
2

Online Automated Synthesis of Compact Normative Systems

JAVIER MORALES, Artificial Intelligence Research Institute (IIIA-CSIC),
University of Barcelona, Spain
MAITE LÓPEZ-SÁNCHEZ, University of Barcelona, Spain
JUAN A. RODRIGUEZ-AGUILAR, Artificial Intelligence Research Institute (IIIA-CSIC),
Bellaterra, Spain
WAMBERTO VASCONCELOS, University of Aberdeen, United Kingdom
MICHAEL WOOLDRIDGE, University of Oxford, United Kingdom

Most normative systems make use of explicit representations of norms (namely, obligations, prohibitions, and
permissions) and associated mechanisms to support the self-regulation of open societies of self-interested
and autonomous agents. A key problem in research on normative systems is that of how to synthesise
effective and efficient norms. Manually designing norms is time consuming and error prone. An alternative
is to automatically synthesise norms. However, norm synthesis is a computationally complex problem. We
present a novel online norm synthesis mechanism, designed to synthesise compact normative systems.
It yields normative systems composed of concise (simple) norms that effectively coordinate a multiagent
system (MAS) without lapsing into overregulation. Our mechanism is based on a central authority that
monitors a MAS, searching for undesired states. After detecting undesirable states, the central authority
then synthesises norms aimed to avoid them in the future. We demonstrate the effectiveness of our approach
through experimental results.

Categories and Subject Descriptors: I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent systems

General Terms: Algorithms

Additional Key Words and Phrases: Normative systems, norm synthesis

ACM Reference Format:
Javier Morales, Maite López-Sánchez, Juan A. Rodriguez-Aguilar, Wamberto Vasconcelos, and Michael
Wooldridge. 2015. Online automated synthesis of compact normative systems. ACM Trans. Autonom. Adapt.
Syst. 10, 1, Article 2 (March 2015), 33 pages.
DOI: http://dx.doi.org/10.1145/2720024

1. INTRODUCTION
A norm is an established pattern of behaviour with which members of a society
are expected to comply [Bicchieri 2006]. Typically, norms impose restrictions on the

This work was funded by AT (CONSOLIDER CSD2007-0022), EVE (TIN2009-14702-C02-01,TIN2009-14702-
C02-02), COR (TIN2012-38876-C02-01/02), MECER (201250E053), and the Generalitat of Catalunya (2009-
SGR-1434). Michael Wooldridge was supported by the ERC under advanced grant 291528 (“RACE”).
Authors’ addresses: J. Morales and J. A. Rodrı́guez-Aguilar, Artificial Intelligence Research Institute, Spanish
Council of Scientific Research (IIIA-CSIC). Campus de la UAB, E-08193 Bellaterra, Catalonia (Spain);
M. López-Sánchez, MAiA Department, University of Barcelona. Gran Via, 585 08007 Barcelona (Spain);
W. Vasconcelos, Department of Computing Science, University of Aberdeen. Meston Building Meston Walk,
Aberdeen, AB24 3UE, (United Kingdom); M. Wooldridge, Department of Computer Science, University of
Oxford. Wolfson Building, Parks Rd, Oxford OX1 3QD (United Kingdom).
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c⃝ 2015 ACM 1556-4665/2015/03-ART2 $15.00

DOI: http://dx.doi.org/10.1145/2720024

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: March 2015.

2:2 J. Morales et al.

behaviour of individuals. These behavioural restrictions play two important roles. On
the one hand, they are of benefit to individuals because they simplify decision making
by ruling out various courses of action, thus reducing the decision space of alternatives
that need to be considered. On the other hand, at the social level, they provide means
whereby agents in societies can coordinate their activities, using only local decision
making [Binmore 2005].

Norms have been widely studied as a mechanism for coordinating multiagent sys-
tems (MAS) [Shoham and Leyton-Brown 2009; Dignum 1999; Boella et al. 2006]. Coor-
dination in this sense is usually understood as achieving some system-level goal, such
as ensuring that the system avoids certain undesirable states. However, the problem
of actually synthesising norms that effectively coordinate a MAS is challenging. Since
the seminal work of Shoham and Tennenholtz [1995], the norm synthesis problem
(namely, creating a set of norms that ensures coordination is successful) has attracted
considerable attention. Two approaches for norm synthesis have been considered in
the literature: offline and online.

Offline approaches (e.g., Shoham and Tennenholtz [1995] and Fitoussi and
Tennenholtz [1998]) are aimed at synthesising normative systems at design time. Un-
fortunately, the complexity of the offline norm synthesis problem is high (NP-hard)
[Shoham and Tennenholtz 1995]. These complexity issues have prompted research
into the problem of managing the size of the system state space [Christelis and Rovat-
sos 2009]. Unfortunately, even if we ignore the problem of computational complexity,
computing norms offline is not appropriate if the state space of the system is not known
in advance, or if it may change over time.

In contrast to offline approaches, online approaches are aimed at synthesising norms
at runtime rather than design time. The key conceptual advantage of online approaches
compared to offline approaches is that online approaches are not assumed to require
complete knowledge of the system at design time.

Recently, norm emergence (or convention emergence) has become a popular technique
for online norm synthesis (e.g., see Sen and Airiau [2007], Sen and Sen [2010], Griffiths
and Luck [2010], Salazar et al. [2010], Villatoro et al. [2011], and Yu et al. [2013]). Norm
emergence does not require any global state representation or centralised control and
considers that agents collaboratively choose their own norms. Norm emergence there-
fore implies that agents are endowed with the computational capability to synthesise
norms, and that they will choose to cooperate in the norm synthesis process. A norm
is considered to have emerged when a significant number of agents in an agent society
adhere to a common behaviour (i.e., they choose the same actions), which is not dictated
by a central authority. Thus, a key issue in norm emergence is the design of emergence
mechanisms that help agents agree online (converge) on some norm(s) [Kittock 1993;
Walker and Wooldridge 1995]. Typically, state-of-the-art norm emergence mechanisms
(1) require an initial set of predesigned, alternative norms; (2) are sensitive to such
initial conditions; and (3) mainly converge to a unique norm instead of to a set of norms
(with the exception of Sen and Sen [2010] and Salazar et al. [2010]).

A recent, alternative online approach is described in Morales et al. [2011c]. There,
norms are synthesised by observing agent interactions without requiring their active
participation in the synthesis process, unlike state-of-the-art norm emergence mecha-
nisms. The approach in Morales et al. [2011c] proved to be capable of synthesising a
set of norms (i.e., a normative system), instead of a single norm, from scratch (namely,
without requiring any initial, alternative norms). Moreover, it proved that the norms it
synthesises are both effective and necessary to achieve MAS coordination. On the one
hand, the effectiveness of a norm determines to what extent it is capable of avoiding
undesired MAS states. On the other hand, the necessity of a norm can be employed to
determine whether it is really necessary to avoid undesired states, or those undesired
states could be avoided without the existence of the norm.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: March 2015.

Online Automated Synthesis of Compact Normative Systems 2:3

Typically, norms are synthesised with the aim of developing a stable set of norms
that will prevent undesired states of the MAS (i.e., conflicts). However, assuming that
agents are autonomous and that they can choose whether to comply or not with norms,
we cannot guarantee the prevention of undesired states. Therefore, here we assume
that a set of norms is stable if (1) norms avoid undesired states as long as agents
comply with them and (2) the set of norms remains unchanged for an extended pe-
riod of time. Norm stability is essential to providing agents with a common frame-
work for their interactions. However, in addition to simply avoiding undesired states
effectively, we might also want to consider compactness as a criteria for the online
synthesis of norms. Compactness requires that the norms synthesised are as small as
possible.

The work in Morales et al. [2011c] (hereafter referred to as BASE) considers com-
pactness when synthesising norms. However, as we will show in this article, it suffers
from two major limitations. First, compactness is significantly jeopardised by the way
synthesised norms are evaluated and generalised. On the one hand, the evaluation pro-
cess is ill defined because it unnecessarily aggregates the effectiveness and necessity
of norms. On the other hand, general norms are synthesised with very little evidence,
leading to the possibility of overgeneralisation. Second, the approach of Morales et al.
[2011c] lacks stability: a set of norms is stable if it avoids undesired system states and
remains unchanged for an extended period of time.

Notice that norm stability is essential to providing agents with a common framework
for their interactions. As we will show later, the synthesis mechanism in Morales et al.
[2011c] is rather unstable, only being able to synthesise a normative system that avoids
undesired states when the number of norm infringements in the system is very low.
This means that this mechanism frequently changes the rules of the game (the norms)
to the agents in an agent society.

Against this background, the main contribution of this article is a new, domain-
independent norm synthesis mechanism called IRON (Intelligent Robust Online Norm
synthesis machine) to synthesise norms that characterise necessary conditions for
coordination while avoiding overregulation. Like BASE, IRON (available in the on-line
appendix), assumes that (1) norms do not incorporate sanctions, and hence they can be
regarded as soft constraints imposed to the agents, and (2) agents employ a stochastic
norm infringement model, although rational norm infringements would guide towards
useful normative systems in a more informed way. In this realm, we show that IRON
significantly outperforms the approach described in Morales et al. [2011c] in terms of
the following:

—Stability: Unlike the approach in Morales et al. [2011c], IRON is highly stable, capable
of synthesising enduring normative systems that avoid undesired states despite a
high number of infringements in the agent society. We explore the limits of IRON to
empirically show that its synthesis mechanism manages to synthesise norms even
when the probability of agents violating norms is high, namely when half of the
decisions of each agent may result in norm infringements.

—Compactness: IRON manages to converge to normative systems that are between 30%
and 70% more compact (have fewer norms) than those synthesised by the approach
of Morales et al. [2011c].

These advantages stem from the core components of IRON’s abstract architecture,
namely (1) an evaluation method that evaluates norms in terms of different synthe-
sis criteria, which allows IRON to be stable; (2) a generalisation operator that allows
IRON to synthesise compact normative systems, only generalising norms when there
is enough evidence; and (3) a specialisation operator that makes it possible to undo
underperforming generalisations.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: March 2015.

2:4 J. Morales et al.

Notice that although IRON was originally introduced in Morales et al. [2013], we
provide several extensions in this article. First, here we provide a comprehensive
description of IRON’s norm generalisation mechanism, which is a core process within its
synthesis process. Second, we introduce metrics for compactness of normative systems
and provide a thorough empirical evaluation of IRON’s compactness. Third, we provide
a detailed comparison of IRON versus the approach in Morales et al. [2013] in terms of
stability and compactness.

The proposed approach can be then applied to a wide range of domains that can
be regulated by means of norms. As an example, in a traffic scenario, IRON can be
employed to synthesise traffic rules that prevent cars from colliding. Another example
is the case of online communities, where individuals interact by uploading and sharing
opinions about different contents. There, users can also complain about contents they
find to be inappropriate. In Morales et al. [2014], IRON has been proven to be capable
of synthesising norms that prevent the users of an online community from uploading
inappropriate contents.

The remainder of this article is organised as follows. Section 2 introduces the basic
framework within which we work and defines the norm synthesis problem that we
tackle in this article. Section 3 summarises the approach of Morales et al. [2011c] to
facilitate comparison with IRON, which is described in Section 4. Section 5 presents
our empirical evaluation of IRON. Section 6 draws some conclusions and discusses the
applicability and limitations of our approach. Finally, Section 7 describes some possible
avenues for future research.

2. BASIC DEFINITIONS AND PROBLEM STATEMENT
In this section, we provide some basic definitions and use these to formally state the
problem of norm synthesis.

2.1. Basic Definitions
We consider a system composed of a finite set of agents Ag = {ag1, . . . , agn} with a
shared finite set of actions Ac = {ac1, . . . , acm} that these agents can perform. Let
S be the set of all possible states of the system, and let C ⊆ S be a set of undesired
(conflicting) states. We do not require any specific semantics for the notions of state and
undesired state: the interpretation will depend on the particular domain of interest.
As an example, consider a traffic scenario in which agents correspond to computer-
controlled cars. In this case, the set of undesired states would correspond to those
states containing collisions, for example.

We will use a language L to describe the states of a MAS. This language, to be more
formally defined later, is a logical language containing the standard classical connec-
tives, and a notion of consequence defined for it via a relation |=. Given a state s ∈ S, we
let ν(s) denote an expression in L that describes the state. For instance, if L is a pred-
icate logic language with grounded terms and s stands for a state of a traffic junction,
ν(s) would be composed of the predicates describing the position of each car in it.

