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Abstract. We address the issue of manipulating games through communication. In

the specific setting we consider (a variation of Boolean games), we assume there is some

set of environment variables, the values of which are not directly accessible to players;

the players have their own beliefs about these variables, and make decisions about what

actions to perform based on these beliefs. The communication we consider takes the

form of (truthful) announcements about the values of some environment variables; the

effect of an announcement is the modification of the beliefs of the players who hear the

announcement so that they accurately reflect the values of the announced variables. By

choosing announcements appropriately, it is possible to perturb the game away from certain

outcomes and towards others. We specifically focus on the issue of stabilisation: making

announcements that transform a game from having no stable states to one that has stable

configurations.
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1. Introduction

In a Boolean game, [16, 3, 8, 9], each player has a set of Boolean variables
under its unique control and is at liberty to assign values to these variables
as it chooses. In addition, each player has a goal that it desires to be
achieved: the goal is represented as a Boolean formula, which may contain
variables under the control of other players. Boolean games have a strategic
character because the achievement of one player’s goal may depend on the
choices of other players. In this work we consider the players to be agents
giving the Boolean game an aspect of a multi-agent system. Actually, as
we are interested in dealing with communication, we use a special variant of
Boolean games: in addition to the variables under the control of the agents,
there is an additional set of environment variables. An external principal
knows the values of the environment variables and may announce (truthful)
information about them to the agents. The agents then revise their beliefs
based on the announcement, and will decide what actions to perform based
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on their beliefs. It follows that, by choosing announcements appropriately,
the principal can perturb the game away from some possible outcomes and
towards others.

We focus on the issue of stabilisation: making announcements that trans-
form a game from having no stable states to one that has stable configura-
tions. Stability in this sense is close to the notion of Nash equilibrium in the
game-theoretic sense [20]: it means that no agent has any incentive to uni-
laterally change its choice. However, the difference between our setting and
the conventional notion of Nash equilibrium is that an agent’s perception of
the utility it would obtain from an outcome is dependent on its own beliefs.
By changing these beliefs through truthful announcements, we can modify
the rational outcomes of the game.

The rationale for focussing on stabilisation is that instability will, in gen-
eral, be undesirable: apart from anything else, it makes behaviour harder
to predict and understand, and introduces the possibility of agents wasting
effort by continually modifying their behaviour. It makes sense, therefore, to
consider the problem of stabilising multi-agent system behaviour: of modi-
fying an unstable system so that it has equilibrium states, and even further,
of modifying the system so that it has socially desirable equilibria. For
example, we might consider the principal perturbing a game to ensure an
equilibrium that maximises the number of individual agent goals achieved.

Although the model of communication and rational action we consider
in the present paper is based on the abstract setting of Boolean games,
the issues we investigate using this model — stabilisation, and, more gener-
ally, the management of multi-agent systems — are, we believe, of central
importance. This is because there is a fundamental difference between a
distributed system in which all components are designed and implemented
by a single designer, and which can therefore be designed to act in the
furtherance of the designer’s objectives, and multi-agent systems, in which
individual agents will selfishly pursue their own goals. By providing a formal
analysis of how communication can be used to perturb the rational actions
of agents within a system towards certain outcomes, we provide a foundation
upon which future, richer models can be built and investigated.

The plan of the rest of the paper is as follows. In Section 2 we present
the basic model that we use for most of the paper. This model allows for
complex goals but only simple conjunctive beliefs for the agents. Section 2.2
defines our version of Nash stability. Section 3 introduces simple conjunc-
tive announcements. The major results of the paper in Section 3.2 deal with
announcements that stabilise games. Section 3.3 considers measures of opti-
mality for announcements. We then consider extensions to the basic model
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in Section 4: for example, to allow richer announcements (arbitrary truthful
statements about the environment variables), and richer models of belief.
Finally, Section 5 considers related work and gives conclusions, including
possibilities for further work.

2. The Basic Model

In this section we introduce the basic model of Boolean games that we will
work with for most of the paper and define notions of stability for it.

2.1. Components of the Basic Model

Our model is a variation of previous models of Boolean games [16, 3, 8, 9].
The main difference is the addition of a set of environment variables whose
values are fixed and cannot be changed by the agents. The agents have
beliefs about the environment variables that may be incorrect, and base
their decisions about their choices on their beliefs.

Propositional Logic: Let B = {⊤,⊥} be the set of Boolean truth values,
with “⊤” being truth and “⊥” being falsity. We will abuse notation a little
by using ⊤ and ⊥ to denote both the syntactic constants for truth and falsity
respectively, as well as their semantic counterparts. Let Φ = {p, q , . . .} be a
(finite, fixed, non-empty) vocabulary of Boolean variables, and let L denote
the set of (well-formed) formulae of propositional logic over Φ, constructed
using the conventional Boolean operators (“∧”, “∨”, “→”, “↔”, and “¬”),
as well as the truth constants “⊤” and “⊥”. Where ϕ ∈ L, we let vars(ϕ)
denote the (possibly empty) set of Boolean variables occurring in ϕ (e.g.,
vars(p ∧ q → p) = {p, q}).

We will also use a special subset of L. A simple conjunctive formula has
the form ℓ1 ∧ · · · ∧ ℓk , where each ℓi is a literal, that is, a Boolean variable
or its negation. We do not permit both a Boolean variable and its negation
to occur in a simple conjunctive formula; hence contradictions are excluded.
Such a simple conjunctive formula whose variables are p1, . . . , pk can also
be represented as a function f : {p1, . . . , pk} → B, with f (ℓi) = ⊤ if ℓi = pi

and f (ℓi) = ⊥ if ℓi = ¬pi and we will usually use the latter formulation. A
valuation is a total function v : Φ → B, assigning truth or falsity to every
Boolean variable. We write v |= ϕ to mean that the propositional formula
ϕ is true under, or satisfied by, valuation v , where the satisfaction relation
“|=” is defined in the standard way. Let V denote the set of all valuations
over Φ. We write |= ϕ to mean that ϕ is a tautology. We denote the fact
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that |= ϕ ↔ ψ by ϕ ≡ ψ.

Agents and Variables: The games we consider are populated by a set
Ag = {1, . . . ,n} of agents — the players of the game. Each agent is assumed
to have a goal, characterised by an L-formula: we write γi to denote the
goal of agent i ∈ Ag . Agents i ∈ Ag each control a (possibly empty) subset
Φi ⊆ Φ. By “control”, we mean that i has the unique ability within the game
to set the value (either ⊤ or ⊥) of each variable p ∈ Φi . We will require
that Φi ∩ Φj = ∅ for i ̸= j , but in contrast with other existing models of
Boolean games [16, 3], we do not require that the sets Φ1, . . . ,Φn form a
partition of Φ. Thus, we allow for the possibility that some variables are not
under the control of any players in the game. Let ΦE = Φ \ (Φ1 ∪ · · · ∪ Φn)
be the variables that are not under any agent’s control; we call these the
environment variables. The values of these variables are determined external
to the game. We let vE : ΦE → B be the function that gives the actual value
of the environment variables. When playing a Boolean game, the primary
aim of an agent i will be to choose an assignment of values for the variables
Φi under its control so as to satisfy its goal γi . The difficulty is that γi may
contain variables controlled by other agents j ̸= i , who will also be trying
to choose values for their variables Φj so as to get their goals satisfied; and
their goals in turn may be dependent on the variables Φi . In addition, goal
formulae may contain environment variables ΦE , beyond the control of any
agent in the system. A choice for agent i ∈ Ag is a function vi : Φi → B,
i.e., an allocation of truth or falsity to all the variables under i ’s control.
Let Vi denote the set of choices for agent i , and let VE denote the set of all
valuations vE : ΦE → B for the set of environment variables ΦE .

