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Abstract bridge this gap. This logic extends bodaTL [9]
and the ‘Action Logic’ aL) of [2]. After introduc-
We introduceaTLES — a variant ofaTL with ing ATLES in this section, in Section 2, we investi-
explicit names for strategies in the object gate its expressivity, while, in Section 3, we formu-
language. ATLES makes it possible to re- late two variants of the model-checking problem for
fer to the same strategy in different occur- ATLES, establish their computational complexity, and
rences of path quantifiers, and, as a con-  also give an axiomatization that is complete with re-
sequence, it possible to expressaTLES spect toATLES semantics. We also settle the com-
iomatic system foRTLES. Moreover, we We now introducesTL with explicit names for strate-
show that satisfiability problem foxTLES gies. The key idea is to replace the cooperation
is no more complex than foxrL: it is Ex- modalities({A)) of ATL with constructions of the form
PTIME-complete. We identify two variants {(A) , wherep is acommitment functianA commit-
of the model-checking problem farLEs menffunctionp, is a partial function mapping agents
and investigate their computational com- to strategy terms. That is, each agérfor which p
plexity. Finally, we show howaTLES can is defined (i.e.b € dom(p)) commits to the strat-
be used to reason about extensive games. egyp(b). Then((A) » means that ‘while the agents

in dom(p) act according to their commitments, the

. . . coalition A can cooperate to ensupeas an outcome’.
1 Introduction and Preliminaries P

Our work can be seen as a revised version of the logic
Alternating-time Temporal LogicAfL) is a logic in  CATL [9], which included commitment operators of
which one can reason about the strategic abilities othe form C; (e, ), meaning ‘under the assumption
players [1]. It provides an elegant and popular reprethat a commits to strategy, then e holds’. The
sentation formalism to specify game-like, multi-agent operators were interpreted using apdate seman-
systems. The key construct ikTL is of the form tics, which had the effect that, once an agent commit-
((A)), expressing that coalitiodl has a strategy so ted to a strategy, she could not change that commit-
as to ensure that the temporal propestiiolds. ment. Here, we use a different semantics, which does

) . hot make this assumption of irrevocable commitment.
It has been long recognized ([9, 2]) that the semantiC§qreqver, in the strategies, we allow for agents with

of ATL is richer than its language: whereas in the se- e fect information, i.e., making a choice depends on

mantics one can explicitly reason about strategies, itjq f|| history of previously traversed states. Finally,
the language one can only quantify over them. The. 1 \as defined for a fixed set of agents and a fixed

aim of this paper is to preseAtternating-time Logic gt of strategy terms [9]. In this work, however, (as
with Explicit StrategieATLES), a logic intended to



in [11] for ATL), we do not fix the agents and strategy
terms in advance.

1.1 ATLES

Definition 1.1 [ATLES Syntax] LetII be a countable
infinite set ofatomic propositionsX a countable in-
finite set ofagentsandY a set ofstrategy termsvith
Y = U,es, Yo, WhereX, is a countable infinite set
of strategy terms for agent. A coalition is a finite
setA C X of agents. Acommitment functiois a par-
tial functionp : 3 — Y with a finite domain, which
maps an agent € ¥ to a strategy term(a) € Y,
for a. The set ofaTLES-formulas is generated by the
following grammar, where € II, A ranges over
coalitions,p over commitment functions and over
ATLES-formulas:

Pl leVel(A),Opl (A),Dp |
(A) U .

(V2R

Logical truth (T), the Boolean connectives\( —,

e 7 : Q — 2" is avaluation functionwhich as-
signs to every state a set of atomic propositions
that are true there,

§: QxY — 229 is atransition function
which maps a state € Q and an agent € X
to a non-empty set ofhoicesd(q, a) available
to a at ¢ such that the following condition is
satisfied: for every stateg € @ and every set
Q1,...,Q,, wheren is the number of agents,
of choices®; € 4(q,1), 1 < i < n, the intersec-
tion@, N---NQ, is a singleton set, and

||| : T — (QF — 29) is adenotation func-

tion, whereY = | J, .y, T4, which, for each agent
a € X, maps aru-strategy term to an-strategy

(to be defined below).