We assume that each agent has its own local view of the state of the system of
which it is part. For instance, a car located at a road junction will have its own local
perception of the system, which corresponds to the perception of cars in its vicinity
(i.e., the junction) without including those other cars farther away in the road. Thus,
an agent context is an agent’s internal representation of a system state (i.e., its beliefs).
Agents express their contexts in terms of an agent language LAg, which we will detail
at a later point. However, we often find it convenient to assume that the language is
that of a predicate logic with grounded terms. We denote the consequence relation for
this logic as |=. Henceforth, given a state s ∈ S and an agent ag ∈ Ag that is part of s,
we will refer to its context by means of function c : Ag × S → LAg.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: March 2015.

Online Automated Synthesis of Compact Normative Systems 2:5

We now introduce our notion of norm, which establishes obligations, permissions,
and/or prohibitions [Meyer and Wieringa 1993] to an individual agent whenever some
preconditions are fulfilled. Considering that in this work we focus on synthesising
norms that can be easily interpreted and fulfilled by agents, we employ the agent
language to express norms. Therefore, norm preconditions are expressed as formulae
of LAg and hence in terms of an agent’s point of view.

Definition 1 (Norm). A norm is a pair ⟨ϕ, θ (ac)⟩ where ϕ ∈ LAg stands for the
precondition of the norm, ac ∈ Ac is an action, and θ ∈ {obl, perm, prh} is a deontic
operator: obl indicates an obligation, perm indicates a permission, and prh indicates a
prohibition.

An agent ag ∈ Ag evaluates whether a norm n = ⟨ϕ, θ (ac)⟩ applies in a state s as
follows. First, we say that the context of ag in s, c(ag, s), satisfies the precondition of
norm n if and only if c(ag, s) |= ϕ. In this case, norm napplies to agent ag and the deontic
expression θ (ac) will hold for it. More concretely, we assume that the precondition ϕ is a
set of first-order predicates p(τ1, . . . , τn), with p being a predicate symbol and τ1, . . . , τn
being terms of LAg (the set of predicates represents their conjunction); θ (ac) is an atomic
deontic formula. We represent a normative system % as a set of norms.

Notice that a normative system in our model essentially consists of a set of soft
constraints on the behaviour of agents. It could be argued that this approach is more
specific than is strictly necessary: an alternative approach would be for a norm designer
simply to specify the undesirable system states (conflicts) that agents should avoid.
The advantage of such an alternative approach is that it provides agents with more
flexibility than IRON: it leaves an agent free to choose how to respect the norm. However,
there are at least two difficulties with such an alternative approach. First, it presents
agents with the problem of determining for themselves how to act in such a way
as to respect the norm—that is, each agent should then solve a potentially complex
norm compliance problem. Second, such an approach may cause problems if there
are multiple possible norms that satisfy the designers intent, each involving multiple
agents. In this case, communication and cooperation may be required to ensure that
agents correctly coordinate on the selection of just one of the available set of norms. At
the very least, this will impose an additional communication overhead on agents, and
at worst, it may be impossible in time-constrained settings.

We now introduce a running example to be used throughout the remainder of the ar-
ticle. We consider a traffic junction scenario composed of two orthogonal roads. Agents
are autonomous cars that enter the scenario and cross the junction to reach their des-
tinations. A car perceives the scenario by means of its local context, which is expressed
by means of three unary predicate symbols {left, front, right} of LAg, which are used to
represent what occupies the three road positions the car perceives. Each predicate has
a single term from {car, bike, private, ambulance, police, fire-brigade, emergency, nil} of
LAg, representing different vehicle types, and the symbol “nil” standing for no vehicle.
The actions available to agents are Ac = {Go, Stop}. In particular, the action Go means
that the car moves forward in its target direction (in particular, it may include turns),
and Stop means that the agent remains stopped in its position.

Using this traffic scenario, we can represent a norm that establishes a prohibition to
go for an agent that observes a car to its left (hence giving way to it) as

n0 : ⟨{left(car), front(nil), right(nil)}, prh(Go)⟩.

Where the precondition has a predicate left(car) that is true if there is a car to the
left of the agent evaluating the norm (the reference car), front(nil) and right(nil) are
predicates that are true when, respectively, the front and right positions of the reference

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: March 2015.

2:6 J. Morales et al.

car are empty. So, if agent ag’s context is {left(car), front(nil), right(nil)}, then c(ag) |= ϕ
holds and prh(Go) applies to the car.

Norm n1 prohibits a car from going (hence giving way) if there is an ambulance to
its left, a car to its front, and nothing to its right; it works in conjunction with two
additional norms n2 and n3 to regulate priority of emergency vehicles:

n1 : ⟨{left(ambulance), front(car), right(nil)}, prh(Go)⟩
n2 : ⟨{left(police), front(car), right(nil)}, prh(Go)⟩
n3 : ⟨{left(fire-brigade), front(car), right(nil)}, prh(Go)⟩.

Let us suppose that {n1, n2, n3} comprise a normative system %. We observe that we can
generalise these norms into a single norm that regulates when to give way to emergency
vehicles coming from the left:

n5 : ⟨{left(emergency), front(car), right(nil)}, prh(Go)⟩.

As we explain next, this generalisation is possible because n5 caters to the same sit-
uations (preconditions) of {n1, n2, n3} and establishes the same norm. Notice thus that
whenever norms n1, n2, or n3 are applicable, their parent norm n5 will be applicable
as well. Let us now consider a norm similar to n3, which prohibits a car from going if
there is a fire brigade vehicle to its left, nothing to its right, and a bike in front:

n4 : ⟨{left(fire brigade), front(bike), right(nil)}, prh(Go)⟩.

Similarly to the generalisation of n1, n2, and n3 into n5, we may generalise n3 and
n4 as a single norm establishing that agents should not go (and thus yield to a fire
brigade) when there is a private vehicle in front (either a car or a bike):

n6 : ⟨{left(fire brigade), front(private), right(nil)}, prh(Go))⟩.

Next, we define how to establish such a relationship between norms. We use a sub-
sumption relationship (⊑) between the terms in LAg. Thus, if τ, τ ′ ∈ LAg and τ ′ ⊑ τ , we
say that τ is more general than τ ′. In our example, police ⊑ emergency, as a police car
“is a” specific kind of emergency vehicle.

Definition 2 (Norm Generalisation). We say that norm n = ⟨ϕ, θ (ac)⟩ is more general
than norm n′ = ⟨ϕ′, θ (ac)⟩, denoted as n′ ⊆ n, if and only if |ϕ| = |ϕ′|, and for each
predicate p(τ ′

0, . . . , τ
′
n) ∈ ϕ′, there is a predicate p(τ0, . . . , τn) ∈ ϕ such that τ ′

i ⊑ τi, 0 ≤
i ≤ n.

In general, if nj is generalised by ni, then we also say that ni is specialised by nj . If
there exists at least some nk ∈ N such that nj ⊆ nk ⊆ ni, we say that ni is an ancestor
of nj , and otherwise ni is a father of nj . If nj is not generalised by ni, we denote it by
nj ! ni.

2.2. Research Problem
We evaluate norms and normative systems in terms of their effectiveness and necessity
in achieving coordination. On the one hand, our system IRON measures the cumulative
effectiveness of a norm from the outcomes of its fulfilments: the higher the ratio of
successful fulfilments (fulfilments that did not lead to an undesired MAS state), the
more effective the norm. On the other hand, it measures the necessity of a norm
according to the following principle: the higher the ratio of harmful infringements
(infringements leading to undesired states), the more necessary the norm.

In this article, we focus on a particular type of MAS, namely a normative multiagent
system (NMAS). A NMAS is one whose agents have their actions regulated by some

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: March 2015.

Online Automated Synthesis of Compact Normative Systems 2:7

normative system (set of norms) of which they are aware. Moreover, the system itself
can assess whether and to whom norms in the normative system apply. For the sake
of clarity, although NMAS is a concept used in the literature [Singh et al. 2013], the
specific notion of NMAS that we use is as follows.

Definition 3 (Normative MAS). A normative multiagent system (NMAS) is a tuple
⟨Ag, Ac,%,LAg, S0, S⟩, where (1) Ag is a set of agents; (2) Ac is a set of actions; (3) % is
a normative system, whose norms are expressed in the agent language LAg; (4) S0 is
the initial MAS state; and (5) S is a set of states.

Given a NMAS, our aim is to generate a normative system that avoids undesired
states as long as agents comply with them while avoiding overregulation. With this
aim, given a normative system, we must be able to measure (1) the effectiveness of its
norms in preventing undesired states when agents comply with them and (2) whether
its norms are necessary to prevent undesired states (i.e., if agents infringing norms
lead to undesired states or not). Furthermore, since the state of a NMAS changes as
agents interact, our goal is to find a stable normative system, namely a set of norms
that remains unchanged and whose norms are sufficiently effective and necessary for
a given period of time. With this aim, we make use of functions µeff and µnec, which
are detailed in Section 4.3, that measure the effectiveness and necessity of a norm,
respectively. We use these functions in tandem with (1) a time period T in which the
norms of the normative system are required to be sufficiently effective and necessary
to consider the normative system as stable, and (2) threshold values α

spec
eff and α

spec
nec ,

where α
spec
eff ,α

spec
nec ∈ [0, 1]. These thresholds set satisfaction degrees for effectiveness

and necessity. Thus, any norm to which effectiveness or necessity is under respective
thresholds will be removed from the normative system. Next, we define the problem
that we address in this article.

Definition 4 (Norm Synthesis Problem). Let ⟨Ag, Ac,%,LAg, S⟩ be a NMAS, C ⊆ S a
set of undesired states, µeff, µnec functions to assess the effectiveness and necessity of
a norm, αeff,αnec satisfaction degrees, ψ a function that returns the normative system
at each given time t, t0 the initial time step, and T = [tbegin, . . . , tend] a time interval.
The norm synthesis problem is that of finding a normative system %̄ such that for
some tbegin ≥ t0, and for all t in T , the following conditions hold: (1) for each n ∈ ψ(t),
µeff(n, t, C) > α

spec
eff and µnec(n, t, C) > α

spec
nec and (2) ψ(t) = %̄.

Notice that solving this problem amounts to finding a stable normative system for
a given period of time. Of course, it may be that several normative systems might
be sufficiently effective and necessary during a period of time. To further distinguish
between them, we use a measure of compactness: we prefer smaller normative systems
over larger ones.

Definition 5 (Compactness). The compactness of a normative system % is the total
number of predicates in its norms, namely

∑
n∈% |n|, where |n| stands for the number of

predicates in a norm.

3. BACKGROUND
In this section we survey BASE, the norm synthesis approach described in Morales et al.
[2011c], as our work builds on this framework. BASE is an iterative approach that con-
tinuously monitors a system, searching for undesired states. Whenever an undesired
state is detected, a norm generation process is initiated, which results in the gener-
ation of a new norm aimed at avoiding that undesired state in the future. This gen-
eration process is based on an unsupervised approach of case-based reasoning (CBR).

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: March 2015.

2:8 J. Morales et al.

ALGORITHM 1: BASE norm synthesis strategy
Input: %, Tw, αdeact
Output: %
/* Norm generation */

[1] for conflict ∈ detectedConflicts do
[2] n ← generateNorm(conflict);
[3] % ← % ∪ {n};

end
/* Norm evaluation */

[4] F ← fulfilledNorms(%);
[5] I ← infringedNorms(%);
[6] for n ∈ (F, I) do
[7] U (n, Tw) ← evaluate(n, F, I, Tw);

end
/* Norm refinement */

[8] for n ∈ (F, I) do
[9] if U (n, Tw) < αdeact then
[10] % ← deactivate(%, n)

end
end

[11] return %

Classical CBR [Riesbeck and Schank 1989; Aamodt and Plaza 1994] is a supervised
machine learning technique that solves new problems (i.e., cases) by obtaining simi-
lar ones from a knowledge base (i.e., a case base) and adapting their solutions under
the supervision of an expert. The unsupervised CBR in Morales et al. [2011c] starts
with an initially empty case base and does not require an expert to evaluate generated
solutions. Instead, cases (and their solutions) are elicitedat runtime and evaluated in
an unsupervised manner. Whenever BASE detects an undesired MAS state, it generates
(and adds to the case base) a new case that describes the undesired state (at time t) and
the previous state (at time t − 1) that led to that undesired state.1 Then, it generates a
new solution that is aimed to avoid the transition to that undesired state in the future.
To generate solutions, it randomly chooses one of the agents involved in the transition
(i.e., in a traffic scenario, one of the agents that have collided). Then, it prohibits the
action that the agent performed in the transition from the previous to the undesired
state (i.e., from time t − 1 to t). The generated solution is finally translated into a norm
that agents can interpret and with which they can comply. Generated norms (and their
corresponding solutions) are evaluated at runtime based on their outcomes in the MAS.