Beliefs: Players in our games are assumed to have possibly incorrect beliefs
about the values of the environment variables ΦE . For the moment, we will
assume that the belief a player i has about ΦE is represented as a simple
conjunctive formula over ΦE , which must include all the variables in ΦE .
For example, suppose that ΦE = {p, q}. Then there are four possible beliefs
for a player i :

• p ∧ q
player i believes both that p and q are true;

• p ∧ ¬q
player i believes that p is true and q is false;

• ¬p ∧ q
player i believes that p is false and q is true; and
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• ¬p ∧ ¬q
player i believes that both p and q are false.

Thus, in our simple model of belief, formulae such as p ∨ q and p → q are
not allowed.

We will model the beliefs of an agent i ∈ Ag via the corresponding
function βi : ΦE → B. Thus, βi(p) = b indicates agent i ’s belief that
p ∈ ΦE has the value b (where b ∈ B).

This is, of course, a very simple model of belief, and many alternative
richer models of belief could be used instead. Later in this paper, we will
consider some such richer models of belief.

Outcomes: An outcome is a collection of choices, one for each agent. For-
mally, an outcome is a tuple (v1, . . . , vn) ∈ V1 × · · · × Vn . When taken
together with the valuation vE for the environment variables, an outcome
uniquely defines an overall valuation for all the variables in Φ. We write
(v1, . . . , vn , vE ) |= ϕ to mean that the valuation defined by the outcome
(v1, . . . , vn) taken together with vE satisfies formula ϕ ∈ L. A belief func-
tion βi together with an outcome (v1, . . . , vn) also defines a unique valuation
for Φ, and we will write (v1, . . . , vn ,βi) to mean the valuation obtained from
the choices v1, . . . , vn together with the values for the variables in ΦE defined
by βi . Observe that we could have (v1, . . . , vn ,βi) |= γi (agent i believes that
its goal γi is achieved by outcome (v1, . . . , vn)) while (v1, . . . , vn , vE ) ̸|= γi

(in fact, it is not). Let succ(v1, . . . , vn , vE ) denote the set of agents whose
goals are actually achieved by outcome (v1, . . . , vn), that is:

succ(v1, . . . , vn , vE ) = {i ∈ Ag | (v1, . . . , vn , vE ) |= γi}.

Costs: Intuitively, the actions available to agents correspond to setting
variables to true or false. We assume that these actions have costs, defined
by a cost function c : Φ × B → R≥, so that c(p, b) is the marginal cost of
assigning variable p ∈ Φ the value b ∈ B (where R≥ = {x ∈ R | x ≥ 0}).
Note that if an agent has multiple ways of getting its goal achieved, then it
will prefer to choose one that minimises costs; and if an agent cannot get
its goal achieved, then it simply chooses to minimise costs. However, cost
reduction is a secondary consideration: an agent’s primary concern is goal
achievement.

To keep the model simple, we will assume that the cost of setting a vari-
able to ⊥ is 0; this makes sense if we think of Boolean variables as actions,
and cost as the corresponding marginal cost of performing a particular ac-
tion. In this case setting a variable to be ⊤ means performing an action,
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and hence incurring the corresponding marginal cost, while setting it to ⊥
corresponds to doing nothing, and hence incurring no cost.

Boolean Games: A Boolean game, G , is a (3n + 4)-tuple:

G = ⟨Ag , Φ, Φ1, . . . ,Φn︸ ︷︷ ︸
controlled
variables

γ1, . . . , γn︸ ︷︷ ︸
goals

,β1, . . . ,βn︸ ︷︷ ︸
beliefs

, c, vE ⟩,

where:

• Ag = {1, . . . ,n} is a set of agents — the players of the game;

• Φ = {p, q , . . .} is the (finite) set of Boolean variables;

• Φi ⊆ Φ is the set of Boolean variables under the unique control of player
i ∈ Ag ;

• γi ∈ L is the goal of agent i ∈ Ag ;

• βi represents the beliefs of agent i ∈ Ag ;

• c : Φ × B → R≥ is the cost function; and

• vE : ΦE → B is the (fixed) valuation function for the environment vari-
ables.

For now, as we are dealing with Boolean games with simple conjunctive
beliefs, it is convenient to represent βi as a belief function βi : ΦE → B.
However, it should be understood that this function is the representation of
a simple conjunctive formula over ΦE ; since these two representations are
directly equivalent for simple conjunctive formulae, in what follows we will
use whichever representation is more convenient for the task at hand.

2.2. Stability

Now we are ready to define the notion of equilibrium that we use throughout
the paper. We call it Nash stability as it is a variation of a concept with
the same name that was defined in [13]. Nash stability is, in turn, derived
from the well-known notion of pure strategy Nash equilibrium from non-
cooperative game theory [20].

Subjective Utility: We now introduce a model of utility for our games.
While we find it convenient to define numeric utilities, it should be clearly
understood that utility is not assumed to be transferable: it is simply a
numeric way of capturing an agent’s preferences. The basic idea is that an
agent will strictly prefer all outcomes in which it gets its goal achieved over
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all outcomes where it does not; and secondarily, will prefer to minimise costs.
Utility functions as we define them directly capture such preferences.

When an agent makes a choice, it intuitively makes a calculation of the
utility that it might obtain from that choice. However, this calculation is
subjective, in the sense that the agent’s beliefs may be wrong, and hence
its judgement about the utility it will obtain from making a choice may be
wrong. We let ui(v1, . . . , vn) denote the utility that agent i believes it would
obtain if agent j (1 ≤ j ≤ n) made choice vj . We define it formally as
follows. First, we let ci(vi) denote the marginal cost to agent i of choice
vi ∈ Vi :

ci(vi) =
∑

p∈Φi

c(p, vi(p))

The highest possible cost for agent i , which we write as µi , occurs when
agent i sets all its variables to ⊤. We then define the subjective utility that
i would obtain from choices v1, . . . , vn as the negative of the cost to the agent
if its goal is not satisfied; otherwise it is the positive difference (+1) between
the highest possible cost and the actual cost.

ui(v1, . . . , vn) =
{

1 + µi − ci(vi) if (v1, . . . , vn ,βi) |= γi

−ci(vi) otherwise.

Sometimes we will want to be explicit about the beliefs an agent is using
when computing subjective utility, in which case we will write ui(v1, . . . , vn ,
βi) to mean the utility agent i will get assuming the belief function βi .

Thus a player receives positive utility if its goal is satisfied, and negative
utility if its goal is not satisfied. In order to maximize utility, each agent will
try to satisfy its goal by adopting a valuation that does so with minimal cost;
if it cannot satisfy its goal, it adopts the valuation of minimal cost, namely
setting all its variables to ⊥. It is important to note that in this definition
the value of an agent’s utility is critically dependent on its beliefs βi .

