THE LOGICAL MODELLING OF
COMPUTATIONAL MULTI-AGENT SYSTEMS

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
IN THE FACULTY OF TECHNOLOGY

MICHAEL JOHN WOOLDRIDGE
DEPARTMENT OF COMPUTATION
AUGUST 1992

DECLARATION

No portion of the work referred to in this thesis has been submitted in
support of an application for another degree or qualification of this or
any other university or other institution of learning.

Abstract

THE aim of thisthesisisto investigatelogical formalismsfor describing, reasoning about, specifying, and perhaps
ultimately verifying the properties of systems composed of multiple intelligent computational agents. There
are two obvious resources available for this task. The first is the (largely Al) tradition of reasoning about the
intentional notions (belief, desire, etc.). The second is the (mainstream computer science) tradition of temporal
logics for reasoning about reactive systems. Unfortunately, neither resource is ideally suited to the task: most
intentional logics havelittle to say on the subject of agent architecture, and tend to assume that agents are perfect
reasoners, whereas models of concurrent systems from mainstream computer science typically deal with the
execution of individual program instructions.

Thisthesis proposes a solution which draws upon both resources. It definesamodel of agents and multi-agent
systems, and then defines two execution models, which describe how agents may act and interact. The execution
model s define what constitutes an acceptable run of asystem. A run may then act asamodel for atemporal logic;
this logic can subsequently be used to describe and reason about multi-agent systems. A number of logics, with
various properties, are developed in thisway. Several detailed examples are presented, showing how the logics
may be used for specifying and reasoning about multi-agent systems.

The thesis includes a detailed literature survey.

Acknowledgements

ONLY one name appears on the cover of this thesis, but a great many people have been indirectly involved in its
production...

First, thanks to the SERC for financia support.

Second, thanks to Greg O’ Hare, for all his enthusiasm and encouragement; it isdifficult toimagine afriendlier
Or more supportive supervisor.

Third, thanks to everyone who has been involved in DAI/CSCW research at UMIST over the past three years.
In particular, thanks must go to Paul Dongha, Rebecca Elks, Afsaneh Haddadi, Lynne Hall, Robin Pike, and Steve
Viller.

Fourth, | would like to thank everyone else who has read my reports, commented on my ideas, engaged in
protracted email debates, and generally helped me to understand. Special thanks here to Nigel Shardlow, whose
discussions proved a fruitful source of ideas, and Daniel Mack, who carefully read and commented on a thesis
draft.

Fifth, | would like to offer a special vote of thanks to Michagl Fisher, who spent a great deal of time reading
my reports, helping me to understand what | was doing, and helping me to sort out the technical details of my
work. This thesis would quite simply not exist if it were not for Michael’s help.

Finally, to my wife Janine, (who hopes everything will get back to normal now), for everything: thank you.

Thisthesis was submitted to the Faculty of Technology in the University of Manchester on September
4, 1992, and was successfully defended on October 23, 1992. It was typeset using IATEX.

Contents

Abstract

Acknowledgements

| Introduction

1 Introduction
11 Motivation. e
12 Background e
1.3 AnApproach to Reasoning about Multi-Agent Systems. L.
14 Structureof theThesis e

I Background

2 Agency and Artificial Intelligence

21 Whatisan Agent?
211 Agentsasintentional Systems
2.2 Reasoning about Intentional Notions
23 PossibleWorldsSemantics
231 Norma Modal Logics
23.2 Commonand Distributed Knowledge L
233 Quantified EpistemiCcLOQICS
234 Grounded PossibleWorlds
235 AvoidingLogical Omniscience
2.3.6 Bdliefs, Gods, Intention and Rational Balance L.
24 Meta-Languagesand Syntactic Modalities o
241 Meta-Languages, Self Reference, and Inconsistency
242 Konolige sFirst-Order Formalization of Knowledgeand Action
243 MooresFormalism.
25 Other Formalisms
251 TheDeductionMode of Belief
252 Werner'sFormalism
253 Situation SemantiCs. e
254 Singh'sFormalism
26 Agency and Al: Building Agents L
26.1 SymbolicAland AQenCy o o
26.2 Alternative Approaches
27 SUMMAIY . . . o e
3 Social Agency and Distributed Artificial Intelligence
31 Communicationand DAL
32 SpeeCh ACES
321 SpeechActsalaAustin
322 SpeechActsalaSearle

4

323 SpeechActsalaCohenandPerrault
324 SpeechActsalaCohenandLevesque
3.25 Non-monotonic Reasoning, Belief Revision, and SpeechActs
326 Werner'sFormalismand Speech Acts
327 Singh'sFormalismand SpeechActs.
3.3 Social Agency and DAI: Building Social Agents
3.3.1 TheBlackboard Architecture.
332 BEINGS . . .
333 ACIOrS. . . e
334 TheContract Net
335 MACE . . .
336 After MACE
34 SUMMAIY

A Theory of Computational Multi-Agent Systemsand Its Temporal Logics

A Theory of Computational Multi-Agent Systems
41 SetingtheScene
42 SOMEeASSUMPLIONS o o e
421 ACommentonNotation
A3 AQENIS . . . e
431 Belief . ..
432 CoOmMMUNICALION o
433 AClON. . . .
434 Agent Architecture
44 SYStEMS . . . e
45 Execution MOdElS.
451 SynchronousExecution
452 Interleaved EXECULION L
46 SomeExtensionstotheBasicModd
4.6.1 Alternative Definitionsof Epistemiclnputs L.
462 Broadcast Messages
4.6.3 Multiple Preconditionsfor ActionsandMessages.
A7 ALIstof TYPeS o
4.8 SUMMAY . . o o e e e e e e

Linear Time Temporal Logics for Multi-Agent Systems

51 TheLogiCAL
511 Syntax e e e e
512 SemantiCsS.
513 Proof Theory
514 DISCUSSION v o e

52 Thelnternal Languagesof AL
521 AnExpressivelnternal Language
5.2.2 Some Possible Theorems and Their Interpretation

5.3 A First-Order Linear Time Logic for Multi-AgentSystems
531 Syntax e e
532 SemantiCs.
533 Proof Theory

54 SUMMAIY

6 Five Examples 86

6.1 Reasoning About Multi-Agent Systems 86

6.2 Axiomatizing Two Frameworksfor Multi-Agent Systems. 87
6.2.1 Agent Oriented Programmingand AGENTO 87

6.22 Concurrent METATEM Processes o 91

6.3 Specifying Three Paradigms for Cooperative Problem Solving 94
6.3.1 Master/SlaveProblem Solving Systems 94

6.3.2 A Cooperative Inference Technique 96

6.3.3 TheContract Net Protocol 100

6.4 SUMMAY o 106

7 Branching Time Temporal Logicsfor Multi-Agent Systems 107
7.1 BALFrames 108
7.2 TheLogicBAL 109
721 SYNEBX . . o o 109

722 SemMantiCS. . . . o o i 110

723 Proof Theory 112

7.3 Cooperative Ability and CooperativeGoals 112
7.3.1 Cooperative Ability 113

732 CooperativeGoals 114

7.3.3 Abilityand Goals: AnExample 115

7.4 A First-Order Branching Time Logic for Multi-Agent Systems 115
TAL SYNEBX . . o o 116

742 SemantiCS. o o i e 116

743 Proof Theory 119

744 Examples 119

75 SUMMArY . . . 120

IV Conclusions 121
8 Conclusions 122
81l ReVIBW . . . 122
82 TheWorkinContext 123
83 FutureWork 123

V Appendices and Bibliography 125
A Notation 126
B Technical Reviews 129
B.1 Situated Automata e e 129
B.2 CohenandLevesgue'sFormalism 130
B.21 SyntaX 131

B.22 SemantiCs. 131

B.2.3 Derived Operators and Propertiesof theLogic 133

B.3 Werner'sFormalism e e e 133
B.3.1 Syntax of CANPLAN 135

B.3.2 Semanticsof CANPLAN 135

C Temporal Logic and Reactive Systems 137
C.1 APlethoraof Temporal LOGICS o o o 137
C.2 ProgramModeling 138
C.3 Specificationand Temporal LOGIC 0 140