Next, a norm evaluation process is carried out, which computes the performance of
those norms that have been fulfilled, as well as those that have been infringed, during
the current step. Finally, a norm refinement process is carried out, which discards
norms that underperform during a given period of time Tw.

Finally, as a result of norm generation, evaluation, and refinement, BASE outputs a
normative system %. This normative system, which contains the currently prevailing
norms, is then broadcast to the agents so that they become aware of it.

To provide the proper background to our approach, we present Algorithm 1 from
Morales et al. [2011c]. It describes the BASE strategy for synthesising normative sys-
tems. In the norm generation phase, for each detected undesired MAS state (i.e., con-
flict), the function generateNorm (line 2) creates a new norm aimed at avoiding that

1This implies that BASE must continuously monitor the MAS by means of a window of two timesteps (i.e., the
current MAS state at time t and the previous MAS state at time t − 1).

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: March 2015.

Online Automated Synthesis of Compact Normative Systems 2:9

particular state and adds the new norm to the normative system (%). Next, the norm
evaluation process evaluates applicable norms—that is, those norms that have been
fulfilled (F) and infringed (I) during the current step t (lines 4 and 5), in terms of
their effectiveness and necessity to achieve MAS coordination. On the one hand, it
measures the cumulative effectiveness of a norm from the outcomes of its fulfilments.
Specifically, whenever agents fulfil a norm and it leads to a nonundesired state (i.e., a
nonconflicting state), then the norm is considered as effective to avoid undesired states.
By contrast, if agents comply with the norm and it leads to an undesired state, then the
norm is considered as ineffective. Thus, the higher the ratio of successful fulfilments
(fulfilments that did not lead to undesired MAS states), the more effective the norm.
On the other hand, it measures the necessity of a norm based on the outcomes of its
infringements. Whenever agents infringe on a norm and it leads to an undesired state,
then the norm is considered as necessary. If agents infringe on the norm and it does not
lead to an undesired state, then it is considered as unnecessary. Thus, the higher the
ratio of harmful infringements (infringements leading to undesired MAS states), the
more necessary the norm. The function evaluate (line 7) evaluates applicable norms
by combining their effectiveness and necessity into a single utility measure u. Finally,
the overall utility U of a norm is computed as the degree of positive evaluations (i.e.,
u > 0) over its total evaluations during a period of time Tw:

U (n, Tw) = ū+(n, Tw)
ū(n, Tw)

, (1)

where ū+(n, Tw) stands for the average of the positive evaluations of n during the period
of time Tw and ū(n, Tw) stands for the average of all evaluations of n during period Tw.
Finally, BASE carries out a norm refinement process, which deactivates those norms that
underperformed during period T . Whenever the utility U (n, Tw) of a norm is under a
certain threshold αdeact, it is deactivated (line 10).

This approach can be seen to suffer from the following drawbacks:

—Generalisation on the basis of scarce evidence: Let us consider a traffic scenario and
the following situation: a car perceives another car to its left, nothing in front, and
nothing to its right. Let us suppose that we want to force a car to stop whenever it
perceives this situation. An appropriate norm to generate would be stop when there
is a car to your left, nothing in front, and nothing to your right. However, we observe
that this norm synthesis instead generates a general norm, such as stop when there
is a car to your left, disregarding the front and right positions. This norm should only
be generated when there is evidence of all situations that it may represent. However,
BASE generates this general norm on the basis of a single piece of evidence.

—Ill-defined evaluation: The norm evaluation process evaluates norms by aggregating
their effectiveness and necessity into one unique value that represents their over-
all utility. This causes a coupling effect between effectiveness and necessity, and
makes it impossible to evaluate whether norms are necessary independently of their
effectiveness. For instance, a norm that is highly unnecessary but also highly ef-
fective may be evaluated as performing well since its resulting utility balances the
differences between its effectiveness and necessity.

—Lack of specialisation: This problem arises when norms that do not perform well are
simply removed from the normative system without taking into account the fact that
underperforming general norms may be refined to eliminate just those cases that
decrease their utility.

Despite the preceding drawbacks, one of the advantages of BASE is its low complexity,
as shown by the following lemma.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: March 2015.

2:10 J. Morales et al.

LEMMA 3.1. The complexity of the norm synthesis performed by the BASE algorithm
employing a case base C containing ηC norms when detecting κ conflicts is O(κ · ηC + 4 ·
|Ag| · |%|).

PROOF. On the one hand, the cost of generating norms for all detected conflicts is
O(κ · ηC), as it may require searching through the whole CBR base per conflict. Next,
the cost of building the sets F and I of fulfilled and infringed norms is O(2 · |Ag| · |%|).
This is because each norm in the normative system may be either fulfilled or infringed
by each agent in the system. Since the total size of the sets F and I together is |Ag| · |%|,
the cost of evaluating norms is O(|Ag| · |%|). Therefore, altogether, the norm evaluation
process is O(3 · |Ag| · |%|). Finally, the cost of the norm refinement process is O(|Ag| · |%|),
since, again, it requires a search over a list whose maximum size is |Ag| · |%|. Putting
all together, the resulting worst-case complexity is O(κ · ηC + 4 · |Ag| · |%|).

4. IRON: A NORM SYNTHESIS MECHANISM
In this section, we introduce the IRON synthesis mechanism, a norm synthesis ap-
proach aimed at solving the norm synthesis problem formalised by Definition 4. IRON
is intended to synthesise effective compact normative systems (i.e., normative systems
that avoid undesired MAS states).

Although the basic operation of IRON follows the online approach of the BASE algo-
rithm described in Section 3,IRON was designed to overcome the drawbacks of BASE.
Specifically, given a NMAS, IRON operates by continuously iterating the following steps:
(1) it monitors the operation of the system; (2) it decides upon the addition of brand
new norms to the current normative system; (3) it evaluates whether the effectiveness
and necessity of the normative system are within expected thresholds; (4) if required,
it refines the normative system; and (5) it makes the normative system available to
the agents. Therefore, notice that IRON continuously searches for a normative system
online while agents in the system are operating.

IRON is based on five components, namely (1) a grammar for the synthesis of new
norms, (2) the normative network (a data structure to represent normative systems
and explored norms), (3) a method for the evaluation of norms and normative systems,
(4) a set of operators that make it possible to transform one normative system into
another, and (5) a strategy that specifies when to use such operators. Next, we describe
each component in detail and explain IRON’s architecture and computational model.

4.1. Grammar for Norm Synthesis
Our approach employs a grammar G to synthesise candidate norms of the form ⟨ϕ, θ (ac)⟩
(cf. Definition 1). We have adapted our grammar from Garcı́a-Camino et al. [2009],
using as building blocks atomic formulae of the form pn(τ1, . . . , τn), with p being an
n-ary predicate symbol and τ1, . . . , τn terms of LAg:

Norm ::= ⟨{LHS}, RHS⟩
LHS ::= LHS, LHS | ρ
RHS ::= θ (Ac)
θ ::= obl | perm | prh
Ac ::= ac1 | ac2 | . . . | acn
ρ ::= pn(τ1, . . . , τn)
τ ::= c1| . . . |cn|x1| . . . |xm,

where ai and xj are constants and variables, respectively. We represent as N the set of
all norms that comply with the preceding grammar.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: March 2015.

Online Automated Synthesis of Compact Normative Systems 2:11

Fig. 1. Evolution of a normative network (and its normative system) along time: %i = {n1}, %i+1 = {n1, n2},
%i+2 = {n1}.

If we consider our traffic scenario further, the grammar used to synthesise the norm
examples given in Section 2 is as follows:

Ac ::= Go | Stop
ρ ::= left(τ) | front(τ) | right(τ)
τ ::= car | bike | private | ambulance | police | fire brigade | emergency | nil.

Terms τ in this grammar have the following subsumption relationships: car ⊑ private,
bike ⊑ private, ambulance ⊑ emergency, police ⊑ emergency, fire brigade ⊑ emergency.

4.2. A Representation of Normative Systems
IRON will continuously synthesise norms in search for a normative system; thus, it must
be able to differentiate between the norms that are currently part of the normative
system and those that are not (i.e., they have been explored but are not currently active).
For this purpose, IRON employs a graph-based data structure to represent normative
systems, which we call a normative network. A normative network is a graph whose
nodes stand for norms and whose edges stand for relationships (more specifically, in
our work, we concentrate on generalisation relationships) between norms. Norms in
a network may be either active or inactive. We assume that a normative network
represents a normative system as its active norms.

Figure 1 illustrates the evolution of a normative network (and its corresponding
normative system) over time points ti, ti+1, ti+2. At time ti, the normative network NNi
has a single active norm n1 (represented as a white circle) and %i = {n1}. At time ti+1, a
new norm, n2, is added to NNi, yielding NNi+1 and %i+1 = {n1, n2}. Finally, at time ti+2,
norm n2 is deactivated (represented as a gray circle), giving rise to NNi+2 = {n1, n2}
and %i+2 = {n1}. Figure 1 also illustrates the way in which IRON performs the norm
synthesis process. In general, the process will consist of continuously iterating over
(applying changes to) the normative network accordingly until it finds a normative
system that solves the norm synthesis problem.

We now offer a formal definition of the normative network employed by IRON.

Definition 6 (Normative Network). A normative network (NN) is a tuple
⟨N , RG,+, δ⟩, where (1) N ⊆ N is a subset of our language of norms, (2) RG ⊆ N × N
is a generalisation relationship between norms, (3) + = {active, inactive} is the set of
possible states of a norm, and (4) δ : N → + is a function that returns the state of a
norm n ∈ N .

Since IRON considers that the current normative system is composed of the norms that
are currently active in the normative network, we define % = {n | n ∈ N , δ(n) = active}.

4.3. Evaluating Norms and Normative Systems
We detail how we evaluate norms and normative systems in terms of their effective-
ness and necessity to achieve MAS coordination. IRON evaluates these two measures

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: March 2015.

2:12 J. Morales et al.

individually, along the lines of BASE (described in Section 3). On the one hand, it mea-
sures the cumulative effectiveness of a norm from the outcomes of its fulfilments. The
higher the ratio of successful fulfilments (fulfilments that did not lead to undesired
states), the more effective the norm. On the other hand, it measures the necessity of a
norm according from the outcomes of its infringements. The higher the ratio of harm-
ful infringements (infringements leading to undesired states),the more necessary is the
norm. We illustrate norm evaluation with the following example. In a traffic scenario,
consider a norm like “give way to right.” This is an effective norm, because agents
will not collide with the car to their right as long as they comply with this norm. Thus,
whenever agents fulfil this norm, it will lead to states that are not undesired (i.e., states
without car collisions), which is why we call them successful fulfilments. Furthermore,
this norm is also necessary to prevent cars from colliding with the cars to their right.
Therefore, whenever agents infringe on the norm, it will lead to undesired states (i.e.,
states where cars have collided), which we refer to as a harmful infringement.

We compute the effectiveness µeff(n, t, C) of norm n up to time t as

µeff(n, t, C) = (1 − α) × µeff(n, t − 1, C) + α × reff(n, t, C), (2)

where µeff(n, t − 1, C) is the effectiveness of n up to time t − 1 and 0 ≤ α ≤ 1 is a
learning rate, and reff(n, t, C) is a reward value based on the successful fulfilments of
norm n at time t. In particular, at an initial time t0, the effectiveness of a norm, namely
µe f f (n, t0, C), is set with an initial constant value k ∈ [0, 1]. The reward of a fulfilled
norm at time t is computed as

reff(n, t, C) = wSF × mSF(n, t, C)
wSF × mSF(n, t, C) + wHF × mHF(n, t, C)

, (3)

where mSF(n, t, C) is the number of successful fulfilments of norm n at time t, namely
the number of fulfilments of the norm that did not lead to undesired MAS states;
mHF(n, t, C) is the number of harmful fulfilments of norm n at time t, namely the
number of fulfilments that led to undesired states; and wSF > 0 and wHF > 0 weigh
the importance of successful and harmful fulfilments of n, respectively. Notice that
functions mHF and mSF receive as a parameter the set of undesired states C so as to
assess if a norm fulfilment has led to an undesired state or not. As an example, we
may decide that a harmful fulfilment (i.e., a norm fulfilment that leads to an undesired
state) must be punished with a (negative) reward much higher than the (positive)
reward that may obtain a successful fulfilment.

