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Abstract. In many situations an agent’s behaviour can sensibly be de-
scribed only in terms of a distribution of probability over a set of possibil-
ities. In such case (agents’) decision-making becomes probabilistic too.
In this work we consider a probabilistic variant of a well-known (two-
players) Negotiation game and we show, first, how it can be encoded
into a Markovian model, and then how a probabilistic model-checker
such as PRISM can be used as a tool for its (automated) analysis. This
paper is meant to exemplify that verification through model-checking
can be fruitfully applied also to uncertain multi-agent systems. This, in
our view, is the first step towards the characterisation of an automated
verification method for probabilistic agents.

1 Introduction

Because of their notorious complexity, multi-agent systems’ run-time behaviour
is extremely hard to predict and understand and, as a result, agents’ verification
is a hard task. In recent years significant research effort has been invested in the
development of formal methods for the specification and verification of multi-
agent systems [14] and model-checking has been proved to be a possibility in
that respect. Bordini et al., for example, have shown how LTL model-checking
techniques [13] can be applied, by means of the SPIN model-checker [9], to the
verification of a specific class of non-probabilistic rational agents (i.e. BDI agent-
systems expressed as AgentSpeak programs) [3]. In [5], Dix et al., argue that in
several real-life situations an agent behaviour (i.e. the state an agent is in at a
certain time) may be known with a given degree of uncertainty. As a consequence
a specific language for probabilistic agents (i.e. a language that allows for a
quantification of such uncertainty) is needed and that is what the authors develop
throughout their work. Given that probability distributions are sensible means
to describe the uncertainty between several possibilities (i.e. several potential
successor states of a given, current state) then the type of analysis involved must
also be a probabilistic one. In a probabilistic framework, the analyst is interested
in discovering the measure with which certain properties (either negative or
positive ones) are likely to be true. If we refer to a simple negotiation game where
two players, a seller and a buyer, bargain over a single item, then a player’s
decision may well be considered a probabilistic one, as an expression of the
player’s uncertainty towards their opponent’s behaviour. In such a situation it
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is relevant to assess how uncertainty affects the negotiation outcome (hence
players’ payoff), which is important in being able to answer questions such as:
“what is the probability that an agreement will be reached at all?”, “how likely
is it that the bargained item will be sold to a given value x?”, and “what type
of strategy gets a player a better expected payoff?”.

In this work we show how a probabilistic model-checker, such as PRISM[12],
can be used as a tool to find answers to those type of questions, once the con-
sidered probabilistic agent system has been mapped onto a Markovian model,
specifically a Discrete Time Markov Chain (DTMC). So as LTL model-checking,
through SPIN, has been proved to be suitable for the analysis of non-probabilistic
multi-agent systems, we show here that PCTL model-checking [8], through PRISM,
is a proper tool for verifying probabilistic agent systems. What is still lacking, at
present, is an automatic translation of probabilistic agent programs, such as, for
example, the ones proposed in [5]. into the Reactive Module language, the input
formalism for PRISM. This will be the focus of our future work. The remainder
of the paper is organised as follows: in the next Section a brief introduction to
the PCTL model-checking and to the PRISM tool is presented. In Section 2 we
first introduce the probabilistic version of the Negotiation game we have consid-
ered, then we describe the results we have obtained by analysing specific PCTL
formulae through PRISM. The final section summarises our analysis and lists
directions for future work.

2 Alternating-Offers Negotiation Framework

In this section we present the Negotiation framework we have considered in our
work and describe the probabilistic extension we have introduced and studied.
The Bargaining process we refer to is the Alternating-Offers one discussed in [11]
and [6]. In the basic formulation of such a game, two players bargain over a single
item by alternatively throwing an agreement proposal and making a decision over
the opponent’s last proposed value. Bargainers’ interest is clearly conflicting with
the seller aiming to maximise the outcome of negotiation (i.e. the agreed-value)
and the buyer aiming to minimise it. Players’ behaviour is characterised by a
strategy which essentially determines two aspects: a player’s next offer value and
a player’s acceptance condition (which describes if the opponent’s most recent
proposal is going to be accepted/rejected). Negotiation analysis aims to study
properties of the players’ strategies and, in particular, is interested in addressing
the existence of dominant strategies and strategic equilibrium. However this
type of analysis is not tractable in incomplete information settings, which is
what we are considering in this paper. Nonetheless assessing the effectiveness
of strategies for automated negotiation is relevant from an AI perspective. In
the following we briefly describe the family of time-dependent strategies for
automated negotiation between agents introduced by Faratin et al. in [6], which
is the one we use in our probabilistic framework. Players’ strategies depend on 2
intervals, respectively [minb,maxb], where maxb is the buyer’s reservation price
and minb is the buyer’s lowest acceptable offer (i.e. minb =0), and [mins,maxs],
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where mins is the seller’s reservation price and maxs represents the seller’s upper
bound of a valid offer. A player’s initial offer is his most profitable value, which
is minb, for the buyer and maxs for the seller. The basic idea of this family
of strategies is that a player concedes over time and the pace of concession
determines the type of negotiation strategy. Time is thought of as a discrete
quantity indicating negotiation periods (i.e. players’ turn), T denotes the time-
deadline and a player’s offer at time t∈ [0, T − 1], depicted, respectively, as xt

