
Synthese
DOI 10.1007/s11229-008-9363-1

Quantified coalition logic

Thomas Ågotnes · Wiebe van der Hoek ·
Michael Wooldridge

Received: 10 February 2008 / Accepted: 11 June 2008
© Springer Science+Business Media B.V. 2008

Abstract We add a limited but useful form of quantification to Coalition Logic, a
popular formalism for reasoning about cooperation in game-like multi-agent systems.
The basic constructs of Quantified Coalition Logic (QCL) allow us to express such
properties as “every coalition satisfying property P can achieve ϕ” and “there exists
a coalition C satisfying property P such that C can achieve ϕ”. We give an axiomat-
isation of QCL, and show that while it is no more expressive than Coalition Logic, it
is nevertheless exponentially more succinct. The complexity of QCL model checking
for symbolic and explicit state representations is shown to be no worse than that of
Coalition Logic, and satisfiability for QCL is shown to be no worse than satisfiability
for Coalition Logic. We illustrate the formalism by showing how to succinctly specify
such social choice mechanisms as majority voting, which in Coalition Logic require
specifications that are exponentially long in the number of agents.

Keywords Coalition logic · Quantification · Succinctness · Model checking ·
Satisfiability

1 Introduction

Game theoretic models of cooperation have proved a valuable source of techniques
and insights for the field of multi-agent systems, and cooperation logics such as
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Alternating-time Temporal Logic (ATL) (Alur et al. 2002) and Coalition Logic (CL)
(Pauly 2001) have proved to be powerful and intuitive knowledge representation
formalisms for such models. Many important properties of game-like cooperative
scenarios require quantification over coalitions. However, existing cooperation logics
provide no direct facility for such quantification, and expressing such properties there-
fore requires formulae that are exponentially long in the number of agents. Examples
include expressing the notion of a weak veto player (Wooldridge and Dunne 2004) in
CL, or solution concepts from cooperative game theory such as non-emptiness of the
core in Coalitional Game Logic (Ågotnes et al. 2006). An obvious solution would be to
extend, for example, ATL, with a first-order-style apparatus for quantifying over coali-
tions. In such a quantified ATL, one might express the fact that agent i is a necessary
component of every coalition able to achieve ϕ by the following formula:

∀C: 〈〈C〉〉♦ϕ → (i ∈ C)

However, adding quantification in such a naive way leads to undecidability over
infinite domains (using basic quantificational set theory we can define arithmetic), and
very high computational complexity even over finite domains. The question therefore
arises whether we can add quantification to cooperation logics in such a way that we
can express useful properties of cooperation in games without making the resulting
logic too computationally complex to be of practical interest. Here, we answer this
question in the affirmative.

We introduce Quantified Coalition Logic (QCL), by modifying the existing cooper-
ation modalities of CL in order to enable quantification. In CL, the basic cooperation
constructs are 〈〈C〉〉ϕ, meaning that coalition C can achieve ϕ; these operators are
in fact modal operators with a neighbourhood semantics. In QCL, we replace these
operators with expressions 〈P〉ϕ and [P]ϕ; here, P is a predicate over coalitions, and
the two sentences express the fact that there exists a coalition C satisfying property
P such that C can achieve ϕ and all coalitions satisfying property P can achieve ϕ,
respectively. Thus we add a limited form of quantification to CL without the apparatus
of quantificational set theory. Our key contributions are twofold. First, we show that
while QCL is equally expressive as CL, it is exponentially more succinct. And second,
we show that QCL is no worse than CL with respect to the key computational problems
of model checking and satisfiability.

The remainder of the paper is structured as follows. After briefly reviewing the main
concepts of Pauly’s Coalition Logic, we introduce a language for expressing coalition
predicates, and show that the satisfiability problem for this language is NP-complete.
We then introduce QCL itself, and give a complete axiomatisation. We show that
while QCL is no more expressive than Coalition Logic (i.e., there are no properties
expressible in QCL that can not be expressed in Coalition Logic), it is nevertheless
exponentially more succinct, in a precise and formal sense. We then study two com-
putational properties of the logic. First, we show that the complexity of the model
checking problem is no worse than that of Coalition Logic, assuming an explicit rep-
resentation of models. We also study the problem under a more realistic representation.
Second, we show that the complexity of the satisfiability problem is also no worse
than that of Coalition Logic. We then extend the language of coalition predicates in
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order to be able to succinctly express properties related to the cardinality of coalitions,
and show completeness results for the extended logic. We illustrate QCL by showing
how it can be used to succinctly specify such social choice mechanisms as majority
voting, which in Coalition Logic require specifications that are exponentially long in
the number of agents.

2 Background: coalition logic

Since QCL is based on Pauly’s Coalition Logic CL (Pauly 2001), we first briefly intro-
duce the latter. CL is a propositional modal logic, containing an indexed collection
of unary modal operators 〈〈C〉〉, where C is a coalition, i.e., a subset of a given set of
agents Ag. The intended interpretation of 〈〈C〉〉ϕ is that ‘C can achieve ϕ’, or, that ‘C
is effective for ϕ’, or that ‘C has a choice such that ϕ’. One warning regarding notation
is in place, here. In Pauly (2001), the notation for ‘C has a choice such that ϕ’ is in
fact [C]ϕ. Since we will later use 〈·〉 and [·] for an existential and universal statement
over kinds of coalitions, and the construct [C]ϕ of Pauly (2001) will turn out to be a
special case of our 〈·〉ϕ, in this paper we use 〈〈C〉〉ϕ where Pauly (2001) uses [C]ϕ.

Formulae of CL are defined by the following grammar (with respect to a set �0 of
Boolean variables, and a fixed set Ag of agents):

ϕ ::= � | p | ¬ϕ | ϕ ∨ ϕ | 〈〈C〉〉ϕ

where p ∈ �0 is an atomic proposition and C a subset of Ag. As usual, we use
parentheses to disambiguate formulae where necessary, and define the remaining con-
nectives of classical logic as abbreviations: ⊥ ≡ ¬�, ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ),
ϕ → ψ ≡ (¬ϕ) ∨ ψ and, finally, ϕ ↔ ψ ≡ (ϕ → ψ) ∧ (ψ → ϕ).

A model M for (over �0, Ag) is a triple M = 〈S, E, π〉 where

– S = {s1, . . . , so} is a finite non-empty set of states;
– E : 2Ag × S → 22S

is an effectivity function, where T ∈ E(C, s) is intended to
mean that from state s, the coalition C can cooperate to ensure that the next state
will be a member of T —note that they cannot determine which of the members of
T will occur—they can only be sure that it will be some member of T ; and

– π: S → 2�0 is a valuation function, which for every state s ∈ S gives the set π(s)
of Boolean variables that are satisfied at s.

It is possible to define a number of constraints on effectivity functions, depending upon
exactly which kinds of scenario they are intended to model Pauly (2001, pp. 24–39).
Throughout this paper, we assume that models M are weak playability models M ∈
WP , in which effectivity functions have the following properties (Pauly 2001, p. 30):

– Outcome monotonicity: ∀X ⊆ X ′ ⊆ S, C ⊆ Ag, if X ∈ E(C, s) then X ′ ∈ E(C, s)
– ∅ �∈ E(Ag, s)
– ∀C ′ ⊆ C ⊆ Ag if ∅ ∈ E(C, s) then ∅ ∈ E(C ′, s)
– ∀C ⊆ Ag if ∅ �∈ E(∅, s) then S ∈ E(C, s)
– Ag-maximality: ∀X ⊆ S ((S \ X) �∈ E(∅, s)⇒ X ∈ E(Ag, s))
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– Superadditivity: ∀X1, X2 ⊆ S,C1,C2 ⊆ Ag (C1 ∩ C2 = ∅), (X1 ∈ E(C1, s)),
(X2 ∈ E(C2, s))⇒ X1 ∩ X2 ∈ E(C1 ∪ C2, s)

For a brief explanation of these assumptions, see below. By “model” we henceforth
mean this general “weak playability model”. For more restricted classes of models,
see Pauly (2001).

An interpretation for CL is a pair M, s where M is a model and s is a state in M.
The satisfaction relation “|�C L” for CL holds between interpretations and formulae
of CL. We say that coalition C can enforce ϕ in s if for some T ∈ E(C, s), ϕ is true in
all t ∈ T . That is, C can make a choice such that, irrespective of the others’ choices,
ϕ will hold. Formally, the satisfaction relation is defined as follows:

– M, s |�C L �
– M, s |�C L p iff p ∈ π(s) (where p ∈ �0)
– M, s |�C L ¬ϕ iff M, s �|�C L ϕ

– M, s |�C L ϕ ∨ ψ iff M, s |�C L ϕ or M, s |�C L ψ

– M, s |�C L 〈〈C〉〉ϕ iff ∃T ∈ E(C, s) such that ∀t ∈ T , we have M, t |�C L ϕ.

