
Alternating-time Temporal Logic with Explicit Strategies

Dirk Walther
Computer Science Deptartment

University of Liverpool
Liverpool, L69 3BX

Wiebe van der Hoek
Computer Science Deptartment

University of Liverpool
Liverpool, L69 3BX

Michael Wooldridge
Computer Science Deptartment

University of Liverpool
Liverpool, L69 3BX

Abstract

We introduceATLES – a variant ofATL with
explicit names for strategies in the object
language. ATLES makes it possible to re-
fer to the same strategy in different occur-
rences of path quantifiers, and, as a con-
sequence, it possible to express inATLES

some properties that cannot be expressed
even inATL∗. We present a complete ax-
iomatic system forATLES. Moreover, we
show that satisfiability problem forATLES

is no more complex than forATL : it is EX-
PTIME-complete. We identify two variants
of the model-checking problem forATLES

and investigate their computational com-
plexity. Finally, we show howATLES can
be used to reason about extensive games.

1 Introduction and Preliminaries

Alternating-time Temporal Logic (ATL ) is a logic in
which one can reason about the strategic abilities of
players [1]. It provides an elegant and popular repre-
sentation formalism to specify game-like, multi-agent
systems. The key construct inATL is of the form
〈〈A〉〉ϕ, expressing that coalitionA has a strategy so
as to ensure that the temporal propertyϕ holds.

It has been long recognized ([9, 2]) that the semantics
of ATL is richer than its language: whereas in the se-
mantics one can explicitly reason about strategies, in
the language one can only quantify over them. The
aim of this paper is to presentAlternating-time Logic
with Explicit Strategies(ATLES), a logic intended to

bridge this gap. This logic extends bothCATL [9]
and the ‘Action Logic’ (AL ) of [2]. After introduc-
ing ATLES in this section, in Section 2, we investi-
gate its expressivity, while, in Section 3, we formu-
late two variants of the model-checking problem for
ATLES, establish their computational complexity, and
also give an axiomatization that is complete with re-
spect toATLES semantics. We also settle the com-
plexity of the satisfiability problem. Section 4 rounds
off with conclusions, related work, and an outlook.

We now introduceATL with explicit names for strate-
gies. The key idea is to replace the cooperation
modalities〈〈A〉〉 of ATL with constructions of the form
〈〈A〉〉ρ, whereρ is acommitment function. A commit-
ment function,ρ, is a partial function mapping agents
to strategy terms. That is, each agentb for which ρ
is defined (i.e.,b ∈ dom(ρ)) commits to the strat-
egyρ(b). Then〈〈A〉〉ρϕ means that ‘while the agents
in dom(ρ) act according to their commitments, the
coalitionA can cooperate to ensureϕ as an outcome’.

Our work can be seen as a revised version of the logic
CATL [9], which included commitment operators of
the form Ca(%, ϕ), meaning ‘under the assumption
that a commits to strategy%, then ϕ holds’. The
operators were interpreted using anupdate seman-
tics, which had the effect that, once an agent commit-
ted to a strategy, she could not change that commit-
ment. Here, we use a different semantics, which does
not make this assumption of irrevocable commitment.
Moreover, in the strategies, we allow for agents with
perfect information, i.e., making a choice depends on
the full history of previously traversed states. Finally,
CATL was defined for a fixed set of agents and a fixed
set of strategy terms [9]. In this work, however, (as



in [11] for ATL ), we do not fix the agents and strategy
terms in advance.

1.1 ATLES

Definition 1.1 [ATLES Syntax] LetΠ be a countable
infinite set ofatomic propositions, Σ a countable in-
finite set ofagents, andΥ a set ofstrategy termswith
Υ =

⋃
a∈Σ Υa, whereΥa is a countable infinite set

of strategy terms for agenta. A coalition is a finite
setA ⊂ Σ of agents. Acommitment functionis a par-
tial functionρ : Σ → Υ with a finite domain, which
maps an agenta ∈ Σ to a strategy termρ(a) ∈ Υa

for a. The set ofATLES-formulas is generated by the
following grammar, wherep ∈ Π, A ranges over
coalitions,ρ over commitment functions andϕ over
ATLES-formulas:

ϕ := p | ¬ϕ | ϕ ∨ ϕ | 〈〈A〉〉ρ©ϕ | 〈〈A〉〉ρ2ϕ |
〈〈A〉〉ρϕU ϕ.

Logical truth (>), the Boolean connectives (∧, →,
and↔) and3 are defined as usual. Observe that, in
ATLES, the operators〈〈A〉〉ρ2 are explicitly defined
in the syntax, since〈〈A〉〉ρ2 cannot be expressed in
terms of〈〈A〉〉ρ andU within ATLES. ATL is the frag-
ment ofATLES only allowing for commitment func-
tions that are undefined for all agents.

As semantic structures, an extension of alternating
transition systems were suggested in [9] that explic-
itly account for actions and action pre-conditions, so-
called action-based alternating transition systems. In
this paper, however, we confine ourselves to a variant
of the alternating transition systems introduced in [1]
extended with strategy terms and a denotation func-
tion mapping strategy terms to strategies. These tran-
sition systems can easily be seen to be equivalent to
the action-based structures of [9].