Vi

D Axiomsfrom Chapter 5
D.1 Axiomsfrom Section 5.1
D.2 Axiomsfrom Section 5.3

Vii

List of Tables

11

21
22
2.3

31

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2
7.3
74
7.5

B.1

A Family of Logics for Multi-Agent Sytems 6
Somelntentional LOGICS e 13
Some Correspondence Theory o o o e 16
Modalitiesin Cohenand Levesque'sFormalism 27
Definitions from the Plan-Based Theory of SpeechActs 44
Non-standard Operatorsin AL o e 69
Derived Temporal Operators o o e e e e e e 72
ThePropertiesof AL o 74
Some Syntactically Correct and Incorrect Formulae of AL(Lg) o o o o oo oo oL 76
ModalitiesSin AOP e e 88
Message Types and Domain Predicates for the Master/SlaveSystem 95
Message Types and Domain Predicates for the Cooperative Inference Technique 98
Abbreviationsfor the Cooperative Inference Technique 98
Message Types and Domain Predicatesforthe CNET 101
Abbreviationsfor the CNET 102
Non-Standard Operatorsin BAL e 110
Derived Operatorsfor BAL o e e m
Ability and Goals: An ExampleScenario 115
Paths, Moves, and Goals e 116
Non-standard Operatorsin QBAL e 117
Operatorsin Werner’'sLanguage CANPLANo o 135

viii

List of Figures

21
22
2.3
24

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4

7.1
7.2

B.1
B.2
B.3
B.4
B.5

The Semanticsof Normal Modal Logic 15
The Moda SystemsBased on Axioms T, D, 4and5 17
Semanticsfor Levesgque'sLogic e 25
Structure of a Typical Al Belief System 33
Operation of AgENtS 59
Statesand TransitionS e e e e e e 60
SyNChronOUS EXECULION o e 61
Runs, Worldsand World Sequences 62
Interleaved EXeCUtiON e e e 63
Semanticsof AL e e e e 71
Semanticsof FOTL o e e e 78
RelationshipsBetween Languages o o o i e e e e e e 78
Proof of Theorem 2 80
Semanticsof QAL e e e 84
Components of the Theory of Multi-Agent Systems 89
ASmpleCMPSystem 92
Proof of Theorem 3 95
Proof of Theorem 4 105
Semanticsof BAL e e e m
Semanticsof QBAL e 118
Syntax of Cohenand Levesque'sFormalism 131
Semantics of Cohen and Levesque's Formalism—Part 1. 132
Semantics of Cohen and Levesque's Formalism—Part2. 133
Derived Operators for Cohen and Levesque's Formalism 133
Semantics of Werner'sLanguage CANPLAN 136

Part |

| ntroduction

Chapter 1

| ntroduction

DisTRIBUTED Attificial Intelligence (DAI) isan emerging subfield of Artificial Intelligence (Al) whoseloosefocus
isthe study of cooperative activity in systems composed of multiple intelligent computational agents. Thisthesis
will use the expression “multi-agent system” to refer to such systems. The aim of the thesis is to investigate
logic-based formalisms for describing, reasoning about, specifying and ultimately verifying the properties of
multi-agent systemst.

Thereisavery rea need for formal tools with which to analyze and reason about multi-agent systems. This
chapter discusses the motivations for developing such tools, and the various resources that are available for the
task. The methodology of the thesis is then described. Finally, the structure of the remainder of the thesis is
outlined.

1.1 Motivation

It isworth observing that aformal theory of multi-agent systems would be valuablein its own right. AsKonolige
observes [100, p5], formal models force us to make assumptions plain, and admit arigorous examination of what
predictions the model does and does not make.

Also, there is a pressing need for tools to help manage the complexity of multi-agent systems. Designing,
implementing and debugging multi-agent systems is not easy. In a seminal 1987 paper, Gasser et al observed
that:

“Concurrency, problem domain uncertainty and non-determinism in execution together conspire to
make it very difficult to understand the activity within a distributed intelligent system”. [70]

To counter these problems, the authors advocated the devel opment of :

“...graphic displays of system activity linked to intelligent model based tools which help a developer
reason about expected and observed behaviour”. [70]

The work described by Gasser and colleagues is firmly and unashamedly in the empiricist tradition of Al: hence
the call for practical toolsto aid understanding. However, given the software experience of the past two decades,
it is perhaps surprising that no similar plea was made for principled techniques for reasoning about, specifying,
and verifying the properties of multi-agent systems.

Finally, it is to be expected that aformal theory of multi-agent systemswould provide a framework in which
general questions about cooperation and social interaction might be posed, and solutions devel oped.

To summarize, a suitable formal theory of multi-agent systems might fulfill the following roles:

* provide a tool with which to describe and reason about multi-agent systems;
* provide atool with which to specify and, (ultimately), to verify the properties of multi-agent systems;

* provide a foundation upon which more profound theories of socia action, interaction, and cooperation
might be constructed.

1A detailed introduction to the scope, aims and methodologies of DAI is not possible given the limited space available. See [16] for a
representative survey of DAI research up to 1988, and [90], [71], [36], [37] for subsequent work.

This thesis focuses on logic based methods for modelling systems. In general, a logic can be viewed as
comprising:

» awell-defined syntax, (or language), which identifies a class of syntactically acceptable objects called the
formulae of the logic;

» awell-defined semantics, (or model theory), the purpose of which isto assign each syntactic object of the
language a formal meaning;

» awell-defined proof theory which is, broadly speaking, concerned with the manipulation of formulae.

The advantages of employing logic-based techniques for reasoning about multi-agent systems follow naturally
from this definition. First, by fixing on a well-defined, formal, artificial language (as opposed to unstructured,
ill defined, natural language), it is possible to investigate the question of what can be expressed in a rigorous,
mathematical way (see, for example, [48], where a number of temporal logics are compared formally). Another
major advantage is that any ambiguity can be removed (see, for example, proofs of the unique readability of
propositional logic and first-order predicate logic [50, pp39-43 and pp97-100]).

Transparency is another advantage:

“By expressing the properties of agents, and multi-agent systems aslogica axiomsand theoremsin a
language with clear semantics, the focal points of [the theory] are explicit. The theory is transparent;
properties, interrelationships, and inferences are open to examination. This contrasts with the use of
computer code, which requires implementational and control aspects within which the issues to be
tested can often become confused”. [66, p88]

Finally, by adopting a logic-based approach, one makes available all the results and techniques of what is (argu-
ably) the oldest, richest, most fundamental, and best established branch of mathematics.

1.2 Background

If one aims to develop formal methods for modelling and reasoning about multi-agent systems, a good place
to start is by observing how the mainstream Al/DAI community has gone about building intelligent (social)
agents. Unfortunately, oneimmediately runs into difficulties, as the issue of “intelligent agent architecture” isthe
subject of a somewhat heated ongoing debate in Al. The chief protagonistsin this debate may be crudely divided
into two camps: the classical, symbolic, logicist camp, and the alternative, behavioural camp. Put crudely, the
classical approach proposes giving agents symbolic “knowledge”, which typically relates to the environment the
agent occupies. This knowledge is commonly represented in the form of rules, frames, semantic nets, or, more
generaly, formulae of somelogica language (e.g., first-order predicate logic). Reasoning, and hence, it is hoped,
intelligence, is achieved by getting the agent to manipul ate the knowledge it hasin order to derive new knowledge.
This manipulation usually involves theorem proving, or something very like it. The classical approach explains
two of the main concerns of symbolic Al research over the past two decades: knowledge representati on techniques,
and automated theorem proving. The agent architectures described in the closing chapter of [73] are the canonical
examples of the classical approach.

Alternatives to the classical approach are based on a diverse range of techniques, with the unifying principle
that central, symbolic models are eschewed in favour of a closer relationship between the agent and the environ-
ment it occupies. Emphasisis placed on the situated nature of intelligence. Examples of the alternative approach
are[3], [21], [32], [165].

Interesting and important though this debate is, it is not the aim of this thesis to become embroiled in it
(though in the interests of completeness, the issues are briefly reviewed in the next chapter). Despite the intense
interest — and controversy — that alternative approaches have evoked, the overwhelming majority of work in
DAl liesfirmly in the classical camp, and it is on such work that this thesis focuses. Some examples of classical
approaches to DAl are AGENTO [151], Concurrent METATEM [62], MACE [70], MCS/IPEM [42], RATMAN
[22] and COSY [23].

How is one to go about reasoning about such systems? What techniques are appropriate, and/or available for
the task? There are two obvious resources. Thefirst isthe well established tradition in Al/philosophy of devising
logics of the mentalistic, intentional notions: belief, knowledge, intention, etc. Some notable examples of this
work are [87], [98], [124], [100], [179] and [29]. Associated with thiswork are a set of theories of speech acts,
for reasoning about communication: some notable examples of thiswork are[9], [145], [31], [8], [178] and [30].

Both the intentional logics, and the theories of speech acts, identify an agent with an intentional system[38], [39].
Crudely, an intentional system isonethat is appropriately described in terms of the intentional notions (see [147],
[149] for discussions of agency/intentionality).