Nash Stability: The basic idea of Nash stability, as with (pure strategy)
Nash equilibrium [20], is that an outcome is said to be Nash stable if no agent
within it would prefer to make a different choice, assuming every other agent
stays with its choice. However, the difference between Nash stability and
the conventional notion of Nash equilibrium is that an agent i in our setting
will compute its utility — and hence make its choice — based on its beliefs
βi . We say an outcome (v1, . . . , vi , . . . , vn) is individually stable for agent i
if ̸ ∃v ′

i ∈ Vi such that ui(v1, . . . , v ′
i , . . . , vn) > ui(v1, . . . , vi , . . . , vn). We then

say that an outcome (v1, . . . , vn) is Nash stable if (v1, . . . , vn) is individually
stable for all players i ∈ Ag . We denote the Nash stable outcomes of a
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game G by NE (G). As with pure strategy Nash equilibria, it may be that
NE (G) = ∅; in this case we call G unstable. If a game is unstable, then for
every possible outcome (v1, . . . , vn) of the game, some player would do better
to make an alternative choice. We say that such a player has a beneficial
deviation.

Dependencies: Recall now our earlier statement that the achievement of an
agent’s goal may depend on the actions of other agents. We will now make
this idea formal, in the notion of a dependency graph [4]. A dependency
graph is a digraph in which the vertex set is the set of players of a game,
and where an edge from one player to another indicates that the utility
that the source player gets may depend on the choices of the destination
player. Formally, a dependency graph for a Boolean game G is a digraph
DG = (V ,E ), with vertex set V = Ag and edge set E ⊆ Ag × Ag defined
as follows:

(i , j ) ∈ E
iff
∃(v1, . . . , vj , . . . , vn) ∈ V1 × · · ·× Vj × · · ·× Vn and v ′

j ∈ Vj such that
ui(v1, . . . , vj , . . . , vn) ̸= ui(v1, . . . , v ′

j , . . . , vn).

In words, (i , j ) ∈ E if there is some circumstance under which a choice made
by agent j can affect the utility obtained by agent i . Where DG = (V ,E ), we
will subsequently abuse notation and write (i , j ) ∈ DG to mean (i , j ) ∈ E .

Proposition 6 of [4] gives a sufficient condition for the existence of a
Nash stable outcome: namely, if the irreflexive portion of DG is acyclic
then NE (G) ̸= ∅. As was shown in [4] this condition is not necessary;
for instance, if two agents have the same goal, a cycle between them is
irrelevant. As we now show, in general, the problem of checking for acyclicity
is computationally complex.

Proposition 1. Given a game G and agents i , j in G, the problem of
determining whether (i , j ) ∈ DG is np-complete.

Proof. Membership is by “guess-and-check”. For hardness, we reduce sat.
Let ϕ be a sat instance. Create two agents, 1 and 2, let γ1 = ϕ ∧ z , where
z is a new variable, and let γ2 = ⊤. Let Φ1 = vars(ϕ) and Φ2 = {z}. All
costs are 0. We now ask whether 1 is dependent on 2; we claim the answer
is “yes” iff ϕ is satisfiable:

(→) Observe that the only way player 1 could obtain different utilities from
two outcomes varying only in the value of z (the variable under the
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control of 2) is if ϕ ∧ z were true in one outcome and false in the other.
The outcome satisfying ϕ ∧ z is then witness to the satisfiability of ϕ.

(←) If agent 1 gets the same utility for all choices as well as for either choice
for z then ϕ ∧ z is not satisfiable, hence ϕ is not satisfiable.

Next we show that if not just the beliefs of the agents but also their goals
are in simple conjunctive form, the computational cost is reduced.

Proposition 2. In a game where all players have simple conjunctive beliefs
and goals, we have (i , j ) ∈ DG iff vars(γi) ∩ Φj ̸= ∅. It follows that, for
a game G with simple conjunctive beliefs and goals, computing DG can be
done in polynomial time: we simply have to check for each pair of agents
{i , j} ⊆ Ag (i ̸= j ) whether or not vars(γi) ∩ Φj ̸= ∅, which is trivially
computed in polynomial time.

To illustrate the ideas we have introduced above, we now present a small
(and slightly playful) example.

Example 1. Consider the following scenario:

Bob likes Alice, and he believes Alice likes him. Although Bob doesn’t
like going to the pub usually, he would want to be there if Alice likes
him and Alice was there also. Alice likes going to the pub, but in
fact she doesn’t like Bob: she wants to go to the pub only if Bob isn’t
there.

We formalise this example in our setting as follows. The atomic propositions
are:

ALB – Alice likes Bob;

PA – Alice goes to the pub, and

PB – Bob goes to the pub.

We have:

ΦA = {PA} (Alice can determine whether she goes to the pub);

ΦB = {PB} (Bob can determine whether he goes to the pub); and

ΦE = {ALB} (the environment determines whether Alice likes Bob).

We also have vE (ALB) = ⊥ (in fact, Alice does not like Bob), and βA(ALB)
= ⊥ (Alice believes she does not like Bob), but βB (ALB) = ⊤ (Bob believes
Alice likes him — poor deluded Bob!).



276 J. Grant, S. Kraus et al.

A B

Figure 1. The dependency graph for Example 1.

For both agents i ∈ {A,B} we have c(Pi ,⊤) = 10 (take this to be the
cost of a couple of drinks in the pub), while c(Pi ,⊥) = 0 (staying at home
costs nothing).

Alice’s goal is simply to avoid Bob:

γA = ¬(PA ↔ PB).

However, Bob’s goal is that Alice likes him, and is in the pub with him:

γB = ALB ∧ (PB ↔ PA).

Now, it is easy to see that the game has no Nash stable state:

• If PA = PB = ⊥, then Alice would benefit by setting PA = ⊤, thereby
achieving her goal.

• If PA = ⊥ and PB = ⊤, then Alice gets her goal achieved but Bob does
not; he would do better to set PB = ⊥.

• If PA = ⊤ and PB = ⊥, then, again Alice gets her goal achieved but
Bob does not; he would do better to set PB = ⊤.

• Finally, if PA = ⊤ and PB = ⊤, then Bob gets his goal achieved but
Alice does not; she would do better to set PA = ⊥.

The irreflexive portion of the dependency graph for this example is shown
in Figure 1: observe that both players are dependent upon each other, and
so we have a cycle in the dependency graph.

3. Simple Conjunctive Announcements

Let us now return to the motivation from the introduction of the paper:
namely, that a principal makes announcements about the values of the envi-
ronment variables in order to modify the behaviour of agents within the sys-
tem. We now begin our investigation of this issue by assuming that an-
nouncements take the form of simple conjunctions; we will call them simple
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conjunctive announcements. We start by distinguishing between two types
of announcements. This is followed by a study of the issue of stabilizing a
Boolean game by such an announcement. Finally, we consider the problem
of finding an optimal stabilizing announcement.