Definition 1.2 [Alternating Transition System] Let
Σ = {1, . . . , n} ⊂ Σ, with n ≥ 1, be a finite
set of agents and, for each agenti ∈ Σ, Υi ⊂
Υi a finite set of i-strategy terms. Analternat-
ing transition system (ATS) forΣ is a tupleS =
〈Π, Σ, Q, Υ1, . . . , Υn, π, δ, ||·||〉 where

• Π ⊆ Π is a finite, non-empty set ofatomic
propositions,

• Q is a finite, non-empty set ofstates,

• π : Q → 2Π is a valuation functionwhich as-
signs to every state a set of atomic propositions
that are true there,

• δ : Q × Σ → 22Q

is a transition function
which maps a stateq ∈ Q and an agenta ∈ Σ
to a non-empty set ofchoicesδ(q, a) available
to a at q such that the following condition is
satisfied: for every stateq ∈ Q and every set
Q1, . . . , Qn, wheren is the number of agents,
of choicesQi ∈ δ(q, i), 1 ≤ i ≤ n, the intersec-
tion Q1 ∩ · · · ∩Qn is a singleton set, and

• ||·|| : Υ → (Q+ → 2Q) is a denotation func-
tion, whereΥ =

⋃
i∈Σ Υi, which, for each agent

a ∈ Σ, maps ana-strategy term to ana-strategy
(to be defined below).

Intuitively, δ(q, a) describes thea-choices avail-
able in q: when in stateq, agenta chooses a set
from δ(q, a) to ensure that the “next state” will
be among those in the chosen set. This notion
of a-choices is generalized toA-choicesfor coali-
tions A of agents as follows: Given an ATSS =
〈Π,Σ, Q, Υ1, . . . , Υn, π, δ, ||·||〉, for each stateq ∈
Q and each coalitionA ⊆ Σ, setδ(q,A) to be the set
{QA ⊆ Q | QA =

⋂
a∈A Qa whereQa ∈ δ(q, a)}

if A 6= ∅, or otherwise, i.e., ifA = ∅, the set
{⋃ δ(q, Σ)}. When in stateq, the agents in coali-
tion A collectively choose a set fromδ(q, A) to en-
sure that the “next state” is from this set. Note that
δ(q, A) is non-empty for each stateq and coalitionA,
andδ(q, Σ) is a set of singletons. The states in the sin-
gleton sets ofδ(q, Σ) are thesuccessorsof q, i.e., the
system is completely determined when all the agents
have made their choice. Since the empty coalition
cannot influence the behavior of the system,δ(q, ∅)
is set to

⋃
δ(q, Σ), the set of all possible successors

of q.

An infinite sequenceλ = q0q1q2 · · · ∈ Qω of states
is a computationif, for all positionsi ≥ 0, there is
a choice{qi+1} ∈ δ(qi, Σ). Denote withλ[i] the i-
th componentqi in λ, and withλ[0, i] the initial se-
quenceq0 · · · qi of λ.

A strategyfor an agenta ∈ Σ is a functionσa :
Q+ → 2Q that maps all finite sequencesλ·q ∈ Q+ of
states to a choiceσa(λ·q) ∈ δ(q, a) available to agent
a atq. Note thatλ ·q denotes the concatenation of the
finite sequenceλ with the stateq. A strategy for a
coalitionA is a set of strategiesσA = {σa | a ∈ A},



one for each agent inA. Given a commitment func-
tion ρ, we augment the notion of strategies forA to
that of aρ-strategy forA. This is a set of strategies
containing for each committed agent indom(ρ), the
strategy she committed to and, for each free agent
in A \ dom(ρ), an arbitrary strategy for this agent.
Formally, aρ-strategy forA is a strategyσA∪dom(ρ)

for the agents inA ∪ dom(ρ) such that for all agents
a ∈ dom(ρ), the strategyσa for a in σA∪dom(ρ) is
such thatσa = ||ρ(a)||.
The setout(q, σA) of outcomesof a strategyσA for
the agents inA starting at a stateq is the set of all
computationsλ = q0q1q2 · · · ∈ Qω such thatq0 = q
andqi+1 ∈

⋂
σa∈σA

σa(λ[0, i]) for all i ≥ 0.

Now we can be more precise about the meaning of
〈〈A〉〉ϕ:

〈〈A〉〉ρϕ means that, given the commitments
of the agentsb ∈ dom(ρ) to use strategy
ρ(b), the agentsa ∈ A \ dom(ρ) have
a strategy such that, no matter what the
agentsc ∈ Σ \ (dom(ρ) ∪ A) will do, ϕ
will result.

Definition 1.3 [ATLES Semantics] Given an ATS
S = 〈Π, Σ, Q, Υ1, . . . , Υn, π, δ, ||·||〉, the satisfac-
tion relation |= is inductively defined as follows,
where we omit the Boolean cases. Validity and sat-
isfiability can be defined in a standard way.

