
Synthese (2016) 193:781–811
DOI 10.1007/s11229-015-0991-y

S.I . : LOGIC AND THE FOUNDATIONS OF DECISION AND GAME THEORY (LOFT)

Partial-order Boolean games: informational
independence in a logic-based model of strategic
interaction

Julian Bradfield1 · Julian Gutierrez2 ·
Michael Wooldridge2

Received: 18 January 2015 / Accepted: 9 December 2015 / Published online: 18 December 2015
© Springer Science+Business Media Dordrecht 2015

Abstract As they are conventionally formulated, Boolean games assume that players
make their choices in ignorance of the choices being made by other players – they
are games of simultaneous moves. For many settings, this is clearly unrealistic. In this
paper, we show how Boolean games can be enriched by dependency graphs which
explicitly represent the informational dependencies between variables in a game.More
precisely, dependency graphs play two roles. First,whenwe say that variable x depends
on variable y, then we mean that when a strategy assigns a value to variable x , it can
be informed by the value that has been assigned to y. Second, and as a consequence of
the first property, they capture a richer and more plausible model of concurrency than
the simultaneous-action model implicit in conventional Boolean games. Dependency
graphs implicitly define a partial ordering of the run-time events in a game: if x is
dependent on y, then the assignment of a value to y must precede the assignment of
a value to x ; if x and y are independent, however, then we can say nothing about the
ordering of assignments to these variables—the assignments may occur concurrently.
We refer to Boolean games with dependency graphs as partial-order Boolean games.
After motivating and presenting the partial-order Boolean gamesmodel, we explore its
properties.We show that while some problems associatedwith our new games have the
same complexity as in conventional Boolean games, for others the complexity blows

B Michael Wooldridge
michael.wooldridge@cs.ox.ac.uk

Julian Bradfield
jcb@inf.ed.ac.uk

Julian Gutierrez
julian.gutierrez@cs.ox.ac.uk

1 University of Edinburgh, Edinburgh, UK
2 University of Oxford, Oxford, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11229-015-0991-y&domain=pdf

782 Synthese (2016) 193:781–811

up dramatically. We also show that the concurrency in partial-order Boolean games
can be modelled using a closure-operator semantics, and conclude by considering the
relationship of our model to Independence-Friendly (IF) logic.

Keywords Boolean games · Foundations of games · Concurrency theory · Logic

1 Introduction

Boolean games are a family of logic-based games which have a natural interpretation
with respect to multi-agent systems—see, e.g., Harrenstein et al. (2001), Bonzon et al.
(2006),Wooldridge et al. (2013),Grant et al. (2011),Dunne et al. (2008),Mavronicolas
et al. (2007). A Boolean game is played over a set of Boolean variables. Each player
desires the satisfaction of a goal, specified as a logical formula over the overall set of
variables, and is assumed to control a subset of the variables: the choices available to
a player correspond to the assignments that can be made to the variables controlled by
that player. Players simultaneously choose valuations for the variables they control,
and a player is satisfied if their goal is made true by the resulting overall valuation.
In addition to being an interesting game-theoretic model in their own right, it has
been argued that Boolean games are a natural abstract model for studying strategic
behaviour in multi-agent systems: the use of logical goals is commonplace in the
multi-agent systems community, and the fact that players act by assigning values to
Boolean variables naturally models the execution of computer programs.

However, if one aims to useBoolean games as amodel formulti-agent systems, then
existing Boolean-game models embody some arguably rather extreme assumptions.
First, in all studies of Boolean games that we are aware of, it is implicitly assumed
that all events in the game occur simultaneously. There are two types of events in a
Boolean game: the selection of strategies by players; and the assignments of values to
variables according to these strategies. Ifwe consider amulti-agent system setting, then
it should be clear that assuming all such events occur simultaneously is unrealistic. In a
multi-agent system, participants select their strategies by writing a computer program
(a software agent) to act on their behalf, and then these various agents are concur-
rently executed, generating a “run-time” history of events. The actual computational
histories that may be generated at run-time will depend on the model of concurrency
underpinning the run-time behaviour of the agents. Concurrency is of course a large
research area, somewhat tangential to game-theoretic concerns (Nielsen and Winskel
1995); but nevertheless, the assumption that all events occur simultaneously is perhaps
an abstraction too far if we want to interpret Boolean games as a model of multi-agent
systems. A second difficulty in existing models of Boolean games is that players act
in ignorance of all the choices made by other players. In many settings, players will
have some information about the choices of others once the game progresses in time,
and to faithfully capture such settings, a realistic model should reflect this.

In this paper we develop partial-order Boolean games, a new model for concurrent
andmulti-agent systemswhich resolves these two difficulties. Thismodel is somewhat
closer to the concept of multi-agent systems that we described above: partial-order
Boolean games are games of simultaneous moves, but the moves that players make

123

Synthese (2016) 193:781–811 783

correspond to choosing a “program” (actually, a collection of Boolean functions) to
play the game on their behalf. The programs then interact to actually play the game
and generate run-time behaviour according to a partial-order model of concurrency.
We thus distinguish between the two types of events that we mentioned above: events
corresponding to the selection of strategies (these events occur simultaneously) and
the run-time behaviour of these strategies as they are executed. To capture incomplete
information and concurrency, we use dependency graphs. A dependency graph is a
directed acyclic graph over the set of game variables: an edge from variable p to vari-
able q means that when the strategy that chooses a value for q makes its assignment
to this variable, it can take into account the value of p. The relationship between p
and q is thus one of functional dependence. The total set of variables upon which q
depends represents all the information that is available for a strategy assigning a value
to q: if q is not dependent on a variable r , for example, then the choice of value for q
cannot be informed by the value of r . While strategies in conventional Boolean games
are very simple (being an assignment of values to variables), in partial-order Boolean
games, strategies are more complex: a strategy for a variable x is a Boolean function
that assigns a value to x for every possible valuation of variables on which x depends.
When these strategies are executed, they generate a run-time history of events, which
correspond to the variables in the game being assigned values according to the strate-
gies. The possible set of run-time histories thatmay be generatedwill be determined by
the dependency graph, which implicitly defines a partial temporal ordering of run-time
events. That is, if q depends on p, then the run-time event corresponding to assigning
a value to p must precede the run-time event corresponding to assigning a value for
q. However, if p and q are independent, then we can say nothing about the ordering
of assignments to these variables: they may be concurrent.

1.1 Structure of the paper

The remainder of this paper is structured as follows.

– We begin by motivating our work, and in particular discussing how our work
relates to conventional strategic and extensive game models.

– We then define the formal framework of partial-order Boolean games, developing
a concrete model for player strategies, and investigating the computational com-
plexity of decision problems for such games.We show that, for some problems, the
complexity of the decision problem is essentially the same as the corresponding
problem for conventional Boolean games, but for others, the complexity is much
higher.

– We then go on to discuss how our work relates to work in concurrency. We
first define a closure-operator semantics for partial-order Boolean games, which
more explicitly reflects the causal, temporal dependencies in our framework.
We then show a natural connection between partial-order Boolean games and
Independence-Friendly (IF) first-order logic—a logical formalism already studied
in the context of logics for concurrency, independence, and incomplete informa-
tion.

– We conclude with a discussion of related and future work.

123

784 Synthese (2016) 193:781–811

2 Motivation

To understand the motivation for our work, let us begin by recalling some stan-
dard game-theoretic ideas and the assumptions underpinning them. Probably the
most widely studied and widely applied game-theoretic model is that of strategic
games (Osborne and Rubinstein 1994, p. 11). A strategic game is given by a structure
⟨N , (Si)i∈N , (ui)i∈N ⟩, where N = {1, . . . , n} is a finite set of players, Si is the set
of strategies or actions for player i ∈ N , and ui : S1 × · · · × Sn → R is the utility
function for player i ∈ N , which defines the utility that player i would obtain for every
possible combination of strategies that might be chosen by players. Such a game is
played by each player i choosing a element of Si ; the outcome of the game is then
a strategy profile s = ⟨s1, . . . , sn⟩, and each player i receives a payoff of ui (s). It is
assumed that players will seek to choose an element of Si so as to maximise the payoff
they receive in the outcome s, and that they will take into account the fact that other
players are seeking to do likewise.

There are many assumptions implicit in this model and the description we give
above, of which one of the most important is that players make their choices in igno-
rance of the choices of other players. This assumption is often called the assumption
of simultaneous moves. This terminology suggests that the assumption relates to the
ordering of events in the game (i.e., that everything happens simultaneously), but in
fact it is an informational assumption, intended to capture the idea that players make
their choices in ignorance of the choices of others. This assumption is easily motivated
in standard game-theoretic settings, where the main issues of consideration relate to
what decisions will be made by players in the game, rather than on the temporal
ordering of events within the game.

In many settings, of course, the assumption that players act in complete ignorance
of the choices made by others is not appropriate. The standard game-theoretic model
used to capture such settings is that of extensive form games of imperfect informa-
tion (Osborne and Rubinstein 1994, p. 199). These game models incorporate two key
elements not found in strategic games: first, they consider games played over a period
of time, with players alternating their moves; and second, they make use of infor-
mation sets to explicitly capture the information available to players as they make
their moves—in particular, they allow us to specify what each player knows about the
moves previously made in the game.

Extensive form games are of particular interest in computer science because they
resemble labelled transition systems, or Kripke structures, which are widely used
to model concurrently executing computer programs (see, e.g., Emerson 1990). A
labelled transition system is a directed graph, in which edges correspond to the execu-
tion of atomic program instructions, and nodes correspond to states of the concurrent
system: executing an instruction by a process within the system causes a transition
from one state to another. Edges are labelled, typically either with the instruction
being executed, or with the name of the process executing the instruction. However,
it is important to note that although extensive games and concurrent programs appear
to bear a close resemblance to one another, extensive form games are not intended to
model concurrent programs, and have substantial limitations if we aim to use them
for this purpose. To better understand this point, let us now describe our main interest,

123

Synthese (2016) 193:781–811 785

which is to reason about the behaviour of game-like concurrent computer programs,
or multi-agent systems.

The key idea in the multi-agent systems domain is that we construct computer
programs—software agents—that will act on our behalf in strategic settings. The
strategic settings under consideration are usually assumed to involve interaction with
other software agents, acting on behalf of other individuals, with preferences that may
not be aligned with our own. Thus, in multi-agent systems research, the strategies
selected by players are in fact computer programs, which are then executed concur-
rently with one another; the result of this concurrent computation is the “outcome” of
the strategic scenario.

