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Abstract. We define a multi-modal version of Computation Tree Logic (ctl) by ex-

tending the language with path quantifiers Eδ and Aδ where δ denotes one of finitely many

dimensions, interpreted over Kripke structures with one total relation for each dimension.

As expected, the logic is axiomatised by taking a copy of a ctl axiomatisation for each

dimension. Completeness is proved by employing the completeness result for ctl to obtain

a model along each dimension in turn. We also show that the logic is decidable and that

its satisfiability problem is no harder than the corresponding problem for ctl. We then

demonstrate how Normative Systems can be conceived as a natural interpretation of such

a multi-dimensional ctl logic.
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1. Introduction

Computation Tree Logic (ctl) is one of the most popular and successful
logics in computer science [8]. ctl has been very widely applied, and has
received particular prominence through the development of efficient and in-
dustrially applicable ctl model checking systems such as smv [6].

ctl is a branching time temporal logic, and temporal operators in ctl
are made by combining a path quantifier with a tense modality. The possible
path quantifiers are E (“for some path”), and A (“for all paths”) while the
possible tense modalities are ♦ (“eventually”), (“always”), � (“next”),
and U (“until”). Thus, a formula such as A φ expresses the fact that
φ is an invariant, i.e., φ is true at every state along every future path.
ctl formulae are interpreted in a state in a Kripke structure, with the
accessibility relation taking the role of a next-state relation. The relation is
usually required to be total, and a state can have more than one possible
next state, modelling branching time.

In this paper we generalise ctl to a finite set of dimensions ∆. Syn-
tactically, we have one instantiation Eδ, Aδ of the path quantifiers for each
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dimension δ ∈ ∆. Semantically, the structures are extended with one total
relation for each dimension (over the same state space). Many applications
can be envisioned for such a multi-modal variant of ctl, called mctl. State
transition systems are popular as formal models of multi-agent systems [25].
If we make the assumptions that agents can act whenever they want and
never act at exactly the same time, we essentially have a structure where
the transitions are labeled by agent names (and where there is at least one
outgoing transition for each agent in each state), and a formula of the form
Eaφ means that if only agent a acts then she can act in such a way that
φ is true. A related example is reasoning about interleaving computations
of several processes with shared resources. mctl may also find application
as a query language over tree-like structures. For instance, take XPath,
a language used to navigate through elements and attributes in an XML
document [23]. Gottlob and Kock [15] use different versions of the tense
modalities corresponding to the different directions in XPath in order to
encode a fragment of XPath. We could, e.g., take E↓ � to mean “there is a
next child” and E→ � to mean “there is a next sibling”.

Another application closely related to multi-agent systems is that of nor-
mative systems. Typically, such a system defines a set of constraints on
the behaviour of agents, corresponding to obligations and permissions. In
Normative Temporal Logic (ntl), described in Section 5, obligations and
permissions are, first, contextualised to a normative system η and, second,
receive a temporal dimension. That is, expressions introduced in [1] of the
forms Pηα and Oηα (where α starts with a tense modality, and η is a nor-
mative system), means that in the context of the normative system η, α is
permitted or obligatory, respectively.

In the next section, ctl is briefly reviewed, before mctl is formally
defined in Section 3. The axiomatisation and completeness proof are found
in Section 4. We first give an informal outline of the proof and a detailed
example, before we describe the proof in detail in Section 4.2. Then, in
Section 5 we present Normative Temporal Logic (ntl) as an instance of
mctl. In Section 6 we conclude. This paper includes material from the
M4M proceedings [2] and the book chapter [3].

2. CTL

Given a set of primitive propositions Θ, the language LCTL(Θ) of ctl is
defined by the following grammar.

φ ::= � | p | ¬φ | φ ∨ φ | E �φ | E(φU φ) | A �φ | A(φU φ)
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where p ∈ Θ. The usual derived propositional connectives are used, in addi-
tion to E♦φ (A♦φ) for E(�U φ) (A(�U φ)) and E φ (A φ) for ¬A♦¬φ
(¬E♦¬φ).

A ctl model over Θ is a tuple M = (S, R, L) where S is a set of states,
R ⊆ S × S is total1 and L(s) ⊆ Θ for each s ∈ S. The class of all models
over Θ is denoted MCTL(Θ). A model is finite if the set of states is finite.
In general, given a set S and a total relation R over S, we will use π(R, s)
to denote the R-paths starting in s, i.e., the set of sequences x0x1 · · · such
that x0 = s and for each i ≥ 0, (xi, xi+1) ∈ R. For x ∈ π(R, s) and k ≥ 0,
x[k] denotes the the kth element of x (xk). A pointed model is a pair M, s
where M is a model and s is a state in M . Satisfaction is defined as follows.

M, s |=CTL �
M, s |=CTL p ⇔ p ∈ L(s) (p ∈ Θ)

M, s |=CTL ¬φ ⇔ M, s �|=CTL φ

M, s |=CTL φ ∨ ψ ⇔ M, s |=CTL φ or M, s |=CTL ψ

M, s |=CTL E �φ ⇔ ∃(x ∈ π(R, s))M, x[1] |=CTL φ

M, s |=CTL A �φ ⇔ ∀(x ∈ π(R, s))M, x[1] |=CTL φ

M, s |=CTL E(φU ψ) ⇔ ∃(x ∈ π(R, s))∃(j ≥ 0)M, x[j] |=CTL ψ
and ∀(0 ≤ k < j)M, x[k] |=CTL φ

M, s |=CTL A(φU ψ) ⇔ ∀(x ∈ π(R, s))∃(j ≥ 0)M, x[j] |=CTL ψ
and ∀(0 ≤ k < j)M, x[k] |=CTL φ

Let SCTL(Θ) be the logical system over LCTL(Θ) defined in Figure 1.
The following theorem gives completeness and decidability of ctl.

Theorem 2.1 ([9]). Any SCTL(Θ)-consistent LCTL(Θ)-formula is satisfiable
in a finite MCTL(Θ) model.

3. Multi-Modal CTL

We now define a multi-modal version of ctl. Let ∆ be a finite set of indices
and Θ a set of primitive propositions. The language LMCTL(Θ, ∆) of mctl
is defined by the following grammar.

φ ::= � | p | ¬φ | φ ∨ φ | Eδ �φ | Eδ(φU φ) | Aδ �φ | Aδ(φU φ)

1For every s ∈ S there is some s′ ∈ S such that Rss′.
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(Ax1) All validities of propositional logic

(Ax4) E �(φ ∨ ψ) ↔ (E �φ ∨ E �ψ)

(Ax5) A �φ ↔ ¬E �¬φ

(Ax6) E(φU ψ) ↔ (ψ ∨ (φ ∧ E �E(φU ψ)))

(Ax7) A(φU ψ) ↔ (ψ ∨ (φ ∧ A �A(φU ψ)))

(Ax8) E �� ∧ A ��
(Ax9) A (φ → (¬ψ ∧ E �φ)) → (φ → ¬A(γ U ψ))

(Ax9b) A (φ → (¬ψ ∧ E �φ)) → (φ → ¬A♦ψ)

(Ax10) A (φ → (¬ψ ∧ (γ → A �φ))) → (φ → ¬E(γ U ψ))

(Ax10b) A (φ → (¬ψ ∧ A �φ)) → (φ → ¬E♦ψ)

(Ax11) A (φ → ψ) → (E �φ → E �ψ)

(R1) If � φ then � A φ (generalization)

(R2) If � φ and � φ → ψ then � ψ (modus ponens)

Figure 1. SCTL(Θ) [9]

where δ ∈ ∆ and p ∈ Θ. The usual derived propositional connectives are
used, in addition to Eδ♦φ (Aδ♦φ) for Eδ(�U φ) (Aδ(�U φ)) and Eδ φ
(Aδ φ) for ¬Aδ♦¬φ (¬Eδ♦¬φ).