3.1. Types of Announcements

We will consider two types of announcements: uniform and nonuniform. By
uniform we mean that the announcements are the same for all the agents.
Since an announcement (in this section) has simple conjunctive form, its ef-
fect is to reveal the truth values of some, possibly all, environment variables.
As the agent beliefs for now are also in simple conjunctive form, the effect
of an announcement is for the agents to replace false beliefs by true beliefs.
We emphasise that announcements must be truthful : the principal cannot
lie about the values of the variables.

Uniform Announcements: Formally, we model a uniform announcement
as a subset α ⊆ ΦE (α ̸= ∅), with the intended meaning that, if the princi-
pal makes this announcement, then the actual value of every variable p ∈ α
becomes common knowledge within the game. The effect of such an an-
nouncement α on an agent’s belief function βi : ΦE → B is to transform it
to a new belief function βi ⊕ α, defined as follows:

βi ⊕ α(p) =
{

vE (p) if p ∈ α
βi(p) otherwise.

With a slight abuse of notation, where G is a game and α is a possible
announcement in G , we will write G ⊕ α to denote the game obtained from
G by replacing every belief function βi in G with the belief function βi ⊕α.
Observe that, given a game G and announcement α from G , computing
G ⊕ α can be done in polynomial time.

Notice that we can view a uniform announcement α either set theoreti-
cally (as a subset of ΦE , the idea being that the value of every member of
α is revealed), or else as a conjunctive formula:

⎛

⎝
∧

{p∈α|vE (p)=⊤}

p

⎞

⎠ ∧

⎛

⎝
∧

{q∈α|vE (p)=⊥}

¬q

⎞

⎠

We will switch between these two views as we find it convenient.

Nonuniform Announcements: We model nonuniform announcements as
functions α : Ag → 2ΦE , with the intended interpretation that after making
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an announcement α, an agent i comes to know the value of the environment
variables α(i). Thus, with a non-uniform announcement, the principal can
reveal different pieces of information to different agents. As with uniform
announcements, the effect of a nonuniform announcement α on an agent is
to transform its belief function βi to a new function βi ⊕ α, which in this
case is defined as follows:

βi ⊕ α(p) =
{

vE (p) if p ∈ α(i)
βi(p) otherwise.

The size of a nonuniform announcement α, is denoted (with a small abuse
of notation) by |α| and is defined as: |α| =

∑
i∈Ag |α(i)|.

Recall that a key concern of our work is announcements that stabilise
games. So, we return to Example 1 where the game had no Nash stable
state.

Example 2. Suppose that Alice’s friend, the principal, announces {ALB} to
Bob; that is, she tells Bob that Alice does not in fact like him. Notice that
announcing {ALB} to Bob means revealing the value of the environment
variable ALB , which can also be viewed as announcing to Bob the formula
¬ALB . After the announcement Bob updates his belief accordingly. At this
point, Bob no longer has any possibility to achieve his goal ALB ∧ (PB ↔
PA), and his optimal choice is to minimise costs by not going to the pub.
Given that Bob stays at home, Alices’s optimal choice is to go to the pub.
The outcome where PA = ⊤, PB = ⊥ (Alice goes to the pub but Bob
stays at home) is Nash stable. Thus, announcing α = {ALB} to Bob only
is a nonuniform stabilizing announcement. As Alice already believes α, the
same effect could have been achieved by the uniform announcement in which
{ALB} was announced to both Bob and Alice.

3.2. Simple Conjunctive Announcements that Stabilize Games

The last example showed a situation where an announcement (either uni-
form or nonuniform) changed a Boolean game from one without a Nash
stable state to one that is Nash stable. In this subsection we will start by
considering uniform announcements. We will say that an announcement α
is stabilising if NE (G ⊕ α) ̸= ∅ (we do not require that NE (G) = ∅). Let
S(G) be the set of uniform simple conjunctive stabilising announcements
for G :

S(G) = {α ⊆ ΦE | NE (G ⊕ α) ̸= ∅}.
From the point of view of the principal, the obvious decision problem

relating to stabilisation is as follows:
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Given a game G, does there exist some announcement α over G that
stabilises G, i.e., is it the case that S(G) ̸= ∅?

We have the following:

Proposition 3. The problem of checking whether a game G can be stabilised
by a uniform simple conjunctive announcement, (i.e., whether S(G) ̸= ∅),
is Σp

2-complete; this holds even if all costs are 0.

Proof. Membership is by the following algorithm: Guess an α ⊆ ΦE and
an outcome (v1, . . . , vn), and verify that (v1, . . . , vn) is a Nash stable outcome
of G⊕α. Guessing can clearly be done in non-deterministic polynomial time,
and verification is a co-np computation. For hardness, we reduce the problem
of checking whether a Boolean game as defined in [3] has a Nash equilibrium;
this problem was shown to be Σp

2 -complete in [3]. Given a conventional
Boolean game, we map the agents, goals, and controlled variables to our
setting directly; we then create one new Boolean variable, call it z , and set
ΦE = {z}. Let vE (z ) = ⊤ and βi(z ) = ⊤ for all agents i . Now, we claim that
the system can be stabilised iff the original game has a Nash equilibrium;
the only announcement that can be made is α = {z}, which does not change
the system in any way; the Nash stable states of the game G ⊕ α will thus
be exactly the Nash equilibria of the original game.

Another obvious question is what properties announcements have. While
this is not the primary subject of the present paper, it is nevertheless worth
considering. We have the following:

Proposition 4. Stability is not monotonic through announcements. That
is, there exist games G and announcements α1,α2 over G such that G ⊕α1

is stable but (G ⊕ α1) ⊕ α2 is not.

Proof. Consider the following example (a variant of the Alice and Bob
example introduced earlier). Let G be the game with:

• Ag = {1, 2};
• Φ = {p, q , r , s};
• Φ1 = {p};
• Φ2 = {q};
• ΦE = {r , s};
• β1(r) = ⊤;
• β1(s) = ⊥;
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• β2(r) = ⊥;
• β2(s) = ⊤;
• vE (r) = ⊥;
• vE (s) = ⊤ (so agent 2’s belief is correct);
• γ1 = (r ∨ s) ∧ (p ↔ q);
• γ2 = ¬(p ↔ q); and
• c(p,⊤) = c(q ,⊤) = 1.

Now, G is unstable, by a similar argument to Example 1. Announcing
¬r will stabilise the system, again by a similar argument to Example 1.
However, it is easy to see that (G ⊕ {¬r}) ⊕ {s} is unstable: intuitively,
in (G ⊕ {¬r}), agent 1 does not believe that it can get its goal achieved,
because it believes both r and s are false, so it prefers to minimise costs by
setting p = ⊥, leaving agent 2 free to get its goal achieved by setting q = ⊤.
However, in (G ⊕ {r}) ⊕ {s}, because agent 1 now believes again, as in the
case of G , that there is some possibility to get its goal achieved, the system
is unstable.

Let us say an announcement α ⊆ Φ is relevant for an agent i if the
announcement refers to variables that occur in the goal of i , that is, if
α∩vars(γi) ̸= ∅. Call α irrelevant if it is not relevant for any agent. Clearly,
if α is irrelevant w.r.t. G then NE (G) = NE (G ⊕ α).