b

and xt
s, is defined as:

xt
b = minb + αb(t)(maxb −minb) (1)

xt
s = mins + (1− αb(t))(maxs −mins) (2)

where αi(t), i ∈ {b, s} is the time-dependent function in which the constant β
determines the conceding pace of player i:

αi(t) = (
t

T
)(

1
β )

By varying β∈(−∞,∞) a whole family of offer functions, also called Negotiation
Decision Functions (NDFs), can be obtained (see Figure 1(a) and Figure 1(b)).
For β > 1, strategies are referred to as Conceder strategies whereas, for β < 1,
strategies belong to the so-called Boulware class. With β = 1, on the other hand,
we have linear strategies for which a player’s offer is monotonically incremented
(decremented) over time. Finally, the decision making on a received offer is
driven by profitability. Hence the buyer will accept the seller’s offer at time t
if, and only if, it is more profitable than his next offered value. Formally: xt

s is
accepted by b if, and only if, xt

s ≤ xt+1
b (similarly xt

b is accepted by s if, and
only if, xt

b ≥ xt+1
s ). For the sake of simplicity we have chosen specific settings

for the bargainer,s bounds, namely: minb = 0, maxb = 1100 and mins = 100,
maxs = 1100. Such a choice is motivated by the fact that, in our modelling
formalism (i.e. the Reactive Module language of the PRISM model-checker) only
integer variables are admitted, hence a wide enough interval shall be considered
in order to be able to observe the effect of different strategy slopes (having in
mind that in the integer domain 1 is the smallest possible slope value). Finally
we consider T = 20 as the time deadline for the negotiation process.

2.1 Probabilistic decision making

As a result of the decision mechanism introduced in [6], an agreement between
the buyer and the seller is reached only if the offer functions (Figure 1(a) and
Figure 1(b), respectively) cross each other within the time deadline (i.e. T ). If
this is the case the result of negotiation is positive and a deal is implemented at
the crossing point1.
1 In a monetary negotiation the actual agreement would correspond to rounding

up/down to the closest unit of exchange (a penny valued price, if we are referring to
the UK market) of such crossing point, depending on the accepting agent.
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Fig. 1. Buyer-Seller Negotiation Decision Functions

In our framework we introduce uncertainty by making a player’s decision a
probabilistic function of the offered value. By doing so, we enlarge the semantics
of the negotiation model so as to cope with the inherent uncertainty that may
characterise a player’s behaviour when it comes to deciding over a deal proposal.
Such uncertainty may reflect several factors such as: lack of information about
the opponent’s preferences/strategy, a change of a player’s attitude as a result
of environmental changes and/or time passing. In order to reduce the complex-
ity of our model, uncertainty, rather than explicitly being a function of time, is
quantified with respect to the offered value only (however, since we are adopting
time-dependent offer functions the acceptance probability is also, indirectly, de-
pendent on time). Taking inspiration from the NDFs (1) and (2), we introduce
the acceptance probability functions, S AP () for the seller and B AP () for the
buyer, in the following way:

S AP (xt
b) =

8><>:
0 if (xt

b≤mins)“
xt

b−mins

maxs−mins

” 1
βs if (xt

b>mins) ∧ (xt
b<x

t+1
s )

1 if (xt
b≥xt+1

s )

(3)

B AP (xt
s) =

8><>:
0 if (xt

s≥maxb)

1−
“

xt
s

maxb

” 1
βb if (xt

s<maxb) ∧ (xt
s>x

t+1
b )

1 if (xt
s≤xt+1

b )

(4)