• S, q |= 〈〈A〉〉ρ©ϕ iff there is a ρ-strategy
σA∪dom(ρ) for the agents inA ∪ dom(ρ) such
that for all computationsλ ∈ out(q, σA∪dom(ρ)),
it holds thatS, λ[1] |= ϕ;

• S, q |= 〈〈A〉〉ρ2ϕ iff there is a ρ-strategy
σA∪dom(ρ) for the agents inA ∪ dom(ρ) such
that for all computationsλ ∈ out(q, σA∪dom(ρ)),
it holds thatS, λ[i] |= ϕ for all positionsi ≥ 0;

• S, q |= 〈〈A〉〉ρψ U ϕ iff there is a ρ-strategy
σA∪dom(ρ) for the agents inA ∪ dom(ρ) such
that for all computationsλ ∈ out(q, σA∪dom(ρ)),
there is a positioni ≥ 0 such thatS, λ[i] |= ϕ
andS, λ[j] |= ψ for all positionsj with 0≤j <i.

1.2 Axiomatic system forATLES

In this section, we present an axiomatic system for
ATLES: Figure 1 contains the axioms and inference

rules. The notions ofATLES-provability and consis-
tency are defined as usual.

The axioms and the inference rules were inspired by
the axiomatization of Coalition Logic in [7] and of
ATL in [6] and extended toATLES. In particular, we
added three new axioms (C1) to (C3) that character-
ize the expressivity of the commitment function. In-
tuitively, these three axioms express the following:

(C1): given a commitmentρ, a coalitionA can
still ensureϕ at the next state after an agent out-
side ofA commits to a strategy;

(C2): given a commitmentρ′, a coalitionA can
still ensureϕ at the next state after a member of
A dismisses her commitment;

(C3): given a commitmentρ, after a committed
agenta has left the coalitionA ∪ {a}, the re-
maining agents inA are still able to ensureϕ at
the next state.

The following lemma formalizes the relationship be-
tween next formulas with different coalitions and
commitment functions by combining the axioms (C1)
to (C3). It characterizes the conditions under which
the power of one coalitionA, given some commit-
mentsρ, can be “transferred” to the power ofB,
by assuming commitmentsξ. That is, it charac-
terizes when a formula of the form〈〈A〉〉ρ©ψ →
〈〈B〉〉ξ©ψ can be derived. Intuitively, the implication
in Lemma 1.4 can be seen as a course of action where
agents join or leave the coalition and agents take or
dismiss commitments.

Lemma 1.4 LetA, B be two coalitions of agents and
ρ, ξ two commitment functions. Then, for allATLES-
formulasψ, it holds that

` 〈〈A〉〉ρ©ψ → 〈〈B〉〉ξ©ψ

if, and only if, the following four conditions are satis-
fied:

(P0) ρ(a) = ξ(a), for all a ∈ dom(ρ) ∩ dom(ξ);

(P1) (dom(ξ) \ dom(ρ)) ∩A = ∅;
(P2) dom(ρ) \ dom(ξ) ⊆ B;

(P3) A \B ⊆ dom(ρ) ∩ dom(ξ).



(TAUT) Propositional tautologies

(⊥) ¬〈〈A〉〉ρ©⊥
(>) 〈〈A〉〉ρ©>
(S) 〈〈A〉〉ρ©ϕ ∧ 〈〈B〉〉ρ©ψ → 〈〈A ∪B〉〉ρ©(ϕ ∧ ψ) whereA ∩B ⊆ dom(ρ)

(C1) 〈〈A〉〉ρ©ϕ → 〈〈A〉〉ρ′©ϕ whereρ′ = ρ ∪ {a 7→ %a}, a /∈ A, %a ∈ Υa

(C2) 〈〈A〉〉ρ′©ϕ → 〈〈A〉〉ρ©ϕ whereρ′ = ρ ∪ {a 7→ %a}, a ∈ A, %a ∈ Υa

(C3) 〈〈A ∪ {a}〉〉ρ©ϕ → 〈〈A〉〉ρ©ϕ wherea ∈ dom(ρ)

(FP2) 〈〈A〉〉ρ2ϕ ↔ ϕ ∧ 〈〈A〉〉ρ©〈〈A〉〉ρ2ϕ

(GFP2) 〈〈∅〉〉ρ2(θ → (ϕ ∧ 〈〈A〉〉ρ©θ)) → 〈〈∅〉〉ρ2(θ → 〈〈A〉〉ρ2ϕ)

(FPU ) 〈〈A〉〉ρψ U ϕ ↔ ϕ ∨ (ψ ∧ 〈〈A〉〉ρ©〈〈A〉〉ρψ U ϕ)

(LFPU ) 〈〈∅〉〉ρ2((ϕ ∨ (ψ ∧ 〈〈A〉〉ρ©θ)) → θ) → 〈〈∅〉〉ρ2(〈〈A〉〉ρψ U ϕ → θ)

(Modus Ponens)
ϕ,ϕ → ψ

ψ
(〈〈∅〉〉ρ2-Necessitation)

ϕ

〈〈∅〉〉ρ2ϕ

(〈〈A〉〉ρ©-Monotonicity)
ϕ → ψ

〈〈A〉〉ρ©ϕ → 〈〈A〉〉ρ©ψ

Figure 1: Axioms and Inference Rules forATLES.

2 Expressivity

ATLES seems more expressive than its fragmentATL ,
but exactly how does its expressivity compare to that
of ATL∗? Let us first consider some examples. Con-
sider the ATSS in Figure 2. In ATL , one can-
not distinguish between using general strategies as
we defined them (functions from finite sequences to
choices), andmemoryless strategiesσ : Q → 2Q

(cf. [1, 8]). Hence, one immediately sees that inS,
our agent has no strategy to ensure that bothp ∧ q
and(¬p ∧ ¬q) will be visited infinitely often. Such
a liveness condition can be expressed inATLES by
〈〈a〉〉ρ2(〈〈a〉〉ρ3(p ∧ q) ∧ 〈〈a〉〉ρ3(¬p ∧ ¬q)), for a
suitableρ. This example also shows thatATLES is
expressive enough to distinguish memoryless strate-
gies from general ones.