Researchers have generally developed intentional 1ogics with one of three aimsin mind:

1. To investigate mentalistic properties of human activity. A good exampleis[29]; the aim of thiswork was
to develop a working formal theory of human intention, and was largely motivated by the concerns of
philosophy [18]. The work was avowedly not intended to be a theory of computational systems, and the
authors took some trouble to distance themselves from the suggestion that the logic they devel oped might
be automated in a computational agent [29, p257].

2. To serve as a knowledge representation formalism, perhaps in an automatic planning system. A good
example of such work is[100].

3. To enable reasoning about distributed systems (see [81], and comments bel ow).

The prevalent method for defining the semantics of intentional logics has been to give them a possible worlds
interpretation (theideawas originated by Kripke [103], and proposed for intentional logics by Hintikka[87]). For
belief logics, an agent is assigned a set of “possible worlds’, or epistemic alternatives, each world representing
one way the actual world might be, given what the agent believes. Something true in all epistemic aternatives
could be said to be believed by the agent. Possible worlds semantics have the advantage of a well established,
theoretically attractive mathematical foundation, (see, e.g., [28]), but also suffer from several disadvantages.
Chief among theseis the “logical omniscience” problem, which seemsto imply that agents are perfect reasoners.
Another problemisthat unlessthe worldsin the semantics are in someway “grounded”, (i.e., given some concrete
interpretation), then they must remain a theoretical nicety, since it is not clear what worlds might correspond to
in an agent (see, e.g., [147] for adiscussion of this point). Most logics in category (1), above, adopt ungrounded
possible worlds semantics, and are therefore not suited to the purposes of this thesis.

Given that ungrounded possible worlds semantics are not suited to the task of reasoning about classical com-
putational multi-agent systems, one seems to be faced by two options. If one wishes to retain possible worlds
semantics, (they are, after al, highly attractive from atheoretical point of view), then one might attempt to find
some way of grounding the possible worlds. The second option is to reject possible worlds semantics altogether,
and seek an alternative semantic base.

Epistemic logics with grounded possible worlds semantics have recently become the object of study for re-
searchersin mainstream computer science, who found that the notion of knowledgeis avaluable onefor analyzing
distributed systems and protocols (see [81] for an overview). Crudely, thiswork is based on the idea that a node
in adistributed system could be said to “know” something if that thing were true in al the runs of the system that
the node found indistinguishable. A similar grounding has been proposed independently by Rosenschein for his
“situated automata’ paradigm [142], [143]. However, it is still not clear how these approaches are related to the
classical model of agents — if at al. So while distributed systems/situated automata models of knowledge are
unguestionably a valuable and important research topic, they are only of tangential interest to this thesis.

Some researchers have rejected possible worlds semantics altogether, and looked instead to the possibility
of developing an aternative semantics. The best known example of this work is the deduction model of belief
developed by Kurt Konolige[99], [100]. The deduction model definesabelief system asatuple containing a“base
set” of formulae in some internal, cognitive, logical language of belief, together with a set of deduction rules for
deriving new beliefs. Konolige argued that an agent with such abelief system could be said to believe something if
it was possible to derive that thing from its base beliefs using its deduction rules. Logically incomplete reasoning
may be modelled by giving the agent logically incomplete deduction rules. Interestingly, the deduction model
can be viewed as an abstract model of the beliefs of classical Al systems. For this reason, the deduction model
seems to be the best candidate out of all the intentional logics mentioned so far for the purposes of thisthesis.

Let us now return to the question posed earlier: What resources are available for modelling multi-agent
systems? The second resourceis the Pnuelian tradition of using temporal logics to reason about reactive systems’:

“Reactive systems are systems that cannot adequately be described by the relational or functional
view. The relational view regards programs as functions ... from an initial state to aterminal state.

2There are at least three current usages of the term reactive system in computer science. The first, oldest, usage is that by Pnueli and
followers (see, e.g., [134], and the description above). Second, researchersin Al planning take a reactive system to be one that is capable of
responding dynamically to changes in its environment — here the word “reactive’ is taken to be synonomous with “responsive” (see, e.g.,
[94]). More recently, the term has been used to denote systems which respond directly to the world, rather than reason explicitly about it (see,
e.g., [32]). In thisthesis the term is used in its Pnuelian sense, except where otherwise indicated.

Typicaly, the main role of reactive systems is to maintain an interaction with their environment,
and therefore must be described (and specified) in terms of their on-going behaviour ... [E]very
concurrent system ... must be studied by behavioural means. Thisis because each individual module
in a concurrent system is a reactive subsystem, interacting with its own environment which consists
of the other modules’. [134]

There are good reasons for supposing that multi-agent systems of the type this thesis is interested in modelling
arereactive:

» the applications for which a multi-agent approach seems well suited (e.g., distributed sensing [43], manu-
facturing control [173], air traffic control [24]) are non-terminating, and therefore cannot be described by
the functional view;

» multi-agent systems are necessarily concurrent, and as Pnueli observes (above) each agent should therefore
be considered areactive system.

In alandmark 1977 paper, Pnueli proposed the use of temporal logic for reasoning about reactive systems[133].
An enormous amount of research effort has subseguently been devoted to investigating this possibility (see, for
example, [134], [135], [47] for good overviews and references). Unfortunately, naive attempts to adapt such
techniques seem doomed to failure, as Pnuelian models of concurrency typically deal with the execution of
individual program instructions, a grain size too fine for the purposes of this thesis.

1.3 An Approach to Reasoning about Multi-Agent Systems

In order to develop methods for reasoning about multi-agent systems, the work described in thisthesis draws upon
both of the resources mentioned above. Thework consists of three parts. Thefirst part is an abstract formal model
of computational multi-agent systems; this model aimsto capture the key features of “typical” DAI systems. The
main components of the model are, not surprisingly, agents:

» agents have a set of explicitly represented beliefs, which are formulae of some internal, logical language
of belief;

» agentsare able to derive some — though not necessarily all — of the logical consequences of their beliefs;

* agents have computational resources upon which they may draw, by performing private, internal, cognitive
actions (for example, a database agent might perform a “retrieve” action);

 agents are able to affect the beliefs of other agents by communicating with them through message passing.

The second part of the work consists of two execution models for agents and groups of agents. The role of
an execution model may be summarized as follows. During execution, an agent follows a continuous cycle of
acting (by performing cognitive actions, and sending messages), updating beliefs, (perhaps as aresult of receiving
messages), acting, ... In doing so, the agent traces out an execution history or run, which defines what beliefs it
held, and what actions it performed at every moment during execution. Taken as a whole, a multi-agent system
also traces out a run which defines what each agent’s beliefs and actions were at every moment of execution.
An execution model is a set of rules which define, for every system, the set of “legal” runs of that system. The
simplest execution model is a synchronous model, where each agent is assumed to act simultaneously. A more
complex, but more realistic, alternative model is an interleaved execution model, where at most one agent is
allowed to act at any onetime.

Taken together, the model of multi-agent systems and the associated execution models constitute a theory of
multi-agent systems. It isimportant to understand at this stage what this theory isand is not intended to be. It is
intended to be a plausible formal theory of multi-agent systems, in which each agent is a computationa artifact
built along classic Al lines. In contrast, the theory is emphatically not intended to be a model of human social
systems®. Also, the model is not intended to be a canonical model of agents and multi-agent systems. What we
have aimed for is an idealized model that, we believe, captures some of the most important aspects of a wide
class of agents. The basic model described in this thesis can be taken as a starting point from which to develop
finer grained, more realistic models of real DAI agents and systems.

3This will not prevent us from taking inspiration from human social systems, from using analogies with human social systems, or from
being mildly anthropomorphic where it improves readability — for example by calling agents “Ralph” and “Freda’. However it should be
understood that analogies are just that.

PROPOSITIONAL | FIRST-ORDER

AL QAL
LINEAR TIME [187] (IAL)
(Chapter 5) (Chapter 5)

QBAL
BRANCHING TIME (ChBA;Iér 7 [188]
P (Chapter 7)

Table 1.1: A Family of Logics for Multi-Agent Sytems

Thethird part of thework isafamily of temporal logics, for reasoning about the theory of multi-agent systems.
Thisfamily may be divided into two categories: linear time, and branching time, each of which may be subdivided
into two further categories: propositional and first-order (see Table 1.1).

The linear time logics (AL, IAL, QAL) are so-called because they are based on a model of time in which
time points are isomorphic with the natural numbers: each time point has just one “successor”. The idea which
informs the development of the linear time logics is that of allowing a run of a system to act as a model for a
logic*. A relationship is thus established between multi-agent systems and models; that of a model representing
arun of a multi-agent system. Thisrelationship is easily formalized, and gives a kind of correspondence theory
for thelogics.