Therefore, we notice that our approach is akin to reinforcement learning [Sutton
and Barto 1998] since both the effectiveness and necessity of a norm (µe f f , µnec) are
somehow learned by continuously aggregating rewards that have been computed from
the outcomes of agents’ norm compliance in the MAS.

Analogously, we compute the necessity of norm n up to time t as

µnec(n, t, C) = (1 − β) × µnec(n, t − 1, C) + β × rnec(n, t, C), (4)

where µnec(n, t − 1, C) is the necessity of n up to time t − 1, 0 ≤ β ≤ 1 is a learning
rate, and rnec(n, t, C) is a reward value based on the harmful infringements of norm n
at time t. As well as with the effectiveness, the necessity of a norm at an initial time
t0 (µnec(n, t0, C)) is set to an initial constant value k ∈ [0, 1]. The reward of an infringed
norm is computed as

rnec(n, t, C) = wHI × mHI(n, t, C)
wHI × mHI(n, t, C) + wSI × mSI(n, t, C)

, (5)

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: March 2015.

Online Automated Synthesis of Compact Normative Systems 2:13

Table I. IRON Operators

Operator Specification
add(NN, n) N ′ ← N ∪ {n}

δ′(n) ← active
NN′ ← ⟨N ′, RG, +, δ′⟩

deactivate(NN, n) δ′(n) ← inactive
NN′ ← ⟨N , RG, +, δ′⟩

generalise(NN, parent, children) N ′ ← N ∪ {parent}
R′

G ← RG ∪ {(ch, parent)|ch ∈ children}
δ′(parent) ← active
δ′(ch) ← inactive for all ch ∈ children
NN′ ← ⟨N ′, R′

G, +, δ′⟩
specialise(NN, parent, children) δ′(parent) ← inactive

for all child ∈ children
if (child, parent) ∈ RG

δ′(child) ← active
NN′ ← ⟨N , RG, +, δ′⟩

where mHI(n, t, C) is the number of harmful infringements of norm n, namely infringe-
ments that led to undesired states; mSI(n, t, C) is the number of successful infringe-
ments of norm n, namely those infringements that did not lead to undesired states; and
wHI > 0 and wSI > 0 weigh the importance of harmful and successful infringements
of n, respectively. Moreover, IRON computes the effectiveness and necessity ranges of
each norm during a time period Tw (i.e., a time window to compute the performance
ranges of each norm). These ranges will be essential (as we show next) when perform-
ing generalisations and specialisations. We assess the effectiveness (Ě) and necessity
(Ň) ranges for each norm as follows:

Ě = [µ̄eff(n, Tw, C) − µ̂eff(n, Tw, C), µ̄eff(n, Tw, C) + µ̂eff(n, Tw, C)] (6)

Ň = [µ̄nec(n, Tw, C) − µ̂nec(n, Tw, C), µ̄nec(n, Tw, C) + µ̂nec(n, Tw, C)], (7)

where µ̄eff(n, Tw) and µ̂eff(n, Tw) stand for the average and deviation of the effectiveness
of n within Tw, respectively, and µ̄nec(n, Tw) and µ̂nec(n, Tw) stand for the average and
deviation of the necessity of n within Tw, respectively.

4.4. Operators for Normative Networks
IRON will search for a normative system that solves the norm synthesis problem by
transforming an initial normative network over time, hence moving from one norma-
tive system to another. With this aim, our norm synthesis mechanism implements a
collection of normative network operators. Each operator transforms IRON’s normative
network ⟨N ,RG,+, δ⟩ into another one ⟨N ′,R′

G,+, δ′⟩. More specifically, IRON imple-
ments the following operators:

—The addition of a new norm into the normative system. As Table I formally specifies,
whenever a new norm is synthesised, the add operator extends IRON’s normative
network with norm n (N ′ = N ∪ {n}) and sets its state to active (δ′(n) = active).

—The deactivation of a norm in the normative system. The implementation of this
deactivate operator sets the state of a given norm to inactive. Hence, although the
norm remains in the normative network, it is no longer part of the normative system.

—The generalisation of a set of norms in the normative system into a more general
norm (e.g., considering the example in Section 2, generalising n1, n2, and n3 into
n5). As Table I shows, this generalise operator generalises a set of norms (children)
into a more general norm (parent) by (1) adding the parent norm to the network,

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: March 2015.

2:14 J. Morales et al.

(2) establishing new generalisation relations (RG) between each generalised (child)
norm and the parent norm in the normative network, and (3) setting the state of the
parent to active and that of the children to inactive. As a result, the child norms will
no longer belong to the normative system, whereas the parent norm will.

—The specialisation of a norm in the normative system into more specific norms. This
operation reverses the result of a generalisation (e.g., n5 can be specialised into n1, n2,
and n3). Specifically, this specialise operator undoes the result of a generalisation
by setting to inactive the state of the parent (more general) norm and setting to
active the state of its children. Thus, thereafter, all child norms become candidates
to belong to the normative system, whereas the parent norm does not any longer.

4.5. A Strategy to Synthesise Normative Systems
Algorithm 2 describes in outline IRON’s overall norm synthesis strategy. Since IRON is
an online mechanism, at every tick it runs its strategy to perform the same three main
tasks of the BASE algorithm (Algorithm 1 in Section 3), namely (1) norm generation,
(2) evaluation of the current normative system, and (3) refinement of the normative
system. However, IRON implements them differently; thus, for example, refinement is
done by means of specialisations, generalisations, and deactivation of norms. Once
the strategy finishes, it returns the normative system represented by the normative
network.

ALGORITHM 2: IRON strategy
Input: ⟨st−1, st⟩, NN,G, fapply, fconflict, µeff, µnec, ., Tw

Output: %
[1] conflictDescription ← conflictDetection(st−1, st, fconflict);
[2] NN ← normGeneration(NN, conflictDescription,G);
[3] P ← normEvaluation(NN, ⟨st−1, st⟩, fapply, fconflict, µeff, µnec, Tw);
[4] NN ← normRefinement(NN, P,G,.);
[5] % ← {n ∈ NN|δ′(n) = active};
[6] return %

Algorithm 2 specifies IRON’s general strategy (/). It is domain independent and takes
as input (1) a pair ⟨st−1, st⟩ containing descriptions of the system state at time t − 1
and time t, respectively—this pair stands for a transition between the system state
at consecutive times, and in fact, the differences between st−1 and st reflect the local
changes that occurred when the system evolved from t−1 to t; (2) a normative network
NN, which includes the current normative system %; (3) a grammar G, including the
subsumption relationships between its terms; (4) a function fapply to check norm appli-
cability in the current system state s; (5) a function fconflict to detect if a given system
state s is undesired; (6) two evaluation functions µeff, µnec to assess the effectiveness
and necessity of norms in NN; (7) ., a set of satisfaction degree thresholds described
later (see Equations (8), (9), (10), and (11)) (. = {αgen

eff ,α
gen
nec ,α

esp
eff ,α

esp
nec}); and (8) a time

period Tw.
The strategy is online and conflict driven (as it is aimed to avoid undesired, conflicting

states), and thus at every tick, it starts by searching for conflicts in the current system
state. Function conflictDetection (line 1) uses the domain-dependent function fconflict to
assess if the current system state st is undesired (i.e., it detects undesired states C ⊂ S).
In case st ∈ C, it returns a conf lictDescription that incorporates descriptions st−1 and
st, together with the identifiers of those agents whose actions lead to the undesired
state st (i.e., in a traffic scenario, those cars that went forward before colliding). Next,
the normGeneration function (line 2) synthesises a norm to avoid the transition from

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: March 2015.

Online Automated Synthesis of Compact Normative Systems 2:15

st−1 to st (although disregarding the generation of general norms) to avoid it in the
future. Subsequently, normEvaluation in line 3 evaluates norms in terms of their
effectiveness and necessity as discussed in Section 4.3. Finally, the norm refinement
function in line 4 generalises and/or specialises norms according to their effectiveness
and necessity ranges during the time period Tw, as discussed in Sections 4.6 and 4.7.
The algorithm outputs a normative system (line 6) for the agents in the domain that
IRON aims to regulate.

The main functions in IRON’s strategy (i.e., in Algorithm 2) are specified in Algo-
rithms 3, 4, and 5. As mentioned previously, our proposal is to monitor the evolution
of the NMAS at regular time intervals (i.e., ticks) and apply operators under certain
conditions. Next, we present how previously defined operators are invoked in the three
main functions, which are specified as follows.

ALGORITHM 3: normGeneration
Input: NN, conflictDescription,G
Output: NN

[1] if isEmpty(conf lictDescription) then
[2] return NN

end
[3] n ← generateNorm(G, conf lictDescription);
[4] NN ← add(NN, n);
[5] potential[n] ← potentialGeneralisations(n,G);
[6] return NN

ALGORITHM 4: normEvaluation
Input: NN, ⟨st−1, st⟩, fapply, fconflict, µeff, µnec, Tw

Output: P
[1] applicableNorms ← normApplicability(NN, ⟨st−1, st⟩, fapply);
[2] (F, I) ← normCompliance(applicableNorms, fconflict);
[3] for n ∈ norms(F, I) do
[4] U [n] ← updateUtilities(n, F, I, µeff, µnec);
[5] (Ě[n], Ň[n]) ← updatePerformanceRanges(n,U [n], Tw);
[6] P[n] ← (Ě[n], Ň[n])

end
[7] return P

ALGORITHM 5: normRef inement
Input: NN, P,G, .
Output: NN

[1] for n ∈ norms(F, I) do
[2] if underperforms(n, Ě, Ň, α

spec
eff , αspec

nec) then
[3] NN ← specialiseDown(NN, n, Ě, Ň, α

spec
eff , αspec

nec);
else

[4] NN ← generaliseUp(NN, n, Ě, Ň, α
gen
eff , αgen

nec);
end

[5] return NN
end

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: March 2015.

2:16 J. Morales et al.

4.5.1. Generation of New Norms. As mentioned previously, IRON starts by detecting if
the current system state st is undesired or not. Function conflictDetection (line 2 in
Algorithm 2) uses function fconflict to assess if st belongs to the set of undesired states
C, st ∈ C. Afterwards, if st is an undesired state, the norm generation function (line 2
in Algorithm 2, and Algorithm 3) synthesises a new norm to avoid the transition from
st−1 to st in the future. Specifically, it first invokes function generateNorm (line 3 in
Algorithm 3), which employs the unsupervised CBR mechanism and the grammar
G together with subsumption relationships of its terms (see Section 4.1) to generate
a new norm aimed to avoid the transition from s−1 to st. Second, as line 4 in Algo-
rithm 3 indicates, the newly created norm n is added to the normative network by
invoking the add operator. Third, the norm generation function ends by creating all po-
tential generalisations (see Algorithm 6 in Section 4.6) for each newly created norm n
(line 5).

Basically, the implementation of this generateNorm function is the same as for the
BASE approach described in Section 3 [Morales et al. 2011c]. The only difference is that
our synthesis process does not generate general norms, as the generalisation process
runs separately from norm generation. generateNorm is based on an unsupervised CBR
approach. Hence, this approach is based on the following principle: if we can prevent a
conflict in a given situation by enacting a norm, it is likely that we can prevent a conflict
in a similar situation by means of a similar norm. Initially, when no other knowledge
is available, norms are created based on the following heuristic: the transition to an
undesired state is caused by the actions of the agents involved in that undesired state.
Therefore, our generateNorm chooses one of the agents involved in an undesired state
st and gathers its context and performed action in st−1. Then, the norm is synthesised
so that this action is prohibited for any agent encountering this same context. This
is done with the aim of avoiding the previously resulting conflict in future situations.
Obviously, there is no certainty about the validity of this norm, and this is the reason
IRON needs to continuously evaluate it in the NMAS.