We can use the same ATS to point at an important
difference withCATL: let f ree denote the property
〈〈a〉〉©p ∧ 〈〈a〉〉©¬p: agenta can next guaranteep,
but also can she guarantee¬p. In CATL, commitment
to a strategyρ is irrevocable: one has, in our ATS,
S, x |= 〈〈a〉〉©f ree ∧ ¬Ca(σ,©f ree): agenta does

q ¬q

sx

¬ppp ¬q

y

Figure 2: A single agent ATS.

not have a strategy that allows him to still make up
his mind in the next state,s. Compare this toATLES,
where we haveS, x |= 〈〈a〉〉©f ree ∧ 〈〈a〉〉ρ©f ree,
for everyρ.

Recall that, other than inATLES, in ATL∗ we can ex-
press Boolean combinations and nesting of temporal
operators inside a path quantifier. Some of these for-
mulas, however, can be translated intoATLES in a
satisfiability preserving way. For instance, theATL∗-
formula 〈〈a, b〉〉©nϕ, n ≥ 0, with ann-fold nesting
of the temporal operator next-time (©) can be trans-
lated intoATLES as:

〈〈a, b〉〉{a 7→%a,b7→%b}© . . . 〈〈a, b〉〉{a 7→%a,b 7→%b}©︸ ︷︷ ︸
n−times

ϕ



where%a, %b are fresh strategy terms for the agents
a, b, respectively. Note that with the translation, we
have an exponential blow-up in the formula size ifn
is coded in binary.

Here are three moreATL∗-formulas with nesting
of temporal operators that can be translated into
ATLES: 〈〈a, b〉〉[ϕU(ψ U ϑ)], 〈〈a, b〉〉[ϕU(©ψ)], and
〈〈a, b〉〉©(ϕU ψ) can, respectively (in this order), be
expressed as

〈〈a, b〉〉{a 7→%a,b 7→%b}[ϕU(〈〈a, b〉〉{a 7→%a,b 7→%b}(ψ U ϑ))],
〈〈a, b〉〉{a 7→%a,b 7→%b}[ϕU(〈〈a, b〉〉{a 7→%a,b 7→%b}©ψ)],
〈〈a, b〉〉{a 7→%a,b 7→%b}©〈〈a, b〉〉{a 7→%a,b 7→%b}(ϕU ψ).

To pinpoint the relationship betweenATLES andATL∗

more precisely, we now define a translation func-
tion (·)∗ mapping someATL∗-formulasϕ to formulas
(ϕ)∗ of ATLES such thatϕ is satisfiable if, and only
if, (ϕ)∗ is satisfiable. To this end, let us first recall the
syntax ofATL∗ with this EBNF notation (for a com-
plete definition ofATL∗ see, e.g., [1]):

state formulas:ϕ ::= p | ϕ ∨ ϕ | ¬ϕ | 〈〈A〉〉ψ
path formulas:ψ ::= ϕ | ψ ∨ ψ | ψ ∧ ψ | ¬ψ |

©ψ | ψ U ψ

We restrict the translation function to formulas in
negation normal form, where negation only occurs in
front of propositional variables or path quantifiers. To
understand the following definition of the translation
function, the distinction betweenATL∗-state formulas
and path formulas is important.

Definition 2.1 We define a partial function(·)∗〈B,ξ〉
on ATL∗ state and path formulas as follows, whereB
ranges over coalitions andξ over commitment func-
tions. For all state formulasp, ϕ, ϕ′ and all path for-
mulasψ, ψ′ in negation normal form:

(p)∗〈B,ξ〉 := p, for p ∈ Π;
(¬ϕ)∗〈B,ξ〉 := ¬(ϕ)∗〈B,ξ〉;
(ϕ ∨ ϕ′)∗〈B,ξ〉 := (ϕ)∗〈B,ξ〉 ∨ (ϕ′)∗〈B,ξ〉;
(〈〈A〉〉ψ)∗〈B,ξ〉 := (ψ)∗〈A,ρ〉, for commitment

functionρ with dom(ρ) = A
and the range ofρ containing
only fresh strategy terms;

(ψ ∧ ψ′)∗〈B,ξ〉 := (ψ)∗〈B,ξ〉 ∧ (ψ′)∗〈B,ξ〉;
(©ψ)∗〈B,ξ〉 := 〈〈B〉〉ξ©(ψ)∗〈B,ξ〉;
(¬©ψ)∗〈B,ξ〉 := (©¬ψ)∗〈B,ξ〉;
(ψ U ψ′)∗〈B,ξ〉 := 〈〈B〉〉ξ((ψ)∗〈B,ξ〉 U(ψ′)∗〈B,ξ〉).

The following lemma establishes that the translation
function is satisfiability preserving; the proof is left
to the reader.