The branching timelogics (BAL, QBAL) are based on amodel of timewhichisviewed asatree-like structure,
branching infinitely into the future from every time point. Such a structure arisesif one considers all the possible
runs of a system collected together: the branching nature comes from the choices faced by each agent at each
time point.

Axiomatizations of each of the logics are presented. These axiomatizations are sound, but are not shown to
be complete, as completeness is an issue somewhat beyond the scope of this thesis.

1.4 Structure of the Thess

The remainder of the thesis is divided into three parts. The first part, (Chapters 2 and 3), is a literature survey.
Chapter 2 begins by addressing the question “What is an agent?’, particularly in the context of Al, and concludes
that an agent is generally taken to be synonomous with an intentional system — one which is most simply
described in terms of beliefs, desires, etc. The chapter then investigates and critically assesses a number of
formalisms devel oped for reasoning about the intentional notions. Additionally, the main approaches to building
agentsin Al are reviewed, and the main issuesin the classical versus behavioural Al debate (mentioned earlier),
are discussed.

Chapter 3 addresses the wider question of social agency, particularly in the context of DAI. Speech act theory
isidentified as the dominant paradigm for reasoning about communicationin DAI, and various speech act theories
arereviewed in detail. The chapter also briefly examines attempts within the DAI community to build multi-agent
systems.

Chapters 4, 5, 6, and 7 represent the main contribution of the thesis. Chapter 4 develops a forma model of
computational multi-agent systemsthat, it is argued, captures the main features of awiderange of “classical” DAI
systems. Associated with this model are a number of execution models, which define how agents can act. Taken
together, the model of multi-agent systems and the execution models constitute a theory of multi-agent systems.
Chapter 5 introduces a family of linear discrete temporal logics for reasoning about systems modelled by the
theory developed in Chapter 4. The key ideais that a model for a temporal logic can be shown to “correspond”
to a multi-agent system of the type described by the theory. A number of issues associated with the logics are
examined. Chapter 6 contains five case studies, which demonstrate how the logics developed in Chapter 5 may

4Actually, amodel is a run together with some extra technical apparatus to make the logical machinery work.

be used to describe and reason about multi-agent systems. Chapter 7 is devoted to logics based on a branching
model of time, which contrasts with the linear modelsused in Chapter 5. It is shown that branching models admit
the possibility of reasoning about attributes of agents (such as goals) that cannot be described using linear models.

The final part of the thesis, (Chapter 8), presents some conclusions. Additionally, Appendix A presents a
brief review of notation used in the thesis, Appendix B contains technical reviews of formalisms for reasoning
about agency that were held over from earlier chaptersin the interests of readability, and Appendix C contains an
overview of the use of temporal logic for reasoning about Pnuelian reactive systems.

Throughout the thesis, strict formalism has been avoided wherever possible, and mathematical expositions
have been eschewed wherever a natural language description would suffice. In order to make the text consistent,
it was decided to “standardize” the presentation of language semantics, etc. The net result is that the description
of some material may appear to differ from its description in the material’s cited source. Such differences are (it
is hoped) cosmetic only.

The reader is assumed to be familiar with the fundamentals of logic.

Part |l

Background

Chapter 2

Agency and Artificial Intelligence

THE aim of this thesisis to investigate formal methods for modelling and reasoning about multi-agent systems.
The building blocks of such systems are agents. An obvious point of departure would therefore be a detailed
examination of the notion of agency. There are three obvious questions to ask (cf. [147, p1]):

1. What are agents?
2. How are we to formally describe and reason about agents?
3. How are we to construct agents?

This chapter addresses each of these questions in turn. The first question — an obvious pre-requisite for our
study — is addressed in the next section, which finds that the commonest interpretation takes an agent to be an
“intentional system”: one whose behaviour is best explained and predicted in terms of the intentional notions:
belief, desire, etc.

Given that the emphasis of this thesis is on methods for formally reasoning about agents and multi-agent
systems, it is not surprising that the second question receives most attention. It is dealt with in sections 2.2—
2.5, which examine in detail various proposals for the logical modelling of intentional notions. Modal logics
with possible worlds semantics are identified as the dominant paradigm in this area, and the advantages and
disadvantages of this approach are discussed at length. A number of variations on the possible worlds theme are
reviewed, before a discussion of alternatives to possible worlds semantics is presented.

Finally, in section 2.6, the third of the above questionsis discussed, and the various Al approachesto building
intelligent agents are reviewed. Since the issue of building agentsis not central to the purposes of thisthesis, the
subject is dealt with only briefly.

Note that, for the most part, this chapter deals with isolated agents; aspects of social agency are dealt with in
the next chapter.

2.1 What isan Agent?

Inthe past ten years, the term “agent” hasbeen adopted by avariety of sub-disciplinesof Al and computer science.
One now hears of “agents’ in software engineering, data communications and concurrent systems research, as
well as robotics, Al and distributed Al. A recent article in a British nationa daily paper made the following
prediction:

“ Agent-based computing (ABC) islikely to be the next significant breakthroughin software devel opment”?.

A whole programming paradigm has been christened “Agent Oriented Programming”?. And yet each of these
usages appeals to a quite different notion of agency. It is thus important to examine the question “what is an
agent?’ very carefully.

A dictionary defines an agent as. “one who, or that which, exerts power or produces an effect”3. While this
definition is not terribly helpful, it doesat least indicate that action is somehow involved, and indeed it does seem
at first sight that the notion of action is inextricably bound to that of agency:

1The Guardian, Thursday, 12" March, 1992.
2See [151]; AOP is also used as a case study in Chapter 6.
3The Concise Oxford Dictionary of Current English (7th edn), 1988

“Agents do things, they act: that iswhy they are called agents’. [149]

A tacit assumption is that agents take an active role, originating actions that affect their environment, rather than
passively allowing their environment to affect them: one often hears, in Al work, of the agent of an action. Two
words often used to describe agentive action are autonomy and rationality. Autonomy generally means that an
agent operates without direct human (or other) intervention or guidance. Rationality isnot so easily tied down, but
is often used in the pseudo-game-theoretic sense of an agent maximizing its performance with respect to some
“valuation function” (see [66, pp49-54] for a discussion of rationality and agency). A measure of rationality
implicitly assumes that an agent has independent goals that it “wants’ to achieve.

Unfortunately, autonomous rational action, so defined, is not a sufficient criterion for agenthood, as it admits
an unacceptably wide class of objects as agents. For example, it is perfectly consistent to describe a transistor —
essentially the simplest form of electronic switch — as an autonomous rational agent by this definition.

Perhaps more troubling for an action-based analysis of agency is that the very notion of action is a dippery
one. For example, almost any action can be described in a number of different ways, each seemingly valid. A
classic example, due to the philosopher Searle, isthat of Gavrilo Princip in 1914: did he pull atrigger, fireagun,
kill Archduke Ferdinand, or start World War |? Each of these seem to be equally valid descriptions of “the same
event”, and yet trying to isolate that event is notoriously difficult. Trying to describe actions in terms of causal
links does not help, asit introduces a seemingly infinite regress. For example, in waving to afriend, I lift my arm,
which was caused by muscles contracting, which was caused by some neuronsfiring, which was caused by...and
so on. Thereis no easy way of halting this regress without appealing to a notion of primitive action, which, as
the Gavrilo Princip example aboveillustrates, is philosophically suspect*.

An action-based analysis of agency does not look like it is going to work. What other properties of agency
might one consider? Shoham has suggested that the term “agent” in Al is often used to denote “high-level”
systems, that employ symbolic representations, and perhapsenjoy some* cognitive-like” function, (such asexplicit
logical, or pseudo-logical reasoning) [151]. This “high-level” condition excludes entities such as actors [2], the
neuron-like entities of connectionism [119], and the objects of object-oriented programming. It implies that
agents possess significant computational resources (though these resources will, of course, be finite). However,
the “high-level” property is a contentious one: a growing number of researchers vigorously argue that “high-
level” agents are not the best way to go about Al. The chief protagonist in this debate is Brooks, who has built a
number of robotic agents which are certainly not “high-level” by Shoham'’s definition, and yet are able to perform
tasks that are impressive by Al standards (see[19], [21], [20] and the discussion in section 2.6). So a“high-level”
condition does not seem to be useful for classifying agents, as it “unfairly” discriminates against objects that do
not employ explicit cognitive-like functions.

Perhaps the most widely held view is that an agent is an entity “which appears to be the subject of beliefs,
desires, etc.” [147, p1]. The philosopher Dennett has coined the term intentional system to denote such systems.

2.1.1 AgentsasIntentional Systems
When explaining human activity, it is often useful to make statements such as the following:

Janine took her umbrella because she believed it was going to rain.
Michael worked hard because he wanted to possess a PhD.