We will use the following terminology: a temporal atom is a formula
starting with a temporal operator; a temporal δ-atom, or sometimes just a
δ-atom, is a formula starting with a temporal operator marked with δ.

Combinations of modal logics, e.g., of epistemic logic and temporal logic,
have been studied to some extent both for particular logics and from a
more abstract viewpoint [14]. Combinations of temporal logics into multi-
dimensional temporal logics have been studied in the non-branching case
[13], but we are not aware of existing results for similar combinations of
branching-time logics such as ctl. Multi-modal ctl can be seen as a fusion
of several “copies” of ctl. Studies of fusions and other combinations of
modal logics have focussed on the transfer of meta-logical properties of the
combined logics, such as soundness, completeness, decidability, etc. Many
general transfer results exist for the fusion of normal modal logics [17, 11, 14].
However, ctl is not a normal modal logic2, and these general results do not



Multi-Modal CTL 5

apply directly. Moreover, it is known that the common proof strategy of
viewing the fusion as the union of iterated modalisations cannot always be
used for non-normal modal logics [10]. The proof strategy we employ in
this paper has similarities with the mentioned common strategy, but is not
a direct application of it.

A mctl model over Θ and ∆ is a tuple M = (S, {Rδ : δ ∈ ∆}, L) where
S is a set of states, Rδ ⊆ S × S is total for each δ and L(s) ⊆ Θ for each
s ∈ S. The class of all models over Θ and ∆ is denoted MMCTL(Θ, ∆).

The satisfaction relation between pointed MMCTL(Θ, ∆) models and
LMCTL(Θ, ∆) formulae is defined exactly as for ctl, only that Rδ is used
to interpret temporal operators marked with δ:

M, s |= Eδ �φ ⇔ ∃(x ∈ π(Rδ, s))M, x[1] |= φ

M, s |= Aδ �φ ⇔ ∀(x ∈ π(Rδ, s))M, x[1] |= φ

M, s |= Eδ(φU ψ) ⇔ ∃(x ∈ π(Rδ, s))∃(j ≥ 0)

M, x[j] |= ψ and ∀(0 ≤ k < j)M, x[k] |= φ

M, s |= Aδ(φU ψ) ⇔ ∀(x ∈ π(Rδ, s))∃(j ≥ 0)

M, x[j] |= ψ and ∀(0 ≤ k < j)M, x[k] |= φ

4. Axiomatisation

Let SMCTL(Θ, ∆) be the logical system over the language LMCTL(Θ, ∆) ob-
tained by taking one “copy” of the ctl axiomatisation for each dimension, as
defined in Figure 2. We will show that SMCTL(Θ, ∆) is sound and complete
with respect to MMCTL(Θ, ∆).

Proposition 4.1. SMCTL(Θ, ∆) is sound wrt. MMCTL(Θ, ∆).

Theorem 4.2. Any SMCTL(Θ, ∆)-consistent LMCTL(Θ, ∆)-formula is sat-
isfiable in a finite MMCTL(Θ, ∆) model.

The proof of Theorem 4.2 is presented in the following subsections. The
following corollaries are immediate.

2To see that ctl is indeed not a normal modal logic, first observe that, e.g., E neither
distributes over conjunction nor disjunction and is thus neither a “box” nor a “diamond”
of a normal modal logic. E is derived, however, but we can make a similar argument
for, e.g., the primary operator AU . Note that AU is a dyadic operator; see [5, p. 195] for
definitions of normality and the K axiom (and duals) for arbitrary similarity types. It is
easy to see that the K axiom does not hold for the AU operator (nor does it hold for the
dual of that operator).
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(Ax1) All validities of propositional logic

(Ax4) Eδ �(φ ∨ ψ) ↔ (Eδ �φ ∨ Eδ �ψ)

(Ax5) Aδ �φ ↔ ¬Eδ �¬φ

(Ax6) Eδ(φU ψ) ↔ (ψ ∨ (φ ∧ Eδ �Eδ(φU ψ)))

(Ax7) Aδ(φU ψ) ↔ (ψ ∨ (φ ∧ Aδ �Aδ(φU ψ)))

(Ax8) Eδ �� ∧ Aδ ��
(Ax9) Aδ (φ → (¬ψ ∧ Eδ �φ)) → (φ → ¬Aδ(γ U ψ))

(Ax9b) Aδ (φ → (¬ψ ∧ Eδ �φ)) → (φ → ¬Aδ♦ψ)

(Ax10) Aδ (φ → (¬ψ ∧ (γ → Aδ �φ))) → (φ → ¬Eδ(γ U ψ))

(Ax10b) Aδ (φ → (¬ψ ∧ Aδ �φ)) → (φ → ¬Eδ♦ψ)

(Ax11) Aδ (φ → ψ) → (Eδ �φ → Eδ �ψ)

(R1) If � φ then � Aδ φ (generalization)

(R2) If � φ and � φ → ψ then � ψ (modus ponens)

Figure 2. SMCTL(Θ, ∆). δ ranges over ∆.

Corollary 4.3. SMCTL(Θ, ∆) is complete wrt. MMCTL(Θ, ∆).

Corollary 4.4. The satisfiability problem for mctl is decidable.

In fact, we can sharpen this result: we will show that, as a corollary of
the construction used in the proof of Theorem 4.2, the satisfiability problem
is in fact decidable in exponential time (and is thus exptime-complete —
no harder than the corresponding problem for ctl).

4.1. Outline of Completeness Proof

Let φ0 be a consistent formula. Rather than extending the tableau-based
method for proving the completeness of ctl in [8], we use a construction
which employs the ctl completeness result (Theorem 2.1) directly, viewing
a formula as a ctl formula for one dimension δ ∈ ∆ at a time by reading Aδ

and Eδ as ctl path quantifiers A and E, respectively, and treating formulae
starting with a δ′-operator (δ′ �= δ) as atomic formulae. By completeness
of ctl, we get a ctl model for the formula (if it is consistent), where the
states are labelled with atoms such as Aδ′ψ or Eδ′ψ (for δ′ �= δ). Then, for
each δ′ and each state, we expand the state by taking the conjunction of
δ′-formulae the state is labelled with, construct a (uni-modal) ctl model
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of that formula, and “glue” the root of the model together with the state.
Repeat for all dimensions and all states.