Lemma 2.2 Let E be the empty coalition andξ0 the
empty commitment function. For allATL∗-formulas
ϕ in negation normal form such that the translation
function(·)∗〈E,ξ0〉 is defined forϕ, the following are
equivalent:

(a) ϕ is satisfiable wrt.ATL∗;

(b) (ϕ)∗〈E,ξ0〉 is satisfiable wrt.ATLES.

Note that(·)∗ determines only a fragment ofATL∗

that can be translated intoATLES in a satisfiability
preserving way. This was to be expected sinceATLES

is not expressive enough to subsume fullATL∗. In
particular,ATL∗-formulas with a disjunction of tem-
poral operators inside a path quantifier cannot be
translated. For instance,ATLES cannot express the
ATL∗-formula

〈〈A〉〉(ψ ∨ ψ′)

stating that coalitionA has a strategy to ensure com-
putations on whichψ or ψ′ holds. In fact,ATLES

andATL∗ are incomparable with respect to expressiv-
ity: some formulae ofATL∗ cannot be expressed in
ATLES, while some formulae ofATLES cannot be ex-
pressed inATL∗.

2.1 ATLES for Extensive Games

WhereCATL seems to provide an appropriate machin-
ery for reasoning aboutstrategicgames [9],ATLES

is well suited to generalize this toextensivegames.
Due to space restrictions, this is only sketched here.
Consider the two-player extensive gameG in Fig-
ure 3. Suppose playerb has to move at nodesy1

and y2, whereas the remaining non-terminal nodes
area’s. Note thata has 16 strategies, while player
b has 4 strategies. We writellrl to denote a strat-
egy for agenta where this player will choose ‘left’ at
the nodesx1, x2, andx4, but ‘right’ at nodex3. We
identify a strategy with a term denoting it: letΥi be
the strategies for playeri. Let the denotation function
j 7→ α; i 7→ β assign strategyα to playerj, andβ
to playeri. A strategy profile is a pairσ = 〈α, β〉
and this uniquely determines an outcome. The vec-
tors at the terminal nodes indicate the payoff for the
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Figure 3: An extensive game.

players: the upper value is the payoff fora and the
lower one forb. To reason about the payoffs, let us
assume the ATSSG that is associated withG inter-
prets atomic propositionsui ≥ v, for i ∈ {a, b} and
v ∈ V = {0, 1, . . . , 8}, denoting that playeri’s pay-
off is at leastv. We can express inATLES that at each
terminal state inSG, the truth of these atoms corre-
sponds with Figure 3, for the other states, they are all
false.

We now can explicitly reason about properties of
strategies inSG. In the following, assumei 6= j and
that formulas are evaluated in the rootx1 of SG, un-
less stated otherwise. Aweakly dominant strategyfor
playeri is one which is at least as good as any other
strategy, no matter what playerj does. This notion of
weak dominance is captured by

WDi(α) :=
∧

β∈Υj ,v∈V

(〈〈i〉〉{j 7→β}3(ui ≥ v) →

〈〈〉〉{i 7→α;j 7→β}3(ui ≥ v)
)
.

We claim that, in a gameG, strategy α is a
weakly dominant strategy for playeri if, and only if,
WDi(α) is satisfied atx1 in SG. A similar corre-
spondence can be given fordominated strategies. We
move on to characterize Nash Equilibria. The pred-
icateBRi(αj , βi) expresses that for playeri, given
the strategyαj of playerj, βi is the best response.

BRi(αj , βi) :=
∧

v∈V

(〈〈i〉〉{j 7→αj}3(ui ≥ v) →

〈〈〉〉{i 7→βi;j 7→αj}3(ui ≥ v)
)

This concept can be used to define that of aNash

Equilibrium, in a straightforward way. We claim that
NE(〈α, β〉) holds atx1 in SG if, and only if, the
strategy profile〈α, β〉 is a Nash Equilibrium ofG:

NE(〈α, β〉) := BR1(β, α) ∧BR2(α, β).

We can now also characterize asubgame perfect Nash
Equilibriumas follows:

SPNE(〈α, β〉) := 〈〈〉〉2NE(〈α, β〉).
In our gameG, we then have

SG, x1 |= ¬NE(〈lrlr, LR〉)
∧ ¬SPNE(〈lrlr, LR〉)
∧ SPNE(〈lrll, LL〉).

To see thatSG, x1 |= ¬SPNE(〈lrlr, LR〉), note
thatSG, x3 |= ¬NE(〈lrlr, LR〉). In fact,backward
induction, a procedure to find the subgame perfect
Nash Equilibrium of an extensive game, can be mod-
eled in ATLES. Let rat(i, α) denote thatα is a ra-
tional strategy fori, given the current state, and that
j is also rational in all next states. Let the variable
term be true exactly at all terminal states. We define
rat(i, α) as the disjunction ofterm and the formula

∨

v∈V

[ ∨

β∈Υj

〈〈〉〉{i 7→α}©
(
rat(j, β) ∧

〈〈〉〉{i7→α;j 7→β}3(ui ≥ v)
) ∧∧

αi∈Υi,βj∈Υj

〈〈〉〉{i 7→αi}©
(
rat(j, βj) →

〈〈〉〉{i7→αi;j 7→βj}2¬(ui > v)
)]

.