Each of these statements makes use of afolk psychology, by which human behaviour is predicted and explained
through the attribution of attitudes, such as believing and wanting (as in the above examples), hoping, fearing,
and so on. Thisfolk psychology iswell established: most people reading the above statements would say they
found their meaning entirely clear, and would not give them a second glance.

The attitudes employed in such folk psychological descriptions are called the intentional notions®. The philo-
sopher Daniel Dennett has coined the term intentional system to describe entities “whose behaviour can be pre-
dicted by the method of attributing belief, desiresand rational acumen” [39, p49], [38]. Dennett identifies different
“grades’ of intentional system:

4See [4] for aclassic Al attempt to deal with the notion of action, and [149] for an excellent analysis of the relationship between action
and agency.

SUnfortunately, the word “intention” is used in several different ways in logic and the philosophy of mind. First, there is the everyday
usage, asin “l intended to kill him”. Second, an intentional notion is one of the attitudes, as above. Finaly, in logic, the word intension
(with an “s”) means the internal content of a concept, as opposed to its extension. In the sequel, intended meaning will always be clear from
context.

10

“A first-order intentional system has beliefsand desires (etc.) but no beliefs and desires about beliefs
and desires. ...A second-order intentional system is more sophisticated; it has beliefs and desires
(and no doubt other intentional states) about beliefs and desires (and other intentional states) — both
those of others and its own”. [39, p243]

One can carry on this hierarchy of intentionality as far as required.

An obvious question is whether it is legitimate or useful to attribute beliefs, desires, and so on, to artificia
agents. Isn’t thisjust anthropomorphism? McCarthy, among others, has argued that there are occasions when the
intentional stance is appropriate:

“To ascribe beliefs, free will, intentions, consciousness, abilities, or wants to a machineis legitimate
when such an ascription expresses the same information about the machine that it expresses about
aperson. It is useful when the ascription helps us understand the structure of the machine, its past
or future behaviour, or how to repair or improve it. It is perhaps never logically required even for
humans, but expressing reasonably briefly what is actualy known about the state of the machine
in a particular situation may require mental qualities or qualities isomorphic to them. Theories of
belief, knowledge and wanting can be constructed for machinesin asimpler setting than for humans,
and later applied to humans. Ascription of mental qualities is most straightforward for machines
of known structure such as thermostats and computer operating systems, but is most useful when
applied to entities whose structure is incompletely known”. [117], (quoted in [151])

What objects can be described by the intentional stance? As it turns out, more or less anything can. In his
recent thesis, Seel showed that even very simple, automata-like objects can be consistently ascribed intentional
descriptions [147]; similar work by Rosenschein and Kagelbling, (albeit with a different motivation), arrived at a
similar conclusion [143]. For example, consider a light switch:

“It is perfectly coherent to treat a light switch as a (very cooperative) agent with the capability
of transmitting current at will, who invariably transmits current when it believes that we want it
transmitted and not otherwise; flicking the switch is simply our way of communicating our desires’.
[151, p6]

And yet most adults would find such a description absurd — perhaps even infantile. Why is this? The answer
seems to be that while the intentional stance description is perfectly consistent with the observed behaviour of a
light switch, and isinternally consistent,

“...it does not buy us anything, since we essentially understand the mechanism sufficiently to have a
simpler, mechanistic description of its behaviour”. [151, p6]

Put crudely, the more we know about a system, the less we need to rely on animistic, intentional explanations
of its behaviour®. However, with very complex systems, even if a complete, accurate picture of the system’s
architecture and working is available, a mechanistic, design stance explanation of its behaviour may not be
practicable. Consider a computer. Although we might have a complete technical description of a computer
available, it is hardly practicable to appeal to such a description when explaining why a menu appears when we
click amouse on anicon. In such situations, it may be more appropriate to adopt an intentional stance description,
if that description is consistent, and simpler than the alternatives.

Being an intentional system seems to be a necessary condition for agenthood, but is it a sufficient condition?
In his recent Master’s thesis, Shardlow trawled through the literature of cognitive science and its component
disciplinesin an attempt to find a unifying concept that underlies the notion of agenthood. He was forced to the
following conclusion:

“Perhaps there is something more to an agent than its capacity for beliefs and desires, but whatever
that thing is, it admits no unified account within cognitive science”. [149]

However, given the comments above, it seemsreasonable to say that an agent is asystem that ismost conveniently
described by the intentional stance; one whose simplest consistent description requires the intentional stance.
The next step is to investigate methods for reasoning about the intentional notions.

6shoham makes the insightful observation that the move from an intentional stance to a technical description of behaviour correlates
well with Piaget's model of child development, and with the scientific development of humankind generally. Children will use animistic
explanations of objects— such aslight switches — until they grasp the more abstract technical conceptsinvolved. Similarly, the evolution of
science has been marked by a gradual move from theol ogical/animistic explanations to mathematical ones. The author’s own experiences of
teaching computer programming suggest that, when faced with completely unknown phenomena, it is not only children who adopt animistic
explanations. Indeed, it often seems easier to teach some computer concepts by using explanations such as: “the computer doesn’t know...”,
than to try to teach abstract principles first.

1

2.2 Reasoning about Intentional Notions

Suppose one wishes to reason about intentional notionsin alogical framework. Consider the following statement
(after [73, pp210-211)):

Janine believes Cronos is the father of Zeus. (2.1)
A naive attempt to translate (2.1) into first-order logic might result in the following:
Bel(Janine, Father(Zeus, Cronos)) (2.2

Unfortunately, this naive translation does not work, for at least two reasons. The first is syntactic: the second
argument to the Bel predicate is a formula of first-order logic, and is not, therefore a term. So (2.2) is not a
well-formed formula of classical first-order logic. The second problem is semantic, and is more serious. The
constants Zeus and Jupiter, by any reasonable interpretation, denote the same individual: the supreme deity of
the classical world. It is therefore acceptable to write, in first-order logic:

(Zeus = Jupiter). (2.3)
Given (2.2) and (2.3), the standard rules of first-order logic would allow the derivation of the following:
Bel(Janine, Father (Jupiter, Cronos)) (2.9

But intuition rejects this derivation as invalid: believing that the father of Zeus is Cronos is not the same as
believing that the father of Jupiter is Cronos.

So what is the problem? Why does first-order logic fail here? The problem is that the intentional notions —
such as belief and desire — are referentially opaque, in that they set up opaque contexts, in which the standard
substitution rules of first-order logic do not apply. In classical (propositional or first-order) logic, the denotation,
or semantic value, of an expression is dependent solely on the denotations of its sub-expressions. For example,
the denotation of the propositiona logic formula p g is afunction of the truth-values of p and g. The operators
of classical logic are thus said to be truth functional .

In contrast, intentional notions such as belief are not truth functional. It is surely not the case that the truth
value of the sentence:

Janine believes p (2.5)

is dependent solely on the truth-value of p’. So substituting equivalents into opague contexts is not going to
preserve meaning. This is what is meant by referential opacity. The existence of referentialy opague contexts
has been known since the time of Frege. He suggested a distinction between sense and reference. In ordinary
formulag, the“reference” of aterm/formula(i.e., its denotation) isneeded, whereasin opaque contexts, the * sense”
of aformulais needed (see aso [147, p3]).

Clearly, classical logics are not suitable in their standard form for reasoning about intentional notions: altern-
ative formalisms are required. A vast enterprise has sprung up devoted to developing such formalisms.

Thefield of formal methodsfor reasoning about intentional notionsiswidely reckoned to have begun with the
publication, in 1962, of Jaakko Hintikka s book Knowledge and Belief: An Introduction to the Logic of the Two
Notions[87]. At that time, the subject was considered fairly esoteric, of interest to comparatively few researchers
in logic and the philosophy of mind. Since then, however, it has become an important research area in its own
right, with contributions from researchersin Al, formal philosophy, linguistics and economics. There is now an
enormousliterature on the subject, and with amajor biannual international conference devoted solely to theoretical
aspects of reasoning about knowledge, as well as the input from numerous other, less specialized conferences,
this literature is growing ever larger.

Degspite the diversity of interests and applications, the number of basic techniques in use is quite small.
Recall, from the discussion above, that there are two problems to be addressed in developing alogical formalism
for intentional notions. a syntactic one, and a semantic one. It follows that any formalism can be characterized
in terms of two independent attributes: its language of formulation, and semantic model [100, p83].