In order to keep the formulae each state is labelled with finite, we consider
only subformulae of φ0; by a δ-atom we here mean a subformula of φ0 starting
with either Eδ or Aδ. Let At−δ denote the union of all sets of δ′-atoms for
each δ′ �= δ. Furthermore, we assume that φ0 is such that every occurrence
of Eδ(α1 U α2) (Aδ(α1 U α2)) is immediately preceeded by Eδ �(Aδ �) — we
call this XU form. Any formula can be rewritten to XU form by recursive use
of the axioms (Ax6) and (Ax7). We start with a model with a single state
labelled with the literals in a consistent disjunct of φ0 written in disjunctive
normal form. We continue by expanding states labelled with formulae, one
dimension δ at a time. In general, let at(δ, s) be the union of the set of δ-
atoms s is labelled with and the set of negated δ-atoms of XU form s is not
labelled with. We can now view

∧
at(δ, s) as a ctl formula over a language

with primitive propositions Φ ∪ At−δ. The following can be shown: any
mctl consistent formula is satisfied by a state s′ in some finite ctl model
M ′ viewing Φ ∪ At−δ as primitive propositions, such that for any δ′ �= δ
and any state t of M ′,

∧
at(δ′, t) is mctl-consistent, and s′ does not have

any ingoing transitions. This ensures that we can “glue” the pointed model
M ′, s′ to the state s while labelling the transitions in the model with the
dimension δ we expanded — M ′, s′ satisfies the formulae needed to be true
there. The fact that s′ does not have any ingoing transitions ensures that
we can append M ′, s′ to s without changing the truth of δ-atoms at s′. The
fact that φ0 is of XU form ensures that all labelled formulae are of XU form,
which again ensures that we don’t add new labels to a state when we expand
it (because all the formulae we expand start with a next-modality). The fact
that

∧
at(δ′, t) is consistent for states t in the expanded model, ensures that

we can repeat the process. Only a finite number of repetitions are needed,
depending on the number of nested operators of different dimensions in φ0,
after which we can remove the non-Φ labels without affecting the truth of
φ0 and obtain a proper model.

4.1.1. Example

Take ∆ = {a, b} and Θ = {p, q, r}. We illustrate the method for finding a
satisfying mctl model for the formula

φ0 = Ea �(p ∧ Eb �(q ∧ Ea �r) ∧ Ea(r U ¬p) ∧ Aa �p) ∧ Aa �q ∧ Eb �p

We define the model in steps. Some of the information given here for each
step refers to the proof in the following section.
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The initial model M0 consists simply of a single state ŝ labelled with the
temporal atoms required to be true. In this model every temporal atom is
viewed as a primitive proposition.

M0: (U0 = {ŝ}, T 0 = ∅, τ0(ŝ) = ε)

ŝ

Ea �(p ∧ Eb �(q ∧ Ea �r) ∧ Ea(r U ¬p) ∧ Aa �p), Aa �q, Eb �p

In general, the model Mj+1 is constructed from Mj by expanding each node
in U j by constructing one ctl model for the temporal atoms in that node of
each dimension, and then attaching these ctl models to the node we expand.

Expanding ŝ along dimension a, we treat the temporal atoms of a dimen-
sion different from a as primitive propositions, and Ea and Aa as the ctl
path quantifiers E and A, respectively. From completeness of ctl we know
that there is a model for the formulae ŝ is labelled with. There are, of course,
many ctl models, but we choose a model where the labels (temporal atoms
of dimensions different from a) are mctl-consistent — which ensures that
we can repeat the process and expand the new nodes again by choosing a ctl
model — and where there are no ingoing transitions to the root — ensuring
that we can glue models of different dimensions together. (The existence of
models with these properties is formally ensured by Proposition 4.8 below).
We get, e.g., the following (uni-modal) ctl-model (right), satisfying the set
of ctl formulae {E(p∧ t∧E(r U ¬p)∧A �p), A �q}, where t is an atom rep-
resenting Eb �(q ∧ Ea �r). This is a proper ctl-model, with a single, total,
relation. Expanding ŝ along dimension b we get the (uni-modal) ctl-model
on the left:

s4
p

q, p, r, Eb �(q ∧ Ea �r)s1

s2

s3

p, r

There was only one state in U0, and two dimensions, so we are done. Glu-
ing the two ctl models together with the state ŝ we expanded, we get M1:
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M1: (U1 = {s1, s2, s3, s4}, T 1 = {ŝ}, τ1(s1) = τ1(s2) = τ1(s3) =
a; τ1(s4) = b)

ŝ
b

b
a

a

a

s1

s2

s3

q, p, r, Eb �(q ∧ Ea �r)

p, r

s4
p

a

U1 is the set of nodes added in the previous round, which will be ex-
panded now. It might seem that s4 does not need to be expanded because
it is not labelled by any temporal formulae, but it must be expanded along
the a-dimension in a trivial way: a self loop must be added to make sure
that the a-relation is total. Similarly for s2 and s3 wrt. b. The result is M2:

M2: (U2 = {s5}, T 2 = {ŝ, s1, s2, s3, s4}, τ2(s5) = b)

q, Ea �r

b

a, b
a

a

a

b

b

a, b

b

s1

s2

s3

p, r

s4
p

ŝ

s5

q, p, r

a, b

M3 is as follows:

M3: (U3 = {s6}, T 3 = {ŝ, s1, s2, s3, s4, s5}, τ3(s6) = a)

q

b

a, b
a

a

a

b

b

a, b

b

a

a

s1

s2

s3

p, r

s4
p

ŝ

s5

q, p, r

s6r

a, b

Finally, M4 trivially expands s6 by gluing on a model for each of the
formulae in each of the dimensions different from τ(s6). There are no such
formulae, so the models are trivial (satisfying tautologies) but total:
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M4: (U4 = ∅, T 4 = {ŝ, s1, s2, s3, s4, s5, s6})

q

b

a, b
a

a

a

b

b

a, b

b

a, b

a

s1

s2

s3

p, r

s4
p

ŝ

s5

q, p, r

s6r

a, b

There are no more states to expand, and the construction is finished.

4.2. Completeness Proof

We now formally prove Theorem 4.2.
Let φ0 be a SMCTL(Θ, ∆) consistent LMCTL(Θ, ∆) formula. We will

show that φ0 is satisfied by a finite model in MMCTL(Θ, ∆). We repeat the
definition of XU form:

Definition 4.5 (XU form). A formula φ ∈ LMCTL(Θ, ∆) is of XU form if
every occurrence of a subformula of the form Eδ(ψ1 U ψ2) (Aδ(ψ1 U ψ2)) in φ
is immediately preceeded by an Eδ � (Aδ �) operator.

Lemma 4.6. Any LMCTL(Θ, ∆) formula φ is equivalent to a LMCTL(Θ, ∆)
formula of XU form.

Proof. Rewrite the formula using axioms (Ax6) and (Ax7) (which are eas-
ily seen to be valid) recursively, until the formula is of the form.