This states that it is rational fori to play α. That
is, if we are not in a terminal state, playingα leads
to a state, which, assuming rationality ofj, gives i
a payoff of at leastv that can not be improved upon
by any other ofi’s strategiesαi, given thatj plays a
rational strategyβj along with it. Note that we have
SG, x4 |= rat(a, γ) for anya-strategyγ ending inl
(it is rational fora to play atx4 any strategy that dic-
tates ‘left’ atx4), whereas, atx1 in SG, only strategy
γ′ = lrll qualifies forSG, x1 |= rat(a, γ′).

A similar analysis can be given for Pareto opti-
mal strategies and other solution concepts. Again,
note that, inATLES, we can express a switch from
one strategy to another: a property likeSG, x1 |=
〈〈〉〉{a 7→lllr}©〈〈a〉〉{}(ua ≥ 2) says that even if agenta
commits to the strategylllr at x1 (which only would
guarantee her a payoff of 1), in the next step,a can
change her mind and still guarantee a payoff of 2.



3 Complexity and Completeness

3.1 ATLES Model-Checking

In this section, we discuss two model-checking al-
gorithms forATLES. Generally, themodel-checking
problem is, given a formulaϕ and an ATSS (a
model), to compute the set of states ofS that sat-
isfy ϕ. When model-checking anATLES-formula, we
have to take the strategies into account that come with
an ATS. However, it appears to be also an interesting
problem to consider the possibility that strategies are
not given as part of the input (cf. the ‘model-checking
as planning’ paradigm [5]). Notice that, for model-
checking, we confine ourselves to memoryless strate-
gies. With this in mind, we now formulate two varia-
tions of the model-checking problem forATLES:

(a) Model-checking with given strategies

Given an ATLES-formula ϕ, an ATS S =
〈Π, Σ, Q, Υ1, . . . , Υn, π, δ, ||·||〉 where the set
Σ = {1, . . . , n} containsn agents, and a state
q ∈ Q, is ϕ satisfied atq in S?

(b) Model-checking along with generating strate-
gies

Given an ATLES-formula ϕ, an ATS S =
〈Π, Σ, Q, π, δ〉, and a stateq ∈ Q, are there
strategies, one for each strategy term that occurs
in ϕ, such thatϕ is satisfied atq in S augmented
with these strategies?

For deciding variant (a) of the problem, we use a
modified version of the symbolic model-checking al-
gorithm forATL from [1]. Figure 4 presents the func-
tion ATLES−eval(· · ·) hat solves variant (a) of the
model-checking problem forATLES.

Consider an ATSS = 〈Π, Σ, Q, Υ1, . . . , Υn, π, δ,
||·||〉, a stateq in S, and anATLES-formulaϕ as input.
TakeΣ to be the set containing all agents occurring in
ϕ, and, for each agenta ∈ Σ, let Υa be the set con-
taining alla-strategy terms ofϕ. For suppose other-
wise,S cannot be a model forϕ. We denote withΞϕ

the set of all commitment functions occurring inϕ.

The algorithm computes using a bottom-up approach,
for each subformulaψ of ϕ, its extension[[ψ]] in S, a
set of states fromS that all satisfyψ. For comput-
ing the extension of formulas of the form〈〈A〉〉ξ©ψ,

〈〈A〉〉ξ2ψ, or 〈〈A〉〉ξψ U ϑ, we employ a modified pre-
image operatorPre′ that additionally accounts for
the commitments of agents to strategies as specified
in ξ. The functionPre′(· · · ) maps a coalitionA,
a commitment functionξ, and a setQ′ of states to
the setPre′(A, ξ, Q′) containing statesq at which
the coalitionA ∪ dom(ξ) can make a choice, while
respecting the commitments inξ, to ensure the next
state to lie inQ′. More precisely, atq, the agentsa
in A \ dom(ξ) can select a choice inδ(a, q), and the
agentsb in dom(ξ) select the choiceσb(q) ∈ δ(a, q)
according to theb-strategyσb = ||ξ(b)|| such that,
for all possible choices made by the other agents in
Σ \ (A ∪ dom(ξ)), the resulting successor state is in
Q′. Formally,Pre′(· · · ) is defined as follows: for all
A ⊆ Σ, all ξ ∈ Ξϕ, all Q′ ⊆ Q, and allq ∈ Q,
we haveq ∈ Pre′(A, ξ, Q′) if, and only if, there is a
choiceC ∈ δ(A ∪ dom(ξ), q) such thatC ⊆ Q′ and
C ⊆ ⋂

a∈dom(ξ) ||ξ(a)||(q).
This modification of the functionPre does not af-
fect the complexity of the model-checking algorithm.
Hence, the variant (a) ofATLES model-checking is no
more complex than model-checkingATL .

Theorem 3.1 The variant (a) of the model-checking
problem forATLES is PTIME-complete, and can be
solved in timeO(m · `) for an ATS withm transitions
and anATLES-formula of length̀ .

An algorithm deciding variant (b) of theATLES

model-checking problem, needs to generate the
strategies for the strategy terms occurring in the in-
put formula. However, we can make use of the
algorithm for variant (a) as follows: we first non-
deterministically guess the required strategies with
which we augment the model. In the second step, we
use the polynomial time algorithm from (a) to model-
check the input formula on the augmented model. We
obtain the following result.

Theorem 3.2 The variant (b) of the model-checking
problem forATLES is NP-complete in the number of
transitions of the given ATS and in the length of the
input formula.