There are two fundamental approaches to the syntactic problem. Thefirst is to use amodal language, which
contains non-truth-functional modal operators, which are applied to formulae. An alternative approach involves
the use of a meta-language: a many-sorted first-order language containing terms which denote formulae of
some other object-language. Intentional notions can be represented using a meta-language predicate, and given

“Note, however, that the sentence (2.5) is itself a proposition, in that its denotation is the value true or false.

12

MOoDAL META-
LANGUAGE LANGUAGE
ungrounded
[87]
[52]
[29]
[83]
PossiBLE
WORLDS grounded [124]
[142]
[143]
(58]
[105]
(53]
[121]
OTHER Hgg} [[19285]]
[39]

Table 2.1: Some Intentiona Logics

whatever axiomatization is deemed appropriate. Both of these approaches have their advantages and disadvant-
ages, and will be discussed at length in the sequel.

Aswith the syntactic problem, there are two basic approachesto the semantic problem. Thefirst, best known,
and probably most widely used approach isto adopt a possible worlds semantics, where an agent’s beliefs, know-
ledge, godls, etc. are characterized as a set of so-called possible worlds, with an accessibility relation holding
between them. Possible worlds semantics have an associated correspondence theory which makes them an at-
tractive mathematical tool to work with [28]. However, they also have many associated difficulties, notably the
well-known logical omniscience problem, which implies that agents are perfect reasoners. A number of minor
variations on the possible-worlds theme have been proposed, in an attempt to retain the correspondence theory,
but without logical omniscience.

The commonest alternativeto the possibleworlds model for belief isto useasentential, or interpreted symbolic
structures approach. In this scheme, beliefs are viewed as symbolic formulae explicitly represented in a data
structure associated with an agent. An agent then believes @if @is present in the agent’s belief structure. Despite
its simplicity, the sentential model works well under certain circumstances [100].

Table 2.1 characterizes a number of well known intentional logics in terms of their syntactic and semantic
properties (after [100, p85]). The next part of this chapter contains detailed reviews of some of these formalisms.
First, the idea of possible worlds semantics is discussed, and then a detailed analysis of normal modal logicsis
presented, along with some variants on the possible worlds theme. Next, some meta-language approaches are
discussed, and one hybrid formalism is described. Finally, some alternative formalisms are described.

Before the detailed presentations, a note on terminology. Strictly speaking, an epistemic logic is alogic of
knowledge, a doxastic logic is a logic of belief, and a conative logic is a logic of desires or goals. However,
it is common practice to use “epistemic” as a blanket term for logics of knowledge and belief. This practice is
adopted in this thesis; a distinction is only made where it is considered significant. Also, the reviews focus on
knowledge/belief to the virtual exclusion of goals/desires; thisis because most of the principles are the same, and
little work has addressed the issue of goals (but see the comments on Cohen and Levesque's formalism, below).

13

2.3 Possible Worlds Semantics

The possible worlds model for epistemic logics was originally proposed by Hintikka ([87]), and is now most
commonly formulated in a normal modal logic using the techniques devel oped by Kripke ([103])8.

Hintikka sinsight wasto seethat an agent’s beliefs could be characterized in terms of a set of possible worlds,
in the following way. Consider an agent playing the card game Gin Rummy?®. In this game, the more one knows
about the cards possessed by one’s opponents, the better one is able to play. And yet complete knowledge of an
opponent’s cards is generally impossible, (if one excludes cheating). The ability to play Gin Rummy well thus
depends, at least in part, on the ability to deduce what cards are held by an opponent, given the limited information
available. Now suppose our agent possessed the ace of spades. Assuming the agent’s sensory equipment was
functioning normally, it would be rational of her to believe that she possessed this card. Now suppose she were
to try to deduce what cards were held by her opponents. This could be done by first calculating al the various
different waysthat the cardsin the pack could possibly have been distributed among the various players. (Thisis
not being proposed as an actual card playing strategy, but for illustration!) For argument’s sake, suppose that each
possible configuration is described on a separate piece of paper. Once the process was complete, our agent can
then begin to systematically eliminate from this large pile of paper all those configurationswhich are not possible,
given what she knows. For example, any configuration in which she did not possess the ace of spades could be
rejected immediately as impossible. Call each piece of paper remaining after this process a world. Each world
represents one state of affairs considered possible, given what she knows. Hintikka coined the term epistemic
alternatives to describe the worlds possible given on€e's beliefs. Something true in all our agent’s epistemic
alternatives could be said to be believed by the agent. For example, it will be true in all our agent’s epistemic
alternatives that she has the ace of spades.

On afirst reading, this technique seems a peculiarly roundabout way of characterizing belief, but it has two
advantages. Firgt, it remains neutral on the subject of the cognitive structure of agents. It certainly doesn’t posit
any internalized collection of possible worlds. It isjust a convenient way of characterizing belief. Second, the
mathematical theory associated with the formalization of possible worldsis extremely appealing (see below).

The next step is to show how possible worlds may be incorporated into the semantic framework of a logic.
Thisis the subject of the next section.

2.3.1 Normal Modal Logics

Epistemic logics are usually formulated as normal modal logics using the semantics developed by Kripke [103].
Before moving on to explicitly epistemic logics, this section describes normal modal logicsin general.

Modal logics were originally developed by philosophersinterested in the distinction between necessary truths
and mere contingent truths. Intuitively, a necessary truth is something that is true because it could not have been
otherwise, whereas a contingent truth is something that could, plausibly have been otherwise. For example, it is
afact that as | write, the Conservative Party of Great Britain hold a majority of twenty-one seats in the House
of Commons. But although this istrue, it is not a necessary truth; it could quite easily have turned out that the
Labour Party won a mgjority at the last general election. This fact is thus only a contingent truth.

Contrast this with the following statement: the square root of 2 is not a rational number. There seems no
earthly way that this could be anything but true, (given the standard reading of the sentence). This latter fact is
an example of anecessary truth. Necessary truth is usually defined as something true in all possible worlds. Itis
actually quite difficult to think of any necessary truths other than mathematical laws.

To illustrate the principles of modal epistemic logics, anormal propositional modal logic is defined.

Syntax and Semantics

Thislogic is essentially classical propositional logic, extended by the addition of two operators; “ [1” (necessar-
ily), and “¢” (possibly). First, its syntax.

Definition 1 Let Prop = {p,q, ...} be a countable set of atomic propositions. The syntax of normal propositional
modal logic is defined by the following rules:

1. If p O Prop then p isa formula.

8In Hintikka's original work, he used a technique based on “model sets’, which is equivalent to Kripke's formalism, though less elegant.
See [88, Appendix Five, pp351-352] for a comparison and discussion of the two techniques.
9This example was adapted from [81].

14

true

p wherep O Prop, iff p O r(w)

~Q iff (M,w) o

iff (M,w) Fg@or (M,w) F ¢

e iff Ow O wWOif (w,w) O Rthen (M,w') E ¢
o) iff 0w O WOQw,w) ORand (M,w) E @

R
ERE R 2
ar v T T I o r

AS)

O

<

Figure 2.1: The Semantics of Norma Modal Logic

2. If @, @ are formulae, then so are:
true - @ @Oy

3. If pisaformulathen so are:
Oe ¢

The operators“- " (not) and “[I" (or) have their standard meaning; true isalogical constant, (sometimescalled
verum), that is always true. The remaining connectives of propositional logic can be defined as abbreviations in
the usual way. The formula [J@is read: “necessarily ¢’, and the formula Qg is read: “possibly ¢’. Now to the
semantics of the language.

Normal modal logics are concerned with truth at worlds; models for such logics therefore contain a set of
worlds, W, and a binary relation, R, on W, saying which worlds are considered possible relative to other worlds.
Additionally, a valuation function 17 is required, saying what propositions are true at each world.

Definition 2 A model for a normal propositional modal logicisatriple (W, R, i), where W is a non-empty set of
worlds, R0 W x W, and

. W - powerset Prop

is a valuation function, which says for each world w 00 W which atomic propositions are true in w. An
alternative, eguivalent technique would have been to define 1t as follows:

T Wx Prop — {true, false}

though the rules defining the semantics of the language would then have to be changed slightly.

The semantics of the language are given via the satisfaction relation, “E”, which holds between pairs of the
form (M, w}, (where M isamodel, and w is a reference world), and formulae of the language. The semantic rules
defining this relation are given in Figure 2.1. The definition of satisfaction for atomic propositions thus captures
the idea of truth in the “current” world, (which appears on the left of “F”). The semantic rules for “true”, “-~ ",
and “[T", are standard. The rule for “ []” captures the idea of truth in all accessible worlds, and the rule for “¢0”
captures the idea of truth in at least one possible world.

Note that the two modal operators are duals of each other, in the sense that the universal and existential
quantifiers of first-order logic are duals:

I:\ (p e | <>—| (p
It would thus have been possible to take either one as primitive, and introduce the other as a derived operator.