Thus, we will henceforth assume that φ0 is of XU form. Let Subf(φ)
be the set of all subformulae of a formula φ. We can view the language
LMCTL(Θ, ∆) as a ctl language, by fixing some δ and reading EδX as EX,
AδX as AX, and so on, and treating the other temporal atoms, such as
Eδ′Xφ, δ′ �= δ, as primitive propositions (in addition to Θ). For technical
reasons, we only consider temporal atoms occurring in Subf(φ0). Let:

Atδ = {Eδ �φ,Eδ(φU ψ), Aδ �φ,Aδ(φU ψ) : φ, ψ ∈ Subf(φ0)}

– in particular, Atδ includes the set of temporal atoms of type δ occurring
in φ0 — let

At =
⋃
δ∈∆

Atδ
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– hence, At includes all temporal atoms in φ0 — and let

At−δ =
⋃
δ′ �=δ

Atδ
′

– thus, At−δ includes the temporal atoms occurring in φ0 which are not
of type δ. We can now view any formula in LMCTL(Θ, ∆) ∩ Subf(φ0) as
a LCTL(At−δ ∪Θ) formula by reading any Eδ, Aδ which is not in the scope of
any Eδ′ , Aδ′ (δ′ �= δ) as E, A, and treating temporal formulae such as Eδ′Xφ
where δ′ �= δ as primitive propositions. When Θ and ∆ are understood,
we will use LCTL(δ) as shorthand for the ctl language LCTL(At−δ ∪ Θ)
and MCTL(δ) as a shorthand for the associated ctl model class
MCTL(At−δ ∪ Θ). A model M ∈ MCTL(δ) has a transition relation for
interpreting temporal δ-atoms, and the labelling function interprets the
other temporal atoms occurring in φ0 in addition to primitive propositions
Θ in the states. Similarly, we use SCTL(δ) to denote the ctl axiom system
SCTL(At−δ ∪Θ) over the language LCTL(δ). Thus, we will henceforth some-
times view a mctl formula φ also as a LCTL(δ) formula for some given δ,
and write, e.g., M, s |=CTL φ when M ∈ MCTL(δ) with the meaning defined
by reading Eδ as E, etc., as explained above. Similarly, we sometimes im-
plicitly view a LCTL(δ) formula as a mctl formula (i.e., the mctl formula
obtained by replacing every E with Eδ and every A with Aδ).

Lemma 4.7. For any δ and φ ∈ LCTL(δ), �SCTL(δ) φ implies that �SMCTL
φ.

Proof. Straightforward induction on the length of the proof.

When t is a state of a model M ∈ MCTL(δ) and δ′ �= δ, let

at(δ′, t, M) = {ψ : ψ ∈ Atδ
′
, ψ is of XU form, ψ ∈ L(t)}∪

{¬ψ : ψ ∈ Atδ
′
, ψ is of XU form, ψ �∈ L(t)}

Proposition 4.8. Let δ ∈ ∆ and φ ∈ LCTL(δ). If φ is SMCTL-consistent,
then there is a model M ′ ∈ MCTL(δ) with a state s′ such that

1. M ′, s′ |=CTL φ

2. For all states t reachable from s′ in M ′ and for all δ′ �= δ,
∧

at(δ′, t, M ′)
is SMCTL-consistent

3. There is no state t in M ′ such that (t, s′) ∈ R′

4. M ′ is finite



12 T. Ågotnes, W. van der Hoek et al.

Proof. Let XU δ′ be the set of all formulae in Atδ
′

of XU form, and let
XU δ′+ be XU δ′ closed under single negation, i.e., XU δ′+ = {α,¬α : α ∈
Atδ

′
, α of XU form}. Let Y δ′ be the set of all XU δ′+-maximal SMCTL-

inconsistent subsets of XU δ′+, i.e., all sets y ⊆ XU δ′+ such that either
α ∈ y or ¬α ∈ y for any α ∈ XU δ′ and �SMCTL

∧
y → ⊥. Y δ′ is finite

because XU δ′+ is finite. Let

f(δ′) =
∧

y1 ∨ · · · ∨
∧

yk where Y δ′ = {y1, . . . , yk}

We show that

γ = φ ∧ Aδ
∧
δ′ �=δ

¬f(δ′)

is SMCTL-consistent. Assume the opposite: �SMCTL
γ → ⊥. It follows

that �SMCTL
Aδ

∧
δ′ �=δ ¬f(δ′) → ¬φ. However, for any δ′ �= δ and

y ∈ Y δ′ we have that �SMCTL
¬∧

y, and thus that �SMCTL
¬f(δ′) for any

δ′. It follows that �SMCTL

∧
δ′ �=δ ¬f(δ′). By (Gen), we have that �SMCTL

Aδ
∧

δ′ �=δ ¬f(δ′). But then we also have that �SMCTL
¬φ, which contra-

dicts the fact that φ is SMCTL-consistent. Thus, γ is SMCTL-consistent.
Clearly, γ is SCTL(δ)-consistent — otherwise it would not have been

SMCTL-consistent by Lemma 4.7. By completeness of SCTL(δ) (Theorem
2.1), there is a finite model M = (S, R, L) ∈ MCTL(δ) such that M, s |=CTL

γ for some s. Let t be reachable from s in M . Assume that
∧

at(δ′, t, M) is
not SMCTL-consistent for some δ′ �= δ. Then at(δ′, t, M) = yj for some j, so
M, t |=CTL f(δ′). It follows that M, s |=CTL Eδ♦f(δ′), but this contradicts
the fact that M, s |=CTL γ. Thus,

∧
at(δ′, t, M) is SMCTL-consistent. Also,

M, s |=CTL φ.
To get a satisfying state with no ingoing transitions, let M ′ = (S′, R′, L′)

where S′ = S ∪ {s′} for some new state s′; R′ = R ∪ {(s′, t) : (s, t) ∈ R};
L′(s′) = L(s) and L′(t) = L(t) for t �= s′. It is easy to see that M, s |=CTL ψ
iff M ′, s′ |=CTL ψ for all ψ. In particular M ′, s′ |=CTL φ.

Definition 4.9 (General Models). A general model over Θ and ∆ is a
tuple M = (S, T, U, τ, {Rδ : δ ∈ ∆}, L, K) where T and U partition S,
τ(u) ∈ ∆ ∪ {ε} for each u ∈ U , K(u) ⊆ ⋃

δ′ �=τ(u) Atδ
′

for each u ∈ U , and
the other elements are as in a model. A general model is finite if S finite.

Satisfaction of a formula φ ⊆ Subf(φ0) in a pointed general model is
defined as follows. Let s ∈ S.
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M, s |= �
M, s |= p ⇔ p ∈ L(s) (p ∈ Θ)

M, s |= ¬φ ⇔ M, s �|= φ

M, s |= φ ∨ ψ ⇔ M, s |= φ or M, s |= ψ

M, s |= AδXφ ⇔

⎧⎪⎪⎨
⎪⎪⎩

∀(x ∈ π(Rδ, s))M, x[1] |= φ s ∈ T

∀(x ∈ π(Rδ, s))M, x[1] |= φ s ∈ U and δ = τ(s)

AδXφ ∈ K(s) s ∈ U and δ �= τ(s)

and similarly for the other temporal atoms.