Observe that this view permits us to distinguish between the selection of a strategy
(i.e., a program that will act on our behalf in the strategic scenario) and the “run-
time behaviour” of the programs that are selected by players to act on their behalf.
While game theory is concerned with how to make choices in strategic settings, it is
not concerned with modelling and understanding the behaviour of concurrently exe-
cuting programs—this is, however, an important topic in computer science research,
and seems an important issue if we are interested in understanding the behaviour of
multi-agent systems (i.e., how those systems will interact with and transform their
environment as they operate on our behalf). Now, we might naturally think of using
extensive form games tomodel the run-time behaviour of agents, but from the perspec-
tive of concurrency, extensive form games have an important limitation: they assume
an ordering of events in a game. In concurrency theory, this assumption corresponds to
what is known as interleaving semantics, because the actions of each agent are inter-
leaved with one another to generate a run-time behaviour. While for many purposes
interleaving semantics are adequate, they are nevertheless accepted to be a simplifi-
cation of true concurrency, where events are partially ordered. Crudely, partial-order
models of concurrency allow us to explicitly represent the fact that events are, or are
not, independent. Now, we can always “flatten” a partial-order model of events into a
sequential/interleaved model (or, in game-theoretic terms, an extensive form game),
by picking a total order of events that is consistent with the partial order. However,
any such flattening operation will represent a simplification of the partial order model,
which may imply an ordering of events that is not present in the partial-order model.
One might consider the complete set of total orders that are consistent with the par-
tial order, but such a set represents the partial order implicitly, while a partial order
representation captures it explicitly.

In this sense, partial-order models provide a semantically more faithful represen-
tation of concurrency and, therefore, allows one to study concurrency at a more
fundamental semantic level. Partial-order semantics are, however, more complex
than interleaving ones. In fact, any nondeterministic sequential process or concur-
rent system with an interleaving semantics can be understood as a special case of the
partial-order model. Then, one may expect to pay a price for having such a greater
amount of information in partial-order models, and indeed, several decision problems
that are tractable (to some degree) in the interleaving world can become rather dif-
ficult, or even algorithmically unsolvable, in a partial order setting. For example, a
system with n parallel k-state automata explodes to a kn-state automaton when it is
converted into an interleaving model, making most verification problems exponential

123

786 Synthese (2016) 193:781–811

in the original system size (although by working directly on the concurrent model,
some problems can be solved in polynomial time Godefroid 1996). Even more dra-
matically, a natural (albeit very strong) notion of equivalence on partial-order models,
hereditary history-preserving bisimulation, is undecidable even on the class of finite
models (Jurdziński et al. 2003).

In this paper, we follow a differentmodelling approachwherewe explicitly consider
a dependence relation (instead of an independence relation) to be able to express that
the execution of different events in a given systemcan be done in an independentway—
that is, whenever, they are not related by the dependence relation on events. Because
we follow this approach to model dependence and independence in our model, an
empty dependency relation will represent full concurrency/independence rather than
sequential behaviour. The model we present, partial-order Boolean games, builds on
the increasingly popular Boolean games model (Harrenstein et al. 2001; Wooldridge
et al. 2013; Grant et al. 2011; Dunne et al. 2008; Mavronicolas et al. 2007). A Boolean
game is a game of simultaneous moves, in which each player exercises unique control
over a finite set ofBoolean variables; the actions available to a player corresponds to the
set of all possible assignments of truth or falsity that can be made for these variables.
In Boolean games, preferences arise from the fact that each player has a goal, specified
as a formula of propositional logic over the total set of Boolean variables in the game.
When all players have made their choices (i.e., selected an assignment of truth or
falsity to the variables they control), then the result is an overall truth assignment for
the variables in the game, which will either satisfy or fail to satisfy each player’s goal.
A player will prefer outcomes that satisfy their goal over outcomes that do not satisfy
it, but is indifferent between two outcomes that satisfy their goal, and is indifferent
between outcomes that do not satisfy it.

Boolean games are an important model for multi-agent systems research for several
reasons:

– First, strategies for players in Boolean games can naturally be understood as deter-
ministic computer programs. All a strategy in a Boolean game does is assign values
to a collection of Boolean variables—and this is, of course, exactly what computer
programs do as they execute.

– Second, the goals that players have can be understood as the specification of the
program: the use of logical specifications for the desirable behaviour of computer
programs is standard in computer science (see, e.g., Manna and Pnueli 1992) and
in AI planning research (Ghallab et al. 2004).

However, as they are conventionally formulated, Boolean games are strategic
games, and hence games of simultaneous moves, which poses a number of limita-
tions from a semantic point of view. Now, it would be technically straightforward to
adapt the basic Boolean-games model to extensive form, but this would result in an
overly simplified model of concurrent behaviour, for the reasons set out above.

We address these issues in partial-order Boolean games by enriching the basic
Boolean-games model with a directed acyclic graph over the set of variables in the
game, which we refer to as the game’s dependency graph. This dependency graph
captures both the information flow between events, and explicitly represents concur-

123

Synthese (2016) 193:781–811 787

rency in the game. In partial-order Boolean games, when we say that variable p is
dependent on variable q, then this means that:

1. The strategy for the player controlling variable p can be informed by the value
that was chosen for q.

2. As a consequence of (1), the assignment of a value toqmust precede the assignment
of a value for p.

3. Finally, the fact that two variables are not dependent upon each other means that
the assignment of values to these variables may take place concurrently.

2.1 Related (and unrelated) work

Using interleaving or partial-order semantics in games can have consequences—both
from theoretical and practical viewpoints—asmaking such a choice can raise different
issues, some of which we investigate here.

More specifically, we will present examples and complexity results which show
that games played directly on a structure with an explicit notion of (in)dependence are
radically different. For instance, checking their equilibrium properties is a computa-
tionally more complex problem (e.g., checking the existence of pure Nash equilibria
is NEXPTIME-complete for partial-order Boolean games and only in !P

2 for conven-
tional Boolean games); more importantly, disregarding the relations in the dependency
graph of a game can lead to the construction of games—and hence of systems—with
different sets of equilibrium strategy profiles.

We would like to remark that we use the term “dependence” to refer to the idea that
the selection of a value for one variable can take into account the value that has been
assigned to another variable. The term “dependence” has been used in several other
ways in game theory, some of which are related to our usage, some of which are not.
One usage is to say that agent i is dependent on agent j if the choice made by j can
potentially influence the utility that agent i obtains. In the context of Boolean games,
this idea was investigated by Bonzon et al. (2009). This is clearly distinct from our
usage of the term. Relatedly, our model of games is also somewhat reminiscent of the
idea of multi-agent influence diagrams (MAIDs) (Koller and Milch 2003). MAIDs
are a compact representation model for extensive form games, which exploit the idea
that we can reduce the state space required for representing a game by only recording
information about the interactions between players where one player’s choice affects
another. Although partial-order Boolean games are also based on a graph representa-
tion, this graph captures informational dependencies between variables. Moreover, as
Bonzon et al. point out, although MAIDs frequently provide a compact representation
for games, Boolean games are in some cases exponentiallymore succinct thanMAIDs.

3 Partial-order Boolean games

Let B = {⊤,⊥} be the set of Boolean truth values, with “⊤” being truth and “⊥”
being falsity; we use ⊤ and ⊥ to denote both the syntactic constants for truth and
falsity, respectively, as well as their semantic counterparts. Let Φ = {p, q, . . .} be a
finite, fixed, non-empty vocabulary of Boolean variables. For every subset Ψ ⊆ Φ of

123

788 Synthese (2016) 193:781–811

Boolean variables, we denote byLΨ the set of (well-formed) formulae of propositional
logic over the set Ψ , constructed using the conventional Boolean operators (“∧”, “∨”,
“→”, “↔”, and “¬”), as well as the truth constants “⊤” and “⊥”. For every subset
of Boolean variables Ψ , a Ψ -valuation is a total function v : Ψ → B, assigning truth
or falsity to the variables in Ψ ; we let V(Ψ) denote the set of all Ψ -valuations. Given
a formula ϕ ∈ LΨ and a Ψ -valuation v : Ψ → B, we write v |, ϕ to mean that ϕ

is true under the Ψ -valuation v, where the satisfaction relation “|,” is defined in the
conventional way for propositional logic (so, for example, v |, ϕ ∨ψ iff either v |, ϕ

or v |, ψ or both).
Our games are populated by a set N = {1, . . . , n} of agents—the players. Each

agent i is assumed to have a goal, which is represented by an LΦ -formula γi that i
desires to have satisfied. Each player i ∈ N controls a (possibly empty) subsetΦi of the
overall set of Boolean variablesΦ. By “control”, we mean that i has the unique ability
within the game to set the value (⊤ or ⊥) of each variable p ∈ Φi . We require that
each variable is controlled by exactly one agent, i.e., we have Φ = (Φ1 ∪ · · · ∪ Φn)

and Φi ∩ Φ j = ∅, for all i ̸= j . Then, a Boolean game is given by a structure
⟨N ,Φ, (Φi)i∈N , (γi)i∈N ⟩, where each component is formally defined as described
above.

Partial-order Boolean games augment conventional Boolean games with depen-
dency graphs. Formally, a dependency graph over a set Φ is simply a directed acyclic
graph D ⊆ Φ × Φ; we will write D(p, q) to mean (p, q) ∈ D. We read D(p, q) as
“q depends on p”; more precisely:

D(p, q)means that the choice of a value for the Boolean variable q by the player
who controls q can be informed by the value that was assigned to the Boolean
variable p.

Notice that we do not require dependency graphs to be transitive. We denote the
transitive closure of D by D+, and where q ∈ Φ, we define D[q] = { p ∈ Φ |
D(p, q)}, and D+[q] similarly. Thus, for any variable p, D[p] is the total set of
variables whose value can be taken into consideration when choosing a value for p.

The motivation for the requirement that dependency graphs are acyclic should be
immediately obvious: it ensures that we will not have situations in which a variable is
“waiting” on itself (p ∈ D+[p]).

The dependency graph structure makes it explicit which choices are, or can be
regarded to be, independent. Suppose D is a dependency graph such that p /∈ D[q]
and q /∈ D[p]. That is, the choice of p does not depend on q, and the choice of
q does not depend on p. Then we say p and q are independent. More generally,
where we have two connected components in the dependency graph D such that the
components are not connected to each other, then these components are independent
of each other; we can interpret such independent structures as independently executing
concurrent processes. The use of the dependency graph makes independence explicit
and transparent (cf. Nielsen and Winskel 1995).