Recall now our earlier statement about the dependency graph DG for a
game and the condition that if the irreflexive portion of DG is acyclic, then
NE (G) ̸= ∅. Consider a game G where NE (G) = ∅. By this condition the
irreflexive portion of DG must have a cycle. Now, suppose the principal can
make an announcement that breaks all such cycles; such an announcement
α will stabilise the system and must be such that the irreflexive portion of
DG⊕α is acyclic. This suggests an approach to stabilizing systems through
announcements: try to find an announcement α such that the irreflexive
portion of DG⊕α is acyclic.

We illustrate this situation with the following example.

Example 3. Consider the following game G :

• Ag = {1, 2, 3};
• Φ = {p1, p2, p3, q1, q2, q3};
• Φi = {pi} (hence the q’s are the environment variables);
• γ1 = p1 ∨ p2 ∨ q1;
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Figure 2. The dependency graph for Example 3. Part (a) shows the original dependency
graph; part (b) shows the graph after announcement α1, while parts (c) and (d) show the
dependency graph after announcements α2 and α3 respectively.

• γ2 = p2 ∨ p3 ∨ q2;

• γ3 = p3 ∨ p1 ∨ q3;

• c(pi ,⊤) = 1 for all i ∈ {1, 2, 3};
• vE (qi) = ⊤ for all i ∈ {1, 2, 3}; and finally,

• βi(qj ) = ⊥ for all i , j ∈ {1, 2, 3}.

The system is unstable: for example, the outcome in which all variables take
the value ⊥ is unstable because agent 1 could benefit by setting p1 = ⊤. The
irreflexive portion of the dependency graph for this example is illustrated in
Figure 2(a).

Observe, however, that any of the following announcements would serve
to stabilise the system:

• α1 = {q1};
• α2 = {q2}; or

• α3 = {q3}.

For example, if announcement α1 is made, then agent 1 will believe its
goal will be achieved, and so only needs to minimise costs — it need not
be concerned with what agent 2 does with p2, so it sets p1 = ⊥. In this
case, agent 3’s best response is setting p3 = ⊤ (thereby achieving its goal),
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and agent 2 can set p2 = ⊥, minimising its cost. This outcome is stable.
Identical arguments show that α2 or α3 would also stabilise the system.
Note how in Figure 2(a) the irreflexive portion of the original DG contains
the edges (1, 2), (2, 3), (3, 1) creating a cycle. The announcement α1 breaks
the dependency and hence removes the edge (1, 2) making the irreflexive
portion of the new digraph acyclic. Similarly, α2 removes edge (2, 3) and α3

removes edge (3, 1). Hence, if at least one of the environment variables is
true, the principal can stabilise the system.

Recall from Proposition 2 that for games with goals in simple conjunctive
form, we can easily identify the dependencies between agents. The next
question is how to break these dependencies. As in Example 3, the basic
idea is to modify an agent’s beliefs so that it no longer believes its optimal
choice is dependent on the choices of others. We do this by convincing the
agent that its goal is either guaranteed to be achieved (in which case its
optimal choice is to minimise costs), or else cannot be achieved (in which
case, again, the optimal choice is again simply to minimise costs). The
difficulty with this approach is that we need to be careful, when making
such an announcement, not to change the beliefs of other agents so that the
dependency graph contains a new cycle; nonuniform announcements will
enable us to manipulate the beliefs of individual agents without affecting
those of others.

Where γi is a goal for some agent in a game G and α is an announcement,
let τ(γi ,α) denote the formula obtained from γi by systematically replacing
each variable p ∈ ΦE by βi ⊕ α(p). We will say that α settles a goal γi if
τ(γi ,α) ≡ ⊤ or τ(γi ,α) ≡ ⊥. Intuitively, α settles γi if the result of making
the announcement α is that i believes its goal is guaranteed to be true or
is guaranteed to be false. So if G is a game with cyclic dependency graph
DG = (V ,E ), containing an edge (i , j ) such that the irreflexive portion of
E \ {(i , j )} is acyclic, and such that γi can be settled by some (nonuniform)
announcement α, then G can be stabilised. For games with simple conjunc-
tive goals we can check this condition in polynomial time. For games in
general, of course, checking the conditions will be harder.

3.3. Measures of Optimality for Announcements

Apart from asking whether some stabilising announcement exists, it seems
obvious to consider the problem of finding an “optimal” stabilising announce-
ment. There are many possible notions of optimality that we might consider,
but here, we define just three.
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Minimal Stabilising Announcements: The most obvious notion of op-
timality we might consider for announcements is that of minimising size.
That is, we want an announcement α∗ satisfying:

α∗ ∈ arg min
α∈S(G)

|α|.

Proposition 5. The problem of computing the size of the smallest stabilising
uniform (respectively nonuniform) simple conjunctive announcement is in
fpΣp

2 [log2 |Φ|] (resp. fpΣp
2 [log2 |Φ×Ag|]).

Proof. We give the proof for uniform announcements; the case for nonuni-
form announcements is similar. Observe that the following problem, which
we refer to as P , is Σp

2 -complete using similar arguments to Proposition 3:
Given a game G, announcement α for G and n ∈ N (n ≤ |ΦE |), does there
exist a uniform stabilising announcement α′ for G, where α ⊆ α′, such that
|α′| ≤ n? It then follows that, for uniform announcements, determining the
size of the smallest stabilising announcement can be computed with log2 |Φ|
queries to an oracle for P using binary search (cf. [21, pp.415–418]).

Proposition 6. The problem of computing a smallest stabilising uniform
(respectively nonuniform) simple conjunctive announcement is in fpΣp

2 [|Φ|]

(respectively fpΣp
2 [|Ag×Φ|]).

Proof. Compute the size s of the smallest announcement using the pro-
cedure of Proposition 5. Then we build a stabilising announcement α∗ by
dynamic programming: A variable S will hold the “current” announcement,
with S = ∅ initially. Iteratively consider each variable p ∈ ΦE in turn, invok-
ing the oracle for P to ask whether there exists a stabilising announcement
for G of size s using the partial announcement S ∪ {p}; if the answer is yes,
then we set S = S ∪ {p}. We then move on to the next variable in ΦE . We
terminate when |S | = s. In this case, S will be a stabilising announcement
of size s, i.e., it will be a smallest stabilising announcement. The overall
number of queries to the Σp

2 oracle for P is |Φ| + log2 |Φ|, i.e., O(|Φ|).

Goal Maximising Announcements: We do not have transferable utility
in our setting, so it makes no sense to directly introduce a measure of social
welfare (normally defined for an outcome as the sum of the utilities of the
players in that outcome). However, a reasonable proxy for social welfare in
our setting is to count the number of goals that are achieved in the “worst”
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Nash stable outcome. Formally, we want an announcement α∗ satisfying:

α∗ ∈ arg max
α∈S(G)

min {succ(v1, . . . , vn , vE ) | (v1, . . . , vn , vE ) ∈ NE (G ⊕ α)}.

Objective Satisfying Announcements: A third possibility, considered
in [9], is the idea of modifying a game so that a particular objective is
achieved in equilibrium, where the objective is represented as a formula
Υ ∈ L. Formally, given a game G and an objective Υ ∈ L, we seek an
announcement α∗ ∈ S(G) such that:

∀(v1, . . . , vn) ∈ NE (G ⊕ α∗) : (v1, . . . , vn , vE ) |= Υ.