We now define a sequence M0, M1, . . . of finite general models Mj =
(Sj , T j , U j , τ j , {Rj

δ : δ ∈ ∆}, Lj , Kj) such that ŝ ∈ Sj for all j for some state
ŝ, having the three following properties for any j:

(i) Mj , ŝ |= φ0

(ii) For every t ∈ U j and δ �= τ j(t),
∧

at(δ, t, Mj) is SMCTL-consistent

(iii) For every t ∈ U j , each α ∈ Kj(t) is of XU form

where
at(δ, s, Mj) = {ψ : ψ ∈ Atδ, ψ is of XU form, ψ ∈ Kj(s)}∪

{¬ψ : ψ ∈ Atδ, ψ is of XU form, ψ �∈ Kj(s)}

It might be instructive to refer to the example in the previous section as
an illustration of the construction.

M0 has a single state ŝ, such that ŝ ∈ U0 and τ(ŝ) = ε. If we view every
temporal atom in φ0 which is not in the scope of another temporal operator
as a primitive proposition, φ0 is a purely propositional formula. Because
SMCTL contains propositional logic and φ0 is of XU form, φ0 is equivalent
to a formula on disjunctive normal form (A1

1∧· · ·∧A1
m)∨· · ·∨ (Ak

1 ∧· · ·Ak
m),

where for each 1 ≤ j ≤ k and 1 ≤ i ≤ m, either Aj
i = Bi or Aj

i = ¬Bi,
where {B1, . . . , Bm} = Θ ∪ {α ∈ At : α of XU form}. Since φ0 is SMCTL-
consistent, some ξ = (Aj

1∧· · ·∧Aj
m) is SMCTL-consistent. Let X be the set of

positive atoms Aj
i in ξ, and let Y = {B1, . . . , Bm}\X be the negative atoms.

I.e, ξ =
∧

(X ∪ {¬y : y ∈ Y }) is SMCTL-consistent. Set L0(ŝ) = X ∩ Θ and
K0(ŝ) = X \ L0(ŝ). (i) clearly holds, because M0 interprets φ0 simply as a
propositional formula using the valuations L0(ŝ) and K0(ŝ) and thus we see
immediately that M0, ŝ |= ξ. (ii) holds, because at(δ, ŝ, M0) ⊆ X ∪{¬y : y ∈
Y }. (iii) holds immediately, because every atom in X is of XU form.
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Mj+1 is obtained from Mj as follows. Informally, the idea is to take,
for every δ and every state s in U j , the set at(δ, s, Mj), and replace it
with a model M ∈ MCTL(δ) for at(δ, s, Mj) rooted in s. Formally, we
define Mj+1 as follows. For every u ∈ U j and every δ �= τ j(u), we have
that

∧
at(δ, u, Mj) is SMCTL-consistent by (ii), so take φ =

∧
at(δ, u, Mj)

and let M ′ = (S′, R′, L′) ∈ MCTL(δ) and s′ be as in Proposition 4.8.
W.l.o.g. we assume that every state in M ′ is reachable from s′. Let Mu,δ =
(Su,δ, Ru,δ, Lu,δ) ∈ MCTL(δ) be equal to M ′ except that Lu,δ(s′) = ∅ and
Lu,δ(t) = {α ∈ L′(t) : α of XU form} for any t ∈ S′ \ {s′}, and let tu,δ = s′.
We have that each α ∈ at(δ, u, Mj) starts with a (possibly negated) Eδ′ �

or Aδ′ � operator (for some δ′). Together with the fact that s′ does not
have any ingoing transitions, this implies that changing L′(s′) does not af-
fect the truth of

∧
at(δ, u, Mj) in s′. Furthermore, removing atoms not of

XU form from L′(t) does not affect the truth of
∧

at(δ, u, Mj) in s′ either,
because all atoms in at(δ, u, Mj) are of XU form. Thus, all the four points
in Proposition 4.8 still hold for Mu,δ and tu,δ; in particular we have that
Mu,δ, tu,δ |=CTL

∧
at(δ, u, Mj).

Let
Sj+1 = Sj ∪ ⋃

u∈Uj ,δ �=τj(u)(Su,δ \ {tu,δ})
T j+1 = T j ∪ U j

U j+1 =
⋃

u∈Uj ,δ �=τj(u)(Su,δ \ {tu,δ})
τ j+1(v) = δ iff v ∈ Su,δ (for some u)

Rj+1
δ = Rj

δ ∪
⋃

u∈Uj ,δ �=τj(u){(x′, y) : (x, y) ∈ Ru,δ}
where x′ = u if x = tu,δ and x′ = x otherwise

Lj+1(t) =

{
Lj(t) t ∈ Sj

Lu,δ(t) ∩ Θ t ∈ Su,δ

Kj+1(t) = Lu,δ(t) \ Θ when t ∈ Su,δ

Since Sj is finite and each Su,δ is finite (guaranteed by Proposition 4.8) and
both U j and ∆ are finite, Sj+1 is finite.

We argue that (ii) holds for Mj+1. Let t ∈ U j+1 and δ′ �= τ j+1(t).
t ∈ Su,δ for some u ∈ U j and some δ �= τ j(u), which implies that τ j+1(t) = δ
and thus that δ �= δ′. We have that

∧
at(δ′, t, Mj+1) =

∧
at(δ′, t, Mu,δ) is

SMCTL-consistent by Proposition 4.8.

We argue that (iii) holds for Mj+1. Let t ∈ U j+1. We have that
Kj+1(t) = Lu,δ(t) \ Θ, for some u, δ. (iii) holds immediately, because every
formula in Lu,δ is of XU form by construction.
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We now argue that also (i) holds for Mj+1. First we show that for any
v ∈ U j and any β ∈ Subf(φ0) of XU form

Mj , v |= β ⇔ Mj+1, v |= β (I)

by induction on the structure of β.

• β = p: Lj(v) = Lj+1(v).

• β ∈ {Eδ′ �γ, Eδ′ �Eδ′(γ1 U γ2), Aδ′ �γ, Aδ′ �Eδ′(γ1 U γ2) : γ, γ1, γ2 of XU
form}: First assume that δ′ �= τ j(v). Mj , v |= β iff β ∈ Kj(v) iff
β ∈ at(δ′, v, Mj) iff Mv,δ′ , tv,δ′ |= β (the fact that at(δ′, v, Mj) is closed
under single negation gives us both directions). From the construction
of Rδ′

j+1, the only δ′-transitions from v are transitions from tv,δ′ in Rv,δ:
we have that

(tv,δ′ , t) ∈ Rv,δ′ ⇔ (v, t) ∈ Rδ′
j+1

for any t. Furthermore, we have that

Mv,δ′ , t |= α ⇔ Mj+1, t |= α

for any t such that (v, t) ∈ Rδ′
j+1 and for any α: the submodel of Mj+1

generated by t is equivalent to the submodel of Mv,δ′ generated by t —
this holds because tv,δ does not have any ingoing transitions and thus
v does not have any ingoing δ′-transitions — and these two submodels
interpret formulae in exactly the same way. It follows that Mv,δ′ , tv,δ′ |= β
iff Mj+1, v |= β.
Second, assume that δ′ = τ(v). Observe that π(Rj

δ′ , v) = π(Rj+1
δ′ , v),

and for any state w along a path we have that w ∈ U j by construction
since v ∈ U j , so Mj , w |= α iff Mj+1, w |= α for α ∈ {γ, γ1, γ2} by the
induction hypothesis. It follows that Mj , v |= β iff Mj+1, v |= β.