Formally, a partial-order Boolean game is simply a Boolean game together
with a dependency graph, i.e., a structure G = ⟨N ,Φ, (Φi)i∈N , (γi)i∈N , D⟩ where
⟨N ,Φ, (Φi)i∈N , (γi)i∈N ⟩ is a Boolean game as defined earlier, and D ⊆ Φ × Φ is a
dependency graph over the set of Boolean variables Φ.

123

Synthese (2016) 193:781–811 789

We can now explain how these new games are played. In conventional Boolean
games, a game is playedby every player i simultaneously picking avaluationvi : Φi →
B for their Boolean variables Φi . Clearly, the choices for players in partial-order
Boolean games are more complex: the value chosen for a variable p can depend on
the values assigned to the variables in the set D[p]. It therefore makes sense to model
a choice for a variable p as a function that maps a valuation for the variables D[p] to
a value for variable p, i.e., a function with the signature

f : V(D[p]) → B

or, making clear that f is a second-order function:

f : (D[p] → B) → B

(Recall thatV(D[p]) is the set of valuations over the variables in D[p]; such a function
tells the relevant player what value to assign to p given the values of the variables
upon which p depends.)

We represent such individual choices as equations of the form:

p = f (q, . . . , r)

where f is a Boolean-valued function, defining a value for p for every possible val-
uation to the variables D[p] = {q, . . . , r}. We refer to p = f (q, . . . , r) as a choice
equation.

To keep things mathematically simple, we will assume that the Boolean function f
representing the strategy for choosing a value for p is given as a propositional formula
ϕ over the variables onwhich p depends, that is, a formula ϕ ∈ LD[p]. Thus, the choice
equations that we will consider take the form p = ϕ, where p ∈ Φ and ϕ ∈ LD[p].
Note that when D[p] = ∅ (in other words, the value of variable p does not depend
on the value of any other variables), then the choice equation for p can be assumed to
take the form p = ⊤ or p = ⊥. This is because, if D[p] = ∅ then p does not depend
on any variable. Hence, the choice of a value for this variable is equivalent to simply
assigning directly either ⊤ or ⊥ to p.

We emphasise that representing Boolean functions by propositional formulae is not
a limitation: any Boolean function f of k variables can be represented by a proposi-
tional formula over these variables, although in the worst case, the smallest formula
representing f may be exponential in k (Boppana 1990).

A strategy for player i , denoted by σi , is then a set of choice equations, one for each
variable controlled by i . As usual, a strategy profile σ = (σ1, . . . , σn) is a collection of
strategies, one for each player in the game. Since we require that dependency graphs
D are acyclic, we have the following:

Lemma 1 Let G = ⟨N ,Φ, (Φi)i∈N , (γi)i∈N , D⟩ be a game and let σ = (σ1, . . . , σn)

be a strategy profile for G. Then there is a unique solution to the set of equations
σ1 ∪ · · · ∪ σn, which we denote by v(σ), (and thus we have that v(σ) : Φ → B), and
which we refer to as the valuation induced by σ . Moreover, v(σ) can be computed in
time polynomial in the size of σ .

123

790 Synthese (2016) 193:781–811

Proof Let σ = σ1 ∪ · · · ∪ σn . Now, consider any ordering of the equations in σ

which satisfies the requirement that all variables appearing in the right hand side of
an equation must have previously appeared on the left hand side of an equation. The
requirement that D is acyclic ensures that such an ordering exists (although it will not
in general be unique). Then such an ordering defines a simple straight line program (in
fact, a greatly simplified form of straight line Boolean programCook and Soltys 1999),
which can be executed in polynomial time; and the resulting assignments to variables
in Φ is the valuation v(σ). Notice that any ordering of the equations satisfying the
above requirement will yield the same valuation. ⊓2

We can define utility functions with respect to strategy profiles in essentially the
same way as for conventional Boolean games:

ui (σ) =
{
1 if v(σ) |, γi
0 otherwise.

where σ = (σ1, . . . , σi , . . . , σn) is a strategy profile and σ ′
i is a strategy for player

i , we denote by (σ−i , σ
′
i) the strategy profile obtained from σ by replacing the i

component of σ with σ ′
i . We then say that σ is a pure Nash equilibrium if we have that

there is no player i ∈ N and strategy σ ′
i for player i such that ui (σ−i , σ

′
i) > ui (σ).

Thus, the strategy profile σ is a pure Nash equilibrium if no player could benefit from
unilaterally deviating from σ to another strategy. Let NE(G) denote the set of pure
Nash equilibria of G.

Let us consider an informal example, to further illustrate the notion of independence
between variables. Imagine a captainwho controls two army platoons thatmust engage
in two separate battles, where there is no way of the platoons communicating with
each other. Then, the captain has to design strategies that will be executed by the
platoons independently: that is, even though the captain can choose strategies for both
platoons, hemust choose strategies so that no communication or coordination between
the platoons takes place while they execute their respective strategies. The following
formal representation of this example makes this point explicit. In particular, in the
following example, player 2 will represent the captain, and variables q, r will play the
roles of the two platoons.

Example 1 Consider a partial-order Boolean game where

N = {1, 2},
Φ = {p, q, r},
Φ1 = {p},
Φ2 = {q, r},
γ1 = ⊤, and
γ2 = (p ↔ q) ∧ (r ↔ ¬q).

The dependency graph is given in Fig. 1. Now, player 2 has a choice for variable q that
is guaranteed to make the left conjunct of his goal true—the required choice equation
is simply: q = p.

But although player 2 controls both r and q in the right conjunct of γ2, there is no
strategy that guarantees to make both conjuncts true simultaneously. This is because

123

Synthese (2016) 193:781–811 791

Fig. 1 Dependency graph for
Example 1

p q

r

1 2

r is independent of p and q: a choice for this value must be made independently of p
and q. As can be seen, the only two choice equations available for variable r are as
follows: r = ⊤ and r = ⊥.

Note that since player 1 always gets its goal achieved, player 1 is happy (and free)
to choose any value for p, and so player 2 cannot rely on the selection of any particular
values for p and q to satisfy γ2.

In summary, player 2 can choose the strategies thatwill select values for the variables
q and r that he or she controls; but because these variables are independent, the
strategies that choose values for q and r cannot communicate or coordinate with each
other while they are being executed.

Note that player 2 is perfectly able to coordinate the selection of strategies for
variables q and r , but at run-time, these strategies cannot communicate with each
other, and in particular, the strategy for variable r must assign a value to this variable
without knowing anything about the values of p or q. ⊓2

We emphasise that this is not a “problem” in our model: it accurately reflects real-
world situations in which parts of a strategy must be executed even though those
parts of the strategy cannot communicate or coordinate with each other while they are
being executed. One might wonder whether it would be simpler in this case to treat
independent variables as separate players. We argue that this might not make sense.
The next example illustrates why not.

Example 2 Suppose we have a game with:

N = {1, 2},
Φ1 = {p, q},
Φ2 = {r, s},
γ1 = ⊤, and
γ2 = ((r ↔ p) ∧ (s ↔ q)) ∨ (¬(r ↔ p) ∧ ¬(s ↔ q)).

Thus, player 1 is indifferent about how to assign values to his variables, while player
2 will be satisfied if either:

– r takes the same value as p and s takes the same value as q; or else
– r takes the opposite value to p and s takes the opposite value of q.

The dependency graph for this example is illustrated in Fig. 2. Now, player 2
clearly has choice equations that will guarantee the achievement of his goal. Consider
the choice equation set

σ 1
2 = {r = p, s = q}

123

792 Synthese (2016) 193:781–811

Fig. 2 Dependency graph for
Example 2 p r

q s

and the set

σ 2
2 = {r = ¬p, s = ¬q}.

Since either of these strategy sets guarantees to achieve player 2’s goal, they each
represent a dominant strategy for player 2. Now, suppose we treated our current agent
2 as two separate agents—call them agents 3 and 4—the former controlling variable r
and the latter controlling variable s, each new agent having the same goal (γ2, above),
and with the same dependency graph in Fig. 2. Then, the two strategy sets above
induce pure Nash equilibria (for instance, letting σ 1

3 = {r = p} and σ 1
4 = {s = q}),

but such new strategy sets do not yield dominant strategies for the two new players of
the game. Thus, we argue, in attempting to treat the independent variables r and s as
being controlled by different players, we fundamentally change the character of the
game. ⊓2

Let us now consider another example, to further illustrate the distinction between
our new model and conventional Boolean games.

Example 3 Wewill explore some variations of the non-cooperative game ofmatching
pennies. Suppose we have:

N = {1, 2},
Φ1 = {p},
Φ2 = {q},
γ1 = p ↔ q, and
γ2 = ¬(p ↔ q).

Thus, player 1 controls variable p, and player 2 controls variable q; player 1 wants
both variables to take the same value, while player 2 wants them to take different
values.
Now, consider the three different dependency graphs for this game shown in Fig. 3:

– In the dependency graph shown in Fig. 3a, variables p and q are independent: the
choice for p is made in ignorance of the choice for q, and vice-versa.

– In Fig. 3b, q is dependent on p, and so the choice of value for q takes place after
the choice of value for p is made; moreover, the choice of value for q is informed
by the choice for p.

– In Fig. 3c, p is dependent on q. Here, the choice of value for p takes place after
the choice of value for q, and the choice of value for p is informed by the choice
of value for q.

We consider each possibility in turn.

123

Synthese (2016) 193:781–811 793

Fig. 3 The only three possible
dependency graphs for
Example 3

(a) (b) (c)

p q p q p q

– First consider (a). It should be easy to see that there is no pure Nash equilibrium
for the game with dependency graph (a). Consider the following strategy profile:
(σ1) p = ⊥ and (σ2) q = ⊥. With this outcome, γ1 is satisfied, while γ2 is not. In
this case, player 2 could deviatewith strategy q = ⊤, resulting in the satisfaction of
his goal. In fact, it is easy to see that, for every possible strategy, one of the players
will have a beneficial deviation, and so this game has no pure Nash equilibria.

– Now consider the dependency graph in Fig. 3b. Player 2 can see the value of p
before assigning a value to q, and has four options available with respect to his
strategy: q = ⊤, q = ⊥, q = p, and q = ¬p. With the final option, q = ¬p,
player 2 guarantees to get his goal achieved (hence this strategy weakly dominates
all of the other strategies for player 2). Observe that any strategy profile in which
player 2 uses this strategy is a pure Nash equilibrium: as player 2 has his goal
achieved, he cannot beneficially deviate, and no deviation on the part of player 1
could improve her position.

– Finally, for the dependencygraph inFig. 3c, the situation is reversed: p is dependent
on q. In this case, player 2 must choose a value for q, and player 1 is then able to
choose a value for p while knowing which value was assigned to q. In this case,
1 can guarantee to get her goal achieved by using the strategy p = q.