Unique Equilibria: As described above, the main aim of this paper is
to consider the issue of stabilising Boolean games through announcements.
However, we may have games with more than one Nash equilibrium, which
then presents the players with a coordination problem: which equilibrium
should they choose? The following example shows that the same technique
described in this paper can be used to ensure that a game has a unique
equilibrium.

Example 4. Suppose we have a game with:

• Ag = {1, 2};
• Φ1 = {p};
• Φ2 = {q};
• ΦE = {r};
• γ1 = p ∨ r ;

• γ2 = p ∧ q ;

• c(p, b) = 0 for all p ∈ Φ, b ∈ B;

• vE (r) = ⊥;

• β1(r) = ⊤; and

• β2(r) = ⊤.

Essentially, player 1 (incorrectly) believes its goal is satisfied by virtue of the
fact that the environment variable r is true, and so is indifferent between
setting p to be ⊤ or ⊥. There are thus three equilibria in the game, corre-
sponding to the formulae p ∧ q , ¬p ∧ q , and ¬p ∧¬q . (The formula p ∧¬q is
not an equilibrium because player 2 could improve the outcome for himself
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by setting q = ⊤). However, if the principal announces the true value of r ,
then player 1 will believe the only way its goal will be achieved is by setting
p = ⊤; player 2 will then be able to achieve its goal by setting q = ⊤.
Thus the game will then have a unique Nash equilibrium that satisfies both
players’ goals.

4. Extensions and Refinements

In this section, we present and discuss a number of possible refinements
and extensions to the basic model of games, announcements, and updates
that we presented above. All of these extensions and refinements have a
common theme: namely, that they are concerned with going beyond the
very simple model of beliefs, going beyond the simple associated model of
announcements, and going beyond the simple model of belief update that
we presented earlier.

4.1. Complex Goals, Beliefs, and Announcements

Up to this point we have dealt with Boolean games where beliefs and an-
nouncements are simple conjunctive formulae. In this section we remove that
restriction and allow arbitrary propositional formulae for both beliefs and
announcements. Recall first that while the goals are formulae that may con-
tain any of the variables of Φ, the beliefs and announcements are restricted
to the environment variables ΦE . We will represent both an agent’s belief
and an announcement in what we call minimal disjunctive form, as we define
it below. In analogy with the concept of simple conjunctive form, we say
that a formula is in simple disjunctive form (also known as a clause in other
contexts) if it is a disjunction of literals. Where we write “disjunction”, this
should be understood as an abbreviation of “formula in minimal disjunctive
form”. A set of disjunctions S is in minimal disjunctive form if the following
two conditions hold:

1. If d ∈ S then S \ d ̸|= d , and
2. If d ∈ S then there is no proper subformula d ′ of d such that S |= d ′.

If a set of disjunctions S is not in minimal disjunctive form, it can al-
ways be changed to an equivalent set in minimal disjunctive form by omitting
superfluous (for equivalence) formulae and replacing every formula by a sub-
formula, if there is one, that is implied by S . These steps may have to be
done multiple times. We write md(S ) for the minimal disjunctive form of
S . Clearly, md(S ) is uniquely defined for every S .
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Example 5. Let ΦE = {p, q , r}. Then:

• δ1 = {p ∨ q ,¬p ∨ r} is in minimal disjunctive form.
• δ2 = {p ∨ q ,¬p ∨ r , q ∨ r} is not in minimal disjunctive form because it

violates the first condition (q ∨ r is superfluous).
• δ3 = {p ∨ q ∨ r , p ∨ q ∨ ¬r} is not in minimal disjunctive form because

the two disjunctions can be replaced by p ∨ q .
• δ4 = {p ∨ q ,¬p ∨ r , p ∨ q ∨ r} violates both conditions for minimal

disjunctive form.

The revision of an agent’s belief given an announcement was easy when
only simple conjunctive formulae were allowed. We just replaced in the
agent’s belief set the incorrect truth value for any environment variable dis-
closed in the announcement. We wrote βi for the belief of agent i , α for the
announcement and βi ⊕α for the updated belief of the agent. As we will be
dealing with only one agent for now, we will drop the subscript i . We will
continue to use ⊕ to represent the updated belief but it will be convenient
not to use a function notation. We assume that both β and α are a set
of disjunctions in minimal disjunctive form. As we will next show, there is
no obvious unique way to define ⊕ in this context. There are a number of
options of which we will consider two.

Example 6. Let ΦE = {p, q , r}, β = {p, q , r}, α = {¬p ∨ ¬q ∨ ¬r}. The
agent believes that all environment variables are true. The principal then
announces that at least one is false, but not which one(s). Clearly, α con-
tradicts β. The question is how the agent should update its belief. In one
approach, that we call the optimistic update, the agent tries to keep as much
of its belief as possible while avoiding a contradiction. One could, in dis-
tinction to the optimistic update, retain two of the atoms, say p and q , and
change r to ¬r . The problem is that there is no unique way to make the
choice of the two atoms to keep, as the agent could have kept p and r , for
instance. Instead, we make new disjunctions that come as close as possible
to the original belief without causing a contradiction, noting that α allows
for any two of the atoms to remain true. The optimistic update in this case
is {p ∨ q , p ∨ r , q ∨ r ,¬p ∨ ¬q ∨ ¬r}. The other approach that we call the
cautious approach deletes all beliefs that were involved in a contradiction
with α. The cautious approach in this requires deleting each atom, yielding
{¬p ∨ ¬q ∨ ¬r}.

Example 7. Let Φe = {p, q , r}, β = {p, q , r}, α = {¬p ∨ ¬q}. This is
similar to the previous example, except that α says nothing about r . In this
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case the optimistic update is {p ∨ q , r ,¬p ∨ ¬q}, while the cautious update
is {r ,¬p ∨ ¬q}.

The Optimistic Belief Update: We now define the optimistic update in
several steps. We use the notation ⊕o for this concept. We start with the
environment variables ΦE , the agent’s belief β, and the announcement α,
where β and α are in minimal disjunctive form. There are two cases. First,
if β ∪ α is consistent then we define β ⊕o α = md(β ∪ α). Next, suppose
that β ∪ α is inconsistent. Accepting α as true we will try to preserve as
much of β as possible. Let β1, . . . , βk be all subsets of β such that each
βi ∪ α is inconsistent and there is no proper subset of βi whose union with
α is inconsistent. We write β0 = β \ ∪k

i=1βi . Each βi may contain several
disjunctions, say βi = {di1, . . . , dik}. Form all disjunctions from pairs of dij .
For example, if di1 = p ∨ q and di2 = r then by di1 ∨ di2 we mean p ∨ q ∨ r .
Let β′

i = {dim ∨ din |1 ≤ m < n ≤ k}. Note that if |βi | = 1 then β′
i = ∅.

βi ∪α must be consistent: otherwise there would be some proper subset of βi

whose union with α is inconsistent. We define β⊕o α = md(β0∪∪k
i=1β

′
i ∪α).