• Propositional connectives: Straightforward.

We now argue that for any v ∈ Sj and any ψ ∈ Subf(φ0) of XU form,

Mj , v |= ψ ⇔ Mj+1, v |= ψ

That (i) holds for Mj+1 follows immediately. We argue by structural in-
duction on ψ. For ψ ∈ Θ, we have that Mj , v |= ψ ⇔ Mj+1, v |= ψ
because Lj(v) = Lj+1(v). Assume that ψ is a temporal atom in the set
{Eδ �γ, Eδ �Eδ(γ1 U γ2), Aδ �γ, Aδ �Aδ(γ1 U γ2) : γ, γ1, γ2 of XU form},
and consider first the case that v ∈ Tj . For any δ, the δ-paths in Mj

starting in v are exactly the same as the δ-paths in Mj+1 starting in v.
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By the induction hypothesis, we have that Mj , w |= γ iff Mj+1, w |= γ for
any w along any of these paths and any γ ∈ Subf(ψ) of XU form, which
shows that Mj , v |= ψ iff Mj+1, v |= ψ. Consider, second, that v ∈ Uj , in
which case we immediately have the required result by (I). The cases for the
propositional connectives are straightforward. This concludes the argument
that (i) holds for Mj+1.

Let the degree of a formula α, denoted deg(α), be the maximum num-
ber of nested temporal operators of alternating type in the formula. For
example, deg(p) = 0, deg(Eδ �p) = 1, deg(Eδ �Aδ′(pU q)) = 2 (two dimen-
sions of alternating type), deg(Eδ �Aδ(pU q)) = 1 (two temporal operators
but not of alternating type), deg((Eδ �p) ∧ (Eδ′ �q)) = 1 (two dimensions
but not nested), deg(Eδ �Eδ′(pU Aδ′ �Eδ �q)) = 4, etc. Formally we can
define deg(α) as follows. Let dim(α) be the set of dimensions of all occur-
rences of temporal operators in the formula α which are not in the scope
of any other temporal operator: dim(p) = ∅; dim(¬φ) = dim(φ); dim(φ1 ∨
φ2) = dim(φ1)∪dim(φ2); dim(Eδ �φ) = dim(Aδ �φ) = dim(Eδ(φ1 U φ2)) =
dim(Aδ(φ2 U φ2)) = {δ}. Finally, deg(p) = 0; deg(¬φ) = deg(φ); deg(φ1 ∨
φ2) = max(deg(φ1), deg(φ2));

deg(Eδ �φ) = deg(Aδ �φ) =
{

deg(φ) dim(φ) \ {δ} = ∅
deg(φ) + 1 otherwise

(increase the degree whenever there is a dimension different from δ in φ);

deg(Eδ(φ1 U φ2)) = deg(Aδ(φ2 U φ2)) =
{

deg(φ) dim(φ) \ {δ} = ∅
deg(φ) + 1 otherwise

where φ = φ1 if deg(φ1) > deg(φ2) and φ = φ2 otherwise.
A general model M = (S, T, U, τ, {Rδ : δ ∈ ∆}, L, K) is a generalisation

of a proper model M ′ = (S, {Rδ : δ ∈ ∆}, L). We say that the satisfaction
relationship between a formula φ and a pointed general model (M, s), i.e.,
the question of whether M, s |= φ or not, is classical if the definition (as
given recursively above) does not involve any state from U (and thus not
τ or K either). If the satisfaction relationship is classical, then satisfaction
only depends on the underlying (proper) model.

Lemma 4.10. For any α ∈ Subf(φ0), the satisfaction relationship between
α and (Mm+j+1, v) is classical when deg(α) = j and v ∈ Um.

Proof. Directly from the definition of satisfaction, we have that when v ∈
Um then for every k > m if x ∈ π(Rk

δ , v) for some δ then

1. if τm(v) = δ, then for any i, x[i] ∈ Um
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2. if τm(v) �= δ, then for any i, x[i] ∈ Um ∪ Um+1

This means that when we evaluate a formula in a state v ∈ Um, only a
“switch” in dimension can involve states from Um+1. For example, in the
evaluation the formula Eδ(Aδ �pU Eδ �q) of degree 1 in a state v ∈ Um

in a model Mk where k > m, only states u ∈ Um ∪ Um+1 are involved.
In the evaluation of the degree 2 formula Eδ(Aδ �pU Eδ′ �q), only states
in Um ∪ Um+1 ∪ Um+2 are involved. If there are j “switches” between
dimensions, only states in Um ∪ · · · ∪Um+j are involved. Thus, if the degree
of α is j, the evaluation of α in v ∈ Um may involve states in Um+1, Um+2,
. . . , Um+j , but not states from Um+j+1. This means that the satisfaction
relationship between α and (Mm+j+1, v) is classical — it does not depend
on any state from Um+j+1.

Finally, we define a MMCTL model for φ0. Let j = deg(φ0). We have
that Mj+1, ŝ |= φ0 holds, and since ŝ ∈ U0, the satisfaction relationship
between φ0 and (Mj+1, ŝ) is classical — the fact that Mj+1, ŝ |= φ0 does not
depend on U j+1 (or τ j+1 or Kj+1). Take M = (S, {Rδ : δ ∈ ∆}, L) such
that S = Sj+1, Rδ = Rj+1

δ , and L(s) = Lj+1(s). Because Mj+1, ŝ |= φ0 does
not depend on U j+1, we also have that M, ŝ |= φ0. Since Mj+1 is finite,
M is finite.

4.3. Complexity

Now, we know that the satisfiability problem for ctl is exptime-complete,
and this gives us an exptime lower bound for mctl satisfiability (since ctl
is — very obviously — a fragment of mctl). But the construction described
above also gives us an exptime upper bound, thus giving the following.

Theorem 4.11. The satisfiability problem for mctl is exptime-complete.

Consider the decision procedure described in Section 4.2. The idea be-
hind this procedure is to use a constructive ctl decision procedure (such as
the tableau method described in [8]) as a sub-routine for constructing com-
ponents of a model for the input formula, each component corresponding to
a different dimension. The use of the sub-routine is analytic, in that, each
time we call the ctl satisfiability checking sub-routine, we are working with
strict sub-formulae of the input formula. Thus, the overall running time of
the procedure described in Section 4.2 for a formula φ over Θ is O(2l·m·n)
where l = |dim(φ)| is the number of dimensions in φ, m = |Θ| is the number
of atomic propositions in φ, and n = deg(φ) is the degree of φ.
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5. Normative Systems

Normative systems have come to play a major role in multi-agent systems
research; for example, under the name of social laws, they have been shown
to be a useful mechanism for coordination [21]. Following [22] and [1], for our
purposes, a normative system is understood simply as a set of constraints
on the behaviour of agents in a system. More precisely, a normative system
defines, for every possible system transition, whether or not that transition
is considered to be legal or not, in the context of the normative system. Dif-
ferent normative systems may differ on whether or not a particular transition
is considered legal.

