;step(10) defineswhat suchconcedingagentswill
do. Using this algorithm, agentswill systematicallysearchthe negotiationset,looking for an
agreementleal. It is not difficult to seethatthe algorithmthereforehasthe following important

property:

Theorem 3 After a finite numberof steps,the agreemensetwill be non-empty andthusthe
negotiationalgorithmis guaranteetb terminatewith agreement.

PROOF: Assumeagreemenis never reachedStepy8) to (10) ensurethat,on everyround,some
non-emptysubsebf active agentswill eitherwithdraw or elseproposedealsthatthey have not
previously suggested.An agent; will only withdraw if 7; = NS, i.e., if i hasproposedall
possibledeals. Eventually therefore every agentwould proposeall possibledeals. But in this
casewhereT; = NS for all i € Ag, theagreemensetwould be non-emptyandsoagreement
would have beenreachedThusthe assumptions false.O

3.3 That Example Again

Letusnow dry runtheneggotiationalgorithmusingthe examplepresentedh section2.4and3.3.
We begin by settingt to 1 and T; to @, for all : € Ag. ThevariableActive is setto Ag. Every
agentmustthenchooseafirst deal,whichin turn requirescomputingbp; for i € {1, 2, 3} (recall
thatthe negotiationset, NS, is {01, 09, 012}). We have:

bpr = {02} bps = {01,012} bps = {01,02,012}-

The algorithmis non-deterministicin that every agent;: is allowedto chooseat randomsome
memberof bp;. Supposehatagentl choosew, (it hasno choice),agent2 chooses, andagent
3 choosew 5. Thereis no agreementandsowe computeevery agents willingnessto risk:



risk; = 1 risky = 1 risky = 0.

Agent3 mustconcedeAgentsl and2 putforwardtheir previousproposal®nround2, andagent
3 attemptgo computea concessiomleal. Thereareonly two possibilitiesin the negotiationset:
o1 ando,. However, neitherof theserepresents ‘true’ concessionso agent3 mustrecompute
bps. Clearly bps will now containe; ando,, soagent3 non-deterministicallgelectoneof these
for round2. Supposét selectsr;. We updatetheroundcounterto 2, andmove to the next round.

Onthisround,agentl proposes,, while agent2 and3 proposer;. Agreementiasnot yet
beenreachedand so we computerisk?, for i € {1,2,3}: we find thatthe risk valuesremain
unchanged Agent 3 mustconcedeoncemore. The agentagaintries to find a concessiordeal,
but fails. It thereforerecompute$ps, which now containgust o,, whichbecomesgent3’s next
proposal.Theroundcountert is updatedo 3.

In round3, agentsl and3 proposer,, andagent2 proposesr;. We find thattherisk values
remainunchange@ncemore,andsoagent3 is requiredto concedeyet again.As agent3 cannot
make a ‘true’ concessionit recomputedps, but this time findsit is empty: it hasexhaustedhe
setof all dealsit could propose.Agent3 thereforedropsout of negotiation,and Active is setto
{1, 2}. Theroundcounteris updatedo 4.

Onround4, agentsl and2 put forwardthe samedealsthey proposedn the previousround:
09 ando respectrely. On computingrisk, we find:

risk; = 1 risky = 1.

Agent1 mustconcede.lt cannotmake a ‘true’ concessionsincethe dealit currentlyoffersis
globally optimal. However, recomputingbp,; givestwo possibilities: o1 and oy,. Whichever
of theseproposalsagentl makes, agreementvill be reachedon round5, asagents2 and 3
have both previously proposeddealsthat make them no betteroff. Note thatall of the three
original possibilities(o1, 0y, andoi2) wereglobally optimal, and so negotiationwas boundto
concludewith a globally optimal solution.However, o; ando,, (thetwo possibleconclusiongo
thealgorithm)representair costdistributions,whencomparedo o,.

4 From Theory to Practice

As we notedearlier this paperis not simply an abstractstudy The PSPis a real-world prob-
lem, for which we intendto implementa negotiation-basedolution. Our aim in this sectionis
thereforeto considethow well thetheoryof negotiation— asrepresenteh thealgorithmabove
— matchesup to the computationakeality. In particular we discusswhat simplificationsand
assumptionsnustbe madein orderto make thealgorithmamenabldo implementation.

To seethe practicalproblemsassociatedvith the algorithm, consideran agentcomputing
the utility of a dealwith respectsomeencounter This computationrequiresthat the agentis
ableto determineboth the costof the deal, andthe worst that it could do with respectto the
encounterComputingthe costof adealis donevia anagents costfunction, ¢;. It is unlikely that
arealfactorycouldfind a simplemathematicafunctionthatgivesthe costof a dealto afactory
cell. The computatiorof costis thereforelik ely to be doneusingheuristicsdeterminedhrough
experience.Suchheuristicsobviously introducethe possibility of errorinto the computationof
cost. In somefactorieswith particularlycomple« productsandproductionprocessest may be
thatno costinformationcanbereliably obtained:in thiscasethecomputatiorof costbecomesn



educatedyuess.With respecto finding theworstanagentcoulddo in anencounterwe cansee
similar problems.An agentcannotenumerateall possibleproductionsequences orderto find
theworst;evenif it couldenumeraté¢hem,the costinformationis obtainedoy heuristicmethods.
Sotheworstanagentcoulddo in anencountewould alsohave to be computecheuristically

The computationof utility is the foundationupon which the algorithmis constructed:an
agents decisionmakingrestsentirely uponthe determinatiorof this value. Clearly, if thereis
ary elementof uncertaintyassociatedvith the value,thenthe algorithmlosesits desirable—
provable— properties An obviousquestionis thenhow well the algorithmperformswhensuch
uncertaintyis present.

To summarizethereare two key problemsassociatedvith the algorithmfrom a practical
point of view:

e it assumeghat we can allocateeachagent(productioncell) an accuratecost function,
whereasn practice costswould be estimatecheuristically;

e it assumeshatagentshave unlimited reasoningcomputationalpbility, in that, for exam-
ple,they cansearchthroughthe setof all productionsequencem orderto find theonethat
maximizegheir cost,or representthe minimumconcessiomleal,etc.

5 Concluding Remarks

We have presentetheproductionrsequencingroblem:acommonjmportantproblemthatoccurs
in factorieshroughoutheworld, andgivena formal definitionthis problem.We proposedolv-
ing this problemusingnegotiation,andto this end,we recastthe problemdomainin negotiation
theoreticterms.We thenpresente negotiationalgorithmfor the problem,basedn the Mono-
tonic ConcessiorProtocolwith Zeuthenstratey, asdescribedn [8]. However, we found that
mary of the assumptionshatunderpinthis theoreticallyattractve stratgy make it unworkable
in practice.

With respecto futurework, therearemary obviousissuedo be addressedior example,as
weobsenedin theprecedingsectionjt is notclearhow thealgorithmwill performin thepresence
of uncertainty:experimentalnvestigatioris requiredn orderto settlethequestion Also, we need
moreexperiencewith domain-specifieiegotiationheuristicsfor the MPSD. Again, experimental
investigationwould be appropriaten orderto determinehe performancef suchheuristics.
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