Our norm synthesis uses ground atomic formulae from the states and focusses on a
specific agent to figure out its context ϕ (what it was able to perceive, given its position
in the grid) and the action ac it carried out (which possibly led to a conflicting state).
The synthesised norm ⟨ϕ, prh(ac)⟩ is thus made up of fully instantiated, nonnegated
atomic formulae, establishing the specific context of one agent and its action that led to
a conflicting state. This process differs from induction of logical theories (e.g., inductive
logic programming [Muggleton and Raedt 1994; Nienhuys-Cheng and Wolf 1997]) in
two important ways: (1) the synthesised norm is specific with fully ground predicates
(so we do not need to perform inverse resolution to synthesise norms with variables),
and (2) negated atoms do not play any role, as these are not represented in states.

Note that implicit within our model is a reduction of deontic operators to prohibitions
that forbid actions in certain conditions. It is natural to ask whether this represents
a problematic restriction. However, notice that obligations and permissions are fre-
quently and naturally interpreted as dual notions: an action is obligatory if it is not
permitted to refrain from performing the action, and an action is permissible if it is
not obligatory to refrain from performing the action. In this case, obligations can be
reduced to prohibitions: to make an action obligatory, prohibit everything else. With
this in mind, our approach of focussing on prohibitions can be seen also encompassing
obligations. Of course, richer deontic operators (e.g., conditional obligations) have also
been considered in the literature, and we do not claim that our approach encompasses
a full range of these. But with respect to core operators, our approach is sufficient.

Moreover, our approach can also handle permissions. We observe that the interpre-
tation of permissions can vary. For instance, we may have normative systems whereby
all actions are prohibited unless they are explicitly permitted. Alternatively, we may

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: March 2015.

Online Automated Synthesis of Compact Normative Systems 2:17

have systems whereby all actions are permitted unless explicitly prohibited, and per-
missions are ways of encouraging certain behaviours. When dealing with obligations
and permissions, the undesired states are idealised situations that did not occur, and
the context of an agent is used to establish an obligation or permission on a missing
action (which would have reached the idealised situation).

4.5.2. Norm Evaluation. As mentioned previously, the strategy updates the effectiveness
and necessity of norms by evaluating them individually. In general, IRON evaluates a
norm depending on the outcome (conflicts) to which either its fulfilment or infringement
has led. Therefore, norm evaluation will solely consider the applicable norms that have
been either fulfilled or infringed by the agents in the NMAS in the transition from two
consecutive states in time.

The norm evaluation function is specified by Algorithm 4. Function normApplica-
bility (line 1) uses function fapply to assess the norms in the normative network (NN)
that were applicable at tick t − 1. Thus, this function assesses the norms that are
applicable at state st−1. Next, function normCompliance (line 2) partitions the selected
applicable norms into fulfilled and infringed norms (F and I). Moreover, it uses a
conflict-detection function (fconflict) to determine which norms led to undesired states.
As a result, we obtain a partition of applicable norms into four multisets (sets that
allow duplicate values): (1) fulfilled norms that led to undesired MAS states (FC),
(2) fulfilled norms that did not lead to undesired MAS states (FC̄), (3) infringed norms
that led to undesired MAS states (IC), and (4) infringed norms that did not lead to un-
desired MAS states (IC̄). In the algorithm, F = (FC, FC̄) and I = (IC, IC̄). These sets are
the ones used by function updateUtilities (line 4) to compute the effectiveness and ne-
cessity of each norm at time t. In fact, this function implements Equations (2) through
(5) given in Section 4.3. Next, in line 5, function updatePerformanceRanges computes
its effectiveness and necessity ranges during a period of time Tw (see Equations (6) and
(7) in Section 4.3).

4.5.3. Normative System Refinement. The final function in our strategy is the normative
system refinement, which yields a new normative system by transforming the normative
network via specialisations and generalisations. Specifically, it specialises any under-
performing norms (lines 2 and 3 in Algorithm 5) while it tries to generalise those norms
that performed well (line 4). With this aim, the strategy keeps track of effectiveness
and necessity ranges of the norms in the normative network during a period of time
Tw. Then, the refinement task amounts to implementing the following rules:

—A norm is specialised (or deactivated if it has no children in the normative network)
provided that either its effectiveness or necessity have not been good enough during
Tw. This occurs when the effectiveness or necessity of some of its children have not
been good enough either.

—A set of norms are generalised provided that (1) they all relate to the very same norm
(parent) in the normative network, (2) they are all the possible child norms of the
parent norm, and (3) their effectiveness and necessities have all been sufficiently
high during Tw.

The following sections describe both processes in more detail.

4.6. Norm Generalisation
Norm generalisation starts whenever IRON detects some norm that has performed well
during a period of time Tw. We say that a norm n has performed well during a period Tw

if the lower bounds of its effectiveness and necessity ranges are above some satisfaction
(generalisation) thresholds. This amounts to satisfying the following generalisation

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: March 2015.

2:18 J. Morales et al.

Table II. Ě and Ň Ranges
for Norms in Figure 2

Ě Ň
n1 [0.6, 0.7] [0.5, 0.6]
n2 [0.7, 0.8] [0.6, 0.7]
n3 [0.8, 0.9] [0.5, 0.7]
n4 [0.7, 0.9] [0.6, 0.8]
n5 [0.6, 0.9] [0.5, 0.8]
n6 [0.6, 0.8] [0.6, 0.9]

conditions:

Ěmin(n, Tw, C) > α
gen
eff (8)

Ňmin(n, Tw, C) > αgen
nec , (9)

where Ěmin(n, Tw, C) and Ňmin(n, Tw, C) are the lower bounds of Ě and Ň that are de-
scribed in Equations (6) and (7), and α

gen
eff ∈ [0, 1] and α

gen
nec ∈ [0, 1] are the generalisation

thresholds for effectiveness and necessity.
Given a generalisable norm, the generalisation process is based on building all poten-

tial generalisations for the norm to subsequently analyse whether each one of them can
be enacted or not. If a potential generalisation is enacted, it transforms the current nor-
mative system into another one. Otherwise, the normative system remains unchanged.
Next, we illustrate (1) how to build potential generalisations and (2) how to enact po-
tential generalisations. We illustrate our approach with norms n1–n6 from Section 2,
their effectiveness and necessity ranges listed in Table II, and α

gen
eff = 0.5,α

gen
nec = 0.4 as

generalisation thresholds.

4.6.1. How to Build Potential Generalisations. We now consider norm n3 described in Sec-
tion 2. The first step in building a potential generalisation is to find a more general
parent norm. With this aim, our generalisation process employs a grammar G together
with subsumption relationships of its terms (see Section 4.1) to build predicates of the
language LAg. In our example, with the aid of the grammar, n5 would be built, which is
more general than n3 and thus can be a parent of a potential generalisation. The second
step is to find all children of the parent. In our example, the children of n5 (the siblings
of n3) are n1 and n2. The triple ⟨n3, n5, {n1, n2}⟩ records a potential generalisation—that
is, ⟨n, n′, S⟩, where n is a generalisable norm, n′ is a parent norm of n, and S is a possibly
empty set of any other norms that n′ generalises (disregarding n). The generalisation
process now continues to build all potential generalisations. In our example, the triple
⟨n3, n6, {n4}⟩ would also be built as a potential generalisation of n3.

4.6.2. How to Enact Potential Generalisations. A potential generalisation ⟨n, n′, S⟩ can be
enacted if and only if all siblings of n (the norms in S) belong to the normative network
(i.e., they have been created previously by the norm generation process) and satisfy all
generalisation conditions of Equations (8) and (9). If these conditions hold, the potential
generalisation is enacted to transform the normative system. As an example, consider
the two potential generalisations ⟨n3, n5, {n1, n2}⟩ and ⟨n3, n6, {n4}⟩ and the normative
network from Figure 2(a) showing n1, n2, n3, and n4 as active norms (i.e., we have a nor-
mative system %1 = {n1, n2, n3, n4}). From Table II, we observe that norms n1, n2, and n4
fulfil the generalisation conditions in Equations (8) and (9), and so does n3. Thus, the
first potential generalisation can be enacted as follows: (1) norm n5 is created, added to
the normative network, and activated; (2) n1, n2, and n3 are deactivated in the norma-
tive network; and (3) generalisation relationships are established between n1, n2, n3,

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: March 2015.

Online Automated Synthesis of Compact Normative Systems 2:19

Fig. 2. Generalisation of n1, n2, n3, n4: norms n5 and n6 are active, whereas the rest are inactive, so the
normative system consists of % = {n5, n6}.

and n5. This amounts to applying the generalise (NN, n5, {n1, n2, n3}) operator in
Section 4.4. Analogously, we can enact the second potential generalisation by invoking
generalise (NN, n6, {n4, n3}). Figure 2(b) shows the resulting normative network af-
ter both norm generalisations. It contains two active norms (n5, n6) and four inactive
norms (n1, n2, n3, and n4)—that is, we have the normative system %2 = {n5, n6}. These
two norm generalisations reduce the size of the normative system from 4 norms to 2
and the total number of predicates from 12 to 6 (improving its compactness).

ALGORITHM 6: generaliseU p

Input: n, Ě, Ň, NN, α
gen
eff ,αgen

nec
Output: NN

[1] for ⟨n, n′, S⟩ ∈ potential[n] do
[2] if areGeneralisable(S, Ě, Ň, α

gen
eff , αgen

nec) then
[3] NN ← generalise(NN, n′, S ∪ {n})

end
end

[4] return NN

4.6.3. Generalisation Algorithm. Norm generalisations are performed by the function
generaliseUp in Algorithm 6. Its inputs are a norm to generalise (n) along with its
effectiveness and necessity ranges (Ě, Ň), a normative network (NN), and the thresh-
olds to verify the generalisation conditions. For each potential generalisation of norm
n (line 1), function areGeneralisable (line 2) verifies whether all norms in S (i.e., the
children of the generalisation) satisfy the generalisation conditions. If so, the operator
generalise(NN, n′, S ∪ {n}) (line 3) adds the parent norm to the normative network
NN and activates it, deactivates the child norms, and establishes generalisation rela-
tionships between child norms and parent norm. Additionally, the auxiliary function
potentialGeneralisations can be employed to generate all potential generalisations for
a given norm n (indeed, as line 4 in Algorithm 3 shows, our strategy invokes this func-
tion when creating the norm). First, it takes the precondition ϕ of a norm n (line 1)
and employs function general (line 2) to obtain its parent preconditions 0 by using
grammar G together with subsumption relationships of the terms of LAg. Second, in
lines 3 and 4, for each parent precondition ϕ′ ∈ 0 it builds n′, a parent norm, based on
the general precondition ϕ′ and the same consequent θ (ac) from n (i.e., n′ = ⟨ϕ′, θ (ac)⟩).
Next, function generateChildren(n′,G, n) (line 5) computes (again using grammar G and
subsumption term relationships) child norms of n′ disregarding n. Finally, in line 6, it
builds a new potential generalisation ⟨n, n′, S⟩ that is added to the potential generali-
sations of norm n.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: March 2015.

2:20 J. Morales et al.

Fig. 3. Specialisation of norm n10 into norms n5 and n7. (a) %1 = {n10}. (b) %2 = {n5, n7}.

ALGORITHM 7: potentialGeneralisations
Input: n,G
Output: potential[n]

[1] let n = ⟨ϕ, θ(ac)⟩;
[2] 0 ← general(ϕ,G);
[3] for ϕ′ ∈ 0 do
[4] n′ ← ⟨ϕ′, θ (ac)⟩;
[5] S ← generateChildren(n′,G, n);
[6] potential[n] ← potential[n] ∪ {⟨n, n′, S⟩};

end
[7] return potential[n]

4.7. Norm Specialisation
Norm specialisations make it possible to refine generalisations of norms that do not
perform well during a period of time. Take the normative network depicted in Fig-
ure 3(a) with a single active norm, %1 = {n10}. The network contains norms n1, n2, n3,
and n5 (defined in Section 2), together with

n7 : ⟨{left(car), front(car), right(nil)}, prh(Go)⟩
n8 : ⟨{left(bike), front(car), right(nil)}, prh(Go)⟩
n9 : ⟨{left(private), front(car), right(nil)}, prh(Go)⟩

n10 : ⟨{left(vehicle), front(car), right(nil)}, prh(Go)⟩.