Coming back to the constraints on weak playability models, note that the smaller a
set X is that a coalition C can enforce, the more specific and stronger the property
that they can ensure. Outcome monotonicity says that if a coalition C can enforce an
outcome in a set, it can enforce an outcome in any bigger set. (Or: if C can enforce
something, it also can enforce all its consequences). The second assumption says that
the grand coalition Ag cannot achieve the ultimate strong property ⊥ (if ∅ ∈ E(Ag, s),
we would have M, s |�C L ⊥). Given this constraint, the third assumption ensures that
in fact no coalition can achieve ⊥. Note that a generalisation of this third constraint,
i.e., ∀C ′ ⊆ C ⊆ Ag,∀X ⊆ S if X ∈ E(C, s) then X ∈ E(C ′, s) (Coalition mono-
tonicity) is not required here. Under the first three assumptions, the fourth one says
that any coalition C can achieve something: It is equivalent to saying that there must
be some X ∈ E(C, s), for every C and s. Supperaditivity explains how coalitions can
join forces. If C1 can enforce X1 (satisfying ϕ1, for example) and C2 can enforce X2
(satisfying ϕ2), then, given those coalitions are disjoint, they can both exercise their
ability to enforce X1 ∩ X2 (they can guarantee ϕ1 ∧ ϕ2). This requirement implies
X ∈ E(Ag, s)⇒ (S \ X) �∈ E(∅, s). Now Ag-maximality is the converse of the latter.
Its contraposition reads: If Ag cannot enforce X , it implies that (S \ X) is already
enforced, even by the coalition that takes no agents.

For a formula ϕ and model M, let ϕM denote the set of states {s ∈ S : M, s |� ϕ}.
Observe that M, s |� 〈〈C〉〉ψ iff ψM ∈ E(C, s).

The notions of truth of ϕ in a model (M |�C L ϕ) and validity in a class of models C
(C |�C L ϕ) are defined as usual. The inference relation �C L for CL is given in Table 1
(taken from Pauly 2001, but adapted to our notation): it is sound and complete with
respect to the class of weak playability models W P (Pauly 2001, p. 55).

3 Quantified coalition logic

If we have n agents in Ag, and one wants to express that some coalition can enforce
some atomic property p, one needs to enumerate 2n disjunctions of the form 〈〈C〉〉p.
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Table 1 Axioms and rules
for coalition logic

In (Prop), ψ is a propositional
tautology, in axiom (⊥), we
require C ′ ⊆ C , and for (S),
C1 ∩ C2 = ∅

Prop �C L ψ

Ag⊥ �C L ¬〈〈Ag〉〉⊥
� �C L ¬〈〈∅〉〉⊥ → 〈〈C〉〉�
⊥ �C L 〈〈C〉〉⊥ → 〈〈C ′〉〉⊥
Ag �C L ¬〈〈∅〉〉¬ϕ → 〈〈Ag〉〉ϕ
S �C L (〈〈C1〉〉ϕ1 ∧ 〈〈C2〉〉ϕ2)→ 〈〈C1 ∪ C2〉〉(ϕ1 ∧ ϕ2)

MP �C L ϕ → ψ, �C L ϕ ⇒�C L ψ

Distr �C L ϕ → ψ ⇒�C L 〈〈C〉〉ϕ → 〈〈C〉〉ψ

The idea behind Quantified Coalition Logic (QCL) is to avoid this blow-up in the
length of formulae. Informally, QCL is a propositional modal logic, containing an
indexed collection of unary modal operators 〈P〉ϕ and [P]ϕ. The intended interpreta-
tion of 〈P〉ϕ is that there exists a set of agents C, satisfying predicate P, such that C
can achieve ϕ. We refer to expressions P as coalition predicates, and we now define
a language for coalition predicates; QCL will then be parameterised with respect to
such a language. Of course, many coalition predicate languages are possible, with
different properties, and later we will investigate another such language. Throughout
the remainder of this paper, we will assume a fixed, finite set Ag of agents.

3.1 Coalition predicates

Syntactically, we introduce two atomic predicates subseteq and supseteq, and derive
other predicate forms from these. Formally, the syntax of coalition predicates is given
by the following grammar:

P ::= subseteq(C) | supseteq(C) | ¬P | P ∨ P

where C ⊆ Ag is a set of agents. One can think of the atomic predicates subseteq(C)
and supseteq(C) as a stock of 2|Ag|+1 propositions, one for each coalition, which
are then to be evaluated in a given coalition Co. The circumstances under which a
concrete coalition Co satisfies a coalition predicate P , are specified by a satisfaction
relation “|�cp”, defined by the following four rules:

Co |�cp subseteq(C) iff Co ⊆ C
Co |�cp supseteq(C) iff Co ⊇ C
Co |�cp ¬P iff not Co |�cp P
Co |�cp P1 ∨ P2 iff Co |�cp P1 or Co |�cp P2

Now we can be precise about what it means that “a coalition Co satisfies P”: it just
means Co |�cp P . We will assume the conventional definitions of implication (→),
biconditional (↔), and conjunction (∧) in terms of ¬ and ∨.

Coalitional predicates subseteq(·) and supseteq(·) are in fact not independent.
They are mutually definable—due to the fact that the set of all agents Ag is assumed
to be finite. We then have that (Ågotnes and Walicki 2006)

subseteq(C) ≡
∧

i∈Ag\C

¬supseteq({i})
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and

supseteq(C) ≡
∧

C ′⊆Ag,C �⊆C ′
¬subseteq(C ′).

The reason that we include both types of predicates as primitives is a main motivat-
ing factor of this paper: we are interested in succinctly expressing quantification in
coalition logic.

We find it convenient to make use of the following derived predicates:

eq(C) ≡ subseteq(C) ∧ supseteq(C)

subset (C) ≡ subseteq(C) ∧ ¬eq(C)

supset (C) ≡ supseteq(C) ∧ ¬eq(C)

incl(i) ≡ supseteq({i})
excl(i) ≡ ¬incl(i)

any ≡ supseteq(∅)
nei(C) ≡

∨

i∈C

incl(i)

ei(C) ≡ ¬nei(C)

The reader may note an obvious omission here: we have not introduced any explicit
way of talking about the cardinality of coalitions; such predicates will be discussed
in Sect. 6.

We say that a coalition predicate P is Ag-consistent if for some Co ⊆ Ag, we have
Co |�cp P , and P is Ag-valid if Co |�cp P for all Co ⊆ Ag.

The model checking problem for coalition predicates is the problem of checking
whether, for given Co and P , we have Co |�cp P (Clarke et al. 2000). It is easy to
see that this problem is decidable in polynomial time. The satisfiability problem for
coalition predicates is the problem of deciding whether P is consistent. We get the
following.

Theorem 1 The satisfiability problem for coalition predicates is NP-complete.

Proof There is an easy reduction from SAT (Papadimitriou 1994, p. 171) that gives
NP-hardness: given an instance ϕ of SAT, systematically replace every Boolean var-
iable p that occurs in ϕ by incl(p). The resulting coalition predicate will clearly be
satisfiable iff the SAT instance ϕ is satisfiable. To show membership in NP, we use a
standard “guess and check” approach. However, we must first show that a coalition
predicate P is satisfiable iff there is a coalition that is witness to this that is a “short
certificate”, i.e., of size at most polynomial in the size of the given coalition predicate
P . The right-to-left direction is immediate, so consider the left-to-right direction. Let
Ag(P) denote the set of all agents named in P . Suppose C |�cp P . It is straightforward
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to see that, by the semantics of coalition predicates, there must exist a sequence of
sets1

C11, . . . ,C1k1
,C21 , . . . ,C2k2

,C31 , . . . ,C3k3
,C41 , . . . ,C4k4

such that

C ⊆ C11, · · · , C ⊆ C1k1
,

C ⊇ C21, · · · , C ⊇ C2k2
,

C �⊆ C31, · · · , C �⊆ C3k3
,

C �⊇ C41, · · · , C �⊇ C4k4

where each Ci j appears in a supseteq(. . .) or subseteq(. . .) predicate in P , and so

Ag(P) ⊇
⋃

1≤i≤4

⋃

1≤ j≤ki

Ci j

We refer to four sets of constraints as C1 constraints, C2 constraints, and so on.
Note that each Ci could be empty. We reason by cases:

– Case 1: there are C1 constraints. In this case, C ⊆ (C11 ∩ · · · ∩ C1k1
), and so

|C | ≤ |Ag(P)|.
– Case 2: there are no C1 constraints. In this case, we know that:

C ⊇ (C21 ∪ · · · ∪ C2k2
)

∃x31 ∈ C : x31 �∈ C31

· · ·
∃x3k3

∈ C : x3k3
�∈ C3k3∃x41 ∈ C41 : x41 �∈ C

· · ·
∃x4k4

∈ C4k4
: x4k4

�∈ C

So, let a∗ be a new element, not occurring in Ag(P) (in the case that Ag(P) = Ag
we are done), and define

C∗ = C21 ∪ · · · ∪ C2k2
∪ {a∗}

Notice that, so defined, |C∗| ≤ |Ag(P)| + 1. By construction, C∗ satisfies properties
C2, C3, and C4.