Proof. The upper bound can easily be seen. Letϕ be
an ATLES-formula of length` andS an ATS for the
agents occurring inϕ. Guessing the strategies can be
done in polynomial time in the number of transitions



1. function ATLES−eval(ψ,S = 〈Π, Σ, Q, {Υa}a∈Σ, π, δ, ||·||〉) returns the extension [[ψ]] in S
2. case ψ = p: return π(p)
3. case ψ = ¬ϑ: return Q \ ATLES−eval(ϑ,S)
4. case ψ = ϑ1 ∨ ϑ2: return ATLES−eval(ϑ1,S) ∪ ATLES−eval(ϑ2,S)
5. case ψ = 〈〈A〉〉ξ©ϑ: return Pre′(A, ξ, ATLES−eval(ϑ,S))
6. case ψ = 〈〈A〉〉ξ2ϑ: ∆1 := Q; ∆2 = ATLES−eval(ϑ,S)
7. while ∆1 6⊆ ∆2 do ∆1 := ∆2

8. ∆2 := Pre′(A, ξ, ∆1) ∩ ATLES−eval(ϑ,S) od
9. return ∆1

10. case ψ = 〈〈A〉〉ξϑ1 U ϑ2:∆1 := ∅; ∆2 = ATLES−eval(ϑ2,S)
11. while ∆2 6⊆ ∆1 do ∆1 := ∆1 ∪∆2

12. ∆2 := Pre′(A, ξ, ∆1) ∩ ATLES−eval(ϑ1,S) od
13. return ∆1

14. end-function

Figure 4:ATLES symbolic model-checking (variant (a)).

in S: for at most̀ strategy terms occurring inϕ, we
guess one strategy. Notice that we confine ourselves
to strategies without history which are of polynomial
size in the number of transitions inS: such a strategy
specifies one choice at every state ofS. Since the
second step is inPTIME, we obtain an NP algorithm.

In order to show the lower complexity bound, we re-
duce the well-knownNP-hard satisfiability problem
for propositional logic to variant (b) of the model-
checking problem forATLES. For NP-hardness, it
is sufficient to consider propositional logic formulas
ϕ in conjunctive normal form only [3]. That is,ϕ
is a conjunction of the formψ1 ∧ · · · ∧ ψm where
eachψi (for i = 1..m) is a disjunction the form
ϑi

1∨· · ·∨ϑi
mi

. Eachϑi
j (for i = 1..m andj = 1..mi)

is a literal, i.e. a propositional variable or its nega-
tion. Letp1, . . . , pn be an enumeration of the propo-
sitional variables occurring inϕ. Reserve, for each
ϑi

j with 1 ≤ i ≤ m and 1 ≤ j ≤ mi, a fresh
propositional variablep(i, j). We now define the ATS
Sϕ = 〈Π,Σ, Q, π, δ〉 with

• Π = {p(i, j) | 1 ≤ i ≤ m and1 ≤ j ≤ mi};
• Σ = {a};
• Q = {q0, q1, q

′
1, . . . qn, q′n};

• for all p(i, j) ∈ Π, setπ(p(i, j)) = {qk | ϑi
j =

pk} ∪ {q′k | ϑi
j = ¬pk};

• δ(a, q0) = {{q1}, {q′1}}, for all i with 1 ≤ i <
n, setδ(a, qi) = δ(a, q′i) = {{qi+1}, {q′i+1}},
δ(a, qn) = {{qn}}, andδ(a, q′n) = {{q′n}}.

For an illustration ofSϕ, see Figure 5. The number of
transitions inSϕ is polynomial in the length ofϕ. To
see that, notice thatSϕ contains not more than twice
times the length ofϕ many states with, for each state,
at most twoa-choices. We define the formula

q1

q′1

q2

q′2

q

qn

q′nq′n−1

qn−1

Figure 5: The ATSSϕ for one agent.

ϕATLES =
∧

i=1..m

( ∨

j=1..mi

〈〈a〉〉{a:%a}3p(i, j)
)
.

Notice that the length ofϕATLES is polynomial in the
length ofϕ.

The reduction works as follows:ϕ is satisfiable if,
and only if, there is a strategy for agenta such that
ϕATLES is satisfied atq0 in Sϕ augmented with that
strategy. QED

3.2 Satisfiability and Completeness

This section investigates the computational complex-
ity of the satisfiability problem forATLES and com-
pleteness of the axiomatic system in Figure 1. The
complexity is settled atEXPTIME-complete and thus
ATLES is no more complex thanATL . This is done



by adapting a type elimination algorithm forATL

from [11].