Norms n7 and n8 prohibit a car from proceeding whenever there is a car or a bike to its
left, a car in front, and nothing to its right. Norm n9 is a generalisation of norms n7 and
n8 to give way to private vehicles on the left, whereas norm n10 is a generalisation of all
norms from n1 to n9 to give way to any vehicle on the left. Recall from Section 4.1 that
IRON uses a grammar to construct norms. Each norm contains a precondition with three
predicates le f t, f ront, right, and a postcondition with a prohibition to perform action
Go. Notice that all norms from n1 to n10 are constructed by means of this grammar. In
Figure 3(a), norm n10 is the only active norm, and we assume that all norms below n10
have been generalised previously to n10.

Norm specialisation starts out whenever IRON detects that some norm has under-
performed during a period of time Tw. We say that a norm n has underperformed
during a period Tw if the higher bound of its effectiveness range or the higher bound
of its necessity range are below the satisfaction (specialisation) thresholds provided in
the strategy (see Section 4.5). This amounts to satisfying either (or both) of the two

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: March 2015.

Online Automated Synthesis of Compact Normative Systems 2:21

following conditions:2

Ěmax(n, Tw, C) < α
spec
eff (10)

Ňmax(n, Tw, C) < αspec
nec , (11)

where Ěmax(n, Tw, C) and Ňmax(n, Tw, C) are the higher bounds of Ě and Ň that are
described in Equations (6) and (7). Let us suppose that norms n1, n2, n3, n5, and n7
have performed well during a period Tw but norms n8, n9, and n10 have not. This is
a reasonable assumption. Since n9 and n10 are more general than n8, they also apply
in the same situations as n8. This means that the poor performance of n8 affects n9,
whose performance in turn affects n10. In general, the performance of a general norm is
affected by the performance of the norms that it generalises. Here, IRON would choose the
most general norm, n10, as the norm to specialise. The process would start by invoking
operator specialise. This operator first deactivates n10 and activates its child norms,
n5 and n9. Next, IRON would attempt to specialise norms n5 and n9. Since norm n5 has
performed well, it would remain active. However, since norm n9 has underperformed,
it would be deactivated while its children (n7 and n8) would be activated. Finally, the
underperforming norm n8 would be deactivated, and since it has no children (and n7
performs well), the specialisation process would finish. The resulting network is the
normative system %2 = {n5, n7} in Figure 3(b).

4.7.1. Specialisation Algorithm. In Algorithm 8, the function specialiseDown recursively
specialises a norm n into its children until it reaches the leaves of the network. If the
norm is a leaf (line 1), it is deactivated so that it does not belong to the normative system
(line 2). Otherwise, operator specialise (line 4) specialises n by (1) deactivating it and
(2) activating all of its children. Next, each underperforming child norm is specialised
down in turn (lines 5 through 7). As a result, the algorithm refines a generalisation by
deactivating those child norms that underperformed while keeping active those that
performed well. Therefore, notice that our specialisation algorithm makes it possible
to perform a fine-grained backtracking over general norms that do not perform well.

ALGORITHM 8: IRON’s specialiseDown function

Input: n, Ě, Ň, NN, α
spec
eff , αspec

nec
Output: NN

[1] if isLeaf(n) then
[2] NN ← deactivate(n, NN);

else
[3] Children ← getChildren(n, NN);
[4] NN ← specialise(NN, n, Children);

end
[5] for c ∈ Children do
[6] if underperforms(c, Ě, Ň,α

spec
eff , αspec

nec) then
[7] NN ← specialiseDown(c, Ě, Ň, NN, α

spec
eff , αspec

nec);
end

end

2Notice that these conditions are highly conservative, as they require the higher value in the range for period
Tw to be below the threshold value. This is also the case for the generalisation conditions in Equations (8)
and (9), because to generalise, the lower value in the range is required to be above the threshold.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: March 2015.

2:22 J. Morales et al.

4.8. Complexity Analysis
Finally, we are ready to analyse the computational complexity of IRON. Prior to that,
however, we will consider the number of norms that can be generated by a particular
grammar G. If p is the maximum number of predicates of any norm generated by the
grammar, r is the maximum arity of any predicate, and d is the maximum number of
terms at any position of any given predicate, the number of norms that can be generated
by grammar G is dr·p. Given a grammar G, we shall note the number of norms that it
can generate as ηG . Moreover, given a CBR base C, we shall note as ηC the number of
norms in the case base. Now we are ready to assess IRON’s complexity.

LEMMA 4.1. The norm synthesis performed by the IRON algorithm when employing
grammar G and case base C when detecting κ conflicts takes time O(κ · ηC + 3 · |Ag| ·
|NN| + ηG(|Ag| · |NN| + 1)).

PROOF. The norm generation stage involves (1) generating norms for all detected
conflicts and (2) generating all potential generalisations for each new norm. The cost
of the first step is O(κ · ηC), whereas the cost of the second step is O(ηG). The cost of the
norm evaluation process is O(3 · |Ag||NN|), as it involves assessing the applicability of
norms (O(|Ag||NN|)), assessing the compliance with norms (O(|Ag||NN|)), and updat-
ing norms’ utilities and performance ranges (O(|Ag||NN|)). Finally, the cost of norm
refinement is O(ηG · |Ag||NN|), which amounts to the worst-case cost of generalising
norms since the cost of specialising norms is O(|Ag||NN|2). Putting it all together, the
resulting worst-case time is O(κ · ηC + 3 · |Ag| · |NN| + ηG(|Ag| · |NN| + 1)).

Observe that the computation time of IRON is larger than BASE. Nonetheless, as we
will show in the experiments carried out in Section 5, this is the price paid by IRON to
significantly outperform BASE in terms of compactness.

As a final remark, notice that given a grammar G, the number of normative systems
is 2ηG . This is precisely the size of the search space that IRON must explore in search of
compact normative systems. However, we recall that IRON is an approximate algorithm
for norm synthesis, and it does not require exploring the whole search space, as we will
demonstrate in Section 5.

4.9. Architecture and Computational Model
We now have all components of the architecture and computational model of our norm
synthesis system. Figure 4 illustrates the overall architecture of IRON.

As mentioned previously, IRON continuously searches online for a solution to the norm
synthesis problem, namely during the operation of a NMAS. We can thus regard IRON
as an external observer of agents’ interactions.

IRON has a domain-independent abstract architecture that is composed of the follow-
ing domain-independent elements: (1) a data structure to represent explored norms,
namely a normative network; (2) a set of operators to apply changes to the norma-
tive network; and (3) a general, abstract strategy to perform norm synthesis for any
scenario. To perform norm synthesis for a given scenario, this domain-independent
machine receives as an input the following domain-dependent elements: (1) a function
(fconf lict) to detect undesired states; (2) a grammar G to define norms; (3) a function to
determine whether a norm applies to the agents in a given state (fapply); (4) evaluation
functions to compute the effectiveness (µeff) and necessity (µnec) of norms and norma-
tive systems; (5) the satisfaction degrees and thresholds (.); and (7) the time interval
(T) considered when solving the norm synthesis problem.

Our norm synthesis mechanism is composed of (1) a normative network (NN) to
compactly represent the current normative system and to store the norms synthesised
(explored) so far and (2) a control unit in charge of directing norm synthesis problem

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: March 2015.

Online Automated Synthesis of Compact Normative Systems 2:23

Fig. 4. IRON’s architecture.

solving. The control unit continuously perceives the target NMAS by describing the cur-
rent MAS state. After that, the control unit calls the strategy / described in Section 4.5
to apply a collection of operators O (see Section 4.4) and to eventually produce a new
normative system that prevents the conflicts observed in the current system state.

The normative system (%) is broadcast to the agents in the NMAS. Once the new
normative system is deployed, the control keeps on perceiving the MAS and generating
descriptions of states of the NMAS to be analysed by the strategy. This cyclic process
continues until the control unit receives from the strategy a normative system that is
evaluated effective and necessary enough, according to the evaluation functions and
satisfaction degrees set as input, during a period of time T . Such a normative system
will represent a solution to the norm synthesis problem.

5. EMPIRICAL ANALYSIS AND RESULTS
In this section, we present an empirical evaluation of the IRON norm synthesis mecha-
nism. Section 5.1 describes the experimental settings, and Section 5.2 provides results
of the empirical evaluation; Sections 5.2.1 and 5.2.2 illustrate a stability analysis and
a convergence analysis of IRON, respectively. Finally, Section 5.2.3 compares IRON with
BASE in terms of stability and compactness. We demonstrate that IRON is more sta-
ble than BASE and synthesises normative systems that are more compact than those
synthesised by BASE.

5.1. Empirical Settings
With the aim of comparing IRON and BASE, our experiments use the same traffic scenario
than the one used in Morales et al. [2011c]. Our experiments simulate a traffic junction
composed of two orthogonal roads represented by a 20×20 grid (simulator available in
the appendix). Each road has two 20-cell lanes (one per direction).

Figure 5(a) shows a 12 × 12 subgrid that corresponds to the centre of the junction.
Each agent is a car that travels along the grid at one cell per tick by following a ran-
dom trajectory. Specifically, each car enters the scenario from four possible start points
(light/green points in Figure 5(a)) and travels towards randomly chosen destinations
(exit points, depicted in dark/red in Figure 5(a)). In this particular scenario, unde-
sired states are those MAS states that contain collisions between cars. Thus, IRON will
synthesise norms to avoid collisions. Since IRON is devoted to avoid undesired states,
we consider a scenario that potentially leads to a large number of undesired states.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: March 2015.

2:24 J. Morales et al.

Fig. 5. (a) Central area of the traffic junction. (b) Agent context.

Therefore, to favour a high frequency of collisions (i.e., undesired states), we use a high
traffic density (from 41% to 48% of occupied cells) by having three cars entering the
scenario at every tick. At each tick, each car decides whether to comply or not with the
norms output by IRON according to a probability, namely a norm infringement rate. The
norm infringement rate is fixed at the beginning of each simulation and is the same
for all cars.

Each experiment consists of a set of different simulations. IRON starts each simula-
tion with an empty normative system.3 As the simulation progresses, collisions among
cars occur, and IRON then synthesises normative systems to avoid future collisions.
The simulation finishes whenever it reaches 50,000 ticks or IRON converges to a stable
normative system, hence removing undesired states and solving the norm synthesis
problem. We assume that IRON has converged to a normative system if during a 10,000-
tick period (1) the normative system remains unchanged and (2) no new (nonregulated)
undesired MAS states are detected. Nonregulated conflicts are those undesired MAS
states that have not arisen from previous norm infringements. That is, no agent in-
fringed on a norm during the transition from the previous state to the undesired state.
We assume that an undesired state that arises from a norm infringement is a regulated
conflict (i.e., a previously arisen undesired state that triggered the generation of the
currently infringed norm), and thus it is not considered when assessing convergence.
This assumption is based on the intuition that we cannot ensure that if the agents had
fulfilled the norm, the undesired state would have arisen.

To generate norms, IRON receives a grammar as an input as follows. The precondi-
tion of each norm contains three predicates left, front, right, which represent the three
cells in the context of a reference car (see Figure 5(b)). Each predicate contains one
term out of a set of six terms {car-heading-left, car-heading-right, car-opposite-heading,
car-same-heading, nil, anything.} The first four terms represent a car along with
the direction in which it is heading, whereas term nil represents no car and term
anything represents both a car or nothing. Furthermore, the following subsump-
tion relationships for the terms in the grammar hold: car-heading-left ⊑ anything,
car-heading-right ⊑ anything, car-opposite-heading ⊑ anything, car-same-heading ⊑
anything, nil ⊑ anything. The postcondition of each norm uses only prohibitions
(θ = prh) over an action. The actions available to agents are Ac = {Go, Stop}. Nev-
ertheless, in this particular setting, car agents just perform action Stop whenever a
norm prohibits them from going forward. Therefore, the grammar that we employ can

3Notice, however, that IRON can also start operating with a nonempty normative system.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: March 2015.

Online Automated Synthesis of Compact Normative Systems 2:25

synthesise 63 = 216 different norms, and the number of normative systems to consider
amounts to 2216 (> 1065). As an example, in our experiments, IRON generates norms of
the following form:

n : ⟨{left(car-heading-right), front(car-heading-right), right(car-heading-right}, prh(Go)⟩

n′ : ⟨{left(car-heading-right), front(car-heading-right), right(nil)}, prh(Go)⟩.
Norm nprohibits a car from moving on (hence giving way) if the three cells in its context
contain cars, each heading towards its right. Similarly, norm n′ prohibits a car from
going if the left and front cells in its context contain cars heading towards its right and
its right cell contains nothing. Notice that both norms n, n′ only differ in their right
position.