The remaining cases are similarly straightforward. So, to verify that a coalition
predicate P is satisfiable, we can (i) guess a coalition C such that |C | ≤ |Ag(P)| + 1;
and (ii) verify that C |�cp P , which can be done in time polynomial in the size of C
and P . ��

1 Assume P is in disjunctive normal form. C must satisfy a conjunction of literals each of one of the four
following forms: subseteq(C1 j ), supseteq(C2 j ),¬subseteq(C3 j ),¬supseteq(C4 j ).
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3.2 Syntax and semantics of quantified coalition logic QCL

We now introduce Quantified Coalition Logic (QCL), an extension of Pauly’s Coali-
tion Logic (Pauly 2001). Informally, QCL is a propositional modal logic, containing
an indexed collection of unary modal operators 〈P〉ϕ and [P]ϕ, where P is a coalition
predicate.

Formulae of QCL are defined by the following grammar (with respect to a set�0 of
Boolean variables, a fixed set Ag of agents, and the language of coalition predicates):

ϕ ::= � | p | ¬ϕ | ϕ ∨ ϕ | 〈P〉ϕ | [P]ϕ

where p ∈ �0 is an atomic proposition and P is a coalition predicate over Ag. As usual,
we use parentheses to disambiguate formulae where necessary, and define the remain-
ing connectives of classical logic as abbreviations: ⊥ ≡ ¬�, ϕ → ψ ≡ (¬ϕ) ∨ψ
and ϕ ↔ ψ ≡ (ϕ → ψ) ∧ (ψ → ϕ).

Models for QCL are exactly the same as the models for CL (i.e., weak playability
models), and interpretations for QCL are also the same as interpretations for CL, i.e.,
they are pairs M, s where M is a model and s is a state in M. The satisfaction relation
“|�QC L ” for QCL holds between interpretations and formulae of CL. The satisfaction
relation is defined by the following inductive rules:

M, s |�QC L �
M, s |�QC L p iff p ∈ π(s) (where p ∈ �0)
M, s |�QC L ¬ϕ iff M, s �|�QC L ϕ

M, s |�QC L ϕ ∨ ψ iff M, s |�QC L ϕ or M, s |�QC L ψ

M, s |�QC L 〈P〉ϕ iff ∃C ⊆ Ag: C |�cp P and ∃S ∈ E(C, s) such that ∀s′ ∈ S,
we have M, s′ |�QC L ϕ.
M, s |�QC L [P]ϕ iff ∀C ⊆ Ag: C |�cp P implies ∃S ∈ E(C, s) such that ∀s′ ∈ S,
we have M, s′ |�QC L ϕ.

Remark 1 Readers familiar with modal logic may wonder why we did not introduce
the universal coalition modality [P]ϕ as the dual ¬〈P〉¬ϕ. In fact such a definition
would not serve the desired purpose. Consider the pattern of quantifiers in the seman-
tics of 〈·〉: ∃∃∀. Taking the dual ¬〈·〉¬ would yield the quantifiers ∀∀∃, rather than
the desired ∀∃∀ pattern. Of course, this does not mean that [P]ϕ is not definable from
〈P〉ϕ (and the propositional connectives) in some other way. In fact:

[P]ϕ ≡
∧

{C|C|�pc P}
〈eq(C)〉ϕ

Thus, for expressiveness, 〈P〉 together with the propositionals are adequate connec-
tives, and [P]ϕ is definable. The reason we introduce the box cooperation modality as
a separate construct is one of the main motivations in this paper, as discussed before
for the different predicate operators: succinctness of expression.
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Let us define the dual 〈〈P〉〉ϕ as ¬〈P〉¬ϕ. Then we get:

〈〈P〉〉ϕ ≡ ¬〈P〉¬ϕ
≡ not ∃C ⊆ Ag

(
C |�cp P & ∃S ∈ E(C, s)∀s′ ∈ S(M, s′ |�QC L ¬ϕ))

≡ ∀C ⊆ Ag
(
C |�cp P ⇒ ∀S ∈ E(C, s)∃s′ ∈ S : M, s′ |�QC L ϕ

)

and, similarly for [[P]]:

[[P]]ϕ ≡ ¬[P]¬ϕ
≡ not ∀C ⊆ Ag

(
C |�cp P ⇒ ∃S ∈ E(C, s)∀s′ ∈ S(M, s′ |�QC L ¬ϕ))

≡ ∃C ⊆ Ag
(
C |�cp P&∀S ∈ E(C, s)∃s′ ∈ S : M, s′ |�QC L ϕ

In the following we summarise the interpretation of our four modalities. We say that
coalition C can enforce ϕ in s if for some S ∈ E(C, s), ϕ is true in all s′ ∈ S. That is,
C can make a choice such that, irrespective of the others’ choices, ϕ.

M, s |�QC L 〈P〉ϕ Some coalition satisfying P can enforce ϕ in s
M, s |�QC L [P]ϕ All coalitions satisfying P can enforce ϕ in s
M, s |�QC L 〈〈P〉〉ϕ No coalition satisfying P can enforce ¬ϕ in s
M, s |�QC L [[P]]ϕ Some coalition satisfying P is unable to enforce ¬ϕ in s

3.3 Some QCL expressions

To get a flavour of the kind of properties we can express in QCL, we present some
example QCL formulae. First, note that the conventional CL/ATL ability expression
is defined simply as:

〈〈C〉〉ϕ ≡ 〈eq(C)〉ϕ.

We can also succinctly express properties such as the solution concepts from
Qualitative Coalitional Games (Wooldridge and Dunne 2004; Dunne et al. 2007).
For example, a weak veto player for ϕ is an agent that must be present in any coalition
that has the ability to bring about ϕ:

WVETO(i, ϕ) ≡ ¬〈excl(i)〉ϕ.

Of course, if no coalition has the ability to achieve ϕ, then this means that every agent
is a veto player for ϕ. A strong veto player for ϕ is thus an agent that is both a weak
veto player for ϕ and that is a member of some coalition that can achieve ϕ:

VETO(i, ϕ) ≡ WVETO(i, ϕ) ∧ 〈incl(i)〉ϕ.

Finally, a dictator for ϕ is a weak veto player such that every coalition that includes
that player is able to achieve ϕ:

DICT(i, ϕ) ≡ WVETO(i, ϕ) ∧ [incl(i)]ϕ
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A coalition C is weakly minimal for ϕ if no subset of C can achieve ϕ:

WMIN(C, ϕ) ≡ ¬〈subset (C)〉ϕ.

And C is simply minimal if they are weakly minimal and also able to bring about ϕ:

MIN(C, ϕ) ≡ 〈eq(C)〉ϕ ∧ WMIN(C, ϕ).

Finally, GC(C) says that C is the grand coalition:

GC(C) ≡ [supset (C)]⊥

4 Expressiveness, axiomatisation and succinctness

We now argue that QCL is equivalent in expressive power to Coalition Logic. To begin,
consider the following translation τ from QCL formulae to CL formulae.

τ(�) = �
τ(p) = p

τ(¬ϕ) = ¬τ(ϕ)
τ(ϕ1 ∨ ϕ2) = τ(ϕ1) ∨ τ(ϕ2)

τ (〈P〉ϕ) =
∨

{C|C|�pc P} 〈〈C〉〉τ(ϕ)
τ([P]ϕ) =

∧
{C|C|�pc P} 〈〈C〉〉τ(ϕ)

We already know from the discussion above that we have a translation in the other
direction: let us call it δ, with defining clause

δ(〈〈C〉〉ϕ) = 〈eq(C)〉δ(ϕ).

As an example, suppose Ag = {a, b, c} and let P = (supset ({a}) ∨ supset ({b}) ∨
supset ({c})) ∧ ¬eq({a, b, c}). Now, consider the QCL formula ψ = 〈P〉q. Then
τ(ψ) = 〈〈{a, b}〉〉q ∨ 〈〈{a, c}〉〉q ∨ 〈〈{b, c}〉〉q while δ(τ (ψ)) = 〈〈eq({a, b})〉〉q ∨
〈〈eq({a, c})〉〉q ∨ 〈〈eq({b, c})〉〉q.

Hence, one can think of δ(τ (ϕ)) as a normal form for ϕ, where the only coalition
predicate in ϕ is eq. That QCL and CL have equal expressive power follows from the
fact that the two translations preserve truth.

Theorem 2 Let M be a model, and s a state, and let ϕ be a QCL formula, and ψ a
CL formula. Then:
1. M, s |�QC L ϕ iff M, s |�C L τ(ϕ)

2. M, s |�C L ψ iff M, s |�QC L δ(ψ)

123



Synthese

Proof The proof follows immediately from the definition of τ and δ. We consider
only one of the inductive steps for each translation.