Let us now show that ⊕o conforms with the ⊕ we defined previously for
simple conjunctive beliefs and announcements. However, instead of func-
tions, we write both β and α in simple disjunctive form. Without loss of
generality assume that β contains all atoms and α may contain negations
of atoms: β = {p1, . . . , pn}, α = {ℓ1, . . . , ℓm}. If β ∪ α is consistent, then
β ⊕o α = {p1, . . . , pn , ℓ1, . . . , ℓm} with repetitions removed. In case β ∪ α is
inconsistent, without loss of generality, let α = {¬p1, . . . ,¬pi , ℓi+1, . . . , ℓm},
that is, the inconsistency is caused by the incorrect beliefs for the variables
p1, . . . , pi . According to the above definition we form β1 = {p1}, . . . ,βi =
{pi}. As |β1| = . . . |βi | = 1, β′

1 = · · ·β′
i = ∅. Then by the definition

β ⊕o α = {pi+1, . . . , pn , ℓ1, . . . , ℓm} (with repetitions removed).

Commutativity of Belief Updates: We would like the new belief updates
to also have another important property, namely, that in the case of several
announcements the order does not matter, that is, (β ⊕ α1) ⊕ α2 = (β ⊕
α2)⊕α1. It is easy to show that this property holds in the simple conjunctive
case. Our next examples show why the order matters for ⊕o .

Example 8. ΦE = {p, q}, β = {p}, α1 = {¬p ∨ q}, α2 = {¬p}. Then
β ⊕o α1 = {p, q} (there was no inconsistency), so (β ⊕o α1)⊕o α2 = {¬p, q}
(p was inconsistent with ¬p and hence deleted). But β ⊕o α2 = {¬p} and
then (β ⊕o α2) ⊕o α1 = {¬p} (the result is placed in minimal disjunctive
form). Hence (β ⊕o α1) ⊕o α2 ̸= (β ⊕o α2) ⊕o α1.
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In this example the problem was that the first announcement led the
agent to conclude q . But the second announcement subsumes the first and
has no q in it. By announcing α2 first, α1 becomes superfluous. The next
example shows that even if there is no subsumption between announcements,
as long as the announcements share a variable the problem of noncommuta-
tivity persists.

Example 9. ΦE = {p, q , r}, β = {p, q∨r}, α1 = {¬p∨¬q}, α2 = {¬p∨¬r}.
Then β⊕o α1 = {p,¬q , r}, and (β⊕o α1)⊕o α2 = {p∨r ,¬q ,¬p∨¬r}, while
β ⊕o α2 = {p,¬r , q}, and (β ⊕o α2) ⊕o α1 = {p ∨ q ,¬r ,¬p ∨ ¬q}. Again,
(β ⊕o α1) ⊕o α2 ̸= (β ⊕o α2) ⊕o α1.

We can show that if the announcements refer to different variables, we
get commutativity. Previously we wrote vars(ϕ) to refer to the variables of
a formula. We extend this definition so that for a set of formulae S we write
vars(S ) = {vars(ϕ) | ϕ ∈ S}.

Proposition 7. If vars(α1)∩vars(α2) = ∅ then (β⊕α1)⊕α2 = (β⊕α2)⊕α1.

Proof. Let F = {ϕ ∈ β | vars(ϕ)∩ vars(α1) ̸= ∅ and vars(ϕ)∩ vars(α2) ̸=
∅}. If F = ∅ then the interaction of β with α1 must be different from the
interaction of β with α2. Hence the announcements must change different
formulae of β (if any) and each formula in β can be inconsistent only with
formulae entirely in α1 or α2. Therefore the order of application of α1 and
α2 does not matter.

If F ̸= ∅ let ϕ ∈ β such that some variable of ϕ occurs in a formula of
α1 and some variable of ϕ occurs in a formula of α2. The situation will be
something like the following: ϕ = p ∨ q ∨ ( other literals ), α1 has a formula
ψ1 containing p or ¬p and α2 has a formula ψ2 containing q or ¬q . Two
types of interactions are possible with ϕ. The first type is where either ψ1

or ψ2 (or both) subsumes ϕ. In this case in both update orders ϕ is replaced
by ψ1 and ψ2. The second type is where the interaction is caused by a
negated literal in ψ1 or ψ2 (or both), such as if ψ1 = ¬p. Then, when α1 is
applied, ϕ becomes ϕ′ = q ∨ ( other literals ), but the update order makes
no difference.

The Cautious Belief Update: We just sketch here the definition of the
cautious belief update and some results about it based on the presentation of
the optimistic belief update. There is only one place in the definition where
⊕c differs from ⊕o . Recall that β1, . . . ,βk are all the subsets of β that
are minimally inconsistent with α and β0 = β \ ∪k

i=1βi . For the optimistic
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update we tried to preserve as much of the information of β as possible by
taking pairwise disjunctions. The idea of the cautious update is that we no
longer trust any belief formula that is involved in an inconsistency with the
announcement. Hence we define β ⊕c α = md(β0 ∪ α).

It is clear that ⊕c works the same way as ⊕o for simple conjunctive be-
liefs and announcements. Consider now what happens if the order of two
announcements is switched. Examples 8 and 9 again show noncommuta-
tivity. In Example 8 the results are the same as before. In Example 9
(β ⊕0 α1) ⊕0 α2 = {¬q ,¬p ∨ ¬r}, while (β ⊕0 α2) ⊕0 α1 = {¬r ,¬p ∨ ¬q}.
Also, Proposition 7 is proved the same way for ⊕c .

Stability: Recall that our goal for announcements was to allow the principal
to create stability in an unstable situation. The principal’s strategy is to
make announcements, possibly different ones to different agents, convincing
them that their goal is not really dependent on the actions of other agents. A
reasonable question to ask is whether moving to complex announcements will
allow the principal to stabilise an unstable system that it cannot stabilise
by simple conjunctive announcements. We present an example based on
Example 3, to show that this is indeed the case.

Example 10. Consider a game with:

• Ag = {1, 2, 3};
• Φ = {p1, p2, p3, q1, q2, q3, q4},
• Φi = {pi} (hence the q ’s are the environment variables);
• γ1 = p1 ∨ p2 ∨ q1;
• γ2 = p2 ∨ p3 ∨ q2;
• γ3 = p3 ∨ p1 ∨ q3;
• β1 = {q4};
• β2 = {¬q2};
• β3 = {¬q3};
• c(pi ,⊤) = 1 for all i and
• vE (qi) = ⊥.

The difference between this example and Example 3 is slight, including the
fact that in this example each environment variable has truth value ⊥. There
is also an extra variable, q4, and the agents’ beliefs do not involve all the
environment variables. Exactly as in Example 3 the system is unstable. In
that example the principal was able to stabilise the system by announcing
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either {q1} or {q2}, or {q3} breaking the dependency cycle and making the
irreflexive portion of the digraph acyclic. That is not possible to do here
because these environment variables are false. But if the principal announces
the true disjunctive formula α1 = q1 ∨¬q4 to agent 1, notice what happens:
β1 ⊕x α1 = {q4, q1} (we wrote the subscript x because both versions of ⊕
give the same result). Now, the presence of q1 in the belief of agent 1 breaks
the cycle and the system becomes stable, even though no simple conjunctive
announcement (that is true) can make the system stable.