Intuitively, 6(g,a) describes thea-choices avail-
able in¢: when in stateg, agenta chooses a set
from 6(g,a) to ensure that the “next state” will
be among those in the chosen set. This notion
of a-choices is generalized td-choicesfor coali-

and«) and< are defined as usual. Observe that, intions A of agents as follows: Given an ATS =

ATLES, the operators(A)) 0 are explicitly defined
in the syntax, sincg(A)) ,0 cannot be expressed in
terms of((4)) , andz/ within ATLES. ATL is the frag-
ment of ATLES only allowing for commitment func-
tions that are undefined for all agents.

(I, %,Q,Y1,...,Tph,m 6, ||-||), for each statg €
@ and each coalitiont C ¥, setd(q, A) to be the set
{Qa € Q| Qa =(Nyes Qo WhereQ, € d(q,a)}
if A # 0, or otherwise, i.e., ifA 0, the set
{Ud(¢,2)}. When in state, the agents in coali-

As semantic structures, an extension of alternatingion 4 collectively choose a set fromig, 4) to en-

transition systems were suggested in [9] that explicSU"e that the “next state” is from this set. _Note that
itly account for actions and action pre-conditions, so-9(4; ) is non-empty for each stajeand coalitiond,
called action-based alternating transition systems. 12ndd(¢, &) is a set of singletons. The states in the sin-
this paper, however, we confine ourselves to a variangleton sets of(¢, ) are thesuccessorsf ¢, i.e., the

of the alternating transition systems introduced in [1]SyStém is completely determined when all the agents
extended with strategy terms and a denotation funch@ve made their choice. Since the empty coalition
tion mapping strategy terms to strategies. These trang@nnot influence the behavior of the systeity, )
sition systems can easily be seen to be equivalent & Set tolJd(¢; %), the set of all possible successors

the action-based structures of [9].

Definition 1.2 [Alternating Transition System] Let
¥ ={l,....,n} C X, withn > 1, be a finite
set of agents and, for each agentc ¥, T, C
Y; a finite set ofi-strategy terms. Aralternat-
ing transition system (ATS) for is a tupleS
(IL,2,Q,Y1,...,Tph,m 6, |||y where

e II C II is a finite, non-empty set céitomic
propositions

e () is afinite, non-empty set cttates

of g.

An infinite sequence = qoq1q2 - - - € Q“ of states
is a computationif, for all positions: > 0, there is
a choice{q;+1} € d(q;,%). Denote withA[7] the -
th component; in A, and with A[0, ¢] the initial se-
quencey - - - g; of \.

A strategyfor an agents € X is a functiono, :
Q1 — 29 that maps all finite sequencas; € Q7 of
states to a choice, (A-q) € (g, a) available to agent
a atq. Note that\ - ¢ denotes the concatenation of the
finite sequence\ with the stateg. A strategy for a
coalition A is a set of strategiess = {0, | a € A},



one for each agent id. Given a commitment func- rules. The notions oATLES-provability and consis-
tion p, we augment the notion of strategies férto  tency are defined as usual.

that of ap-strategy forA. This is a set of strategies . . —
containing for each committed agentdam(p), the The a>§|oms.anq the mferept_:e ruIes_wgre inspired by
' %he axiomatization of Coalition Logic in [7] and of

strategy she committed to and, for each free a98NLTL in [6] and extended t@aTLES. In particular, we

in A\ dom(p), an arbltrary_ strategy for this agent. added three new axioms (C1) to (C3) that character-
Formally, ap-strategy forA is a strategyr 4udom(p) . o . :
. L ize the expressivity of the commitment function. In-
for the agents iM U dom(p) such that for all agents . . o
. ; tuitively, these three axioms express the following:
a € dom(p), the strategy, for a in o sudom(,) IS

such thav, = . . . "
llet@]| (C1): given a commitmenp, a coalitionA can

The setout(q, o4) of outcomef a strategy 4 for still ensurep at the next state after an agent out-
the agents i4 starting at a state is the set of all side of A commits to a strategy;

computations\ = goq1g2 - - - € Q¥ such thayy = ¢ ) ) N

andg1 € N, e, 7a(A[0,4]) foralli > 0. (C2): given a commitment’, a coalitionA can

. ] still ensurep at the next state after a member of
Now we can be more precise about the meaning of 4 dismisses her commitment:

(A)e:

(C3): given a commitmeng, after a committed

{(A)) ;¢ means that, given the commitments agenta has left the coalitiorA U {a}, the re-
of the agentd € dom(p) to use strategy maining agents i are still able to ensure at
p(b), the agentsu € A\ dom(p) have the next state.