1. Suppose M, s |�QC L 〈P〉ϕ, and the theorem proven for ϕ. According to the
truth-definition in QCL, there must be a coalition C for which C |�cp P , and
with an S ∈ E(C, s) such that for all s′ ∈ S, one has M, s′ |�QC L ϕ. Using the
induction hypothesis, this means that there is a coalition C such that C |�cp P
and for which M, s |�C L 〈〈C〉〉τ(ϕ). This can be written using only a CL formula:
M, s |�C L

∨
{C|C|�cp P} 〈〈C〉〉τ(ϕ).

For the other direction, suppose M, s |�C L
∨

{C|C|�cp P} 〈〈C〉〉τ(ϕ). Interpreting
the disjunction, this means that there is some C for which C |�cp P and for which
M, s |�C L 〈〈C〉〉τ(ϕ). Using the induction hypothesis and the truth definition of
〈P〉ϕ in QCL, we conclude M, s |�QC L 〈P〉τ(ϕ).

2. Suppose M, s |�C L 〈〈C〉〉ψ , and the induction hypothesis applicable to ψ . We
then know that coalition C can guarantee ψ in CL. This means in QCL that
M, s |�QC L 〈eq(C)〉δ(ψ). Conversely, if the latter holds, this means that C
can bring about the CL formula ψ . Using the induction hypothesis and the truth
definition in CL, we obtain M, s |�C L 〈〈C〉〉ψ . ��

4.1 Completeness

The translations introduced above provide the key to a complete axiomatisation of
QCL. First, recall Pauly’s axiomatisation of Coalition Logic (Table 1). Given this,
and the translations defined previously, we obtain an axiom system for QCL-formulae
as follows. First, QCL includes the δ translation of all the CL axioms and rules, and
axioms that state that the δ-translation is correct: see the lower part of Table 2. On
top of that, QCL is parametrised by an inference relation �cp for coalition predicates.
The axioms for this in Table 2 are taken from Ågotnes and Walicki (2006).

Theorem 3

1. �cp is sound and complete: for any P, |�cpP ⇔ �cpP
2. For any CL formula ϕ, �C L ϕ ⇒ �QC L δ(ϕ)

Table 2 Axioms and rules for
quantified coalition logic

The condition of P2 is C �⊆ C ′,
for P4 it is C ⊆ C ′, ψ in Prop
is a propositional tautology;
Ax in δAx is any CL-axiom

P0 �cp supseteq(∅)
P1 �cp supseteq(C) ∧ supseteq(C ′)↔

supseteq(C ∪ C ′)
P2 �cp supseteq(C)→ ¬subseteq(C ′)
P3 �cp subseteq(C ∪ {a}) ∧ ¬supseteq(a)→

subseteq(C)
P4 �cp subseteq(C)→ subseteq(C ′)
Prop �cp ψ

MP �cp ϕ → ψ, �cp ϕ ⇒ �cp ψ

δAx �QC L δ(Ax)
δ〈〉 �QC L 〈P〉ϕ ↔ ∨

{C |�cpeq(C)→P}〈eq(C)〉ϕ
δ[] �QC L [P]ϕ ↔ ∧

{C |�cpeq(C)→P}〈eq(C)〉ϕ
MP �QC L ϕ → ψ,�QC L ϕ ⇒ �QC L ψ

δDistr �QC L ϕ → ψ ⇒ �QC L 〈eq(C)〉ϕ → 〈eq(C)〉ψ
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3. Let ϕ be any QCL formula. Then �QC L ϕ ↔ δ(τ (ϕ)) and, in particular, �QC L ϕ

iff �QC L δ(τ (ϕ)).

Proof

1. Ågotnes and Walicki (2006)
2. This is almost immediate from the definition of QCL, and proven with induction

of the length �(ϕ) of the shortest proof in CL for ϕ. If �(ϕ) = 1, then ϕ must be
a CL-axiom, and hence we immediately have �QC L δ(ϕ), by δAx . Now suppose
our lemma is proven for all ψ for which �(ψ) ≤ n and suppose that the shortest
proof for ϕ is �(ϕ) = n + 1. Now there are two possibilities:

(a) ϕ was obtained from �C L ψ → ϕ and �C L ψ using MP. Both ψ → ϕ

and ψ have a CL proof of at most length n. The induction hypothesis hence
yields that we have �QC L δ(ψ → ϕ), and �QC L δ(ψ). Moreover, as a rule
in QCL we have δ(M P), which says that from �QC L δ(ψ → ϕ) and � δ(ψ)
we may conclude �QC L δ(ϕ).

(b) ϕ is of the form 〈〈C〉〉ψ1 → 〈〈C〉〉ψ2, with an application of Distr to �C L

ψ1 → ψ2. This implication then has a proof in CL of at most n, so the induc-
tion hypothesis guarantees �QC L δ(ψ1 → δ(ψ2)). But the δ-translation of
Distr gives us �QC L δ(〈〈C〉〉ψ1 → 〈〈C〉〉ψ2), i.e., �QC L δ(ϕ).

3. For ϕ = � and ϕ = p, we have δ(τ (ϕ)) = ϕ so the equivalence is obvious.
Disjunction is also straightforward. Let us look at 〈P〉ϕ, when the equivalence is
already proven for ϕ and δ(τ (ϕ)). We have δ(τ (〈P〉ϕ)) = δ(

∨
{C|C|�cp P} 〈〈C〉〉

τ(ϕ)) = ∨
{C|C|�cp P}〈eq(C)〉δ(τ (ϕ)). The index set {C | C |�cp P} is obviously

equivalent to {C ||�cp eq(C) → P}. The latter is, by completeness of �cp,
equivalent to {C |�cp eq(C)→ P}. So, we have

δ(τ (〈P〉ϕ)) =
∨

{C| �cpeq(C)→P}
〈eq(C)〉δ(τ (ϕ))

Using the induction hypothesis, the right hand side is equivalent to∨
{C|�cpeq(C)→P}〈eq(C)〉ϕ. The equivalence of the latter with 〈P〉ϕ follows imme-

diately from the cql axiom δ〈〉. The case for [P]ϕ is similar. ��

Theorem 4 (Completeness and Soundness) Let ϕ be an arbitrary QCL-formula.
Then: �QC L ϕ iff |�QC L ϕ.

Proof We leave soundness to the reader. For completeness, suppose ��QC L ϕ. By
Theorem 3.3, we have ��QC L δ(τ (ϕ)). By Theorem 3.2, we then have ��C L τ(ϕ).
By completeness for the logic CL, we then know that there is a pair M, s for which
M, s |�C L ¬τ(ϕ). By Theorem 2 item 1, we then conclude M, s |�QC L ¬ϕ, i.e.,
�|�QC L ϕ. ��

Examples of derivable properties include:

|�QC L [P1]ϕ → [P2]ϕ when |�cp P1 → P2
|�QC L ([P1]ϕ ∧ [P2]ϕ)→ [P1 ∨ P2]ϕ
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These illustrate that we not only have primitive modal operators, but also some kind
of operations over them, like negation and conjunction. This of course is very reminis-
cent of Boolean modal logic, where one studies algebraic operations like complement,
meet and join on modal operators (Gargov and Passy 1987). We will not pursue the
details of the connection here.

4.2 QCL is succinct

Theorem 2 tells us that the advantage of QCL over CL is not its expressivity. Rather,
the benefit of QCL is in its succinctness of representation. For example, for the QCL
formula 〈any〉q, the translated CL formula τ(〈any〉q) is exponentially longer, since
it has to explicitly enumerate all coalitions in Ag. Is it however generally the case
that τ(ϕ) is longer than ϕ? Since the translation does some computations under |�cp,
this is in general not the case. For instance, if P = supseteq({a})∧ supseteq({c})∧
supseteq({b})∧ (subseteq({a, b, c})∨ subseteq({a, b, d})), then ψ = 〈P〉q would
have as a τ -translation 〈〈{a, b, c}〉〉q, which is shorter than the original QCL-formula
ψ . But then again, δ(τ (ψ)) is a QCL formula that is equivalent to ψ , but that has a
size similar to τ(ψ).

To make this all precise, let us define the length �(ϕ) of both QCL and CL formulae
ϕ, as follows:

�(�) = �(p) = 1

�(ϕ1 ∨ ϕ2) = �(ϕ1)+ �(ϕ2)+ 1

�(¬ϕ) = �(ϕ)+ 1

�(〈P〉ϕ) = �([P]ϕ) = predsi ze(P)+ �(ϕ)

�(〈〈C〉〉ϕ) = coalsi ze(C)+ �(ϕ)

with

predsi ze(subseteq(C)) = coalsi ze(C)+ 1

predsi ze(supseteq(C)) = coalsi ze(C)+ 1

predsi ze(¬P) = predsi ze(P)+ 1

predsi ze(P1 ∨ P2) = predsi ze(P1)+ predsi ze(P2)+ 1

coalsi ze(C) = |C|

Let ϕ and ψ be X and Y formulae, respectively, where X and Y both range over CL
and QCL. Then we say that they are equivalent with respect to some class of models if
they have the same satisfying pairs M, s, that is, for each M, s in the class of models
it is the case that M, s |�X ϕ iff M, s |�Y ψ . This definition naturally extends to
sets of formulae.