Regarding IRON’s configuration parameters, we have taken a conservative approach to
set them. This decision is intended to refine the normative system only when norms are
slightly effective or necessary. We set IRON’s parameters as follows: (1) low deactivation
thresholds (αspec

eff = 0.2,α
spec
nec = 0.2) to only deactivate norms performing very poorly,

(2) high generalisation thresholds (αgen
eff = 0.6,α

gen
nec = 0.4) to only generalise norms

when performing very well, (3) weights in Equation (3) wAC = 5 and wAC̄
= 1 to

ensure that norm fulfilments leading to collisions (ineffective norms) are much more
penalised than those avoiding collisions (effective norm), and (4) weights in Equation (5)
wHI = 2 and wSI = 1 to ensure that norm infringements leading to collisions (harmful
infringements, necessary norm) obtain a much higher reward than those leading to
no collisions (successful infringements, unnecessary norm). Additionally, we compute
norms’ effectiveness and necessity range over a long period of |Tw| = 200 different
norm evaluations, and norms effectiveness and necessity values, namely µe f f , µnec, are
initially set to a value k = 0.5.

5.2. Empirical Results
We now analyse the results of our empirical evaluation. First, we perform a stability
analysis of IRON. We perform a microanalysis to study how IRON manages to solve the
norm synthesis problem, hence removing new collisions (i.e., nonregulated collisions)
in our traffic scenario. Additionally, we perform a macroanalysis showing that IRON is
able to converge despite a large proportion of noncompliant behaviours in the overall
agent population. Second, we compare IRON with BASE in terms of stability and com-
pactness. We show that IRON is more stable than BASE, as it converges for greater norm
infringement rates than BASE. Moreover, IRON manages to synthesise more compact nor-
mative systems than those synthesised by BASE, decreasing the overall number of norm
predicates in the normative system.

5.2.1. Stability Analysis of IRON. We present a stability analysis to show how IRON
manages to successfully synthesise normative systems that solve the norm synthesis
problem. We compute the stability degree as a convergence rate, namely the number
of simulations that converged to a stable normative system out of the total number of
simulations. We notice that since undesired states trigger norm synthesis, the lack of
collisions causes the normative system to remain stable.

We performed a simulation to show IRON’s convergence process. In particular,
Figure 6 illustrates the normative changes (i.e., the timesteps in which the the nor-
mative network and/or the normative system change) for a single simulation with 0.3
norm infringement rate. That is, on average, agents decide to infringe norms 3 out
of 10 times, which can be considered as a high enough norm infringement rate. This
figure shows the following: (1) the average of new car collisions (i.e., collisions that
are not caused by norm infringements) per tick along time; (2) the normative network

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: March 2015.

2:26 J. Morales et al.

Fig. 6. Norm synthesis along a single simulation. The x -axis corresponds to normative changes (i.e., changes
in the normative network and/or the normative system), and the y -axis corresponds to the different measures
in the legend.

cardinality, namely the total number of synthesised norms; (3) the cardinality of the
normative system, namely the number of active norms in the normative network; and
(4) the number of predicates in the normative system. At tick 13 (which corresponds
to the 2nd normative change), the first collision arises and IRON synthesises the first
norm. From that tick onwards, IRON keeps generating norms when needed, hence in-
creasing the cardinality of both the normative network and the normative system. As
a consequence, the number of predicates in the normative system increases as well. At
tick 43 (8th normative change), IRON performs the first norm generalisation, reducing
the cardinality of the normative system from 9 to 8 norms. As a result of this norm
generalisation, the number of norms and predicates in the normative system decreases,
thus increasing its compactness. Up to tick 1,375 (19th normative change), IRON keeps
generating and generalising norms when possible. Norm generalisations reduce the to-
tal number of predicates of the normative system. At tick 1,375, IRON performs the last
norm generalisation, hence synthesising a compact normative system of 5 norms with
8 predicates in total. From tick 1,375 onwards, the normative system remains stable.
By using the resulting normative system, cars that comply with norms do not cause col-
lisions. However, those cars may collide with other cars that infringe on norms. Recall
that those collisions arising from norm infringements are not taken into account when
assessing convergence. After 10,000 further ticks, IRON reaches the convergence criteria
(tick 11,375/23th normative change). Overall, IRON explored 41 different norms (out of
125 possible ones), which were generalised into 5 norms, to find a 5-norm normative
system that successfully prevents collisions as long as cars comply with norms.

The five-norm normative system to which IRON converged is shown in Table III. Norm
n1 is a left-hand side priority norm specifying that a car must stop when it observes
a car to its left that is heading to its right, and no matter what it perceives in front
or to its right. It has very high values of effectiveness (0.86) and necessity (0.90), as it
represents a situation that leads to collisions most of the time. Therefore, we consider
this norm to be an essential norm. On the other hand, norm n4 forces a car to stop
when it observes a car in front heading in the same direction of the reference car. This
situation rarely leads to collisions, as the car in front rarely stops. As a consequence, its

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: March 2015.

Online Automated Synthesis of Compact Normative Systems 2:27

Table III. A Normative System upon Convergence

Norm Precondition (θ) Modality µ̄eff µ̄nec

n1 left(car-heading-right) prh(Go) 0.86 0.90
n2 left(car-heading-left), front(car-heading-left) prh(Go) 0.87 0.73
n3 front(car-heading-right), right(car-heading-right) prh(Go) 0.86 0.81
n4 front(car-same-heading) prh(Go) 0.83 0.33
n5 front(car-heading-left), right(car-heading-left) prh(Go) 0.81 0.75

Fig. 7. Robustness analysis depending on norm infringements. The x-axis represents the different norm
infringement rates, and the y-axis represents the different degrees that are given in the legend.

average necessity (µ̄nec) has a low value (0.33). We say then that this norm is preventive,
as agents should comply with it to avoid collisions that rarely occur.

We have thus shown that IRON can successfully synthesise a compact normative
system with high effectiveness.

5.2.2. Macro analysis. We now explore the limits of IRON by testing its synthesis capabil-
ities under different norm infringement rates. Specifically, we analyse IRON’s percentage
of convergence for different norm infringement rates, ranging from 0.1 to 0.9. We per-
formed 100 simulations per norm infringement rate. Figure 7 shows averaged results
for the effectiveness and necessity of the synthesised normative systems.4

Moreover, the convergence degree series shows the number of runs that converged to
a stable normative system out of the 100 runs. For low and medium norm infringement
rates (up to 0.4), IRON’s stability degree is 1, namely it successfully converged 100% of the
times. Furthermore, it converged to normative systems with high effectiveness (0.88)
and necessity (0.71). Between medium and high norm infringement rates (0.4 and 0.7),
the convergence decreased (due to oscillations in the normative systems), and it is for
very high norm infringement rates (from 0.8 onwards, which means that agents decide
to infringe on norms 8 or more times out of 10 times) that IRON cannot find a normative
system. Overall, IRON proved to be highly resilient to noncompliant behaviours during

4For the sake of clarity, we do not plot standard deviations. However, it is worth mentioning that the
standard deviations for effectiveness and necessity for each norm infringement rate are within [0.006, 0.011]
and [0.080, 0.0137], respectively.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: March 2015.

2:28 J. Morales et al.

Fig. 8. Normative system changes along time.

the synthesis process. IRON managed to successfully synthesise norms despite up to
40% norm infringement rate of agents.

Figure 7 also shows the variability of IRON’s synthesis, namely whether it yields
different normative systems. Below the 0.4 norm infringement rate, the variability
remained near 0.2 (i.e., 100 executions converged to 20 different normative systems).
Since preventive norms become unstable (activated and deactivated back and forth)
with high norm infringement rates, IRON takes longer to synthesise stable norms. This
leads to new, different normative systems, which IRON did not need to explore with
lowernorm infringement rates.

5.2.3. IRON versus BASE: Comparison of Stability and Compactness. Next we compare IRON
with BASE, the mechanism for norm synthesis described in Section 3. Our experiments
employ the publicly available version of BASE at Morales et al. [2011b]. Our comparison
employs the same traffic scenario described in Section 5.1 and the experimental settings
for BASE described in Morales et al. [2011c].

Stability degree. We first compare both norm synthesis approaches in terms of their
stability. We performed 100 simulations per norm synthesis method. Our analysis is
performed for very low (0.1), low (0.2), medium (0.3 to 0.6), and high (beyond 0.6) norm
infringement rates. Figure 8 illustrates how normative systems change along a single,
sample simulation: the switch frequency between different normative systems of BASE
is much higher than that of IRON, which stabilises normative systems for longer periods
of time until it converges. At the end of the simulation, BASE explored 251 different
normative systems and was not able to converge, whereas IRON explored 41 different
normative systems, converging to a final normative system. Additionally, Figure 9
compares the stability degree of both norm synthesis methods over 100 simulations.
For very low norm infringement rates (0.1), both methods successfully converge to
a normative system that effectively coordinates the MAS. Nevertheless, beyond low
norm infringement rates (0.2), BASE dramatically decreases its stability degree (i.e., it
becomes more inefficient in synthesising a normative system that avoids collisions).
In fact, it never manages to converge to a normative system beyond the 0.3 norm
infringement rate, and collisions are never completely eradicated, hence leading to a 0
stability degree. As for IRON, it converges for low norm infringement rates and totally
removes collisions 100% of the time. Still, for medium norm infringement rates (0.3

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: March 2015.

Online Automated Synthesis of Compact Normative Systems 2:29

Fig. 9. Comparison of the stability degree of IRON and
BASE.

Fig. 10. Compactness savings of IRON with respect to
BASE.

to 0.6), its stability degree is between 0.9 and 1, namely it converges between 90%
and 100% of the simulations. The stability degree of IRON tends to decrease beyond
high norm infringement rates (0.6), and it is for very high norm infringement rates
(0.8) that it fails to converge. Overall, IRON is much more stable than BASE, allowing
convergence for much higher norm infringement rates.

Compactness savings. We now compare the compactness of the normative systems
synthesised by IRON and BASE. Recall from Definition 5 that we measure the compactness
of a normative system in terms of its overall number of norm predicates. Figure 10
illustrates the compactness savings achieved by IRON with respect to BASE: it saves
compactness for all norm infringement rates, achieving its best results for medium
norm infringement rates.

For low norm infringement rates (up to 20% norm infringement rates), IRON manages
to converge to normative systems that are between 30% and 40% more compact (have
fewer norms) than those synthesised by BASE. As for medium norm infringement rates
(0.3 to 0.6), IRON obtains its best savings in compactness (up to 70%: from 36.2 down
to 10.5 predicates on average). Here, IRON benefits from its stability, whereas BASE is
penalised by its instability. This is because when BASE does not converge, it typically
outputs normative systems with a low compactness. Specifically, whereas IRON manages
to converge between 90% and 100% of the time, BASE just converges 72% of the time for a
norm infringement rate of 0.3, and it never converges beyond a 0.4 norm infringement
rate. As a result, IRON synthesises normative systems that are up to 70% more compact
than those synthesised by BASE. As for high norm infringement rates (beyond 0.6), IRON’s
savings in compactness tend to decrease since its percentage of convergence decreases
as well. Overall, IRON synthesises normative systems that are much more compact
than those synthesised by BASE, allowing agents to save computational resources when
processing norms.

6. CONCLUSIONS AND FUTURE WORK
In this article, we have introduced IRON, an approach for the online synthesis of norms
for MAS. IRON is a domain-independent architecture and computational model com-
posed of three abstract elements: (1) a normative network to represent the norms
generated during the synthesis process, (2) a set of operators to apply changes to the
normative network, and (3) a strategy to perform norm synthesis. One can use IRON
to perform norm synthesis on different domains by implementing relatively simple
domain-dependent functions such as conflict detection and norm applicability.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: March 2015.

2:30 J. Morales et al.