Correspondence Theory

To understand the extraordinary properties of this simple logic, it is first necessary to introduce validity and
satisfiability. A formulais satisfiable if it is satisfied for some model/world pair, and unsatisfiable otherwise. A
formulaistruein a model if it is satisfied for every world in the model, and valid in a class of modelsif it truein
every model in the class. Finally, aformulaisvalid simpliciter if itistruein the class of all models. If @isvalid,
we write F @.

The two basic properties of thislogic are as follows. First, the following axiom schemaiis valid.

Flle O ¢) O (Le O Uy

15

CONDITION | FIRST-ORDER

NAME | AXIOM ON R CHARACTERIZATION

T (e O ¢ Reflexive OwOWQww) OR

D e O Op Serial Ow O W MW OWQww) OR
4 e O O Oe | Transitive | Ow,w,w' OWOw,w) 0RO

Ww,w)OR O (ww')OR

5 Cp O 0@ Euclidean | Ow,w',w' OWOQw,w) ORO
ww)OR O (W,w)OR

Table 2.2: Some Correspondence Theory

Thisaxiom is caled K, in honour of Kripke. The second property is as follows.
If Egthen E o

Proofs of these properties aretrivial, and are left as an exercise for the reader. Now, since K isvalid, it will
be a theorem of any complete axiomatization of normal modal logic. Similarly, the second property will appear
as arule of inference in any axiomatization of normal modal logic; it is generally called the necessitation rule.
These two properties turn out to be the most problematic features of normal modal logics when they are used as
logics of knowledge/belief (this point will be examined later).

The most intriguing properties of normal modal logics follow from the properties of the accessibility relation,
R, in models. To illustrate these properties, consider the following axiom schema.

e O ¢

It turns out that this axiom is characteristic of the class of models with a reflexive accessibility relation. (By
characteristic, we mean that it istruein all and only those modelsin the class.) There are a host of axioms which
correspond to certain properties of R the study of the way that properties of R correspond to axioms is called
correspondence theory. In Table 2.2, we list some axioms along with their characteristic property on R, and a
first-order formula describing the property. Note that the table only lists those axioms of specific interest to this
thesis; (see [28] for others). The names of axioms follow historical tradition.

The results of correspondence theory make it straightforward to derive completeness results for a range of
simple normal modal logics. These results provide a useful point of comparison for normal modal logics, and
account in a large part for the popularity of this style of semantics.

A system of logic can be thought of as a set of formulae valid in some class of models; a member of the setis
called atheorem of the logic (if @is atheorem, thisis usually denoted by F ¢). The notation KX ... 2, is often
used to denote the smallest norma modal logic containing axioms 2, ... , Z, (recal that any norma modal logic
will contain K; cf. [78, p25]).

For the axioms T, D, 4, and 5, it would seem that there ought to be sixteen distinct systems of logic (since
2* = 16). However, some of these systems turn out to be equivalent (in that they contain the same theorems),
and as aresult there are only eleven distinct systems. The relationships between these systems are described in
Figure 2.2 (after [100, p99], and [28, p132]). In this diagram, an arc from A to B meansthat B is a strict superset
of A every theorem of A is atheorem of B, but not vice versa; A = B means that A and B contain precisely the
same theorems. Because some modal systems are so widely used, they have been given names:

KT isknownas T

KT4 isknownas $4
KD45 isknownas weak-S5
KT5 isknownas Sb

Normal Modal Logics as Epistemic Logics

To use the logic developed above as an epistemic logic, the formula [J¢@isread as: “it is known that ¢'. The
worldsinthe model areinterpreted as epistemic alternatives, the accessibility relation defineswhat the alternatives

16

Y
K4 K5 KD —— > KT=KDT
Y
K45 KD5 KD4 — > KT4=KDT4
Y
KT45
KD45 > KT5= KDT5
KDT45

Figure 2.2: The Modal Systems Based on Axioms T, D, 4 and 5

are from any given world. The logic deals with the knowledge of a single agent. To deal with multi-agent
knowledge, one adds to a model structure an indexed set of accessibility relations, one for each agent. A model
is then a structure:

<VV,R]_, ,Rn,7T>

where R, isthe knowledge accessibility relation of agent i. The simple language defined above is extended by
replacing the single modal operator “ [1” by an indexed set of unary modal operators {K;}, wherei 00 {1, ...,n}.
The formulaK;@isread: “i knowsthat ¢’. The semantic rule for “ []” is replaced by the following rule:

(M,w) E Kig iff Ow OWOif (ww)OR then (M,w) F @

Each operator K; thus has exactly the same properties as“ [1”. Corresponding to each of the modal systems
>, above, a corresponding system X, is defined, for the multi-agent logic. Thus K, is the smallest multi-agent
epistemic logic and S5, is the largest.

The next step is to consider how well normal modal logic serves as a logic of knowledge/belief. Consider
first the necessitation rule and axiom K, since any normal modal system is committed to these.

The necessitation rule tells us that an agent knows all valid formulae. Amongst other things, this means
an agent knows all propositional tautologies. Since there are an infinite number of these, an agent will have
an infinite number of items of knowledge: immediately, one is faced with a counter intuitive property of the
knowledge operator.

Now consider the axiom K, which saysthat an agent’s knowledge is closed under implication. Suppose gisa
logical consequence of theset ® = {¢@, ..., g}, thenin every world where all of ® are true, ¢ must also be true,
and hence

U000 O @

must be valid. By necessitation, this formulawill aso be believed. Since an agent’s beliefs are closed under
implication, whenever it believes each of @, it must also believe ¢. Hence an agent’s knowledge is closed
under logical consequence. This also seems counter intuitive. For example, suppose, like every good logician,

17

our agent knows Peano’s axioms. It may well be that Fermat’s last theorem follows from Peano’s axioms —
although, despite strenuous efforts, nobody has so far managed to proveit. Yet if our agent’s beliefs are closed
under logical conseguence, then our agent must know it. So consequential closure, implied by necessitation and
the K axiom, seems an overstrong property for resource bounded reasoners.

The Logical Omniscience Problem

Thesetwo problems— that of knowing all valid formulae, and that of knowledge/belief being closed under logical
conseguence — together constitute the famous logical omniscience problem. This problem has some damaging
corollaries.

The first concerns consistency. Human believers are rarely consistent in the logical sense of the word; they
will often have beliefs ¢ and 7, where ¢ F = 7, without being aware of the implicit inconsistency. However,
the ideal reasoners implied by possible worlds semantics cannot have such inconsistent beliefs without believing
every formula of the logical language (because the consequential closure of an inconsistent set of formulae is
the set of all formulae). Konolige has argued that logical consistency is much too strong a property for resource
bounded reasoners. he arguesthat alesser property, that of being non-contradictory isthe most one can reasonably
demand [100]. Non-contradiction means that an agent would not simultaneously believe @ and - ¢, although the
agent might have logically inconsistent beliefs.

The second corollary is more subtle. Consider the following propositions (this example is from [100, p88]):

1. Hamlet’s favourite colour is black.
2. Hamlet's favourite colour is black and every planar map can be four coloured.

The second conjunct of (2) isvalid, and will thusbe believed. Thismeansthat (1) and (2) arelogically equivalent;

(2) istruejust when (1) is. Sinceagentsareideal reasoners, they will believethat the two propositionsarelogically

equivalent. Thisis yet another counter intuitive property implied by possible worlds semantics, as: “equivalent

propositions are not equivalent as beliefs’ [100, p88]. Yet thisis just what possible worlds semanticsimplies. It

has been suggested that propositions are thus too coarse grained to serve as the objects of belief in this way.
The logical omniscience problemis a serious one. In the words of Levesque:

“Any one of these [problems] might cause one to reject a possible-world formalization as unintuitive
at best and completely unredlistic at worst”. [112]

Axiomsfor Knowledge and Belief

We now consider the appropriateness of the axioms D,,, Ty, 4,, and 5, for logics of knowledge/belief.
The axiom D, says that an agent’s beliefs are non-contradictory; it can be re-written in the following form:

Kip U - K@

which isread: “if i knows ¢, then i doesn't know — ¢’. This axiom seems a reasonable property of know-
ledge/belief.

The axiom T, is often called the knowledge axiom, since it says that what is known is true. It is usualy
accepted as the axiom that distinguishes knowledge from belief: it seems reasonable that one could believe
something that is false, but one would hesitate to say that one could know something false. Knowledge is thus
often defined as true belief: i knows @ if i believes @ and @istrue. So defined, knowledge satisfies Ti,.