In the following theorem we show that QCL is exponentially more succinct than CL,
over general models. This notion of relative succinctness is taken from Lutz (2006),
who demonstrates that public announcement logic is more succinct than epistemic
logic.
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Theorem 5 When there are at least two agents, there is an infinite sequence of distinct
QCL formulae ϕ0, ϕ1, . . . of increasing length such that, not only is the CL formula
τ(ϕi ) equivalent to ϕi for every i ≥ 0, but every CL formula ψi that is equivalent to
ϕi has the property �(ψi ) ≥ 2�(ϕi ).

Before the proof, we give some definitions and intermediate results.
For i ≥ 0, define a sequence of QCL formulae ϕi (where � denotes an arbitrary

instance of a tautology in the coalition predicate language, for example subseteq(∅)∨
¬subseteq(∅)):
– ϕ0 = p
– ϕi+1 = [�]ϕi

We will show that every CL formula ψi equivalent to ϕi is of length at least 2i ,
for all i ≥ 0.

Note that [�]p expresses that every coalition can guarantee p.
Let a �= b ∈ Ag be two (distinct) agents. Define a sequence of CL formulae:

– ψ0 = p
– ψi+1 = 〈〈∅〉〉ψi ∧ 〈〈a〉〉ψi ∧ 〈〈b〉〉ψi ∧ 〈〈a, b〉〉ψi

Let Seq∗
a,b denote all sequences �s over the set {a, b} where �s · �t denotes appending

sequence �t to �s. We will also denote such a sequence as �st . Given a CL formula ϕ,
define the set of sequences Pϕ as follows, where ε denotes the empty sequence:

– Pq = P� = {ε}
– P¬ϕ = Pϕ
– Pϕ∧ψ = Pϕ ∪ Pψ
– P〈〈a〉〉ϕ = {ε} ∪ { �aw | �w ∈ Pϕ}
– P〈〈b〉〉ϕ = {ε} ∪ { �bw | �w ∈ Pϕ}
– P〈〈C〉〉ϕ = Pϕ for C �= {a} and C �= {b}
Note that for ψi , defined above, Pψi is the set of all sequences over {a, b} of length at
most i .

Let us call �s ∈ Pϕ a Pϕ-maximal path if there is no �t �= ε such that �s · �t ∈ Pϕ . Note
that if �s is not Pψi -maximal, then both �sa and �sb are in Pψi .

Let χ be a CL formula that is equivalent to ψi , for some i > 0. We show the
following:

Pψi ⊆ Pχ . (1)

To show this, assume to the contrary that for some �x ∈ Seq∗
a,b, we have �x ∈ Pψi , but

�x �∈ Pχ . Given this �x , define a model M = 〈S, E, π〉 as follows:

– S = Pψi ∪ {A, B, Z}
– π(s) = p for all s ∈ S
– The effectivity function E is defined as follows. For any X ⊆ S, SC(X) is the

superset closure (in S) of X : SC(X) = {Y ⊆ S | X ⊆ Y }. First of all, suppose
that �s ∈ S is not Pψi -maximal. Then:
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E(C, �s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

SC({ �sa, �sb, Z}) if C = ∅
SC({ �sa, Z}) if C = {a}
SC({ �sb, Z}) if C = {b}
SC({ �sa}) ∪ SC({ �sb}) ∪ SC({Z}) if C = Ag
SC({Z}) otherwise

If �s itself is already a maximal path, and does not have an extension in S, we define
E(∅, �s) = SC({A, B, Z}), and E({a}, �s) = SC({A, Z}). Similarly, E({b}, �s) =
SC({B, Z}), E(Ag, �s) = SC({A})∪ SC({B})∪ SC({Z}) and E(C, �s) = SC({Z})
for any other C . Finally, for each coalition C and every state y ∈ {A, B, Z}, define
E(C, y) = E(C, �s) for some arbitrary maximal path �s.

We also define a second model M′ = 〈S, E, π ′〉 with the same states and effectivity
function, where π ′(�x) = ∅ and π ′(s) = π(s) = {p} for all s �= �x .

We argue that both M and M′ are playability models:

1. ∅ �∈ E(C, s) for any s and C
2. S ∈ E(C, s) for any s and C , by the definition of SC
3. Ag-maximality: let X �∈ E(Ag, s); we must show that S \ X ∈ E(∅, s). First,

consider the case that s = �s ∈ Pψi and that �s is not a Pψi maximal path. X �∈
E(Ag, s) = SC({ �sa})∪ SC({ �sb})∪ SC({Z}), so �sa �∈ X and �sb �∈ X and Z �∈ X .
That means that �sa, �sb, Z ∈ S \ X , so S \ X ∈ E(∅, s). Second, consider the
cases that s = �s ∈ Pψi and that �s is a maximal path, or that s ∈ {A, B, Z}. X �∈
SC({A})∪ SC({B})∪ SC({Z}); A �∈ X and B �∈ X and Z �∈ X ; A, B, Z ∈ S \ X ;
S \ X ∈ E(∅, s) = SC({A, B, Z}).

4. Outcome-monotonicity: immediate from the definition.
5. Superadditivity: let X1 ∈ E(C1, s) and X2 ∈ E(C2, s). First consider the case that

s = �s ∈ Pψi and �s is not maximal:
– C1 = C2 = ∅: �sa, �sb, Z ∈ X1 and �sa, �sb, Z ∈ X2, so �sa, �sb, Z ∈ X1 ∩ X2

and thus X1 ∩ X2 ∈ E(∅, s).
– C1 = ∅,C2 = {a}: �sa, �sb, Z ∈ X1 and �sa, Z ∈ X2, and thus �sa, Z ∈ X1∩X2,

and X1 ∩ X2 ∈ E({a}, s).
– C1 = ∅,C2 = Ag: �sa, �sb, Z ∈ X1, and either �sa ∈ X2 or �sb ∈ X2 or

Z ∈ X2. Wlog. assume the former first. Then �sa ∈ X1∩X2, and thus X1∩X2 ∈
E(Ag, s).

– C1 = {a},C2 = {b}: �sa, Z ∈ X1, �sb, Z ∈ X2. Z ∈ X1 ∩ X2, so X1 ∩ X2 ∈
SC({Z}) and thus X1 ∩ X2 ∈ E({a, b}, s).

– C1 �= ∅, {a}, {b}, Ag: Z ∈ X1. Since C1 and C2 are assumed to be disjunct,
C2 �= Ag, and observe that then Z ∈ X2 as well. Thus, X ∈ X1 ∩ X2. It is
either the case that (i) C1 ∪ C2 = Ag or (ii) (C1 ∪ C2) �= ∅, {a}, {b}, Ag. In
either case Z ∈ X1 ∩ X2 ensures that X1 ∩ X2 ∈ E(C1 ∪ C2, s).

– Other cases: symmetric.

Second, the cases when s = �s ∈ Pψi and �s is maximal and when s ∈ {A, B, Z} follow
when �sa is replaced by A and �sb is replaced by B in the argument above.

Lemma 1 M, ε |� ψi and M′, ε �|� ψi .
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Proof In order to see that M, ε |� ψi holds, observe that (p)M = S. It follows that
(〈〈C〉〉p)M = S for any C , and thus that (〈〈C ′〉〉〈〈C〉〉p)M = S for any C ′, and so on.

To show that M′, ε �|� ψi , note that �x must be of the form

�x = x1 · x2 · · · · · xk

with xi ∈ {a, b} and k ≤ i . It is easy to see that |� ψi → 〈〈x1〉〉〈〈x2〉〉 · · · 〈〈xk〉〉p.
Assume, towards a contradiction, that M′, ε |� 〈〈x1〉〉〈〈x2〉〉 · · · 〈〈xk〉〉p. In other words,
(〈〈x2〉〉 · · · 〈〈xk〉〉p)M′ ∈ E(x1, ε). Inspecting the definition of E for C = {a} and
C = {b}, we see that this means that (〈〈x2〉〉 · · · 〈〈xk〉〉p)M′ ∈ SC({x1, Z}), which in
particular implies that M′, x1 |� 〈〈x2〉〉 · · · 〈〈xk〉〉p. Repeating this argument (k − 1
more times), we see that this implies that M′, x1x2 · · · xk |� p. But this is not the
case, because p �∈ π ′(x1 · · · xk), hence the contradiction. ��
Lemma 2

M, ε |� χ iff M′, ε |� χ

Proof First, we show that for any s ∈ {A, B, Z}, we have that

M, s |� ϕ ⇔ M′, s |� ϕ (2)

for any ϕ by structural induction. The case ϕ = q, q ∈ �0, is immediate, because
π(s) = π ′(s) for s ∈ {A, B, Z}. Consider ϕ = 〈〈C〉〉γ . First, let C = ∅. For the
direction to the right, let M, s |� ϕ, i.e., (γ )M ∈ E(C, s). E(C, s) = SC({A, B, Z}),
so it follows that for any y ∈ {A, B, Z}, M, y |� γ . By the induction hypothe-
sis, M′, y |� γ , and thus {A, B, Z} ⊆ (γ )M′

and we have that (γ )M′ ∈ E(C, s).
The direction to the left is similar. For C = Ag and the direction to the right, let
(γ )M ∈ E(Ag, s) = SC({A}) ∪ SC({B}) ∪ SC({Z}). Thus, M, y |� γ for at least
one y ∈ {A, B, Z}. By the induction hypothesis, M′, y |� γ for that y ∈ {A, B, Z},
and it follows that (γ )M′ ∈ SC({y}) and thus that (γ )M′ ∈ E(Ag, s). The direction
to the left is similar. The arguments for other values of C are similar to C = ∅. The
Booleans are straightforward. This completes the proof of (2).