Each definition depends on the parameter βi, i ∈ {b, s}, whose value de-
termines the type of function. A player’s attitude (in decision making) is called
conservative if the likelihood of accepting low profitable offers is very small. Thus
a conservative attitude, for the buyer, corresponds to βb >> 1, whereas, for the
seller, is given by βs << 1 The parametric definition for the acceptance proba-
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Fig. 2. Buyer-Seller Acceptance Probability Functions

bility functions allows us to assess the effect of different player’s attitudes on the
negotiation outcome (as we will see we verify several configurations of our model
corresponding to different combinations, (βs, βb), of the acceptance probability
functions). Finally we point out that, by replacing the decision-making model of
Faratin et al. with the probabilistic mechanism determined by (3) and (4), we
still maintain the semantics of the original; in fact through (3) and (4) we have
that the acceptance of an offer whose utility is higher than the corresponding
counter-offer’s one is certain.

3 The PRISM model of negotiation

In this section, we describe the Markovian model of the negotiation framework
(with probabilistic behaviour) introduced in the previous section. We developed
a Discrete Time Markov Chain (DTMC) which represents the behaviour of two
bargainers alternatively throwing offers according to the NDF families (1) and
(2) and adopting the probabilistic decision mechanism described by the family
of functions (3) and (4). We have used the PRISM model-checker to implement
and verify the DTMC model of negotiation. Before describing some details of
the DTMC model we provide brief background to the PRISM tool and to the
Probabilistic Computational Tree Logic (PCTL), the temporal logic used for the
verification of DTMC models (for a more detailed treatment of the subject the
interested reader is referred to the vast literature, examples of which are [1, 8,
10, 12]).

3.1 The PCTL logic and PRISM

Markov processes [7] are a subclass of stochastic processes suitable for modelling
systems such that the probability of possible future evolutions depends uniquely
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on the current state rather than on its past history. A system’s timing is also
taken care of with Markov chain models leading to either DTMCs, for which time
is considered as discrete quantity, or Continuous time Markov chains (CTMC),
where time is continuous. Both DTMC and CTMC models can be encoded in
PRISM by means of a variant of the Reactive Modules formalism of Alur and
Henzinger [1].

For issuing queries, PRISM uses either the Probabilistic Computational Tree
Logic (PCTL) [8], if the underlying model is a DTMC, or the Continuous
Stochastic Logic (CSL) [2] for referring to CTMC models. These languages are
variations of the temporal logics used for more conventional LTS model check-
ing (i.e. the CTL of Clarke et al. [4]). Formally a labelled DTMC is defined as
follows:

Definition 1. Given a set of atomic propositions AP , a labelled DTMC M is a
tuple (S,P, L) where S is a finite set of states, P :S×S → [0, 1] is the transition
probability matrix such that ∀s ∈ S,

∑
s′∈S P(s, s′) = 1 and L : S → 2AP is a

labelling function.

A path in a given DTMC M=(S,P, L) and its probability measure are formally
characterised in the following definitions.

Definition 2. A path σ from state s0 is an infinite sequence σ=s0→s1→ . . .→
sn→ . . . such that ∀i∈N, P(si, si+1)>0. Given σ, σ[k] denotes the k-th element
of σ.

The probability measure of a set of infinite paths with common finite prefix
σ ↑ n = s0 → . . . → sn is defined as the product of the probability of the
transitions in the prefix σ↑n.

Definition 3. Let σ ↑n = s0→ . . .→ sn be a finite path of M. The probability
measure of the set of (infinite) paths prefixed by σ↑n is

Prob(σ ↑ n) =
n−1∏
i=0

P(si, si+1)

if n > 0, whereas Prob(σ ↑ n)=1 if n=0.

The PCTL language used to refer to DTMC models is formally introduced in
the next definition.

Definition 4 (PCTL syntax). For a set of atomic propositions AP , the syn-
tax of PCTL state-formulae (φ) and path-formulae (ϕ) is inductively defined as
follows:

φ := a | tt | ¬φ | φ ∧ φ | PEp(ϕ)

ϕ := φ U≤t φ

where a∈AP , p∈ [0, 1], t∈N∗∪{∞} and E∈{≥, >,≤, <},
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The PCTL semantics is as the CTL one except for probabilistic path-formulae.
The formula PEp(ϕ) is satisfied in a state s if, and only if, the probability measure
of paths starting at s and satisfying ϕ, denoted Prob(s, ϕ), fulfils the bound E p.
Formally:

s |= PEp(φ′ U≤tφ′′) iff Prob(s, (φ′ U≤tφ′′)) E p

where the semantics of (φ′ U≤tφ′′) with respect to a path σ is defined as:

σ |= φ′U≤tφ′′ iff ∃i≤ t : σ[i] |=φ′′ ∧ ∀j <i, σ[j] |=φ′

Essentially, PCTL extends CTL’s expressiveness in two ways: by allowing a con-
tinuous path-quantification (i.e. CTL existential and universal path quantifiers
are replaced by a single continuous quantifier, namely PEp)2 and by introducing
a discrete time-bounding for Until-formulae. For a complete treatment of PCTL
we refer the reader to [8].