We now describe three related Normative Temporal Logics, ntl−, ntl
and ntl+, the first of which is only a notational variant of mctl. Rather
than talking about a set of indices ∆ we now assume a set of norms ∇.
Given a set of atoms Θ and norms ∇, the language LNTL−(Θ,∇) is defined
by the following grammar (p ∈ Θ, η ∈ ∇):

φ ::= � | p | ¬φ | φ ∨ φ | Pη �φ | Pη(φU φ) | Oη �φ | Oη(φU φ)

The operators relate to the ones in the previous sections as follows: Pηα
equals Eηα, and Oηα is Aηα. The intended meaning of Pηα is ‘given the
norm η, α is permitted’. Likewise, Oηα means that ‘given the norm η, α is
obligatory’.

We interpret norms in the context of a system: a system here will be
simply a ctl model M = (S, R, L), where R denotes all the transitions that
the system could a-priori take. Now the interpretation I(η) of a norm η w.r.t.
M is simply a subset of R. These are the transitions that are forbidden by
the norm, hence Rη = R\I(η) are those that are allowed, or legal. We require
that Rη is total, expressing a reasonabless constraint: no norm prevents the
system from making any further progress. Given a system M = (S, R, L)
and a set of norm symbols ∇ = {η, . . . , } a system of norms (based on
M) is Υ = 〈S, R, L, I〉, where the interpretation I : ∇ → 2R is such that
Rη = R\I(η) is a total relation. Observe that we can view systems of norms
as mctl models over dimensions ∆ = ∇: take Rη = R \ I(η). This defines
the meaning Υ, s |= ϕ of a ntl− formula ϕ in the context of a system of
norms and a state. Furthermore, the relationship between systems of norms
and mctl models (with ∇ as dimensions) is one-to-one, which immediately
gives us a sound and complete axiomatisation SNTL− of ntl− as simply a
notational variant of SMCTL. Moving on to ntl, we assume ∇ contains a
symbol η∅ denoting the empty norm, and require that I(η∅) = ∅, for all I.
The language LNTL(Θ,∇) extends that of LNTL−(Θ,∇) with the symbol
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η∅ which gives rise to the logic ntl. We will also write Aα for Oη∅α: this
indicates what is naturally, or physically, inevitable in the system. Similarly,
Eα = Pη∅α means that, when no restriction is imposed on the system, α is
true along a path. However, in a formula, note that assumptions about
the norms that are in place can be overruled by new occurrences of path
operators: for instance, Pη1 �Pη2 �ϕ means that it is possible to obey the
norm η1 for one transition, and then η2 for the next one, and end up in a
state where ϕ holds.

We have the following chain of implications in ntl. If something is
naturally, or physically inevitable, then it is obligatory in any normative
system; if something is an obligation within a given normative system η, then
it is permissible in η; and if something is permissible in a given normative
system, then it is naturally (physically) possible:

|= (Aα → Oηα) |= (Oηα → Pηα) |= (Pηα → Eα)

The axioms SNTL are those of SNTL− plus Obl: Oη∅α → Oηα and
Perm: Pηα → Pη∅α. Those axioms say that what is inevitable also holds
after imposing any norm; that what is obligatory under a norm is permitted
under that norm, and anything that is permitted is possible.

To show completeness of ntl, the same construction is used as for mctl,
treating η∅ as any other dimension, with the following difference. When
expanding a node along dimension δ, when gluing the ctl model to the ex-
panded node, label the transitions with η∅ in addition to δ. Axioms Obl and
Perm ensure that this is consistent with the η∅-atoms present at the node.

Example 5.1. Consider two parallel circular train tracks. At one point
both tracks go through the same tunnel. At the east and the west end of
the tunnel there are traffic lights, which can be either green or red. A train
controller controls the lights. The eastern light should be set to green if and
only if there is a train waiting to enter the east end of the tunnel and there is
no train waiting at the west end of the tunnel, and similarly for the western
light. One train travels on each of the tracks, in opposite directions. We call
the train that enters the tunnel at the eastern end the east train and the
other train the west train. Obviously, the trains should not enter the tunnel
if the light is red.

We model this situation by considering the following system of norms.
We assume that each train can be in one of three states: tunnel (the train
is in the tunnel); waiting (the train is waiting to enter the tunnel); away
(the train is neither in the tunnel nor waiting). When away, the train can
either be away or waiting in the next state; when waiting the train can either
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Figure 3. Υ for the trains example, including all physically possible transitions. Only
part of the system is shown. The transitions prohibited by the normative systems η1 and
η2 are shown with dashed and dotted lines, respectively. The labelling of the states is
abbreviated for readability: “twgr” stands for tunnel-waiting-green-red and means that
wTunnel, eWaiting, wGreen are true and that all other atoms (e.g., eGreen) are false.

be waiting or in the tunnel in the next state; when the train is in the tunnel
it leaves the tunnel and is away in the next state. Thus, we use propo-
sitional atoms eTunnel, eWaiting, eAway, wTunnel, wWaiting, wAway to
encode the position of the east and west train. We also use atoms eGreen
and wGreen to represent the fact that the eastern/western lights are green.
Thus, ¬eGreen means that the eastern light is red, and so on. Let M =
(S, R, L) be the Kripke structure where the states correspond to all possible
configurations of the atomic propositions, let s be the state where both lights
are red and both trains away, and the transitions are all physically possible
transitions — illustrated in Figure 3. The transitions include entering on a
red light, but exclude physically impossible transitions such as a train going
directly from the tunnel state to the waiting state.

Let η1 be the norm corresponding to the normative requirement on the
switching of the lights described above: η1 contains all transitions between
states s1 and s2 in which one of the lights are set to green (in s2) without the
appropriate condition (as explained above) being true in s1. The normative
system η1 is illustrated by labels on the transitions in Figure 3. The descrip-
tion above contains another normative requirement as well: trains should
only enter the tunnel on a green light. Let η2 be the normative system
corresponding to that requirement: η2 contains all transitions between states
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s1 and s2 such that a train is in the tunnel in s2 only if the corresponding
light is green in s1. Finally, let the norm η3 be the combination of both
norms: η3 = η1 ∪ η2. It is easy to see that ∇ = {η1, η2, η3}, satisfies the
reasonabless constraint in M . Let Υ be the system of norms using the in-
terpretation of norms as just described.

While the norms in this particular example are designed to avoid a crash,
there are other problems, such as “deadlock” (both trains can wait forever
for a green light), which they do not avoid. For simplicity, we will only
consider the norms mentioned above. Let the formula

crash = eTunnel ∧ wTunnel

denote a crash situation. We have that:

• Υ, s |= Oη1 �¬wGreen. In the initial state, according to normative
system η1 it is obligatory that the western light stays red in the next
state.

• Υ, s |= Pη1(¬eGreenU eTunnel). η1 permits the eastern light to stay
red until the east train is in the tunnel.

• Υ, s |= ¬Pη2(¬eGreenU eTunnel). η2 does not permit the eastern light
to stay red until the east train is in the tunnel.

• Υ, s |= Oη1 (wGreen → ¬eGreen). It is obligatory in the context of
η1 that at least one of the lights are red.

• Υ, s |= Pη∅♦crash. Without any constraining norms, the system permits
a crash in the future.