We now show that for all �s ∈ Pψi and ϕ ∈ sub(χ), such that

{ �sw | �w ∈ Pϕ} ⊆ Pχ , (3)

we have

M, �s |� ϕ iff M′, �s |� ϕ,

by induction over ϕ. The lemma follows immediately.
Consider the case ϕ = q, q ∈ ϕ0. If q �= p, then both M, �s �|� q and M′, �s �|� q.

Consider the case that q = p. Assume thatM′, �s �|� p. By construction ofM′, the only
possibility is that �s = �x . Because �s ∈ Pψi and ε ∈ Pp, we have that �s ∈ Pχ by (3). But
this contradicts the assumption that M′, �s �|� p, because by construction we have that
�x �∈ Pχ . Thus, M′, �s |� p for any �s, and we also have that M, �s |� p for any �s.
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Consider the case ϕ = 〈〈C〉〉γ . If �s is maximal, then M, �s |� ϕ iff (γ )M ∈
E(C, �s) = E(C, y) for arbitrary y ∈ {A, B, Z} iff M, y |� ϕ iff, by (2), M′, y |� ϕ

iff M′, �s |� ϕ. Thus, assume that �s is not maximal. For the direction to the right, let
M, �s |� ϕ, i.e., (γ )M ∈ E(C, �s). Assume first that C = {a}. (γ )M ∈ SC({ �sa, Z}),
which implies that M, �sa |� γ and M, Z |� γ . We have that { �sw | w ∈ Pϕ} ⊆ Pχ
and because Pϕ = {ε} ∪ { �aw′ | w′ ∈ Pγ }, it follows that { �saw′ | w′ ∈ Pγ } ⊆
Pχ . Thus we can use the induction hypothesis to conclude that M′, �sa |� γ . From
M, Z |� γ it follows that M′, Z |� γ by (2), so (γ )M′ ∈ SC({ �sa, Z}) = E(C, �s),
and M′, �s |� ϕ. For the case C = {b}, swap a and b in the above argument. The
cases C = ∅ and C �= ∅, {a}, {b}, Ag can also be shown in the same way. For the
case C = Ag, we have that (γ )M ∈ SC({ �sa})∪ SC({ �sb})∪ SC({Z}). It follows that
either M, �sa |� γ , M, �sb |� γ or M, Z |� γ . Assume wlog. the first. By the same
argument as above, it follows by the induction hypothesis that M′, �sa |� γ , and thus
that (γ )M′ ∈ SC({ �sa}) ⊆ E(C, �s), which means that M′, �s |� ϕ. The Booleans are
straightforward. The direction to the left is completely symmetrical. ��

Lemma 2 contradicts the fact that χ and ψi are equivalent. Thus, (1) holds. We can
now prove the theorem.

Proof of Theorem 5 It now only suffices to show that �(χ) ≥ 2i for any i . First, observe
that for any i , and for any sequence �x = x1 · · · xk with k ≤ i and xi ∈ {a, b}, we
have that �x ∈ Pψi . It follows immediately that �(Pψi ) ≥ 2i . From (1) it follows that
�(Pχ ) ≥ 2i . For any formula ϕ it is the case that �(ϕ) ≥ |Pϕ |, and it thus follows that
�(χ) ≥ 2i . ��

It is easy to see that the converse of Theorem 5 does not hold; it is not the case that
CL is exponentially more succinct (in the sense of Theorem 5) than QCL. It is true
that some CL formulae are strictly shorter than equivalent QCL formulae, but only
by a constant factor. To see that the converse of the Theorem does not hold, take the
translation δ(ϕ) of a CL formula ϕ. The former is effectively obtained by replacing
every coalition C in ϕ with subseteq(C) ∧ supseteq(C), increasing the length by
|C |+3 for each C occurring in ϕ. Thus, there is a constant k such that �(δ(ϕ)) ≤ k�(ϕ)
(it suffices to take k = 5: an upper bound on the length of δ(ϕ) is found by assuming
that every symbol in ϕ is a coalition symbol C = {a}).

5 Model checking and satisfiability

When one is interested in the computational properties of a logic, there are two funda-
mentally important questions of interest. The first relates to the complexity of model
checking; and the second relates to the complexity of satisfiability.

5.1 Complexity of model checking

Model checking is currently regarded as perhaps the most important computational
problem associated with any temporal/modal logic, as model checking approaches for
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such logics have had a substantial degree of success in industry (Clarke et al. 2000).
The explicit state model checking problem for QCL is as follows:

Given a model M, state s in M, and formula ϕ of QCL, is it the case that
M, s |�QC L ϕ?

Notice that in this version of the problem, we assume that the components of the model
M are explicitly enumerated in the input. It is known that the corresponding prob-
lem for Coalition Logic may be solved in polynomial time O(|M| · |ϕ|) (Pauly 2001,
p. 50; as may the explicit state ATL model checking problem, Alur et al. 2002). Perhaps
surprisingly, the QCL model checking problem is no worse:

Theorem 6 The explicit state model checking problem for QCL may be solved in
polynomial time.

Proof (Summary.) The obvious source of difficulty is with cooperation operators
[P] and 〈P〉. So consider [P]ϕ, as the 〈P〉 case is similar. We need to check whether
∀C ⊆ Ag: C |�cp P implies ∃S ∈ E(C, s) such that∀s′ ∈ S, we have M, s′ |�QC L ϕ.
Now consider the naive approach: exhaustively checking each C ⊆ Ag. We have run-
ning time O(2Ag). But consider the representation of E : in the input we must list the
value of E for all C ⊆ Ag and s ∈ S. The size of this representation is O(|S| · 2Ag),
and so running time is polynomial in the size of the input as required. ��

Of course, this result is not terribly useful, since it assumes a representation of
M that is not feasible, since it is exponentially large in the number of agents and
Boolean variables in the system. Implemented model checkers use succinct languages
for defining models; for example, the reactive modules language (RML) of Alur and
Henzinger (1999). Assuming an RML representation, Coalition Logic model checking
is PSPACE-complete (van der Hoek et al. 2005b), and thus no easier than theorem
proving in the same logic (Pauly 2001, p. 60). It is therefore more meaningful to ask
what the model checking complexity of QCL is for such a representation. We only give
a very brief summary of RML—space restrictions prevent a complete description; see
Alur and Henzinger (1999), van der Hoek et al. (2005b) for details.

In reactive modules, a system is specified as a collection of modules, which corre-
spond to agents. Here is a (somewhat simplified) example of an RML module:

module toggle controls x
init []� � x ′ := �

[]� � x ′ := ⊥
update []x � x ′ := ⊥

[](¬x) � x ′ := �

This agent toggle, controls a single Boolean variable, x . The choices available to
the agent at any given time are defined by the init and update rules. The init
rules define the choices available to the agent with respect to the initialisation of its
variables, while the update rules define the agent’s choices subsequently. The init
rules define two choices for the initialisation of this variable: assign it the value � or
the value ⊥. Both of these rules can fire initially, as their conditions (�) are always
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satisfied; in fact, only one of the available rules will ever actually fire, corresponding
to the “choice made” by the agent on that decision round. With respect to update
rules, the first rule says that if x has the value �, then the corresponding choice is to
assign it the value ⊥, while the second rule ‘does the opposite’. In other words, the
agent non-deterministically chooses a value for x initially, and then on subsequent
rounds toggles this value. In summary, the actions available to an agent in any given
state correspond to the rules whose l.h.s. fire against the current state of the system;
the agent will actually select only one of these actions to perform, which results in it
updating the variables it controls.

Theorem 7 The model checking problem for QCL assuming an RML representation
for models is PSPACE-complete.

Proof PSPACE-hardness follows from the fact that QCL subsumes Coalition Logic,
for which the corresponding problem is PSPACE-hard (van der Hoek et al. 2005b). For
membership of PSPACE, the algorithm of van der Hoek et al. (2005b) can be easily
adapted: when handling the [P] and 〈P〉 operators, we can simply loop through each
coalition in turn, then applying the relevant part of the algorithm from van der Hoek
et al. (2005b). Such a loop can trivially be implemented in PSPACE. ��

This result, we believe, is potentially much more interesting than that for explicit
state model checking, since it tells us that QCL model checking is no more complex
than Coalition Logic even for a realistic representation of models.