a strategy such that, no matter what the

agentsc € ¥\ (dom(p) U A) will do, ¢ The following lemma formalizes the relationship be-
will result. tween next formulas with different coalitions and

o ) ) commitment functions by combining the axioms (C1)
Definition 1.3 [ATLES Semantics] Given an ATS 4 (c3). It characterizes the conditions under which
S = (ILX,Q,Ty,...,Tn,m6,|[-[]), the satisfac-  the power of one coalitiom, given some commit-
tion relation = is inductively defined as follows, mentsp, can be “transferred” to the power d8,
where we omit the Boolean cases. Validity and sat-by assuming commitments. That is, it charac-
isfiability can be defined in a standard way. terizes when a formula of the fO”ﬁA»pOdJ -
{(B))¢Oy can be derived. Intuitively, the implication
in Lemma 1.4 can be seen as a course of action where
agents join or leave the coalition and agents take or
dismiss commitments.

e S,q E (4),0 iff there is a p-strategy
T Audom(p) TOr the agents inA U dom(p) such
that for all computations € out(q, o sudom(p))
it holds thatS, A[1] = ¢;

¢ S.q E <<A>>pg(p iff there is a p-strategy Lemma 1.4 LetA, B be two coalitions of agents and
0 Audom(p) fOr the agents ind U dom(p) such  p & two commitment functions. Then, for aftLEs-

that for all computationd € out(q, o audom(p)),  formulasy, it holds that
it holds thatS, A[i] = ¢ for all positionsi > 0;
_ , = {A),O¢ — (B).Oy
e S,q F (A),vuy iff there is a p-strategy
0 audom(p) fOr the agents inA U dom(p) such if, and only if, the following four conditions are satis-
that for all computations € out(q, o audom(p)),  fied:

there is a positionn > 0 such thatS, \[i] E ¢
andS, A[j] = ¢ for all positionsj with0< j <i.  (P0) p(a) = £(a), for all a € dom(p) N dom(&);

(P1) (dom(&) \ dom(p)) N A = (;

(P2) dom(p) \ dom(¢) € B;
In this section, we present an axiomatic system for
ATLES: Figure 1 contains the axioms and inferenceP3) A4\ B € dom(p) Ndom(¢).

1.2 Axiomatic system forATLES



(TAUT) Propositional tautologies

(1) (AN, OL
(M (A4»,0
(S) <<A>>,,Oso AN (B),O¢ — (AU B)) ,Op Av)  whereAn B C dom(p)
(C1) (AN ,0p — (A),, O¢ wherep’ = pU{a— o}, a & A, 0o € Yo
(C2) (A), Op — (4),0¢ wherep’ = pU {a— 0o}, a € A, 0a € Y
(C3) (Au{a}),Op — (A4),0v wherea € dom(p)
(FPa)  ((A),Op < o A {A),OfA),D¢
(GFRy)  (0),0(0 — (¢ A (A4),00)) — (0),8(0 — (A)),0¢)
(FR)  (A) e = oV (A (A),OLA) YU »)
(LFRy)  (0),B((e Vv (v A (A),080)) — 0) — (0),0((A), YU e —0)
(Modus Ponens) W (((0)) ,0-Necessitation) <<®>;:D‘F’
((A)) ,O-Monotonicity) o

. {A),Op — (A),0¢

Figure 1: Axioms and Inference Rules forLES.

2 Expressivity

ATLES seems more expressive than its fragment,
but exactly how does its expressivity compare to that
of ATL*? Let us first consider some examples. Con-
sider the ATSS in Figure 2. InATL, one can-
not distinguish between using general strategies as
we defined them (functions from finite sequences to
choices), andnemoryless strategies : Q — 29
(cf. [1, 8]). Hence, one immediately sees thatdn
our agent has no strategy to ensure that hothgq
and (—p A —¢) will be visited infinitely often. Such
a liveness condition can be expressedxines by

2/\3 y
p p \/:p
q —q —q

Figure 2: A single agent ATS.

not have a strategy that allows him to still make up
his mind in the next state, Compare this taTLES,
where we haveS, z = (a)) Ofree A ((a)),,Of ree,

for everyp.

Recall that, other than iATLES, in ATL* we can ex-

{(a),O({a) o A @) A (a)) ,O(=p A =), for a
suitablep. This example also shows thatLEsS is

press Boolean combinations and nesting of temporal
operators inside a path quantifier. Some of these for-

expressive enough to distinguish memoryless stratemulas, however, can be translated imoLES in a

gies from general ones.