We have performed an empirical evaluation of IRON on a simplified traffic junction
scenario. In our scenario, cars are autonomous agents that drive through a junction
to reach their destinations. The goal of IRON is to synthesise norms that prevent cars
from colliding. Our empirical results show that IRON significantly outperforms BASE,
per the norm synthesis techniques presented in Morales et al. [2011c]. On the one
hand, we have shown that IRON’s normative systems are up to 70% more compact
than those generated by BASE. On the other hand, we have also shown that unlike BASE,
IRON successfully synthesises normative systems despite high norm infringement rates.
These improvements mainly derive from the fact that IRON takes more informed and
fine-grained decisions than BASE. This comes at the cost of employing (1) a generalisation
function that requires complete evidence prior to performing norm generalisations and
(2) a specialisation function that allows performing a fine-grained backtracking of norm
generalisations.

As future work, there are multiple opportunities for research. First, we plan to enrich
our current scenario to include further traffic elements like pedestrians, cars driving
at different speeds, or even traffic lights. Along this line, in Morales et al. [2011a], we
already performed an empirical evaluation that compared how BASE and traffic lights
managed to regulate a traffic junction. We believe that it is worth pursuing this line
of inquiry. Second, we plan to enhance IRON to synthesise norms while considering
multiple goals at the same time, instead of a single goal as we do in this article.
For instance, norms could be synthesised also considering the traffic flow. That is,
IRON could synthesise norms to (1) avoid car collisions and (2) to avoid traffic jams.
Notice that this setting is an especially interesting topic of study, as both goals are
contradictory. On the one hand, avoiding car collisions requires occasional car stops,
which is prejudicial for the traffic flow. On the other hand, undoing a traffic jam requires
cars to start moving, which can lead to occasional collisions. Third, and finally, we plan
to investigate how to further improve compactness. This is motivated by our analysis of
the normative systems synthesised by IRON. We have observed that several norms may
apply to the very same state. In particular, we have found two new types of relationships
that can be characterised as follows: (1) two norms apply to a state, but only one of
them suffices to regulate the state (the other one is therefore superfluous), and (2) two
norms apply to a state, but they perform (in terms of effectiveness) worse together than
separately. The first type of relationship is directly related to overregulation: regulating
a state with two norms, when only one of them is sufficient, implies overconstraining
the behaviour of agents. Thus, removing one of them may decrease overregulation,
hence increasing individual agents’ freedom. The second type of relationship captures
a “conflict” between norms: the two of them together in the normative system decrease
the effectiveness of a normative system. From this discussion follows that capturing
these two relationships will help us improve compactness and, eventually, effectiveness.

7. DISCUSSION
In what follows, we focus on providing pragmatic guidelines to help potential users
decide when and how to employ IRON.

First, we analyse the requirements that a scenario, besides the traffic scenario de-
scribed in this article, must satisfy to apply IRON:

—The norm generation approach employed by IRON is based on CBR, and thus it as-
sumes that similar problems (in our case, conflicts) have similar solutions (norms).

—MAS conflicts must be identifiable. Since IRON’s norm synthesis is based on the
detection of undesired states, it must be able to decide whether a state represents a
conflict or not.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: March 2015.

Online Automated Synthesis of Compact Normative Systems 2:31

—Agents’ actions must be observable, and in case they cause conflicts, these arise
immediately. IRON currently assumes that whenever a conflict arises at time t, the
cause of the conflict can be found at the action of an agent at previous timestep t − 1.
Moreover, IRON also requires the agent causing the conflict to be involved in it at
time t.

—The number of agents involved in a conflict must be limited. Before IRON generates a
norm that successfully regulates a conflict, it may generate a different norm for each
of the agents involved in it. This approach is only feasible if the number of agents is
limited, and hence the number of possible norms to generate for a given conflict is
limited as well.

—The number of norms that the grammar employed by IRON can generate must not be
large. Recall that the computational complexity of IRON’s synthesis is linear to the
number of norms that a grammar can generate, but this number is exponential to
the number of predicates and their arity.

In this work, we have used a simplified traffic scenario to illustrate IRON. However, we
argue that IRON can be employed in a vast variety of scenarios whenever the preceding
conditions hold. As an example, in Morales et al. [2014], we show how to apply IRON to
perform norm synthesis in an online community scenario. In that scenario, the users of
the community upload and view contents, and they complain about contents that they
find inappropriate for the community (e.g., spam or porn contents). There, undesired
states are those where a significant amount of users complain about a given content. We
showed that IRON is capable of synthesising norms that prevent users from uploading
conflicting contents.

Second, we focus on how to tune the parameters employed by IRON. The guidelines
that follow stem from a series of experiments that we conducted to understand the
impact of the specialisation and generalisation thresholds on IRON ’s convergence. More
precisely, we ran the empirical evaluation described in Section 5, but this time combined
different specialisation thresholds (low, medium, and high values of α

spec
e f f ,α

spec
nec) with

different generalisation thresholds (low, medium, and high values of α
gen
ef f ,α

gen
nec).5 Two

main observations derive from our analysis:

—The value of IRON’s specialisation (deactivation) thresholds directly impact on the type
of norms that become part of synthesised normative systems. On the one hand, high
specialisation thresholds lead IRON to include in a normative system those norms that
are highly effective and necessary. Therefore, those norms that regulate situations
that occasionally lead to conflicts (i.e., that are slightly necessary) are never included.
Thus, we should use high specialisation thresholds when we aim at very compact
normative systems and are ready to tolerate occasional conflicts. On the other hand,
low specialisation thresholds lead IRON to include in a normative system any norm
that avoids undesired states, even though the situation it regulates very sporadically
leads to conflicts.

—The value of IRON’s generalisation thresholds affect the compactness of synthesised
normative systems. On the one hand, high generalisation thresholds mean that
only those norms that are highly effective and necessary can be generalised. Since
performing norm generalisations is costly, this setting is appropriate in scenarios
where the cost of generalising norms is relevant. Thus, this setting guarantees that a
norm is only generalised when it performs well. On the other hand, low generalisation

5For the sake of keeping the article length within reasonable limits, we did not incorporate this new set of
experiments with different threshold values, but we do report on our main findings.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: March 2015.

2:32 J. Morales et al.

thresholds allow IRON to generalise a norm even though its effectiveness and necessity
values are low. This leads to increasing the compactness of the normative system.

REFERENCES
Agnar Aamodt and Enric Plaza. 1994. Case-based reasoning: Foundational issues, methodological variations,

and system approaches. Artificial Intelligence Communications 7, 1, 39–59.
Cristina Bicchieri. 2006. The Grammar of Society: The Nature and Dynamics of Social Norms. Cambridge

University Press.
Ken Binmore. 2005. Natural Justice. Oxford University Press.
Guido Boella, Leendert van der Torre, and Harko Verhagen. 2006. Introduction to normative multiagent

systems. Computational and Mathematical Organization Theory 12, 2–3, 71–79.
George Christelis and Michael Rovatsos. 2009. Automated norm synthesis in an agent-based planning envi-

roment. In Proceedings of the 8th International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS’09). 161–168.

Frank Dignum. 1999. Autonomous agents with norms. Artificial Intelligence and Law 7, 1, 69–79.
David Fitoussi and Moshe Tennenholtz. 1998. Minimal social laws. In Proceedings of the National Conference

on Artificial Intelligence (AAAI). 26–31.
Andrés Garcı́a-Camino, Juan A. Rodrı́guez-Aguilar, Carles Sierra, and Wamberto Vasconcelos. 2009. Con-

straint rule-based programming of norms for electronic institutions. Autonomous Agents and Multi-
Agent Systems 18, 1, 186–217.

Nathan Griffiths and Michael Luck. 2010. Norm emergence in tag-based cooperation. In Proceedings of
the 9th International Workshop on Coordination, Organization, Institutions, and Norms in Multi-Agent
Systems (COIN’10). 80–87.

James E. Kittock. 1993. Emergent conventions and the structure of multi-agent systems. In Lectures in
Complex Systems: The Proceedings of the 1993 Complex Systems Summer School (Lecture Vol. VI), L.
Nadel and D. Stein (Eds.). Addison-Wesley, 507–521.

John-Jules Ch. Meyer, and Roel J. Wieringa. 1993. Deontic Logic in Computer Science: Normative System
Specification. John Wiley and Sons, Chichester, UK.

Javier Morales, Maite López-Sánchez, and Marc Esteva. 2011a. Evaluation of an automated mechanism for
generating new regulations. In Proceedings of the 14th International Conference on Advances in Artificial
Intelligence: Spanish Association for Artificial Intelligence (CAEPIA’11). 12–21.

Javier Morales, Maite López-Sanchez, and Marc Esteva. 2011b. Source code of using experience to gener-
ate new regulations. Retrieved January 28, 2014, from www.iiia.csic.es/∼jmorales/Downloads/Morales_
IJCAI2011_SourceCode.tar.gz.

Javier Morales, Maite López-Sánchez, and Marc Esteva. 2011c. Using experience to generate new regula-
tions. In Proceedings of the International Joint Conference in Artificial Intelligence (IJCAI’11). 307–312.

Javier Morales, Maite López-Sanchez, Juan A. Rodrı́guez-Aguilar, Michael Wooldridge, and Wamberto
Vasconcelos. 2013. Automated synthesis of normative systems. In Proceedings of the 12th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS’13). 483–490.

Javier Morales, Iosu Mendizábal, David Sánchez-Pinsach, Maite López-Sánchez, and Juan A. Rodrı́guez-
Aguilar. 2014. Using IRON to build frictionless on-line communities. AI Communications: Artificial
Intelligence in the Catalan Association for AI 28, 1, 55–71.

Stephen Muggleton and Luc De Raedt. 1994. Inductive logic programming: Theory and methods. Journal of
Logic Programming 19, 20, 629–679.

Shan-Hwei Nienhuys-Cheng and Ronald de Wolf. 1997. Foundations of Inductive Logic Programming.
Springer-Verlag, New York, NY.

Christopher K. Riesbeck and Roger C. Schank. 1989. Inside Case-Based Reasoning. Lawrence Erlbaum
Associates, Hillsdale, NJ.

Norman Salazar, Juan A. Rodriguez-Aguilar, and Josep L. Arcos. 2010. Robust coordination in large conven-
tion spaces. AI Communications 23, 4, 357–372.

Onkur Sen and Sandip Sen. 2010. Effects of social network topology and options on norm emergence. In
Proceedings of the 5th International Conference on Coordination, Organizations, Institutions, and Norms
in Agent Systems (COIN’09). 211–222.

Sandip Sen and Stéphane Airiau. 2007. Emergence of norms through social learning. In Proceedings of the
20th International Joint Conference on Artificial Intelligence (IJCAI’07). 1507–1512.

Yoav Shoham and Kevin Leyton-Brown. 2009. Multiagent Systems: Algorithmic, Game-Theoretic, and Logical
Foundations. Cambridge University Press, New York, NY.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: March 2015.

Online Automated Synthesis of Compact Normative Systems 2:33

Yoav Shoham and Moshe Tennenholtz. 1995. On social laws for artificial agent societies: Off-line design.
Journal of Artificial Intelligence 73, 1–2, 231–252.

Munindar P. Singh, Matthew Arrott, Tina Balke, Amit K. Chopra, Rob Christiaanse, Stephen Cranefield,
Frank Dignum, Davide Eynard, Emilia Farcas, Nicoletta Fornara, Fabien Gandon, Guido Governatori,
Hoa Khanh Dam, Joris Hulstijn, Ingolf Krueger, Ho-Pun Lam, Michael Meisinger, Pablo Noriega, Bastin
Tony Roy Savarimuthu, Kartik Tadanki, Harko Verhagen, and Serena Villata. 2013. The uses of norms.
In Normative Multi-Agent Systems, G. Andrighetto, G. Governatori, P. Noriega, and L. W. N. van der
Torre (Eds.). Dagstuhl Follow-Ups, Vol. 4. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 191–229.

Richard S. Sutton and Andrew G. Barto. 1998. Introduction to Reinforcement Learning. MIT Press,
Cambridge, MA.

Daniel Villatoro, Jordi Sabater-Mir, and Sandip Sen. 2011. Social instruments for robust convention emer-
gence. In Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI’11).
420–425.

Adam Walker and Michael Wooldridge. 1995. Understanding the emergence of conventions in multi-agent
systems. In Proceedings of the International Conference on Multiagent Systems (ICMAS’95). 384–389.

Chao Yu, Minjie Zhang, Fenghui Ren, and Xudong Luo. 2013. Emergence of social norms through col-
lective learning in networked agent societies. In Proceedings of the 12th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS’13). 475–482.

Received December 2013; revised November 2014; accepted January 2015

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 1, Article 2, Publication date: March 2015.