5.2 Complexity of satisfiability

While the model checking problem addresses itself to the question of the truth of a
formula ϕ for a specific interpretation M, s, the satisfiability problem asks whether
there exists an interpretation M, s that satisfies ϕ. The presence of the existential
quantifier here suggests that satisfiability is going to be harder than model checking,
and in general, it is (at least with respect to explicit state model checking). For CL, we
know that the complexity of satisfiability varies from NP-complete in the simplest case
(Pauly 2001, p. 62) up to PSPACE-complete in the case of weak playability models
(as used in the present paper; Pauly 2001, p. 66). In this section, we show that, despite
its comparative succinctness, the satisfiability problem for QCL is no harder than that
of CL:

Theorem 8 The satisfiability problem for QCL (parameterised by the coalition
predicate language with subseteq, supseteq as primitives) is PSPACE-complete.

Proof Since QCL subsumes Pauly’s CL, we immediately have a PSPACE lower
bound: it only remains to prove the upper bound, i.e., that the problem is in PSPACE.
The proof makes use of another language: another quantified variant of CL, which
we will refer to as CLQ. As we will see, the relationship of CLQ to CL is roughly
that of Quantified Boolean Formulae (QBF) to conventional propositional logic. For-
mally, for the syntax of this language, we assume a finite stock of coalition variables,
CV = {c1, . . . , ck}, and the usual quantifiers {∀, ∃}. Let CL(CV ) be the language of
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Pauly’s Coalition Logic in which coalition variables are allowed to be used instead
of explicitly listed sets of agents. For example, 〈〈c〉〉p ∨ q, where c ∈ CV , will be a
formula of CL (CV ), with the intended meaning that the coalition denoted by c can
achieve p ∨ q. ��

The syntax of CLQ is then defined by the following grammar:

ϕ ::= ψ | ¬ϕ | ϕ ∨ ϕ | Qc : P ψ

where Q ∈ {∀, ∃}, c ∈ CV is a coalition variable, P is a coalition predicate, and ψ is
a formula of CL(CV ).

For example, the following is a formula of CLQ:

∃c1 : supseteq({1, 2}) 〈〈c1〉〉p ∧ ∀c2 : subseteq({1, 2, 3}) 〈〈c2〉〉q (4)

The semantics of CLQ are straightforward, and we will not present it here. (We essen-
tially add the obvious rules to deal with quantifiers to the rules for cl.) Satisfiability for
CLQ is defined in the obvious way. We assume the conventional definitions of closed
formulae, and free and bound variables. Now, the following fact is immediately
evident:

Every formula ϕ of QCL can be translated to a formula θ(ϕ) of CLQ such that ϕ
is satisfiable in CL iff θ(ϕ) is satisfiable in CLQ; moreover, the translation θ(·)
can be carried out in polynomial time (and hence the size of θ(ϕ) is polynomial
in the size of ϕ).

Formally, the translation function θ is defined as follows:

θ(ϕ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϕ if ϕ contains no modalities
∃ci : P 〈〈ci 〉〉θ(ψ) if ϕ = 〈P〉ψ (ci is a new variable)
∀ci : P 〈〈ci 〉〉θ(ψ) if ϕ = [P]ψ (ci is a new variable)
¬θ(ψ) if ϕ = ¬ψ
θ(ψ1) ∨ θ(ψ2) if ϕ = ψ1 ∨ ψ2

Thus, for example, the following QCL formula translates to the CLQ formula (4),
above.

〈supseteq({1, 2})〉p ∧ [subseteq({1, 2, 3})]q (5)

The correctness of the translation θ is immediate from the semantics of QCL, CL,
and CLQ.

Next, we say that a CLQ formula is in prenex normal form if it has the following
syntactic structure:

Q1Q2 · · ·Ql ϕ

where each Qi is a quantifier expression (e.g., “∃c2 : subseteq({1, 2, 3})”) such that
coalition variables in each Qi are distinct, and ϕ is a formula of CL(CV ) such that ϕ
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contains no free variables (i.e., every coalition variable occurring in ϕ is bound to a
quantifier). Now, we have the following:

Every CLQ formula ϕ in the range of θ can be translated into a prenex normal
form formula ρ(ϕ) of CLQ such that ϕ is satisfiable in CLQ iff ρ(ϕ) is satisfiable
in CLQ; moreover, the translation ρ(·) can be carried out in polynomial time
(and hence the size of ρ(ϕ) is polynomial in the size of ϕ).

Of course, this statement is not in general true for quantified modal logics, but it holds
for formulae in the range of θ , which is enough for our purposes. The translation into
prenex normal form makes use of the usual translation rules for first-order formula
(Gallier 1987, pp. 205–209). For example, we have the following CLQ equivalences:

¬∃c : P 〈〈c〉〉ϕ ≡ ∀c : P ¬〈〈c〉〉ϕ
¬∀c : P 〈〈c〉〉ϕ ≡ ∃c : P ¬〈〈c〉〉ϕ

Notice that this kind of translation into prenex normal form is not possible in QCL,
since each quantifier in a QCL operator is inextricably tied to an ability operator. This
is in fact why QCL does not have a prenex normal form, and this in turn explains why
we introduce QCL.

The final step is to prove the following claim:

Claim 1 The satisfiability problem for CLQ formulae in prenex normal form is in
PSPACE.

We sketch the design of a recursive Turing machine T that decides the problem
in polynomial space. Formally, T takes as input a prenex normal form CLQ formula
ϕ together with a partial interpretation for coalition variables, I : CV → 2Ag . The
machine uses as a subroutine Pauly’s PSPACE decision procedure sat (·) for Coalition
Logic (Pauly 2001, p. 65). Initially, the machine is called with I being empty, i.e., no
variables are interpreted. On input 〈ϕ, I 〉, the machine behaves as follows:

1. If ϕ contains no quantifiers, then for every variable c ∈ dom I , systematically
substitute I (c) for c in ϕ. After this process is complete, we will be left with a
formula ϕ∗ of CL; invoke Pauly’s decision procedure sat (·) on ϕ∗, and “accept”
if it is satisfiable, otherwise “reject”.

2. If ϕ is of the form ∃c : P ψ , then for each C ⊆ Ag, if C |�cp P then invoke
T with input 〈ψ, I ∪ {c �→ C}〉; if any such call accepts, then “accept”. If we
complete the loop without such success, then “reject”.

3. If ϕ is of the form ∀c : P ψ , then for each C ⊆ Ag, if C |�cp P then invoke T
with input 〈ψ, I ∪{c �→ C}〉; if any such call rejects, then “reject”. If we complete
the loop without such failures, then “accept”.

Correctness of the approach is immediate from construction. The algorithm clearly
terminates, and operates in time PSPACEP S P AC E =PSPACE.

In sum, our PSPACE decision procedure for QCL is as follows: given a formula ϕ,
invoke the Turing machine T with input 〈ρ(θ(ϕ)),∅〉. If the machine accepts on this
input, then ϕ is satisfiable, otherwise it is unsatisfiable. ��
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6 Coalition size

As we noted earlier, an obvious omission from our language of coalition predicates is
designated predicates for expressing cardinality properties of coalitions. In this sec-
tion, we explore extensions to the framework for this purpose. The obvious approach
is to introduce primitive coalition predicates geq(n), where n ∈ N, with semantics as
follows:

C |� geq(n) iff |C | ≥ n

Given this predicate, we can define several obvious derived predicates (see also
Ågotnes et al. 2006 for a discussion of a similar language).

gt (n) ≡ geq(n + 1)
lt (n) ≡ ¬geq(n)

leq(n) ≡ lt (n + 1)
maj (n) ≡ geq( (n + 1)/2!)
ceq(n) ≡ (geq(n) ∧ leq(n))

The first natural question is whether geq(n) is definable in QCL. Indeed it is:

geq(n) ≡
∨

C⊆Ag,|C|≥n

supseteq(C) (6)

However, we again see that such a definition leads to exponentially large formu-
lae, which justifies extending the predicate language of QCL with an atomic coa-
lition predicate geq(n) for every n ∈ N. Call the resulting logic QCL(≥), and
let |�cp≥ and |�QC L(≥) denote the satisfiability relations for QCL(≥) predicates
and QCL(≥) formulae, respectively. Once again, the gain is not expressiveness but
succinctness. As another example of the added succinctness, consider the CL for-
mula 〈〈C〉〉p. In QCL this cannot in general be written by any less complex formula
than 〈subseteq(C) ∧ supseteq(C)〉p, but in QCL(≥) it can be simplified somewhat
to 〈supseteq(C) ∧ ¬geq(|C | + 1)〉p (which in general is simpler since one of the
enumerations of the agents in C is replaced by a number).