We can use the same ATS to point at an importan
let free denote the property

difference withCATL:

{a)Op A {a) O—p: agenta can next guaranteg
but also can she guaranteg. In CATL, commitment

to a strategyp is irrevocable one has, in our ATS,

S,z = {a)Ofree A =Cy(o, Ofree): agenta does

satisfiability preserving way. For instance, tha *-
formula (a, b)) O"¢, n = 0, with ann-fold nesting
of the temporal operator next-timé)) can be trans-
lated iNtOATLES as:

{a, b>>{a|—>ga,b»—>gb}o . {a, b»{aHgmngb}O ®

n—times




wherep,, g, are fresh strategy terms for the agentsThe following lemma establishes that the translation
a, b, respectively. Note that with the translation, we function is satisfiability preserving; the proof is left
have an exponential blow-up in the formula size if to the reader.

is coded in binary.

Here are three moreTL*-formulas with nesting Lemma 2.2 Let E be the empty coalition angh the

of temporal operators that can be translated into Tr?tze;c;?é?]'t&erﬁaﬂufg(;x’ZUC':]O:thrtLhe'f?r;”:]::gion
aTLES: (@, b) o u(b U D), (@ b)Yt (Ov)], and ¢

{a, bYO (o1 1) can, respectively (in this order), be funct|oln( ){E.¢, 1S defined forp, the following are
expressed as equivalent:

(@, 0) (g b0} [PUL@ ) {0, 1o (WU D)) (@) s satisfiable wrtaTL*:
(a, b>>{aHga ngb}[@U(«a >>{a’_’9a b’_’gb}OU ’
005D o) 8D iy (PUD)- O (P T sisfiable wrtaTLs.

To pinpoint the relationship betweemLEs andATL * Note that(-)* determines only a fragment a@frL*
more precisely, we now define a translation func-that can be translated interLES in a satisfiability
tion (-)* mapping somertL *-formulasy to formulas  preserving way. This was to be expected SiNTEES
(p)* of ATLES such thaty is satisfiable if, and only is not expressive enough to subsume fiiL*. In

if, (p)* is satisfiable. To this end, let us first recall the particular,ATL*-formulas with a disjunction of tem-
syntax ofATL* with this EBNF notation (for a com- poral operators inside a path quantifier cannot be
plete definition ofaTL * see, e.g., [1]): translated. For instanceTLES cannot express the

ATL*-formula
state formulasip == p [o Ve | ¢ | (A)Y

/
path formulas:y := ¢ [V VY |VAY]| ¢ | (A v
OY | YUy stating that coalitiom has a strategy to ensure com-
putations on which) or ¢’ holds. In fact,ATLES

We restrict the translation function to formulas in andaTL* are incomparable with respect to expressiv
negation normal formwhere negation only occurs in . P P P

front of propositional variables or path quantifiers. To g:LES:Tvi]iflorerlLaefole C?}?\:E’;Se enxnprteésedxln
understand the following definition of the translation ; ,d imes*o € formulae cannot be ex-
function, the distinction betweesrL *-state formulas ~ Pr¢35€ :

and path formulas is important. .
2.1 ATLES for Extensive Games

Definition 2.1 We define a partial functior(r)jB ¢ . . _
onATL* state and path formulas as follows, whéte ~\WherecaTL seems to provide an appropriate machin-
ranges over coalitions angover commitment func- €y for reasoning abougtrategicgames [9],ATLES
tions. For all state formulas, ¢, ¢’ and all path for- IS well suited to generalize this textensiveggames.

mulasi, ¢’ in negation normal form: Due to space restrictions, this is only sketched here.
Consider the two-player extensive gariein Fig-
(p)}kB,@ = p,forp eIl ure 3. Suppose playér has to move at nodeg,
(TP)?B,@ = ﬂ(sD)TB,@; and y,, whereas the remaining non-terminal nodes
(Ve )ipe = (gp)’gRQ Y (@/)?BM area’s. Note thate has 16 strategies, while player
(<<A>>1/’)?B,g> = (Qp)zﬂA’p), for commitment b has 4 strategies. Wg writéri tq denote a strat-
function p with dom(p) = A egy for agent: where this play_er will choose ‘left’ at
and the range gf containing ~ the nodesc,, x5, andzy, but ‘right’ at nodexs. We
only fresh strategy terms identify a strategy with a term denoting it: 1&; be
(1 A 1/’/)?3 o = (1/))2;3 §> A (1/’/)?3 o the strategies for p!aye;r Let the denotation function
(Q¢)<B £>’ — (B >> O ){B o J et (8 assign stratt_agy_z to playerj, andgj
_ to playeri. A strategy profile is a pais = («, 3)
OV, = (O ﬁW(B &) e and this uniquely determines an outcome. The vec-
Wuy' )<B7£> = (B >> () (B.g) U )<B¢£>)' tors at the terminal nodes indicate the payoff for the