Since, in the definition ofATLES, we do not fix the
number of agents in advance, some care is needed
when formulating a satisfiability problem forATLES;
cf. a similar consideration forATL [11]. In partic-
ular, the range of semantic structures, over which a
formula is to be interpreted, needs to be specified.
Such a range can be determined by allowing for a
certain number of agents to be present in the seman-
tic structures. To see that allowing for different sets
of agents to be present can influence satisfiability,
look at the followingATL -formula (adapted from [7,
p.47]): ¬〈〈a〉〉©p ∧ ¬〈〈a〉〉©q ∧ 〈〈a〉〉©(p ∨ q). This
formula expresses the fact that, in the next state, agent
a cannot makep true, and cannot makeq true; but
it can make eitherp or q true. Now the question is
whether this formula is satisfiable. The answer is that
it is only satisfiable in a semantic structure for more
than one agent, and not satisfiable with merely one
available agent. Thus the number of agents present in
a structure is important for determining satisfiability
of a formula in this structure. With these concerns in
mind, three variants of the satisfiability problem for
ATL were suggested in [11] depending on the possi-
bilities for the number of agents to occur in seman-
tic structures. In this paper, however, we concentrate
only on one of these problems; the other two satisfia-
bility problems can be reduced to this one:

Satisfiability over formula-defined sets of
agents: Given an ATLES-formula ϕ, is ϕ
satisfiable in a structure for exactly the agents
which occur inϕ?

The following theorem states a key result of this pa-
per.

Theorem 3.3 The satisfiability problem forCATL is
EXPTIME-complete.

The lower complexity bound carries over from the
EXPTIME-hard fragmentATL ; see [10, 11]. For the
upper bound, a modified version of the type elimina-
tion construction from [11] forATL yields member-
ship in EXPTIME. The main issue that needs to be
accounted for is thatATLES allows for commitment
of agents to strategies explicitly in its syntax. The de-
tails of the construction are rather complex, and we

omit them here due to space restrictions1.

We now argue that the axiomatic system forATLES

presented in Section 1.2 is sound and complete. For
showing completeness we employ the type elimina-
tion construction used for Theorem 3.3: the struc-
ture of the proof is similar to the completeness proof
of the axiomatic system for Computation Tree Logic
that can be found in [4]. The following three schemes
generate valid and provable implications which state
properties ofATLES that are used in the proof of com-
pleteness: for all commitment functionsρ, we have

Regularity: ` 〈〈A〉〉ρ©ϕ → ¬〈〈B〉〉ρ©¬ϕ, for
A ∩B ⊆ dom(ρ);

Coalition-monotonicity: ` 〈〈A〉〉ρ©ϕ →
〈〈B〉〉ρ©ϕ, for A ⊆ B;

Property (P):̀ 〈〈A〉〉ρ©ϕ ∧ ¬〈〈A〉〉ρ©¬ψ →
¬〈〈∅〉〉ρ©¬(ϕ ∧ ψ).

Instances of Regularity are provable using axioms (S)
and (⊥), and of Coalition-monotonicity by using (S)
and (>). Property (P) can be derived using (S) and
the inference rule〈〈A〉〉ρ©-Monotonicity. The ax-
iomatic system forATL [6] contains the axiom(Σ):
¬〈〈∅〉〉ρ©¬ϕ → 〈〈Σ〉〉ρ©ϕ. Notice that (Σ) is not
used in the axiomatic system forATLES since the
grand coalitionΣ of all agents is not available in
ATLES.

Theorem 3.4 The deductive system forATLES is
sound and complete.

4 Conclusions and Related Work

We introducedATLES as an extension ofATL with
explicit names for strategies. We showed thatATLES

satisfiability isEXPTIME-complete by extending the
type elimination construction forATL from [11].
Moreover, we presented a sound and complete ax-
iomatization forATLES, the completeness proof of
which is based on that type elimination construc-
tion. ATLES does neither fix the number of agents nor
the available strategy terms in advance and thus con-
tains the logicsCATL [9], CL (see below),AL (idem),
ATL [11], ATLΣ [6] and ATLESΣ,Υ as fragments,

1An extended version of this paper with full proofs is
available from the authors.



where the parameterΣ is a fixed set of agents and
the parameterΥ a fixed set of strategy terms. Thus
the upper complexity bound forATLES carries over
to these fragments whose validities can, moreover, be
derived using the axiomatic system forATLES.

Pauly’s Coalition Logic (CL) can be conceived as
the one-step fragment ofATL ; see [6]. Interest-
ingly enough, Borgo [2] recently presented his Ac-
tion Logic (AL ) which can be seen as the one-step
fragment ofATLES. The basic construct inAL is ~vϕ,
where~v is a vector with for every agenti a place that
can be filled with either a constant action termai,
(meaning that agenti has committed toai) a quan-
tifier ∃xi (agenti has a choice to make) or∀yi (for
all actions ofi). The interpretation of~cϕ is that un-
der the “assignment”~c, the formulaϕ will hold in the
next state. One easily sees that this would correspond
to our 〈〈A〉〉ρϕ, whereA is the set of agents with an
∃xi in ~v, the functionρ collects all the pairs(i, ai)
with ai in ~v. Summarizing, these logics relate to one
another according to this “rule”:

CL is to ATL as AL is to ATLES.

Various ways are conceivable to extend the language
of ATLES, an interesting one of which being to al-
low for composition of strategies. We can model,
e.g., non-deterministic strategies with “disjunctions”
of strategies: The formula〈〈〉〉{a 7→%1∨%2}Φ states that
agenta uses the non-deterministic strategy%1 ∨ %2,
where, at each state,a chooses either according to
strategy%1 or %2 to bring about the temporal expres-
sionΦ. Thus extendingATLES with “disjunction” of
strategies and other operators for composing strate-
gies enables us to succinctly express complex prop-
erties about strategic ability of agents. We leave the
characterization of the gained expressive power and
the investigation of the impact on the computational
complexity for future work.
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