A subtle but important issue when reasoning with the logic is the way in which the
natural number argument of the geq(. . .) predicate is represented. Suppose, (follow-
ing standard practice in complexity theory), that we represent the argument in binary.
Now, we ask whether a given coalition predicate P is satisfiable, where P contains a
constraint geq(n). Now checking the satisfiability of such constraints is not obviously
in NP. The problem is that the witness C to the satisfiability of P is exponentially
larger than the constraint geq(n). Of course, if we express the natural number n in
unary, then this is not an issue. But unary is not a realistic or practical representation
for numbers. It turns out, however, that we do in fact get NP completeness for the
satisfiability problem also for QCL(≥), although the argument requires some more
work. The reason is that we can use an efficient encoding of the witness C . This was
shown by Ågotnes et al. (2006) for a similar problem (cf. Sect. 7).
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Let Ag(P) and subp(P) denote the set of agents, and the set of sub-predicates,
respectively, occurring in a predicate P .

Lemma 3 Any satisfiable QCL(≥) predicate P is satisfied by a coalition of no more
than 1 + maxP agents, where 1 + maxP equals

max({|Ag(P)|,max({geq(n) : geq(n) ∈ subp(P)})})

Proof Suppose P is a QCL(≥) predicate and C |�cp≥ P . If |C | ≤ maxP we are
done, so assume that |C | > maxP . In addition to the constraints C1–C4 in the proof
of Theorem 1, we get two additional types of constraints corresponding to geq(n) and
¬geq(n) expressions, respectively: there exist a sequence of numbers

n51 , . . . , n5k5
, n61 , . . . , n6k6

such that

|C | ≥ n51 , . . . , |C | ≥ n5k5|C | �≥ n61, . . . , |C | �≥ n6k6

In other words:

|C | ≥ max({n5i : 1 ≤ i ≤ k5})
|C | ≤ min({n6i : 1 ≤ i ≤ k6})

Let’s call the two constraints n5 and n6 constraints. We proceed by the same two cases
as in the proof of Theorem 1. In case 1 (there are C1 constraints) we are done, so
assume case 2 (no C1 constraints). If Ag(P) = Ag we are done (|C | ≤ Ag(P)), so
assume that there is an agent a∗ ∈ Ag such that a∗ �∈ Ag(P). Let C ′ be a coalition
satisfying the following: (i) C ′ ⊆ C , (ii) C2 ⊆ C ′ and (iii) |C ′| = maxP . It is easy to
see that such a coalition exists. Finally, let C∗ = C ′ ∪ {a∗}. It is easy to see that C∗
satisfies the C2,C3 and C4 constraints. By point (iii) in the construction it also satisfies
the n5 constraint. Finally, since we assumed that |C | > maxP we get that |C | ≥ |C∗|,
and since we have that the n6 constraints holds for C it thus follows that it also holds
for C∗. Hence, all the constraints hold for C∗, so C∗ |�cp≥ P—and |C∗| = 1+maxP .

��
Theorem 9 The satisfiability problem for QCL(≥) coalition predicates is NP-
complete.

Proof It suffices to show that a satisfiable predicate has a “short certificate”; see the
proof of Theorem 1. Let P be a QCLC coalition predicate. Suppose C |�cp P . It
might be the case that C contains agents which are not mentioned in P , i.e., that
X (C, P) = C\Ag(P) is non-empty. By inspecting the definition of the satisfiabil-
ity relation, we see that the satisfaction of P by C does not depend on the actual
agent names in X (C, P) in the following sense: for any agent a in X (C, P), we
can replace a with any other agent b �∈ (C ∪ Ag(P)), and retain satisfaction of P .
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Of course, satisfaction of P might depend on the size of X (C, P). More precisely:
the only information needed about X (C, P) in order to determine that C satisfies P ,
is the size of X (C, P)—the actual names of the agents in X (C, P) are not needed in
order to interpret P . This makes it possible to encode the satisfying coalition C more
efficiently than just enumerating the agents it contains: we only need to list the agents
C ∩ Ag(P), and give the size of X (C, P). The latter can be encoded in binary. By
Lemma 3 a satisfiable predicate is satisfied by a coalition with X (C, P) no greater
than max({geq(n) : geq(n) ∈ subp(P)}). Thus, to verify that a QCLC predicate P ,
with any occurrences of numbers n in geq(n) encoded in binary, is satisfiable, we can
(i) guess a coalition C such that |C | ≤ maxP + 1 encoded in such a way that only
agents in Ag(P) are listed explicitly and the remainder of the coalition is only repre-
sented by a number m encoded in binary; and (ii) verify that C |�cp P . It is easy to
see that the size of the encoding of the model is polynomial in the size of the encoding
of the predicate, and that (ii) can be done in time polynomial in the size of C and P . ��

It is straightforward to lift the translation τ from QCL to CL to the case when also
the additional predicates of QCL(≥) are allowed, and it is easy to see that Theorem
2 holds also for QCL(≥) formulae. For axiomatisation, we only need to add axioms
for the geq(n) predicates to the predicate calculus. That can be achieved simply by
adding (6) as an axiom schema. A more “direct” axiomatisation of geq(n) is shown
in Table 3, taken from Ågotnes et al. (2006). Let �cp≥ denote derivability in the QCL
predicate calculus (from Table 2) extended with the axioms in Table 3. The following
is easily obtained from a similar result in Ågotnes et al. (2006):

Lemma 4 The QCL(≥) predicate calculus is sound and complete: for any QCL(≥)
predicate P, |�cp≥ P ⇔ �cp≥ P.

Let �QC L(≥) denote derivability in the system obtained by replacing �cp with �cp≥
in the definition of �QC L (Table 2).

Theorem 10 (Completeness and Soundness) Let ϕ be a QCL(≥)-formula. Then:
�QC L(≥) ϕ iff |�QC L(≥) ϕ.

6.1 An example

To illustrate the use of QCL(≥) for reasoning about multi-agent systems, consider the
expression of majority voting:

An electorate of n voters wishes to select one of two outcomes ω1 and ω2. They
want to use a simple majority voting protocol, so that outcomeωi will be selected
iff a majority of the n voters state a preference for it. No coalition of less than

Table 3 Extra predicate
calculus axioms for QCL(≥)

(M I N0) �cp geq(0)
(M I N1) �cp geq(n)→ geq(m) (m < n)
(M I N2) �cp supseteq({a1}) ∧ · · · ∧ supseteq({ak }) →

geq(k) ∀i �= j ai �= a j
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majority size should be able to select an outcome, and any majority should be
able to choose the outcome (i.e., the selection procedure is not influenced by the
“names” of the agents in a coalition). One outcome must be selected, but both
outcomes should not be selected simultaneously.

We express these requirements as follows. First: any majority should be able to select
an outcome:

([maj (n)]ω1) ∧ ([maj (n)]ω2)

No coalition that is not a majority can select an outcome:

(¬〈¬maj (n)〉ω1) ∧ (¬〈¬maj (n)〉ω2)

Either outcome ω1 or ω2 must result:

〈any〉(ω1 ∨ ω2)

Both outcomes cannot be selected simultaneously:

〈any〉¬(ω1 ∧ ω2)

Notice that majority voting cannot be succinctly specified using regular Coalition
Logic.

7 Related work and conclusions

Quantified Coalition Logic (QCL) adds a limited but useful form of quantification to
Coalition Logic. The computational problems of model checking and satisfiability for
QCL are no worse (although of course no better) than the corresponding problems for
Coalition Logic. The motivation for our work is succinctness rather than expressive-
ness: while QCL is exactly as expressive as Coalition Logic, it is exponentially more
succinct.

While first-order temporal logics have been studied in the literature, and CL
can be seen as the next-time fragment of ATL which again is a generalisation of the
branching-time temporal logic Computational Tree Logic (CTL), we are not aware of
any other work on quantification in CL or ATL. Lately, there has been some work on
generalising the coalition modalities in another direction: to explicitly include actions
and strategies (van der Hoek et al. 2005a; Ågotnes 2006).

Languages similar to the coalition predicate languages of QCL and QCL(≥) are
discussed in Ågotnes and Walicki (2006), Ågotnes et al. (2006) in the context of
epistemic logic, where the arguments to the predicates are sets of formulae rather than
sets of agents. The predicate (corresponding to) supseteq(X)means that the reasoner
knows at least the formulae in X ; the predicate subseteq(X) means that he knows
at most X ; the predicate geq(m) that he knows at least m formulae, etc. A crucial
difference is that the set of all possible formulae that can be known is assumed to be
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infinite, as opposed to the assumption that the set of all possible agents is assumed
to be finite in QCL and QCL(≥). Dropping the assumption of a finite bound on the
number of agents in coalition logic might be interesting. In that case, we can no longer
quantify over all possible formulae/agents by using conjunction or disjunction, and
many of the definability results mentioned in this paper do not hold. For example,
as discussed in the mentioned works, neither subseteq(·) nor geq(·) would be defin-
able by supseteq(·), but the two operators supseteq(·) and geq(·) form an adequate
set—they can express all the predicates discussed in this paper (even when there is no
bound on the number of agents).

Further opportunities for future work include a more detailed understanding of the
relationship between QCL and Boolean modal logic.
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