Equilibrium, in a straightforward way. We claim that

Ty
NE({(a, 5)) holds atz; in S¢ if, and only if, the
strategy profilg«, 5) is a Nash Equilibrium o€z:

v Y2 NE((a,8)) = BRi(B,a)A BRy(a,f).
/ \ / \ We can now also characterizeabgame perfect Nash
Equilibrium as follows:

T2 T3 1 Ty
/\ /\ ! / \ SPNE((e,0)) = (HBNE(e,5)).
1 2 7 6 4 1 In our gameG, we then have
6 4 3 5 3 5

Sa,r1 = - NE((lrlr,LR))

AN -SPNE((lrlr, LR))
Figure 3: An extensive game. NSPNE({irll, LL)).

To see thatSq,x1 = - SPNE((lrir, LR)), note

players: the upper value is the payoff ferand the thatSq,x3 = ~NE((lrlr, LR)). In fact, backward
lower one forb. To reason about the payoffs, let us induction a procedure to find the subgame perfect
assume the ATS that is associated withy inter-  Nash Equilibrium of an extensive game, can be mod-
prets atomic propositions; > v, fori € {a,b} and eled inATLES. Letrat(i,«) denote thai is ara-
v eV ={0,1,...,8}, denoting that playei's pay-  tional strategy fori, given the current state, and that
off is at leasty. We can express iATLES that at each  j is also rational in all next states. Let the variable
terminal state inSg, the truth of these atoms corre- term be true exactly at all terminal states. We define
sponds with Figure 3, for the other states, they are alrat(i, «) as the disjunction oferm and the formula

false. _
N _ V[V OpeaOlrat(i,s) A
We now can explicitly reason about properties of VeV - BeT,
strategies irS¢. In the following, assumé # j and (O iz py O (wi = 0)) A
that formulas are (_avaluated in the_raqtof Sa, un- /\ <<>>{wai}o(mt(j, B;) —
less stated otherwise. ieakly dominant strategpr Qi E€Yi,BEY;
playeri is one which is at least as good as any other ( )UHQHJ.HH}Dﬁ(ui > U))]
strategy, no matter what playgdoes. This notion of e
weak dominance is captured by This states that it is rational farto play a. That
‘ . . ‘ is, if we are not in a terminal state, playingleads
WDi(a) := /\ (@) oy O 2 v) = to a state, which, assuming rationality pfgives:

BEY; veV

a payoff of at least that can not be improved upon

by any other ofi's strategiesy;, given thatj plays a
rational strategys; along with it. Note that we have
Sa, x4 | rat(a,v) for any a-strategyy ending inl
(it is rational fora to play atx, any strategy that dic-
tates ‘left’ atz,), whereas, at; in Sg, only strategy
~' = Irll qualifies forSg, 21 | rat(a,v’).

We claim that, in a gameZ, strategy a is a
weakly dominant strategy for playeif, and only if,
WD;(«) is satisfied atr; in Sg. A similar corre-
spondence can be given fdominated strategied\Ve
move on to characterize Nash Equilibria. The pred-
icate BR;(«;, 3;) expresses that for playér given A similar analysis can be given for Pareto opti-

the strategyy; of playerj, 3; is the best response. mal strategies and other solution concepts. Again,
note that, inATLES, we can express a switch from

BR;(cj,B;) = /\ (<<i>>{jHaj}<>(“i >v) — one strategy to another: a property lilse;, 1 =
VeV (O {aiury Ola)) (y(ua = 2) says that even if agent
<<>>{iH,ai;jHaj}<>(Ui > U)) commits to the strategljir atx; (which only would

guarantee her a payoff of 1), in the next steman
This concept can be used to define that dilash  change her mind and still guarantee a payoff of 2.