⊓2

As this example shows, partial-order Boolean games strictly generalise conven-
tional Boolean games: the implicit choice structure of a conventional Boolean game
(where every player simultaneously and independently chooses a valuation for their
variables) is obtained in a partial-order Boolean game in which all variables are made
independent of each other, that is, letting D = ∅, and so D[p] = ∅ for every p ∈ Φ.

The example above also illustrates a more useful fact about the implications on
the sets of equilibria when allowing dependencies. That is, that having at hand the
additional strategic power of using functional dependencies between variables may
increase the set of pure Nash equilibria of a game, an arguably desirable property from
a game-theoretic perspective.

4 Complexity of partial-order Boolean games

Let us now consider some questions relating to the complexity of partial-order Boolean
games. The most obvious question to ask relates to verifying whether a particular
strategy profile is a pure Nash equilibrium. The decision question is stated as follows.

Is- NE:
Given: Partial-order Boolean game G, strategy profile σ .
Question: Is it the case that σ ∈ NE(G)?

123

794 Synthese (2016) 193:781–811

We emphasise that the representation of strategies we consider in this problem is
formally given as a set of choice equations, as described in the preceding section.

The corresponding problem for conventional Boolean games is co-NP-complete
(Bonzon et al. 2006), and it might be natural to suppose that the problem would be
harder for partial-order Boolean games, particularly given that strategies are more
complex objects than in conventional Boolean games. In fact, this is not the case: the
complexity is no worse than that of conventional Boolean games. The key fact is:

Lemma 2 Let G be a partial-order Boolean game containing a player i and let σ be
a strategy profile for this game. Then, if i has a beneficial deviation from σ , there is a
beneficial deviation σ ′

i for player i which is of size polynomial in |Φi |.

Proof Suppose i has a beneficial deviation from σ ; let σ ′′
i be this deviation. Let σ ′

i be
the following strategy for i :

σ ′
i = {x = v(σ−i , σ

′′
i)(x) | x ∈ Φi }.

Clearly σ ′
i is of size polynomial in |Φi |, and since σ ′

i simply copies whatever σ ′′
i does,

v(σ−i , σ
′′
i) = v(σ−i , σ

′
i); as a consequence, the strategy σ ′

i is a beneficial deviation
for player i . ⊓2

So, if player i has a beneficial deviation, then there is a small certificate to this
effect. Expressed in different words, if a player can deviate, then it can deviate using a
very simple kind of “uninformed” strategy, which can be represented very succinctly.
This is because when considering whether a player has a beneficial deviation, we do
not need to take into account how other players would respond to our deviation: we
only need to know whether such a beneficial deviation is possible against a profile of
strategies for other players that can be assumed to be fixed.

In light of results that will follow later, this result is perhaps surprising; we will
postpone discussion of this point for a moment. Returning to the Is- NE problem,
Proposition 2 allows us to prove the following complexity result.

Proposition 1 Is- NE is co-NP-complete.

Proof Hardness can be demonstrated using a construction that is essentially the same
as that used to show co-NP-hardness of the corresponding problem for conventional
Boolean games (see, for instance,Wooldridge et al. 2013, Proposition 1).Alternatively,
it can also be shown by letting the dependency graph be empty, that is, by considering
the special case of conventional Boolean games. To establish that Is- NE is in co-
NP, we will show that the complement problem is in NP. The complement problem
involves checking whether any player has a beneficial deviation from a given strategy
profile. See that, from Lemma 2, we can existentially guess a player i and a “small”
deviation σ ′

i for i , and then from Lemma 1, we can check in polynomial time that
v(σ) ̸|, γi while v(σ−i , σ

′
i) |, γi . ⊓2

The next problem to consider is whether a given game has any pure Nash equilibria.
The decision question is stated as follows.

123

Synthese (2016) 193:781–811 795

Non- Emptiness:
Given: Partial-order Boolean game G.
Question: Is it the case that NE(G) ̸= ∅?
The Non- Emptiness problem for conventional Boolean games is !P

2 -complete
(Bonzon et al. 2006), and the fact that Is- NE is no harder for partial-order Boolean
games might lead one to hypothesise that the Non- Emptiness problem is also no
harder. In fact, the complexity is dramatically different:

Proposition 2 Non- Emptiness is NEXPTIME-complete.

Proof The following NEXPTIME algorithm decides the problem:

1. guess a strategy profile σ ;
2. verify that σ ∈ NE(G).

Step (1) is in NEXPTIME because any Boolean function on variables Φ can be rep-
resented by a propositional formula of size at most exponential in |Φ|. For instance,
for a Boolean function of k arguments, the disjunction of all terms of k literals on
which the function is true, makes up such a formula. Guessing a strategy profile thus
involves guessing at most |Φ| such formulae, one for each variable. Step (2) can then
be carried out in deterministic time exponential in the number of variables (Lemma 1).
The overall algorithm works in NEXPTIME.

For NEXPTIME hardness, we reduce the Dependency Quantifier Boolean
Formula Game (Dqbfg) (Hearn and Demaine 2009, p. 87). This problem relates
to a 3 player game, containing players B (Black) andW1,W2 (White 1, White 2). The
white players form a team, attempting to beat the black player. The game is played on
a Boolean formula ϕ over variables X1 ∪ X2 ∪ Y1 ∪ Y2. Player Wi sees only variables
Xi ∪ Yi . The game is played as follows:

– Player B chooses an assignment for the variables X1 ∪ X2;
– Player W1 chooses an assignment for variables Y1;
– Player W2 chooses an assignment for variables Y2;
– If the overall assignment for X1∪X2∪Y1∪Y2 satisfiesϕ then blackwins, otherwise
team white wins.

The question is then whether there is a winning strategy for team white in this
game. Our reduction produces a game with 3 players, N = {B,W1,W2}; as might
be guessed, each player corresponds to the player with the same name in the Dqbfg
instance. We let Φ = X1 ∪ X2 ∪ Y1 ∪ Y2 ∪ {z1, z2} where {z1, z2} are new variables.
Goals and controlled variables for each player are defined as follows:

– γB = ϕ; ΦB = X1 ∪ X2;
– γW1 = (¬ϕ) ∨ (z1 ↔ z2); ΦW1 = Y1 ∪ {z1};
– γW2 = (¬ϕ) ∨ ¬(z1 ↔ z2); ΦW2 = Y2 ∪ {z2}.

The dependency graph for the game is as shown in Fig. 4. Thus for each yi ∈ Yi we
have D[yi] = Xi .

Now, let G be the partial-order Boolean game defined by this reduction. We claim
that team white has a win in the given Dqbfg instance if and only if NE(G) ̸= ∅.

123

796 Synthese (2016) 193:781–811

Fig. 4 Dependency graph for
the reduction in Proposition 2
(X1 = {x11 , . . . , x1d },
X2 = {x21 , . . . , x2e },
Y1 = {y11 , . . . , y1f }, and
Y2 = {y21 , . . . , y2g})

x1
1
...

x1
d

x2
1

x2
e

...

y11...

...

y1f

y21

y2g

X1

X2 Y2

Y1

z1
z2

(⇒) In order to show this direction, suppose that team white has a win in theDqbfg
instance. Consider the winning strategies for the Dqbfg instance: they imme-
diately define strategies for players W1 and W2 in our game (observe that the
dependency graph ensures that the information dependencies are satisfied). We
claim that any strategy profile containing these strategies will be a pure Nash
equilibrium. Since they are winning strategies for team white, they ensure that
¬ϕ is satisfied, and therefore that playersW1 andW2 have their goals achieved.
The only possible deviation would come from player B. But since the strategies
are winning for team white, then player B can have no such possible beneficial
deviation.

(⇐) In order to show this direction, suppose that NE(G) ̸= ∅ and consider an
arbitrary strategy profileσ ∈ NE(G).We claim thatσ defines awinning strategy
for team white in the Dqbfg instance. Because σ is a pure Nash equilibrium
no player wants to deviate. In particular, this means that ¬ϕ must be satisfied
as otherwise either W1 or W2 would have a beneficial deviation, no matter the
values of z1 and z2. Moreover, because σ ∈ NE(G), player B cannot deviate
either. This immediately implies that the strategies that W1 and W2 are using
define a winning strategy for team white in the Dqbfg instance.

⊓2
Now, in light of Lemma 2, this result may seem surprising. However, there is a

simple reason for the substantial blowup in complexity. Whereas in the former one
can replace potential deviations with the values those strategies choose, in the latter
this cannot be done. The following example illustrates why not.

Example 4 Recall Example 3, and the dependency graphs in Fig. 3. In particular, take
the graph in Fig. 3b. Given this dependency graph, the following strategy profile forms
a pure Nash equilibrium:

(σ1) p = ⊥
(σ2) q = ¬p.

123

Synthese (2016) 193:781–811 797

This is because, using σ2, player 2 guarantees to get his goal achieved, and there is
no deviation for player 1 that would achieve his goal: whatever choice player 1 makes
for p, player 2 simply negates it. Now, let us consider what happens if we try to apply
this same trick (used in Lemma 2), namely, replacing each strategy by the value that
the strategy chooses. This would result in the strategy profile:

(σ1) p = ⊥
(σ ′

2) q = ⊤.

However, this strategy profile does not form a pure Nash equilibrium: player 1 could
now beneficially deviate using p = ⊤. In fact, there is no pure Nash equilibrium of
this game in which both players use strategies of the form x = b, where b is a logical
constant. ⊓2

4.1 Special cases

Even though the complexity of Non- Emptiness is NEXPTIME-complete with
respect to unrestricted dependency graphs, the problem is easier when restricted to
some important classes of graphs:

Proposition 3 1. For games in which D = ∅, the Non- Emptiness problem is
!P

2 -complete.
2. For partial-order Boolean games of the following form, Non- Emptiness is

PSPACE-complete:
We have N = {1, 2} with Φ1 = {x1, . . . , xk} and Φ2 = {y1, . . . , yk}. The depen-
dency graph is defined by D[xi] = {x j , y j | 1 ≤ j < i} and by D[yi] =
{xi } ∪ {x j , y j | 1 ≤ j < i}.
Observe that in case (1), we obtain conventional Boolean games, for which the

Non- Emptiness problem is !P
2 -complete. The second case essentially corresponds

to QBF, which is PSPACE-complete. More informally, it corresponds to a sequential
setting, a prominent special case that motivates the definition of such a dependency
graph. Because the complexity in the general case, where concurrency is allowed, is
NEXPTIME, and in the sequential case it goes down to PSPACE, it becomes clear
that concurrent behaviour in our setting does make things computationally harder.