3.2 Modelling Probabilistic Negotiation with PRISM

In this section we describe how we have built the DTMC model of negotiation
through PRISM. For the sake of space we do not include any sample from the
actual PRISM source file. However we discuss the most relevant characteristics
of the resulting models, some of which are a consequence of the expressiveness
constraints of PRISM input language. The model consists of three modules: a
Timer (to keep track of turns); a Buyer; and a Seller. The modules’ parallel
composition is synchronised over two events: time-elapsing (driven by the timer)
and offer proposals (alternatively driven by the buyer and seller).

Piecewise approximation of the NDFs: PRISM input language allows for
representing (finitely many) integer values only (i.e. only finite-states system can
be modelled). As a result the continuous NDFs (1) and (2) are, in our PRISM
models, approximated by (sampling from) piecewise linear functions consisting
of two pieces3 (see, for example, Figure 3). The offer function has three parame-
ters: the slope of the first piece, the slope of the second piece and the boundary
(switch time) between the pieces (hence a setting for a NDF approximation is
given by a triple (n1, n2, n3) where the first 2 elements represent the slopes of the
first and second piece while the third element is the switch-time; for example,
the curves in Figure 3 refer to a setting (500, 1, 2)). The desired setting (boul-
ware/conceder strategy) is chosen through model configuration so that different
tactic profiles are verified.
2 PCTL is a superset of CTL’s as: E(φUφ)≡P>0(φUφ) and A(φUφ) ≡ P≥1(φUφ)
3 A two piece line is a good approximation for extreme bargaining tactics (i.e. ψ∼ 0

or ψ >> 1), which is the type of non-linear tactics we address in this work. Less
extreme strategies may be better approximated by multi-piece lines, which would
require minimal modifications to our model in order to be coped with.
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probability for each possible negotiation outcome are derived).

Model’s configuration: the model we developed is designed to be highly con-
figurable through a number of constants. Before running a verification experi-
ment a configuration is chosen by setting up: the Buyer and Seller NDFs (each
of which requires three parameters, first-piece-slope, second-piece-slope, switch-
time), the buyer and seller reservation-price and initial-offer, the buyer and seller
acceptance attitude (i.e. the parameter β for both acceptance probability func-
tions (3) and (4)) and the time-deadline (which we set to 20 for all experiments).
In order to be able to assess the effect of substantially different NDFs (i.e. to
compare how NDF’s slopes affect the result of negotiation) we had to allow for a
wide enough acceptance interval (i.e. the interval [mins,maxb]). As a result we
have chosen a default settings of [1, 1000] for such an interval. This allows us to
sensibly verify the effect of slopes values up to 2 orders of magnitude different
(i.e. 1-10-100). This is the reason why the graphs reporting the results of our
analysis (see next section) refer to such a setting (the x-axis range is referred to
[0, 1000]).
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Buyer-Conceder(500/1/2)
Seller-Conceder(500/1/2)

Fig. 3. NDFs’ piecewise linear approximation

4 Analysis

In this section we describe the result of the verification performed through the
PRISM model-checker on the DTMC model of Negotiation.

We observe that, the probabilistic decision making mechanism encoded within
the bargaining DTMC model results in a probability distribution over the set of
possible outcomes of the negotiation (i.e. the interval [mins,maxs]⊂N), hence
over a strategy profile’s payoff.
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We have used the verification facilities of PRISM to evaluate the distribution
of probability of two distinct aspects of the model behaviour: the value at which
an agreement is reached, and the delay for reaching an agreement. These mea-
surements can be automatically derived by running a number of PCTL formulae
verifications (the so-called PRISM ‘experiment’ facility, by means of which a
parametric PCTL formula is iteratively verified for each specified value of its
parameters). The corresponding PCTL-like PRISM temporal formula for veri-
fying the probability of reaching an agreement at value x is as follows:

P =?(tt U(agreement)∧(PURCHASE =x)), (5)

whereas the temporal formula for determining the probability of an agreement
to be reached at time t is:

P =?(tt U(agreement)∧(TIME = t)). (6)

The reader should not be misled by formulae (5) and (6), in which the PCTL
syntax described by Definition 4 is slightly abused by means of the ’=?’ notation.
This is the way PRISM allows for specifying an experiment with respect to one or
more parameters. For example, the result of running a PRISM experiment on (5),
is that the probability of reaching (at some point in the future) a state in which
an agreement is implemented at x, is computed for every value of the x-range
which has given as input of the experiment (hence by choosing [mins,maxb] as
input range for an experiment over (5), we end up deriving the distribution of
probability over the set of possible agreement values).

In the following we report about the results of the model analysis obtained
by verification of (5) and (6) through PRISM experiments. These are grouped
in three different categories, each one of which copes with a different aspect of
the model analysis.

Agreement distribution as a function of players NDFs: here we discuss
experiments which aim to assess how players’ NDFs affect the probabilistic out-
come of negotiation. For this reason, in these experiments we have compared
model’s configurations by varying combinations of NDFs while sticking with a
specific (fixed) combination of Acceptance Probability Fucntion (specifically the
one corresponding to βb = 0.2 and βs = 5). The results we present are grouped
according to different combination of NDFs. Each combination is denoted by a
pair Fb(xb/yb), Fs(xs/ys) where Fa (a∈{b, s}) denotes the type of function for
player a (i.e. either Lin, Boul, or Conc), whereas xa and ya denote, respectively
the first and second piece’s slopes4. Hence, for example, Lin(10)-Lin(100) de-
notes a profile for which both players are using a linear offer function, the buyer
with slope 10 aqnd the seller with slope 100, whereas the profile Boul(1/100)-
Conc(100/1) corresponds to the buyer using a Boulware offer function with first
slope 1 and second slope 100 and the seller using a conceder tactic with first
and second slope respectively 100 and 1. Figure 4(a) and 4(b) compares the cu-
mulative probability distribution (over the default interval, [1, 1000], of possible
4 as linear functions consist of a single piece, then for Lina only xa is used.
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Fig. 4. Lin(x)-Lin(y) NDF profiles

agreements), for several configurations of, respectively, symmetrical and asym-
metrical, linear NDFs. Some general indications can be drawn from these pic-
tures. For example if players use symmetrical NDFs then a higher concession pace
tends to favour the seller. This is also confirmed by the expectation values which
for the symmetrical case show a (slow) increasing trend Exp(Lin(10)) ∼ 498,
Exp(Lin(50))∼499 and Exp(Lin(100))∼500 confirming the seller’s advantage
with fast concession behaviour. In case of asymmetrical NDFs (Figure 4(b)),
instead, it is generally more convenient for a player to minimise his concession
pace, as this is going to get him a more profitable expected outcome. For exam-
ple if we compare the curves for profiles Lin(50)-Lin(10), and Lin(100)-Lin(10))
the probability tend to cumulate closer to the supremum of the interval (which
is good for the seller). Again this is confirmed by looking at the expectation val-
ues, which show the same tendency, with Exp(Lin(50)Lin(10))∼ 692, whereas
Exp(Lin(100)Lin(10))∼804.

Agreement delay as a function of players NDFs: here we discuss the effect
that players’ NDFs have on the delay for reaching an agreement. Again we con-
sider several combinations of NDFs, but this time we deal with the verification
of 6. Figure 5 depicts the expected time-to-agreement as a function of the players’
concession pace. It indicates that a faster concession results in a quicker agree-
ment. It should be noted that the discrepancy between the symmetrical case (i.e.
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Conc(x/1)−Conc(x/1)) and the asymmetrical one (i.e. Conc(x/1)−Conc(1/1))
is a due to the early crossing of NDF curves. In fact, when both player speed up
concession at the same pace (symmetrical), NDFs curves intersect earlier (and
for x > 25 within the time-deadline T = 20) than they do when only one player
(asymmetrical) is increasing the pace of concession.
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Fig. 5. Expected Time-to-Agreement as a function of concession pace