3 Complexity and Completeness {(A)Ov, or (A) 1 U 9, we employ a modified pre-
image operatorPre’ that additionally accounts for
3.1 ATLES Model-Checking the commitments of agents to strategies as specified
in £&. The functionPre’(---) maps a coalition4,
In this section, we discuss two model-checking al-a commitment functiorf, and a set)’ of states to
gorithms forATLES. Generally, themodel-checking the setPre’(A4, ¢, Q) containing stateg at which
problemis, given a formulapy and an ATSS (a  the coalitionA U dom(£) can make a choice, while
mode), to compute the set of states Sfthat sat- respecting the commitments § to ensure the next
isfy . When model-checking asrLES-formula, we  state to lie inQ)’. More precisely, at, the agents:
have to take the strategies into account that come wittin A \ dom(&) can select a choice i#(a, ¢), and the
an ATS. However, it appears to be also an interestingagentsh in dom(¢) select the choice,(q) € d(a, q)
problem to consider the possibility that strategies areaccording to the-strategyo, = ||£(b)|| such that,
not given as part of the input (cf. the ‘model-checking for all possible choices made by the other agents in
as planning’ paradigm [5]). Notice that, for model- X\ (A U dom(¢)), the resulting successor state is in
checking, we confine ourselves to memoryless strate€)’. Formally, Pre’(- - - ) is defined as follows: for all
gies. With this in mind, we now formulate two varia- A C ¥, all § € Z,, all Q" C @, and allg € Q,

tions of the model-checking problem farLEs: we haveg € Pre’(A, €, Q') if, and only if, there is a
choiceC' € §(A U dom(¢), q) such thatC C @’ and
(a) Model-checking with given strategies C € Nucdom(e) 1E(@)](a)-
Given an ATLES-formula ¢, an ATS S =  This modification of the functiorPre does not af-
(I,2,Q,Y1,...,Th,m4, |||} where the set fectthe complexity of the model-checking algorithm.
¥ = {1,...,n} containsn agents, and a state Hence, the variant (a) @fTLEs model-checking is no
q € Q, is o satisfied aty in §? more complex than model-checkiagL .

(b) Model-checking along with generating strate- Theorem 3.1 The variant (a) of the model-checking
gies problem foraTLES is PTIME-complete, and can be
Given an ATLES-formula ¢, an ATS S =  solved intime&)(m-¢) for an ATS withn transitions
(I, %, Q,m0), and a statey € Q, are there and anATLES-formula of lengt.
strategies, one for each strategy term that occurs
in ¢, such thatp is satisfied af in S augmented  An algorithm deciding variant (b) of theTLES
with these strategies? model-checking problem, needs to generate the

strategies for the strategy terms occurring in the in-

For deciding variant (a) of the problem, we use aput formula. However, we can make use of the

modified version of the symbolic model-checking al- algorithm for variant (a) as follows: we first non-

gorithm foraTL from [1]. Figure 4 presents the func- deterministically guess the required strategies with

tion ATLES—eval(---) hat solves variant (a) of the which we augment the model. In the second step, we

model-checking problem foxTLES. use the polynomial time algorithm from (a) to model-
check the input formula on the augmented model. We

Consider an ATSS = (I, 3,Q,Ty,....,Tn, 7,0, ghiain the following result.

[|-]), a statey in S, and amTLES-formulayp as input.
TakeX to be the set containing all agents occurring in
v, and, for each agent € ¥, let T, be the set con-
taining all a-strategy terms of. For suppose other-
wise,S cannot be a model fap. We denote witlg,,
the set of all commitment functions occurringgn

Theorem 3.2 The variant (b) of the model-checking
problem forATLES is NP-complete in the number of
transitions of the given ATS and in the length of the
input formula.

The algorithm computes using a bottom-up approachProof. The upper bound can easily be seen. kédte
for each subformula of ¢, its extensiorfy] in S, a  anATLEs-formula of length?¢ andS an ATS for the
set of states fron$ that all satisfy:). For comput- agents occurring ip. Guessing the strategies can be
ing the extension of formulas of the for({nA))&Qw, done in polynomial time in the number of transitions



1. function ATLES—<val(v), S = (IL Y, Q,{Ya}acx, 7, 6, ||-|])) returns the extension [¢] in S
2. case ¢ = p: return 7(p)

3. case ¢ = —0: return Q \ ATLES—eval (¥, S)

4., case ¢ = 1 V ! return ATLES—eval(91,S) U ATLES—eval(V2, S)