Another interesting case, which closely related to the behaviour that is usually seen
in concurrent and distributed systems, is the one where a group of agents collabo-
rate in order to achieve a common goal. Such a situation is naturally captured by a
solution concept called strong Nash equilibrium where multiple players are allowed
to deviate—and not only one as it is the case in the definition of pure Nash equi-
libria. Formally, we say that σ is a strong Nash equilibrium if there is no coalition
C ⊆ N satisfying that for every player i ∈ C there is a strategy σ ′

i for player i , such
that ui (σ−C , σ

′
C) > ui (σ), where σ ′

C is the collection of strategies σ ′
i for all players

i ∈ C . Thus, the strategy profile σ is a strong Nash equilibrium if no coalition of
players could benefit by jointly deviating from σ to another collection of strategies
σ ′
C . Let sNE(G) denote the set of strong Nash equilibria ofG. Based on this definition,

123

798 Synthese (2016) 193:781–811

we can show that checking whether a strategy profile σ is a strong Nash equilibrium
can be done in exponential time:

Lemma 3 Let G be a partial-order Boolean game and σ be a strategy profile. Then,
checking whether σ ∈ sNE(G) can be done in deterministic exponential time in the
number of both the Boolean variables and players in the game.

Proof The algorithm to check whether σ ∈ sNE(G) can be divided in two sub-steps,
and solved in deterministic exponential time. First, using σ , we can compute the set
of players L ⊆ N who do not get their goals achieved. This step of the algorithm
can be done, for each player in the game, in deterministic exponential time in the
number of variables—see the case for pure Nash equilibrium. We then check if any
subset of players C ⊆ L have a beneficial deviation. This can be done in deterministic
exponential time in the number of players in the game: for each C ⊆ L , we check
whether there is a strategy profile forC such that using this strategy profile, with other
players using their component of σ would result in the achievement of all the goals of
players in C . The overall algorithm therefore runs in deterministic exponential time
in both the number of Boolean variables and the number of players in the game. ⊓2

Using Lemma 3 we can, in addition, show that Non- Emptiness for partial-order
Boolean games and strong Nash equilibrium is an NEXPTIME-complete problem,
thus no harder than pure Nash equilibrium.

Proposition 4 Non- Emptiness for strongNash equilibrium isNEXPTIME-complete.

Proof The proof, and algorithm, is very similar to the case for pure Nash equilibrium.
We use the same meta-algorithm, which decides the problem in NEXPTIME:
1. guess a strategy profile σ ;
2. verify that σ ∈ sN E(G).
As before, step (1) is in NEXPTIME because any Boolean function can be represented
by a propositional formula of size at most exponential in |Φ|. Moreover, step (2) can
thenbe carried out in deterministic time exponential in both the number of variables and
the number of players (Lemma 3). Then, the overall algorithm works in NEXPTIME.
For hardness, observe that the reduction from Dqbfg games used in Proposition 2
can be used here as well.1 That is, it is also true that team white has a win in the
given Dqbfg instance if and only if sNE(G) ̸= ∅. For the (⇒) direction note that the
same reasoning applies because in the game G only player B does not have its goal
achieved. Then, the only coalition of players who do not get their goal achieved is the
singleton set {B}. On the other hand, for the (⇐) direction, note that if σ ∈ sNE(G)

then, in particular, it is also the case that σ ∈ NE(G), and again the same reasoning
can be used to show that team white has a winning strategy in the Dqbfg instance. ⊓2

Another special case to be formally analysed is the one illustrated in Example 3,
that is, informally, the case where a dependency graph is included in a more general
one. As we show next, in such a case, the set of pure Nash equilibria of the system
can only be made bigger. Formally, we have the following result.

1 A key observation is that in our partial-order Boolean game every strategy profile always renders two
winners and only one loser.

123

Synthese (2016) 193:781–811 799

Proposition 5 Let G = ⟨N ,Φ, (Φi)i∈N , (γi)i∈N , D⟩ and G ′ = ⟨N ,Φ, (Φi)i∈N ,
(γi)i∈N , D′⟩ be two games differing only in D, such that D ⊆ D′. Then

NE(G) ⊆ NE(G ′).

Proof Suppose σ ∈ NE(G). Since D ⊆ D′ all players who achieved their goals in G
can use the same strategies in G ′. Then, the only players who will have an incentive
to deviate are those whose goals were not achieved in G.

Suppose for a contradiction that player i does not get its goal achieved in G, but
can, in G ′, unilaterally deviate and achieve its goal γi . If that is the case, then, due to
(the proof of) Lemma 2, there is a strategy σ ′

i for i , which does not depend on D′, that
is, a strategy that can be defined regardless of the dependencies in D′, and which is
such that (σ−i , σ

′
i) |, γi . However, since σ ′

i depends neither on D′ nor on D, it is a
strategy that i could also use in D to unilaterally deviate and get its goal γi achieved.
However, since σ is a pure Nash equilibrium, such a strategy σ ′

i cannot exist, and
hence if σ ∈ NE(G) then σ ∈ NE(G ′) too, which is a sufficient condition to show
that NE(G) ⊆ NE(G ′). ⊓2

The strategy σ ′
i used in the proof of Lemma 2 and in the proof of the above proposi-

tion is a particular kind of “uninformed” strategy, so called because it does not depend
on what the other players in the game may do, but rather on a fixed valuation for the
variables controlled by player i . Note also that as illustrated in Example 3 the inclu-
sion in the other direction may not hold in the general case. As a consequence, adding
functional dependencies to the game can only either increase the number of pure Nash
equilibria of the game or leave it unchanged.

Let us now turn our attention to semantic features of partial-order Boolean games.
In particular, we are now going to study how concurrent behaviour is modelled by our
partial-order Boolean games.

5 Concurrency in partial-order Boolean games

As we noted earlier, in concurrency theory there are two main approaches to mod-
elling concurrent behaviour: either using interleaving or using partial-order models
for concurrency. Interleaving models represent concurrency as the nondeterministic
combination of all possible sequential behaviours in the system. On the other hand,
partial-order models represent concurrency explicitly, by means of an (in)dependence
relation on the set of events in the system that can be executed concurrently.

Examples of interleavingmodels includeKripke structures, labelled transitions sys-
tems, infinite trees, Hoare languages, Moore and Mealy machines, and many more.
Examples of partial-order models include Petri nets, event structures, asynchronous
transition systems,Mazurkiewicz trace languages, Chu spaces, transition systemswith
independence (TSI), amongst others. A good introduction to various models for con-
currency, both to interleaving and to partial-order ones, can be found in Nielsen and
Winskel (1995).

Because partial-order semantics represent concurrency explicitly (by means of an
independence relation on the set of events that the system can execute in parallel),

123

800 Synthese (2016) 193:781–811

independence/concurrency is a primitive notion rather than a derived concept as is
the case in the interleaving framework. In this sense, partial-order models provide a
semantically more faithful representation of concurrency and, therefore, allows one to
study concurrency at a more fundamental semantic level. In fact, any nondeterministic
sequential process or concurrent system with an interleaving semantics can be seen,
trivially, as a partial-order model with an empty independence relation.

However, because partial-order models may not be easy to deal with, much research
has been done to find restricted, yet interesting and useful, classes of models where
different aspects of concurrency can be captured. An approach that has delivered pos-
itive results from a semantic viewpoint is the one where closure operators are used
to model deterministic concurrent behaviour. Due to its mathematical properties, this
approach has found interesting applications and interpretations within games—cf.,
Abramsky (2003), Abramsky and Melliès (1999), Gutierrez (2011), Winskel (2012).
In particular, in Winskel (2012), strategies represented as closure operators are for-
mally related to event structures (Nielsen and Winskel 1995), the canonical model of
concurrency that was the inspiration for our model of Boolean games.

In this section, we study the connections between our model of games and event
structures. We do so by investigating the relationship between the model of strategies
associated with partial-order Boolean games and the way that deterministic concur-
rency can be captured using closure operators. In particular, we show that concurrency,
as seen in partial-order Boolean games, can be mathematically represented using a
closure operator semantics for players’ strategies. This closure-operator semantics, in
turn, gives a more explicit representation of the causal and temporal dependencies in
our games framework.

Even though the temporal order of events in partial-order Boolean games is not
completely determined by the strategies executed by the players (since independent
events may occur in parallel, while dependent events must occur sequentially), a
given strategy profile completely determines the final outcome the game. This kind
of deterministic, yet concurrent, behaviour can be mathematically represented by a
closure-operator semantics of the game, which we formalise next.

Let ≤ denote the reflexive and transitive closure of D. Since D is a DAG, the
structure (Φ,≤) is a partial order. Let D be the set of ≤-downclosed subsets of Φ.
Thus (D,⊆) is a partial order. Moreover, for each player i , let D−i [q], with q ∈ Φi ,
be defined to be the set (D+[q] \ Φi). Now, for each player i , define the function
πi : D → D by

πi (X) = X ∪ {q ∈ Φi | (D−i [q]) ⊆ X}.

The function πi adds to X the variables to be played next by player i , that is, it adds
those variables in Φi that can be given values provided that the variables in X have
been already set to some Boolean value. Note that πi (X) is also ≤-downclosed. The
key observation in this section is that, in fact, over the partially ordered set (D,⊆),
each function πi determines a stable closure operator, that is, a map being:

1. (Extensive): ∀X. X ⊆ πi (X),
2. (Idempotent): ∀X. πi (X) = πi (πi (X)), and

123

Synthese (2016) 193:781–811 801

3. (Monotone): ∀X,Y. X ⊆ Y ⇒ πi (X) ⊆ πi (Y).

We then can show:

Proposition 6 Let D be the dependency graph in a partial-order Boolean gamewhere
N = {1, . . . , n}andΦ = (Φi)i∈N . Then, each functionπi for every player i , as defined
above, is a closure operator.

Proof To show that each πi is a closure operator, we need to show that πi is extensive,
idempotent, and monotone.
(Extensive) Follows directly from the definition.
(Idempotent) Take any X ∈ D and let Y = πi (X). Then, Y = X ∪
{q ∈ Φi | (D−i [q]) ⊆ X} and, since (Y \ X) ⊆ Φi , we know that D−i [q] ⊆ X if
and only if D−i [q] ⊆ Y , for all q. Therefore,

πi (X) = X ∪ {q ∈ Φi | (D−i [q]) ⊆ X}
= Y ∪ {q ∈ Φi | (D−i [q]) ⊆ X}
= Y ∪ {q ∈ Φi | (D−i [q]) ⊆ Y }
= πi (Y)

Therefore, πi (X) = πi (πi (X)), to obtain:

∀X. πi (X) = πi (πi (X)).