• Υ, s |= Pη1♦crash. The normative system η1 permits a crash.

• Υ, s |= Oη3 ¬crash. It is obligatory, in the context of η3, that a crash
never occurs; η3 does not permit a crash at any point in the future.

It is worth reflecting on the compositional meaning of nested operators.
For example, Pη3♦Pη1 �crash means that η3 permits a computation along
which in some future state Pη1 �crash is true. However, in the evaluation
of Pη1 �crash in states along that computation, the system is not restricted
by η3 (but only by η1). The following are examples of expressions involving
nested operators.

• Υ, s |= Oη∅ ((wWaiting ∧ ¬wGreen) → ¬Pη2 �wTunnel). It is oblig-
atory in the system that it is always the case that if the west train is
waiting and the western light is red then the western train is not permit-
ted by η2 in the tunnel in the next state.
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• Υ, s |= Pη2♦Pη3 �crash. η2 permits a future state where a crash in the
next state is permitted even by η3.

• Υ, s |= Pη3♦Pη1 �crash. η3 permits a future state where a crash in the
next state is permitted by η1.

• Υ, s |= Oη3 Oη2 �¬crash. η3 does not permit a future state where a
crash is permitted in the next state by η2.

Going beyond ntl, we can impose further structure on ∇ and its in-
terpretations. For example, we can extend the logical language with basic
statements such as η ≡ η′ and η � η′ (� can then be defined), with the
obvious interpretation.

Proposition 5.1. Let Υ = 〈S, R, L, I〉 be a system of norms, and η1, η2 ∈ ∇.
Then, if I(η1) ⊆ I(η2) then Υ |= Oη1φ → Oη2φ and Υ |= Pη2φ → Pη1φ.

Furthermore, following [26], we can add unions and intersections of nor-
mative systems by requiring ∇ to include symbols η � η′, η � η′ whenever it
includes η and η′, and require interpretations to interpret � as set union and
� as set intersection. Of course, we must then further restrict interpretations
such that R \ (I(η1) ∪ I(η2)) always is total. This would give us a kind of
calculus of normative systems. Let Υ be a normative system with I being
an interpretation with the mentioned properties:

i Υ |= Pη�η′
φ → Pηφ ii Υ |= Pηφ → Pη�η′

φ

iii Υ |= Oηφ → Oη�η′
φ iv Υ |= Oη�ηφ → Oηφ

These properties immediately follow from Proposition 5.1. They moreover
seem rather natural: i for instance says that everything that is permitted
while obeying two norms, is also permitted only obeying one of them. Having
such a calculus allows one to reason about the composition of normative
systems, similar to the way one constructs complex programs from simpler
ones in Dynamic Logic [16].

We could drop the reasonableness constraint, making it possible that
“too many” norms (i.e., too many constraints on agent behaviour) may pre-
vent any transition from a given state. And many more research questions
present themselves in the context of ntl: for instance, one may assign norms
to agents and study what happens if some of them comply with their norms,
while others don’t (cf. [4]). Similarly, one might consider prioritised collec-
tions of normative systems (“if that norm fails, then use this”).
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6. Discussion

Model construction techniques similar to the one we have used are found
in several works on transfer of properties to fusions. As discussed by Fa-
jardo and Finger [10], many proofs of meta-logical properties of fusions in
the literature [12, 13] employ the same strategy of (i) studying the modal-
isation/temporalisation of a generic logic; (ii) studying the (finite) iterated
modalisations of two modal logics and (iii) viewing the fusion as a union of
iterated modalisations. While the proof strategy used in this paper do not
employ that strategy directly, there certainly are similarities.

The work presented in this paper has its roots in several different com-
munities, the most significant being the tradition of using deontic logic in
computer science to reason about normative behaviour of systems [24, 18],
and the use of model checking and temporal logics such as ctl to analyse
the temporal properties of systems [8, 6].

The two main differences between the language of ntl and the language
of conventional deontic logic in computer science to reason about normative
behaviour of systems [24, 18] are, first, contextual deontic operators allowing
a formula to refer to several different normative systems, and, second, the use
of temporal operators. All deontic expressions in ntl refer to time: Pη �φ
(“it is permissible in the context of η that φ is true at the next time point”);
Oη φ (“it is obligatory in the context of η that φ always will be true”); etc.
Conventional deontic logic contains no notion of time. In order to compare
our temporal deontic statements with those of deontic logic we must take the
temporal dimension to be implicit in the latter. Two of the perhaps most
natural ways of doing that is to take “obligatory” (Oφ) to mean “always
obligatory” (Oη φ), or “obligatory at the next point in time” (Oη �φ),
respectively, and similarly for permission. In either case, all the principles
of Standard Deontic Logic hold also for ntl, viz., O(φ → ψ) → (Oφ → Oψ)
(K); ¬O⊥ (D); and from φ infer Oφ (N). The two mentioned temporal
interpretations of the (crucial) deontic axiom D are (both ntl validities):

¬Oη ⊥ and ¬Oη �⊥
Contrary-to-Duty obligations are structures involving two obligations,

where the second obligation “takes over” when the first is violated [19].
Logics that deal with this kind of obligation typical add actions, time, a
default component or a notion of context (signalling that the primary obli-
gation has been violated, and we are now entering a sub-ideal context) to
their semantic machinery to deal with them [19]. ntl is already equipped
with a temporal component, and it would certainly also be possible to label
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the transitions in our semantics with actions. However, given that we incor-
porate a suite of norms within one system, it seems ntl can also represent
“sub-ideal” contexts. We leave a detailed comparison between existing tem-
poral deontic logics and ntl for future works, as well as any investigation
into the usefulness of ntl to model contrary-to-duty obligations.

It has been argued that “deadlines are important norms in most interac-
tions between agents” [7, page 40], and this naturally suggests the need for a
temporal component in reasoning about systems with norms. We should also
mention work by Sergot and his collaborators on the use of variants of the
C+ language for representing and reasoning about deontic systems [20, 4].
The nC+ language they develop can be understood as language for defin-
ing representations of Kripke models and normative systems. Their work
emerges from a rather different community — reasoning about action and
non-monotonic reasoning in artificial intelligence. Finally, ntl is similar in
spirit to the deontic interpreted systems model of [18]. Perhaps the most
obvious difference is that while we consider “bad transitions”, Lomuscio and
Sergot are concerned with “bad states”.

The design and application of normative systems and social laws is
a major area of research activity in the multi-agent systems community.
If we are going to make use of such social laws, then it seems only appro-
priate that we develop formalisms that allow us to explicitly and directly
reason about them. We see the key advantages of ntl as follows. First, the
fact that the formalism is so closely related to ctl is likely to be an ad-
vantage from the point of view of comprehension and acceptance within the
mainstream model checking/verification community. Second, the fact that
the language has a clear computational interpretation means that it can be
applied in a computational setting without any ambiguity of interpretation.
Third, the clear identification of different normative systems within the lan-
guage, and the ability to talk about these directly, represents a novel step
forward. While ntl arguably lacks some of the nuances of more conventional
deontic and deontic temporal logics, we believe these advantages imply that
the language and the approach it embodies merit further research.
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