5. case ¢ = (A).OY:  return Pre’(A, £, ATLES—eval(¥, S))

6. case ¢ = ((A)) 00 A1 = Q; Ay = ATLES—eval(9,S)

7. while A1 Z AQ do A1 = AQ

8. Ao = Pre/(A, €, A1) N ATLES—eval(J, S) od
9. return A,

10. case ) = (A) 1 U V21 A1 == 0; Az = ATLES—eval(V2, S)

11. while Ao g Aq do A1 = A1 UAs

12. A = Pre/(A, €, A1) N ATLES—eval (1, S) od
13. return Ay

14. end-function

Figure 4:ATLES symbolic model-checking (variant (a)).

in S: for at most? strategy terms occurring ip, we  For anillustration ofS,,, see Figure 5. The number of
guess one strategy. Notice that we confine ourselvesansitions inS,, is polynomial in the length ap. To

to strategies without history which are of polynomial see that, notice thal, contains not more than twice
size in the number of transitions &1 such a strategy times the length op many states with, for each state,
specifies one choice at every state&f Since the at most twaa-choices. We define the formula

second step is iIRTIME, we obtain an NP algorithm.

q1 q2

dn—1

dn
In order to show the lower complexity bound, we re-

duce the well-knowrNP-hard satisfiability problem
for propositional logic to variant (b) of the model-
checking problem fomTLES. For NP-hardness, it
is sufficient to consider propositional logic formulas a as
@ in conjunctive normal form only [3]. That isp

is a conjunction of the formy; A --- A 4, where
eachv); (for i 1..m) is a disjunction the form
Oy V-V, . Eachyy (fori = 1..m andj = 1..m;)

is a literal, i.e. a propositional variable or its nega-
tion. Letpy,...,p, be an enumeration of the propo-
sitional variables occurring ip. Reserve, for each
19;'- with1 < i < mandl < j < m;, a fresh
propositional variable(i, 7). We now define the ATS
S, = (I1,%,Q,m,0) with

Figure 5: The ATSS,, for one agent.

OATLES = /\ ( \/<<a>>{a:9a}<>p(i,j)).

i=1l.m j=1l..m;

Notice that the length opar s is polynomial in the
length of¢.

The reduction works as followsy is satisfiable if,
and only if, there is a strategy for agensuch that
warLes IS satisfied aig in S, augmented with that
strategy. QED

o II={p(i,j) | 1 <i<mandl <j<m}
o ¥ ={a};

L4 = bl ) la"' ns 1/1 1
Q={aaa Gn n 3.2 Satisfiability and Completeness

for all p(i, j) € T, setr(p(i, §)) = {q | ¥
e} U{q, | 95 = —pi};

This section investigates the computational complex-
ity of the satisfiability problem forTLES and com-

0(a,q0) = {{ar}, {¢i}}, foralliwith 1 < i <
n, seté(a,q;) = d(a,q;) = {{ai+1},{gi41 1}
d(a,an) = {{an}}, andd(a, q;,) = {{q,}}.

pleteness of the axiomatic system in Figure 1. The
complexity is settled aEXPTIME-complete and thus
ATLES is no more complex thaaTL. This is done



by adapting a type elimination algorithm farL omit them here due to space restrictins

from [11]. We now argue that the axiomatic system fanLes

Since, in the definition oATLES, we do not fix the presented in Section 1.2 is sound and complete. For
number of agents in advance, some care is needeshowing completeness we employ the type elimina-
when formulating a satisfiability problem ferLEs;  tion construction used for Theorem 3.3: the struc-
cf. a similar consideration forTL [11]. In partic- ture of the proof is similar to the completeness proof
ular, the range of semantic structures, over which aof the axiomatic system for Computation Tree Logic
formula is to be interpreted, needs to be specifiedthat can be found in [4]. The following three schemes
Such a range can be determined by allowing for agenerate valid and provable implications which state
certain number of agents to be present in the semarproperties oRTLES that are used in the proof of com-
tic structures. To see that allowing for different setspleteness: for all commitment functiopswe have

of agents to be present can influence satisfiability,

look at the followingaTL -formula (adapted from_[?, Regularity: - <<A>>p©(p — ﬁ<<B>>pQﬁ<p, for
p-47]): =(a)Op A ~(a)Og A {a) O(p V q). This AN B C dom(p);