(Monotone) Take any X, Y ∈ D and let X ⊆ Y . By definition, we have

πi (X) = X ∪ {q ∈ Φi | (D−i [q]) ⊆ X}

and

πi (Y) = Y ∪ {q ∈ Φi | (D−i [q]) ⊆ Y }.

Since X ⊆ Y then, for all q ′ ∈ Φi ,

if q ′ ∈ {q ∈ Φi | (D−i [q]) ⊆ X}
then q ′ ∈ {q ∈ Φi | (D−i [q]) ⊆ Y }

to obtain that

∀X, Y. X ⊆ Y ⇒ πi (X) ⊆ πi (Y)

—as required. ⊓2

Based on (πi)i∈N we can define a semantics which gives a more operationally
informative explanation of how concurrent behaviour in a multi-agent system is mod-
elled in partial-order Boolean games. What we are to define next is a closure-operator
semantics of concurrency in our framework.

123

802 Synthese (2016) 193:781–811

Call X ∈ D a history of play: X indicates which variables have been set to a fixed
Boolean value so far. Given a history of play X , each agent i knows what to play next
(using the map τi , defined below) based on both πi and the choice equations, denoted
by fq , for the variables q ∈ Φi they have control over, in the following way:

τi (X) = {q = fq | q ∈ (πi (X) \ X)}.

The first observation to make is that the original semantics of partial-order Boolean
games, that is, the semantics given by (σi)i∈N representing sets of choice equations for
each player i , can be easily recovered from (τi)i∈N , as follows for each player strategy:
σi =

⋃
p∈Φi

τi (D+[p]). The second observation is that even though τi is a strategy
for player i , semantically, the map τi behaves differently from σi . The former takes
histories of play and, based on that information, gives only a few necessary choice
functions to be used next (a rather operational approach); the latter, instead, provides
a player with all the choice equations that i has available at once, with no information
as to when during the game such equations should be used (a more denotational
approach). Thus, we can think of τi as being more operationally informative when
compared with σi , since some notion of “time” is implicitly considered. (However, in
either case, that is whether using (σi)i∈N or (τi)i∈N , one needs to have access to the
dependency graph to know when a particular choice function is going to be effectively
used while playing the game.) Because of the informal descriptions given above, we
will say that the map τi is a temporal strategy for player i . In fact, because each πi is
a stable closure operator, a few useful additional observations also follow.

1. First, a temporal strategy can only modify the state of play by setting a value for
a variable not played yet, and once such a value has been determined it cannot be
modified.

2. Second, the behaviour of different agents is independent on concurrent variables,
i.e., such a kind of behaviour is oblivious to superfluous or unnecessary alternations
between players’ moves. Put another way, in the end, it is irrelevant who plays
first in concurrent (unordered) events—of course this is not the case for sequential
(ordered) events.

3. Finally, as dependency graphs induce a temporal (and causal) dependency relation
on events, playing at a later “time unit” provides at least as much information as
playing at a previous one; indeed, a temporal strategy preserves causal dependen-
cies when playing the game.

Not all the above properties relate to concurrency. The first one simply ensures that a
temporal strategy behaves as expected: providing a player with the choice decisions
that such a player has to make give a particular state of play. The second one, on the
other hand, is the most closely related to concepts in concurrency. Because in a con-
current setting independent (unordered) events should be treated uniformly regardless
of the particular order in which they happen to be played, a strategy must formally
capture such a uniformity requirement. Closure operators, and in particular the second
property above, ensure exactly that. This, in turn, helps ensure that strategies can be
composed in any order you like and the final result of the game would be the same;
in other words, the problem of how to compose strategies in a concurrent setting van-

123

Synthese (2016) 193:781–811 803

ishes once a closure-operator interpretation can be given. Extensive studies of this
phenomena can be found, for instance, in Saraswat et al. (1991) for programming lan-
guages and in Abramsky (2003) for logical systems. Finally, the third property above
mentioned embodies an efficiency property from a concurrent viewpoint: it ensures
that no player will be allowed to play fewer events than those it is required to. As
with the second property, this property also relieves one from having to define how to
interpret the execution of multiple events. For a more comprehensive discussion on the
natural relationship between closure-operator semantics and concurrency, the reader is
referred to Abramsky (2003) andWinskel (2012), upon which our presentation builds.

One delicate point that shouldmentioned concerns dependencies between a player’s
own variables. The definition of D−i means that such dependencies are ignored in
the computation of τi . Thus in setting variables according to the choice functions in
τi (X), it is still necessary to resolve any player-internal dependencies to constrain
the execution order. However, this process is invisible to other players. In general,
using player-internal dependencies can have rather counter-intuitive results, imposing
a form of imperfect recall; in most modelling situations, there should be no internal
dependencies.

As mentioned above, the idea of using closure operators to model concurrency has
been successfully used in the past, e.g., see Abramsky (2003), Abramsky and Mel-
liès (1999), Gutierrez (2011), Saraswat et al. (1991) and Winskel (2012). However,
it is important to note that the closure-operators representation can only deal with
deterministic concurrency. In a non-deterministic setting, more care has to be taken in
order to ensure that the particular execution of unordered (concurrent, independent,
etc.) events does not affect the outcome of the game. Deterministic concurrency—and
therefore closure-operator semantics—is nevertheless a modelling framework pow-
erful enough to represent the concurrent behaviour of many interesting classes of
systems. To conclude this section, let us now see, by way of a simple example, what
a temporal strategy constructed with respect to a stable closure operator looks like.

Example 5 Take again the game in Example 1. There, the game can proceed in five
different ways in terms of how/when the events are played. We will write p ∥ r and
q ∥ r for the parallel execution of two concurrent/independent events. Then, one of the
following behaviours can be observed (assuming that executing atomic events takes
no time and that “.” is sequential composition):

p.q.r; p.r.q; p.(q ∥ r); r.p.q; or (r ∥ p).q.

The temporal strategies τ1 and τ2 for players 1 and 2 must be defined for all those
states of play when each player is to make a move. Moreover, whenever both players
are allowed to play simultaneously, the result of playing their strategies must deliver
the same result. This is the case with:

– τ1 = {(∅, {p = f p}), ({p},∅), ({r}, {p = f p}), ({p, q},∅), ({p, r},∅), ({p, q, r},
∅)}; and

– τ2 = {(∅, {r = fr }), ({p}, {r = fr , q = fq}), ({r},∅), ({p, q}, {r = fr }),
({p, r}, {q = fq}), ({p, q, r},∅)},

123

804 Synthese (2016) 193:781–811

where, as defined above for any τi , for each pair in τi , the first component of such a pair
is the history of play (that is, a set of Boolean variables) and the second component
is what player i is to play next given such a particular history of play (that is, a set of
choice functions). ⊓2

As we can see, the two strategies in Example 5 seem to be bigger than needed. For
instance, a more succinct representation could be:

– τ1 = {(∅, {p = f p}), ({r}, {p = f p})}; and
– τ2 = {(∅, {r = fr }), ({p}, {r = fr , q = fq}), ({p, q}, {r = fr }), ({p, r}, {q =

fq})}.
as we know that in all other cases the strategies map to ∅. Clearly, this is a valid
succinct representation since it allows all possible five interleavings of events given
before.

6 A logic with structured choice

The concurrency features of partial order Boolean games also find applications to
logic. Specifically, partial-order Boolean games give amodel for Sandu andHintikka’s
Independence-Friendly (IF) logic. IF logic is an extension of first-order logic where
quantifiers are partially instead of totally ordered. This gives a considerable increase
in expressivity. IF logic (without negation) is equivalent to existential second-order
logic—in complexity terms, it captures NP properties of finite models. Well known
applications in, for instance, computer science, artificial intelligence, and multi-agent
systems include logics for social software (Pauly 2001) and logics for independence
and concurrency (Bradfield 2006).

The syntax and semantics of IF logic is as follows. The syntax of IF logic is that of
classical first-order logic with quantifiers extended to slashed quantifiers ∃x/y, z, . . . ,
∀x/y, z, . . . , whose intended interpretation is that when choosing thewitness/counter-
example x , we may not know the values of y, z, . . . (which are presumed to be bound
earlier in the formula). For example, in

∀x .∃y.∀u/x, y.∃v/x, y.ϕ(x, y, u, v)

variable v depends only on u, not on x or y (and y depends only on x as u, v have not
been mentioned).

Because of this way that IF formulae are interpreted, a particular IF formula can be
either true, false, or undetermined. The first two cases have the same game-theoretic
interpretation of first-order logic: using the standard evaluation game of a given for-
mula ϕ (with respect to a given model M), we would say that ϕ is true if there is a
winning strategy to show that ϕ holds in M , whereas we would say that ϕ is false if
there is a winning strategy to show that ϕ does not hold in M . However, since in gen-
eral in IF evaluation games winning strategies may not exist, an IF formula ϕ will be
defined to be undetermined if it is neither true nor false. Then, for instance, as shown
by Proposition 7 below, the semantics of the formula shown above can by given by a
partial-order Boolean game with D = {(x, y), (u, v)}. In general, these dependencies

123

Synthese (2016) 193:781–811 805

define a partial order which, under our semantics, is interpreted with the dependency
graph D.

Example 6 Recall Example 3. In the usual presentation of the game, the dependency
graph is that in Fig. 3a: the variables are independent. So, player 1 can achieve her goal
p = q iff∀q.∃p/q.p = q and player 2 can achieve his goal p ̸= q iff∀p.∃q/p.p ̸= q.
Clearly, no player has a winning strategy. In fact, no strategy profile forms a pure Nash
equilibrium, as shown in Example 3. ⊓2

IF logic has a prenex normal form, though it is substantially more complex to
generate than for first-order logic when non-transitive quantifier dependencies are
allowed.

Proposition 7 Let ϕ = ∀ . . .ψ , where ψ is a Boolean formula, be a transitively-
dependent IF formula in prenex normal form where all existentially quantified
variables are in Φ∃ and all universally quantified variables are in Φ∀. Let G be
the game G = ({∃,∀},Φ,Φ∃,Φ∀,ψ,¬ψ, D) with D given by the variables and
quantification order in ϕ. Then

– ϕ is true (in IF logic) iff ψ is true in every pure Nash equilibrium of game G, and
such an equilibrium exists (in which case ∃ has a winning strategy);

– ϕ is false (in IF logic) iff ψ is false in every pure Nash equilibrium of game G,
and such an equilibrium exists (in which case ∀ has a winning strategy);

– ϕ is undetermined otherwise.