Agreement distribution as a function of players uncertainty: here we
discuss the effect of players’ uncertainty (i.e. Acceptance Probability functions)
on the outcome of negotiation. We performed a number of experiments for the
verification of (5), but this time we compared combinations of values for the
parameters (βb, βs) of (3) and (4), while imposing a constant configuration for
the NDFs. Figure 6(a) reports about the expected value of an agreement as a
function of the β parameters of (3) and (4). We recall that, in that respect, a
conservative attitude corresponds to βb > 1 , for the buyer, and to βs < 1 for
the seller. The curves in Figure 6(a) allows for comparing the effect of increasing
the conservativeness of a player while the other one’s is maintained constant (in
this specific case, linear). As expected, we can conclude that, conservativeness
(in probabilistic decision making) is desirable for a player, as it improves the ex-
pected value of a deal (decreasing it when the buyer becomes more conservative
and increasing when the seller becomes more conservative).
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Fig. 6. Effect of uncertainty on Agreement value and Agreement delay

Agreement delay as a function of players uncertainty: similarly, here
we discuss the effect that players’ probabilistic decision making on the delay
required for reaching an agreement. Figure 6(b) reports about the expected
time-to-agreement as a function of the β parameter of (3) and (4). Again the
indication of these results is confirms the intuitiveness, which is: a more conser-
vative attitude results in a (slightly) longer expected delay. It should be pointed
out that the small variability of curves in Figure 6(a) and Figure 6(b) is a direct
consequence of the small variability of the acceptance probability functions (3)
and (4) corresponding to extreme values of β (i.e. βb >> 1 and βs << 1). Finally
from Figure 6(b) one may conclude that the seller’s conservativeness affects the
delay for reaching an agreement slightly less than the buyer’s does. This is, in
fact is not true, and the difference between these two results is due to the fact
that for our experiments we must impose an order for the bargaining (i.e. what
player is going to start the negotiation). All the pictures reported in this paper
refer to experiments in which the buyer is the starting player.

5 Conclusions

In this paper we have shown a different approach to the analysis of multi-agent
system which can be used as an alternative to (or in conjunction with) analytical
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methods and/or simulation. We have illustrated how the analysis of specific
negotiation (mixed) strategies can be performed by means of probabilistic model
checking when players’ decision is made through a probabilistic device. This
is achieved by developing an ad hoc probabilistic model which is then verified
against probabilistic properties with the PRISM model checker. This analysis has
helped in comparing the effect that several strategic variables has on two relevant
features of the negotiation process: the (expected) value at which an agreement
is reached and the (expected) time at which a deal is implemented. The results of
our verification provided us with some insights about the behaviour of a system
with uncertain players. Specifically we have shown that, a slower concession
pace is generally preferable for both players (unless in the case of symmetrical
strategies for which the seller is slightly advantaged by faster concession) as well
as a conservative attitude in (probabilistic) decision making. With respect to
the delay for reaching an agreement our analysis proves that faster concession
paces (probabilistically) speed up the negotiation whereas a conservative decision
making (slightly) slows it down.

The model of Negotiation we have developed here is strongly related to the
one introduced by Li et al. in [11]. In [11], the authors study an alternating offers
“uncertain” dynamic framework, where several agents may compete with each
other (by setting aggressive reservation prices) for selling a single item/service
to a (single) buyer. The uncertainty in that framework refers to two aspects:
the availability of competing sellers (i.e. the time of arrival of a seller) and the
reservation price of a newly arrived seller. The authors then introduce specific
heuristics which allows the buyer to dynamically adjust his strategy as a conse-
quence of changes in the environment (arrival of new sellers) and use simulation
to obtain estimations of the framework behaviour. We would like to point out the
main difference between our approach to model uncertainty and the one in [11].
In [11], what is uncertain is the environment behaviour (competitors may enter
the market with a given probability after each time unit, but players’ behaviour
is not inherently probabilistic), whereas in our framework the uncertainty is
represented into the players behaviour (by means of the probabilistic decision
making mechanism). In a sense our model is more general as it abstracts away
from the specific cause of uncertainty (a change in the environment such the
arrival of a new player, for example), and encodes uncertainty directly within
players’ strategies. Furthermore our approach differs from the one studied in [11]
with respect to the verification technique: we use model checking, through which
an exhaustive/exact verification of the model is achieved, as opposed to simula-
tion, which is based on estimations derived from non-exhaustive verification of
the system model.

Following [11], future developments of this work include the extension of our
approach to studying the effect of multiple, uncertain, competing players on the
outcome of negotiation (such a model is currently under development). Finally
we would like to stress that, to the best of our knowledge, this work provides a
novice contribution which shows how a well established and effective automated
verification technique as model-checking for the analysis of game-like scenarios.
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