formula expresses the fact that, in the next state, agent

a cannot makey true, and cannot make true; but Coalition-monotonicity: +  (A) O¢ —
it can make eithep or ¢ true. Now the question is (B),Op, for A C B;

whether this formula is satisfiable. The answer is that

. . g . . P ty (P)F (A -(A -

it is only satisfiable in a semantic structure for more ﬁ%’y%ﬁ(() A 15)() >>PO@ Ao >>”O v -
than one agent, and not satisfiable with merely one ° 7 '
available agent. Thus the number of agents present i

a structure is important for determining satisfiability q d of Coaliti tonicity b g (S
of a formula in this structure. With these concerns in&" (L), and of Coalition-mono onicity by using (S)
and (T). Property (P) can be derived using (S) and

mind, three variants of the satisfiability problem for . .
ATL were suggested in [11] depending on the possi-.the inference rule(A),O-Monotonicity. The ax-

bilities for the number of agents to occur in seman—Iomatlc system fomTL [6] contains the axion{):

tic structures. In this paper, however, we concentrateﬁ«@»poﬁ‘p - <<E>>pO‘P' Notice that E) is not

only on one of these problems; the other two satisfia-used in the axiomatic system farTLES since the

bility problems can be reduced to this one: grand coalitionX of all agents is not available in
' ATLES.

Pnstances of Regularity are provable using axioms (S)

Satisfiability over formula-defined sets of Theorem 3.4 The deductive system fosTLES is
agents: Given an ATLES-formula ¢, is ¢ sound and .complete

satisfiable in a structure for exactly the agents

which occur inp? .
4 Conclusions and Related Work

The following theorem states a key result of this pa- ) ) )
per. We introducedATLES as an extension okTL with
explicit names for strategies. We showed thates
Theorem 3.3 The satisfiability problem focatL is ~ Satisfiability iSExpTimMe-complete by extending the
ExpTIME-complete. type elimination construction fomTL from [11].
Moreover, we presented a sound and complete ax-
iomatization forATLES, the completeness proof of
which is based on that type elimination construc-
tion. ATLES does neither fix the number of agents nor
the available strategy terms in advance and thus con-
tains the logicscATL [9], CL (see below)aL (idem),
ATL [11], ATLx [6] and ATLESy v as fragments,

The lower complexity bound carries over from the
ExPTIME-hard fragmeniaTL; see [10, 11]. For the
upper bound, a modified version of the type elimina-
tion construction from [11] forTL yields member-
ship in EXPTIME. The main issue that needs to be
accounted for is thaaTLES allows for commitment

of agents to strategies explicitly in its syntax. The de-  *An extended version of this paper with full proofs is
tails of the construction are rather complex, and weavailable from the authors.



where the parameteX is a fixed set of agents and
the paramete a fixed set of strategy terms. Thus
the upper complexity bound foxTLES carries over

to these fragments whose validities can, moreover, be

derived using the axiomatic system forLES.

Pauly’s Coalition Logic ¢L) can be conceived as
Interest-

the one-step fragment ofTL; see [6].

(3]

ingly enough, Borgo [2] recently presented his Ac- [4]

tion Logic (aL) which can be seen as the one-step

fragment ofATLES. The basic construct iaL is @,

wherev is a vector with for every agerta place that
can be filled with either a constant action tetn
(meaning that agenthas committed ta;) a quan-
tifier 3x; (agent: has a choice to make) afy; (for

all actions ofi). The interpretation ofip is that un-

der the “assignment, the formulap will hold in the

next state. One easily sees that this would correspond
to our ({(A)) ,», whereA is the set of agents with an

Jz; in ¥, the functionp collects all the pairgi, a;)

with a; in ¥. Summarizing, these logics relate to one

another according to this “rule”:

CLIStOATL as AL iStOATLES.

Various ways are conceivable to extend the language
of ATLES, an interesting one of which being to al-
low for composition of strategies. We can model,
e.g., non-deterministic strategies with “disjunctions”
1@ states that

of strategies: The formuld)) .., . ,,
agenta uses the non-deterministic strategyV oo,

where, at each state, chooses either according to
strategyo; or o, to bring about the temporal expres-
sion®. Thus extending\TLES with “disjunction” of

strategies and other operators for composing strate-
gies enables us to succinctly express complex prop-
erties about strategic ability of agents. We leave the
characterization of the gained expressive power and
the investigation of the impact on the computational[

complexity for future work.
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