Proof First, note that if ϕ is IF-true, by the definition of the semantics of the logic,
the pure Nash equilibria necessarily contain winning ∃ strategies, making ψ true.
Conversely, if a pure Nash equilibrium exists in which ψ is true, the strategy in it is
IF-winning, so ϕ is IF-true. The case where ϕ is IF-false is similar. Otherwise, either
(i) no pure Nash equilibrium exists or (ii) ϕ is not either true or false in all pure Nash
equilibria ofG. In either case, (i) or (ii), it implies that no player has a winning strategy
to ensure that ϕ is true/false regardless of the behaviour of the other player—hence,
necessarily, the formula is IF-undetermined. ⊓2

Partial-order Boolean games may have many players, not merely two. In coalition
logics (Pauly 2001), a teamof players competes against the others to achieve a common
goal. We can generalize the previous result by considering the coalition as an ∃ team,
and all other players as a ∀ team.

An IF formula may be expressed as a partial-order Boolean game, but partial-order
Booleangamesmayhavemanyplayerswith different goals, rather than just twoplayers
with complementary goals. In the remainder of this section, we analyse further the
relationship between IF and partial-order Boolean games. Consider first two-player
games with variable ownerships Φ1,Φ2 and arbitrary goals γ1, γ2. In the case that
the ψi are contradictory, the game corresponds to an IF game, with one player taking
the role of ∀, the other being ∃, and quantifier dependencies given by dependency
graph D.

However, if the ψi are equivalent, and there is a common goal, the best strategy
for the players is to cooperate, and they should both take the role of ∃ in an IF game,

123

806 Synthese (2016) 193:781–811

forming a single team of two players. In such a game, there are no universal quantifiers,
but there is still a role for ∀, as the goal ψ may contain conjunctions ψ1 ∧ ψ2, where
∀ player chooses the conjunct, acting as the malevolent environment (demonic non-
determinacy in the terminology of concurrency theory). Thus, the IF quantifier prefix
is entirely existential, with slashes given by D. As with classic coordination games,
a pair of strategies is in equilibrium if it achieves the common goal; but a pair of
strategies that does not achieve the goal may also be in equilibrium, if neither player
can unilaterally change strategy to achieve the goal. An example of such a situation is
illustrated next:

Example 7 Let player 1 own variable p and player 2 own variable q, with empty
dependency and let both players have goal p ∧ q. Consider the strategy profile ((p =
⊥), (q = ⊥)). This strategy profile loses—that is, no player gets its goal achieved—but
neither player can unilaterally deviate to win the game. ⊓2

The IF formulation points up an issue already mentioned before: the existential
team has communication barriers between its players, not just lack of knowledge of
the opponents’ moves. In fact, Hintikka’s original formulation of IF did not allow
slashing with previous existential variables, only with previous universal variables.
The case where one goal is stronger, say γ1 → γ2, is more interesting. If player 1 can
win, then player 2 wins also; but player 2 may try to win while falsifying γ1. A pair of
strategies that achieves γ1 is in equilibrium; a pair of strategies that achieves γ2 ∧¬γ1
is only in equilibrium if there is no way for 1 to achieve γ1. If we move further to
incomparable goals, then the situation becomesmore complex still, and the connection
to IF logic becomes harder to establish. This leads to the notion of extensions of IF
logic, which we will discuss in the following section.

6.1 ‘Socially responsive’ logics

In Sect. 5, we outlined a closure operator approach for n-player concurrent games;
and, in this section, we encoded IF logic into our games. However, the Hintikka game
understanding of IF logic is still a two player game—only the team approach makes
some use of the many agents.

Abramsky (2006) discusses a logic (call it AL) generalizing the ideas of IF logic
to the multi-player case. Given a set of n agents, he proposed using logical operators
⊕i and Qi , where ϕ ⊕i ψ represents agent i making a choice between playing in ϕ

or ψ , and Qi x .ϕ represents agent i choosing a value for variable x . Thus, in the two-
player case,⊕1,⊕2,Q1,Q2 would correspond to∨,∧, ∃,∀ in the normal FOL game.
Independence of choices is achieved by explicit ϕ∥ψ (parallel evaluation) and ϕ.ψ

(sequential evaluation) operations—and one can then sensibly viewQi x as a ‘particle’
(a free-standing formula), rather than as a prefixing operator. Thus, for example, the
IF formula ∀x .∃y/x corresponds to (Q1x)∥(Q2y) (as also done in Bradfield 2006).
As a consequence, in the general n-agent case, quantifier particles can be combined
with ∥ and . to describe the dependency of choices, exactly as we did in the previous
section (see example 5)—and indeed, Abramsky (2006) also gives a semantics to its
logic in terms of closure operators.

123

Synthese (2016) 193:781–811 807

The⊕ operators raise an interesting question about the formulation of partial-order
Booleangames. In our formulation, the agentsmake a set of partially dependent choices
of Boolean variables, aiming to achieve goals γi expressed as Boolean formulas over
the variables. These goals are evaluated purely truth-functionally at the end of the
game. However, evaluation of a Boolean formula is also expressible in the standard
way as a game between two players, ‘verifier’ and ‘refuter’, with verifier making ∨
choices and refuter the ∧ choices, and so we can continue the original game into a
second stage in which player i verifies that it has achieved its goal. Of course, the
system has no agent corresponding to the ‘refuter’ in the verification game, but we
can encode ‘refuter of i’ as an additional agent ı , with control of no variables, whose
goal is ¬γi . This then allows the Boolean operators ∨ and ∧ in γi to be expressed as
⊕i and ⊕ı , so integrating the goals into the AL formulation.

Such an AL style presentation allows a more refined view of shared and partially
shared goals. Suppose there are agents 1 and 2, controlling independent variables p
and q respectively, with goals γ1 = γ2 = p ∨ q. An obvious pure Nash equilibrium
strategy profile is the one where each player sets its variable true. Now, suppose
instead that γ1 = p ∨ ¬q, and γ2 = ¬p ∨ q. There are two pure Nash equilibrium
strategy profiles: one where both set true, and one where both set false. The latter
strategy profile is interesting: although it is an equilibrium, with the same outcome
as the ‘both true’ profile, it is clearly not one that a ‘rational’ player would adopt, as
it relies on the other agent cooperating, whereas the ‘both true’ profile achieves the
goal without relying on the other agent. By making the choice in the goals explicit as
γ1 = p ⊕1 ¬q and γ2 = ¬p ⊕2 q, the ‘both true’ profile has the characteristic that
each agent has a strategy that always leads to a successful literal controlled by itself,
or an autonomously successful strategy—a generalization to n players of the notion of
winning strategy in two-player games. On the other hand, by putting the other agent’s
choices into the goals, as in γ1 = p ⊕2 ¬q and γ2 = ¬p ⊕1 q, neither player can
attain its goal without the cooperation of the other: the equilibrium strategy profiles
are ({p = ⊤,⊕1 = q}, {q = ⊤,⊕2 = p}) and ({p = ⊥,⊕1 = ¬p}, {q = ⊥,⊕2 =
¬q}), but none of the strategies is autonomously successful.

Writing the final goal evaluation as a game also makes explicit the fact that it is
really just an extension of the original game: a binary ⊕i is not morally different
from a binary variable choice, but the dependency structure is such that all ⊕ choices
depend on all variables, or at least on all variables mentioned in the relevant goal.
Moreover, althoughAL does not have an analogue of (con/dis)-junctive normal form,
our Boolean goals of course do. This leads naturally to the idea of simple conjunctive
games: games where the final goals are simply conjunctions of literals, and the choice
of variables is followed by disjunctive choices ⊕, all of which are dependent on the
variable choices. Clearly any partial-order Boolean game can be put into this form, as
above; and if the ⊕s in γi are all ⊕i , then a simple conjunctive game is just a partial-
order Boolean game. Translating a game with other agents’ choices in the goals back
to a partial-order Boolean game simply requires introducing new variables.

More precisely, a simple conjunctive game comprises N agents controlling Boolean
variables B with a dependency order D as for partial-order Boolean games. Each agent
has a goal γi which is a formula in the following language: literals are variables or
negated variables, terms are conjunctions of literals, which are formulas, and if ϕ and

123

808 Synthese (2016) 193:781–811

ψ are formulas so is ϕ ⊕i ψ for each i . D is extended thus: each occurrence of a ⊕
operator is dependent upon all variables and upon any other ⊕ operators that enclose
it. Choice functions for agent i are extended accordingly to make choices for every
⊕i operator; strategies and strategy profiles extend in the obvious way.

Proposition 8 Every simple conjunctive game G has an isomorphic partial-order
Boolean game G ′, such that each strategy (profile) in G has a strategy (profile) in G′

with the same resulting successes or failures for each agent, and vice versa.

Proof Let G be a simple conjunctive game as above. Let G ′ contain the variables
of G, together with one new variable rki for every occurrence ϕk ⊕k

i ψk of a choice
operator. The control and dependencies of the rki are inherited from those of their
choice operators. The goal γ ′

i of agent i in G ′ is obtained by recursively applying the
following operation to γi : map ϕk ⊕k

j ψk to (rkj ∧ ϕk) ∨ (¬rkj ∧ ψk). Then every
choice in a G strategy determines a choice in a G ′ strategy, with the choice of ϕk

corresponding to setting rkj = ⊤, and by construction the outcomes correspond. ⊓2

7 Related Work

7.1 Semantics.

Partial-order Boolean games form a game-based model of multi-agent and distributed
systems with the power to explicitly represent partial-order concurrent behaviour—
i.e., a “true concurrency” framework. This is a feature that has attractedmuch attention
from a semantics viewpoint, in particular, because it can be used to give semantically
finer representations/models of concurrent behaviour.

Closer to our work are themathematical presentations of player strategies using clo-
sure operators, a semantic approach not usually associated with true concurrency con-
cepts but which has very natural connections to it. Specifically, from the different uses
of closure operators in the literature of semantics and concurrency theory, the following
works are mathematically similar to the presentation we gave in this paper: closure-
operator semantics used to provide models for fragments of linear logic (Abramsky
andMelliès 1999), processes in concurrent constraint programs (Saraswat et al. 1991),
or agents in asynchronous systems (Melliès and Mimram 2007).

7.2 Concurrency

Our model of partial-order Boolean games has been partly inspired by a model of
concurrency, a relationship on which we expand next. The dependency graphs defined
for our game model are related to event structures, a canonical model of the partial-
order behaviour of concurrent systems (Nielsen and Winskel 1995). Event structures
are certain partial orders of events which can explicitly model the causal dependencies
between the events that a computing system performs. In event structures, concurrency
(independence of events) and nondeterminism (conflicts between events) are naturally
captured.