In this example the system was stabilised by the principal essentially mis-
leading an agent. While a truthful principal, restricted to simple conjunctive
announcements can hide information from an agent, it cannot mislead an
agent.

4.2. Beliefs and Possible Worlds

So far in this paper, we have considered models of belief that are essentially
syntactic in nature. That is, beliefs can be understood as sets of formulae, (or
in the simplest case, just one formula), which represents how that agent sees
the environment variables. An extremely powerful alternative model involves
a possible worlds model of beliefs [10]. In this approach, we characterise
an agent’s beliefs as a set of alternatives, called possible worlds, each one
representing one possible way the environment variables could be, given
the agent’s beliefs. An agent is then said to believe a proposition if that
proposition is true in all that agent’s possible worlds. To adopt this approach
for our scheme, first recall that VE is the set of possible valuations for the
environment variables ΦE . Then, the beliefs of agent i are given as a subset
βi ⊆ VE , and we assume that vE ∈ βi (i.e., each agent i considers the actual
valuation of the environment variables to be possible). Where ϕ ∈ L, we
will write Biϕ (“agent i believes ϕ”) to mean that v |= ϕ for all v ∈ βi .

Given this model, we can define updates of beliefs with respect to ar-
bitrary formulae, as follows. Where an announcement α is a formula of
propositional logic over the variables ΦE , we denote by βi ⊕ α the set:

βi ⊕ α = {v ∈ βi | v |= α}.

Thus, in computing the update βi ⊕ α in this case, we simply eliminate
from the set βi of epistemic alternatives for agent i all possibilities that are
not consistent with the new information α. Notice that since we require
announcements to be truthful (i.e., any announcement α must satisfy the
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requirement that vE |= α), and that vE ∈ βi , then the update βi ⊕ α will
always be well defined and the result of the update will always be non-empty.

The great advantage of this approach is that it allows us to capture
uncertainty about the state of environment variables. Agent i may have
βi = {v1, v2}, with v1(p) = ⊤ and v2(p) = ⊥ and meaning that i believes
it is possible that p is true, and also believes it possible that p is false.
Furthermore, i may have v1(q) = ⊥ and v2(q) = ⊤. Thus we have Bi(p∨q)
but not Bip or Biq .

The key difficulty with this approach with respect to our basic model is
how to define utility: our original formulation of (subjective) utility required
that an agent had a definite opinion about all environment variables in order
to compute subjective utility, whereas in the new model, an agent can be
uncertain about the values of environment variables. How should such un-
certainty be reflected in an agent’s subjective assessment of utility? There
seems to be no clearcut answer to this question, but the simplest approach
might be a pessimistic view: the utility an agent i believes it will get from
an outcome (v1, . . . , vn) is the utility it would get if the worst case possibility
were true, according to its beliefs βi ⊆ VE . We define pessimistic subjective
utility through a function ûi(· · ·) as follows:

ûi(v1, . . . , vn) = min{ui(v1, . . . , vn , v ′) | v ′ ∈ βi}.

We can then define Nash stability with respect to the utility functions ûi ,
and the same basic approach discussed above can then be applied. Note,
however, that with this approach, it is possible for the principal to make
arbitrary truthful statements about the values of the environment variables.
For example, if there are two environment variables, p and q , both of which
are in fact true, then the principal could announce p ∨ q , thereby revealing
that one of them is true without revealing that both are true.

5. Related Work

In the sense that the main thrust of our work is to design announcements that
will modify games in such a way that certain outcomes are achieved in equi-
librium, our work is similar in spirit to mechanism design/implementation
theory, where the goal is to design games in such a way that certain out-
comes are achieved in equilibrium [18]. However, we are aware of no work
within the AI/computer science community that addresses the problem of
manipulating games in the same way as we do — through communication.
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Similar ideas to our dependency graph are used in the analysis of games
in, e.g., [12, 5]. For example, Gottlob et al. investigate cases where it is com-
putationally easy to compute pure strategy Nash equilibria in games; their
main results relate to games in which the “neighbourhood graph” (which
is essentially our dependency graph) is “small”. They show that while this
condition is not sufficient in itself to guarantee tractability, by combining it
with a further condition, tractability can be obtained.

Work that has considered manipulating games within the AI/computer
science community has focussed on the design of taxation schemes to influ-
ence behaviour [19, 2, 9]. For example, Endriss et al. consider the possibility
of overlaying Boolean games with taxation schemes so that, if every player
acts rationally, then a certain objective, represented as a Boolean formula
Υ, will be satisfied in some Nash equilibrium of the resulting system [9].

Our work is also about the effect of making announcements, and in this
sense it has some affinity with the growing body of work on dynamic epis-
temic logic (del) [7]. del tries to give a logical account of how the knowledge
states of agents in a system are affected by announcements that take the form
of logical formulae. Of particular interest in del are announcements that
themselves refer to the knowledge of participants, which can affect systems
in subtle and complex ways.

Also relevant is the substantial body of work on speech acts. Theories of
speech acts are pragmatic theories of language: theories concerning the way
that language is used. The theory of speech acts is usually seen as originat-
ing in the work of John Austin in the 1960s. In his seminal book How to
Do Things With Words, he observed that certain types of natural language
utterance change the state of the world [1]. To take a paradigm example,
if a priest or other legally empowered individual utters the sentence “I now
pronounce you man and wife” in the appropriate circumstances, then after
the utterance, the legal relationships between the individuals involved in
the utterance will have changed. Other examples of “formal” speech acts
include christening and declaring war. In this way, utterances can be under-
stood as changing the world in ways beyond their immediate physical effects
(such as shouting and causing an avalanche). Now, a fundamental tenet of
speech act theory is that utterances are actions, which are made by ratio-
nal agents in the furtherance of their goals and preferences. And if they are
actions, then this suggests that formalisms developed for reasoning about ac-
tions can be applied to reasoning about speech acts; such formalisms include
Floyd-Hoare logic [17], dynamic logic [15], and the STRIPS formalism [11].
This observation led researchers to apply formalisms developed for reason-
ing about actions to the formalisation of speech acts; for example, Cohen
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and Perrault [6] used a STRIPS-style notation to formalise speech acts,
where the pre- and post-conditions of speech acts are formulated with re-
spect to the beliefs and desires of the participants in the communicative
act. It would be intriguing to investigate the links between speech acts and
our work: our announcements are, after all, nothing more than declarative
speech acts. More generally, we could see speech acts as actions performed
by players in a game, with the intention of modifying the resulting behaviour
of other players in the game.

6. Conclusions

We have considered the general problem of manipulating games through
communication: by making announcements in a game, we change the beliefs
of the players of the game, and in this way we can perturb their choices. We
have focussed mainly on the idea of stabilising games.

There are many obvious avenues for future research. We might con-
sider richer models of belief (probabilistic and Bayesian models [14]), and of
course, mixed strategy equilibria. We might consider the possibility of the
principal lying, and of noisy communication. We might also consider an-
nouncements that refer to the epistemic state of agents (“player one knows
the value of x”); this would take us close to the realm of dynamic epistemic
logic [7].
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