123

Synthese (2016) 193:781–811 809

Ourmodel of partial-orderBoolean games relates to a class of event structures called
conflict-free. Conflict-free event structures are the sub-model of event structures where
incomparable events in the partial order are necessarily concurrent. Such a sub-class
of event structures contains all effective computations of a system, that is, those that
can actually happen as all conflicts between events are avoided. These structures are
also related to some, so-called, domains of information—certain ordered structures
where the notion of concurrent computation is naturally captured.

Game models of event structures (Clairambault et al. 2012, 2013) are, however,
different from partial-order Boolean games. Three main differences are: (i) whereas
in the former game model the execution of events is asynchronous, in the latter it
is synchronous; (ii) moreover, players in games on event structures are allowed, at
any time, to stop playing the game, whereas in our game model all players must play
until every variable has been given a value; (iii) finally, games on event structures as
in (Clairambault et al. 2012, 2013) are two-player zero-sum games, while the games
in this paper are, in general, n-player non-zero-sum games. Only recently (Gutierrez
and Wooldridge 2014), concurrent games on event structures have been extended to
the non-zero-sum setting.

7.3 Logic

IF logic is inherently a two-player logic—the (partial-order) games induced by IF logic
formulae are played by two players, ∃ and ∀. Partial-order Boolean games suggest that
we could define a natural n-player logic of imperfect information, with IF as a two-
player fragment. This idea has also been explored using a categoricalmodel (Abramsky
2006). However, there is little we can positively say about a logic of imperfect informa-
tion of this kind, given the limitations that IF imposes. In particular, from a logical and
proof theoretic viewpoint, the issue of providing a sound and complete axiomatisation
for validity is problematic. Basically, since IF does not contain classical negation,
(bi-)implication is not part of the logic, and so logical equivalence must be defined
and axiomatised in its own right. Owing to its partial second-order power, IF is too
expressive for either equivalence or validity to have a recursively complete axiomati-
sation. Thus, since IF logic is encodable into partial-order Boolean games, any logic
fully capturing partial-order Boolean games will not be completely axiomatisable.
However, as with IF logic itself, our games may be equipped with rules adequate for
practical reasoning—cf. Mann et al. (2011).

In this article, we have made use of the DQBF formalism. This was introduced, and
its complexity established, by Peterson et al. (2001) as a Henkin-quantifier (Henkin
1961) extension of QBF, independently of the earlier development of independence-
friendly logic. DQBF is a restriction of IF logic over a Boolean domain.More recently,
Balabanov et al. (2014) have developed the links between DQBF and IF logic: their
Skolem models and Herbrand counter-models for DQBF correspond to the teams
for ∃ and ∀ in the symmetrical team or trump semantics for IF logic (see Mann
et al. (2011) for a survey of IF semantics). They then restrict the form of DQBFs to
produce a class where synthesis of the models is easier, by limiting the dependencies
between variables. It may be that similar techniques will apply to our more multi-

123

810 Synthese (2016) 193:781–811

player formalism. Finally, it is also worth noting that whereas in Henkin (1961) there
is an argument to use Henkin quantifiers, and therefore IF logic too, to reason about
“infinitely-long” formulae, our setting only considers the finite case, both at the logical
and game-theoretic level. As a consequence, our framework can be seen as a special
case from that viewpoint. On the other hand, both in IF and in DQBF, the setting is
naturally captured by a two-player strategic game, wherewe can allow formulti-player
interactions. Then, in that sense, the reasoning framework we develop here is more
general.

8 Conclusions and Future Work

By extending Boolean games in a simple and intuitive way, i.e., by adding a depen-
dency graph that indicates the dependencies between variables in a game, we are able
to dramatically increase the expressive power of conventional Boolean games. Of
particular importance, we can now more easily represent the behaviour of concurrent
systems and provide to them a game semantics where concurrency can be modelled
using a closure-operator semantics. Our model is closely related to work on IF logics,
which are increasingly used in mathematical logic, game theory and the theory of
concurrency.

It would be interesting to examine several aspects of partial-order Boolean games
in more detail. First, it should be clear from our comments on event structures above
that there are very close links between partial-order Boolean games and models of
concurrency. It would be interesting to study these manifest similarities in more detail,
perhaps by looking at Boolean game-like refinements of event structures and related
models of, so-called, true concurrency. While event structures have been studied from
a game-theoretic perspective before, our work may give a new perspective on this
work. Another aspect of our model that deserves further study is the link to games of
incomplete information, and, perhaps even more relevantly from a computer science
perspective, work on epistemic logics (Fagin et al. 1995). While the way in which our
model captures the limited information available to players is transparent, it would
be interesting to try to link this more precisely to the standard models of knowledge
used in computer science (i.e., Kripke structures/possible-worlds semantics). Finally,
it would be interesting to take a closer look at restrictions on dependency graphs,
and the complexity classes of the corresponding decision problems in partial-order
Boolean games.

References

Abramsky, S. (2003). Sequentiality vs. concurrency in games and logic. Mathematical Structures in Com-
puter Science, 13(4), 531–565.

Abramsky, S. (2006). Socially responsive, environmentally friendly logic. Acta Philosophica Fennica78.
Truth and Games: Essays in Honour of Gabriel Sandu

Abramsky, S., & Melliès, P.A. (1999). Concurrent games and full completeness. In LICS (pp. 431–442).
IEEE Computer Society

Balabanov, V., Chiang, H. J., & Jiang, J. H. (2014). Henkin quantifers and Boolean formulae: A certification
perspective of DQBF. Theoretical Computer Science, 523, 86–100.

123

Synthese (2016) 193:781–811 811

Bonzon, E., Lagasquie, M., Lang, J., & Zanuttini, B. (2006) Boolean games revisited. In ECAI
Bonzon, E., Lagasquie-Schiex, M. C., & Lang, J. (2009). Dependencies between players in Boolean games.

International Journal of Approximate Reasoning, 50(6), 899–914.
Boppana, R. B., & Sipser, M. (1990). The complexity of finite functions. In A. V. Aho & M. J. Corasick

(Eds.),Handbook of theoretical computer science volumeA:Algorithms and complexity (pp. 757–804).
Amsterdam: Elsevier Science Publishers B.V.

Bradfield, J. C. (2006). Independence: Logics and concurrency. Acta Philosophica Fennica, 78, 47–70.
Truth and Games: Essays in Honour of Gabriel Sandu.

Clairambault, P., Gutierrez, J., &Winskel, G. (2012). The winning ways of concurrent games. In LICS (pp.
235–244) IEEE Computer Society

Clairambault, P., Gutierrez, J., & Winskel, G. (2013) Imperfect information in logic and concurrent games.
In Computation, Logic, Games, and Quantum Foundations, LNCS, vol. 7860, (pp. 7–20). Springer

Cook, S., & Soltys, M. (1999). Boolean programs and quantified propositional proof systems. Bulletin of
the Section of Logic, 28(3), 119–129.

Dunne, P.E., Kraus, S., van der Hoek,W., &Wooldridge,M. (2008) Cooperative Boolean games. InAAMAS
Emerson, E. A. (1990). Temporal and modal logic. In J. van Leeuwen (Ed.), Handbook of theoretical com-

puter science volume B: Formal models and semantics (pp. 996–1072). Amsterdam, The Netherlands:
Elsevier Science Publishers B.V.

Fagin, R., Halpern, J. Y., Moses, Y., & Vardi, M. Y. (1995). Reasoning about knowledge. Cambridge, MA:
The MIT Press.

Ghallab, M., Nau, D., & Traverso, P. (2004). Automated planning: Theory and practice. San Mateo, CA:
Morgan Kaufmann Publishers.

Godefroid, P. (1996). Partial-order methods for the verification of concurrent systems., Lecture Notes in
Computer Science New York: Springer.

Grant, J., Kraus, S., Wooldridge, M., Zuckerman, I. (2011) Manipulating Boolean games through commu-
nication. In IJCAI

Gutierrez, J. (2011). Concurrent logic games on partial orders. InWoLLIC, LNCS, vol. 6642, (pp. 146–160).
Springer

Gutierrez, J., &Wooldridge, M. (2014). Equilibria of concurrent games on event structures. In LNCS, ACM
Press

Harrenstein, P., van der Hoek, W., Meyer, J.J., & Witteveen, C. (2001) Boolean games. In TARK, (pp.
287–298)

Hearn, R. A., & Demaine, E. D. (2009). Games, puzzles, & computation. Wellesley, MA: A. K. Peters Ltd.
Henkin, L. (1961). Some remarks on infinitely long formulas. Journal of Symbolic Logic, 30(1), 167–183.
Jurdziński, M., Nielsen, M., & Srba, J. (2003). Undecidability of domino games and hhp-bisimilarity.

Information and Computation, 184(2), 343–368.
Koller, D., &Milch, B. (2003). Multi-agent influence diagrams for representing and solving games. Games

and Economic Behavior, 45(1), 181–221.
Mann, A. L., Sandu, G., & Sevenster, M. (2011). IIndependence-friendly logic. A game-theoretic approach.,

LMS Lecture Note Series Cambridge: Cambridge University Press.
Manna, Z., & Pnueli, A. (1992). The temporal logic of reactive and concurrent systems. Berlin: Springer.
Mavronicolas, M., Monien, B., & Wagner, K.W. (2007). Weighted Boolean formula games. In WINE (pp.

469–481)
Melliès, P. A., & Mimram, S. (2007). Asynchronous games: Innocence without alternation (pp. 395–411).,

CONCUR, LNCS Heidelberg: Springer.
Nielsen, M., & Winskel, G. (1995). Models for concurrency. In Handbook of logic in computer science.

Oxford University Press: Oxford, England
Osborne, M. J., & Rubinstein, A. (1994). A course in game theory. Cambridge, MA: The MIT Press.
Pauly, M. (2001). Logic for social software. Ph.D. thesis, University of Amsterdam
Peterson, G. L., Reif, J. H., & Azhar, S. (2001). Lower bounds for multiplayer noncooperative games of

incomplete information. Computers and Mathematics with Applications, 41, 957–992.
Saraswat, V.A., Rinard, M.C., & Panangaden, P. (1991) Semantic foundations of concurrent constraint

programming. In POPL (pp. 333–352). ACM Press
Winskel, G. (2012). Deterministic concurrent strategies. Formal Aspects of Computing, 24(4–6), 647–660.
Wooldridge, M., Endriss, U., Kraus, S., & Lang, J. (2013). Incentive engineering for Boolean games.

Artificial Intelligence, 195, 418–439.

123