Axiom 4, is called the positive introspection axiom. Introspection is the process of examining one's own
beliefs, and is discussed in detail in [100, Chapter 5]. The positive introspection axiom says that an agent knows
what it knows. Similarly, axiom 5, is the negative introspection axiom, which says that an agent is aware of
what it doesn’t know. Positive and negative introspection together imply an agent has perfect knowledge about
what it does and doesn’t know (cf. [100, Equation (5.11), p79]). Whether or not the two types of introspection
are appropriate properties for knowledge/belief is the subject of some debate. However, it is generally accepted
that positiveintrospection isaless demanding property than negative introspection, and isthus a more reasonable
property for resource bounded reasoners.

Given the comments above, the modal system S5, is often chosen as a logic of knowledge, and weak-S5, is
often chosen as alogic of belief.

18

Computational Aspects

Before leaving this basic logic, it is worth commenting on its computational/proof theoretic properties. Halpern
and Moses have established the following ([83]):

1. The provability problem for each of the key systems K, T, $4n, weak-S5,, and S5, is decidable. Halpern
and Moses sketch some tableaux decision procedures for these logics.

2. The satisfiability and validity problems for Ky, Ty, $4,, (where n > 1), and S5, weak-S5, (where n = 2)
are PSPACE complete.

The first result is encouraging, as it holds out at |east some hope of automation. Unfortunately, the second result
is extremely discouraging: in simple terms, it means that in the worst case, automation of these logics is not a
practical proposition.

Discussion
To sum up, the basic possible worlds approach described above has the following disadvantages as a multi-agent
epistemic logic:
» agentsbelieve all valid formulae;
» agents beliefs are closed under logical consequence;
 equivalent propositions are identical beliefs;
« if agents are inconsistent, then they believe everything;
* inthe worst case, automation is not feasible.
To which many people would add the following:

» “[T]he ontology of possible worlds and accessibility relations ...is frankly mysterious to most practically
minded people, and in particular has nothing to say about agent architecture”. [147]

Despite these serious disadvantages, possible worlds are still the semantics of choice for many researchers,
and a number of variations on the basic possible worlds theme have been proposed to get around some of the
difficulties. The following sections examine various topics associated with possible worlds semantics.

2.3.2 Common and Distributed Knowledge

In addition to reasoning about what one agent knows or believes, it is often useful to be able to reason about
“cultural” knowledge: the things that everyone knows, and that everyone knows that everyone knows, etc. This
kind of knowledge is called common knowledge. The famous “wisest man” puzzle — a classic problem in
epistemic reasoning — is an example of the kind of problem that is efficiently dealt with via reasoning about
common knowledge (see, e.g., [100, p58] for a statement of the wisest man problem)™°.

The starting point for common knowledge is to develop an operator for things that “everyone knows’. A
unary modal operator EK is added to the modal language discussed above; the formulae EK@ is read: “everyone
knows ¢’. It can be defined as an abbreviation:

EK@ 2 K1 OOIKn e
or it can be given its own semantic rule:
(M,w) E EKe@ iff (M,w)FKipforalilO{1,...,n}

The EK operator does not satisfactorily capture the idea of common knowledge. For this, another derived
operator CK is required; CK is defined, ultimately, in terms of EK. It is first necessary to introduce the derived
operator EKX; the formula EKXis read: “everyone knows @ to degree k”. It is defined as follows:

Eklp 2 EK@
EKlp & EK(EKX@)

10The discussion that follows was adapted and expanded from [73, Chapter 9] and [83].

19

The common knowledge operator can then be defined as an abbreviation:
CK@2 EK@OEK2@ O ITEK @ O
or it can be given its own semantic rule:
M,w) E cke iff (M,w) F EKkgforal k 0Ny

A classic problem in distributed systems folklore is the coordinated attack problem, where two generals on
the same side wish to attack an enemy, but are unwilling to do so unless they are sure the other will also attack,
i.e., itiscommon knowledge that they will attack. Halpern has shown that under certain circumstances, (notably,
where communication is not guaranteed), common knowledge cannot be achieved [82].

A related issue to common knowledge is that of distributed, or implicit knowledge. Suppose there is an
omniscient observer of some group of agents, with the ability to “read” each agent’s beliefs’knowledge. Then
this agent would be able to pool the collective knowledge of the group of agents, and would generally be able
to deduce more than any one agent in the group. For example, suppose, in a group of two agents, agent 1 only
knew ¢, and agent 2 only knew @ 0O (. Then there would be distributed knowledge of (¢, even though no
agent explicitly knew (. Distributed knowledge cannot be reduced to any of the operatorsintroduced so far: it
must be given its own definition. The distributed knowledge operator DK has the following semantic rule:

(M,w) E DKo iff (M,w)E @foralw
such that (w,w') O (Ry n I Ry)

This rule might seem strange at first, since it uses set intersection rather than set union, which is at odds with
a naive perception of how distributed knowledge works. However, a restriction on possible worlds generally
means an increase in knowledge.

Distributed knowledge is potentially a useful concept in cooperative problem solving systems, where know-
ledge about a problem isdistributed among agroup of problem solving agents, which must try to deduce a solution
through cooperative interaction.

Proof theoretically, the various group knowledge operators have straightforward properties. Note that they
form a hierarchy:

Cke 0 DO Eke 0O DO EKe O DK@

See [83] for further discussion of these operators and their properties.

2.3.3 Quantified Epistemic Logics

A natural extension to the basic logic described above would be to allow quantification. In this section, we
proceed, (as with the propositional modal logic described above), to define a quantified modal logic and then
examine its suitability as a logic for reasoning about knowledge/belief. The discussion below is adapted and
expanded from [88, Part Two], [138], and [100].

The syntax of quantified modal logic isthat of classical first-order logic enriched by the addition of the unary
modal operators “¢” and “ []”, with the same meanings as above. These operators can be applied to arbitrary
formulae of themodal or first-order language. So, for example, the following are syntactically acceptableformulae
of quantified modal logic:

OxOCIP(x) O Q(X)
P(a) O X P(X)
It is assumed that constants of the basic first-order language belong to a set Congt, variables to a set Var, and
predicate symbolsto a set Pred. A model for quantified modal logic is a structure:

(W,R,D, I,
where W and R are a set of worlds and a binary relation on W (as before), and:
» D isanon-empty set, called the domain;
* | maps Const to D;

» rtmaps Pred x W to powerset D", (where nisthe arity of the predicate symbol, and D" is the set of n-tuples
over D); T gives the extension of each predicate symbol in each world.

20

As usual with a predicate logic, formulae can only be interpreted with respect to a variable assignment: a
variable assignment V maps Var to D. A termis either avariable or a constant. It is useful to define a function
[-11v, which takes an arbitrary term and returns its denotation relativeto I, V:

[6]:v 2 if 60 Const
then 1(6)
else V(6)

Referenceto | and V is suppressed where these are understood.
The only semantic rule of interest is that for predicates; the remainder are essentially unchanged, (except that
aformula must now be interpreted with respect to a variable assignment).

(M\VW) E P(6y,...,60) iff ([6:], ..., [6n]) O m(P,w)

So, despite the added compl exity of predicates and terms, the model theory for quantified modal logicsremains
straightforward.

Now consider such a system as an epistemic logic. The semantics can easily be extended to the multi-agent
case, as in propositional modal logic, by the addition of multiple accessibility relations, etc. One unfortunate
property of quantified modal logics, as defined above, is that they make the Barcan formulae valid. The Barcan
formulais:

OxOde(x) O [C10Ox Op(x)
and the converse Barcan formulais the reverse implication, i.e.:
(IOxCp(x) O OxOC1g(x)

(see eg., [88, ppl42-145] for a discussion).

If “[" isinterpreted as “it is known that ..."”, then the Barcan formula means that if it is known of al
individuals independently that they have property ¢, then it is known that all individuals have this property. The
Barcan formula thus implies that knowers are somehow aware of the existence of al individuals, which seemsto
be an overstrong demand to make of resource bounded reasoners.

The converse Barcan formula says that if an agent knows that al individuals have property ¢, then it will
be known that each individual has property ¢. In other words, it implies that agents will perform universal
instantiation wherever possible. This is a weaker property than that implied by the Barcan formula, but still
seems an overstrong demand to make of resource bounded reasoners.

If one refers back to model structures for quantified modal logics for a moment, it will be found that the
domain of individuals D isfixed, for all worlds: thisis called the constant domain assumption. If this assumption
is dropped, so that the domain isindexed by worlds, and quantification is restricted to just those individualsin the
domain of the reference world, then the Barcan formulae are no longer valid. As to whether thisis a reasonable
property for an epistemic logic, consider a semi-mythological figure such as Robin Hood, or King Arthur. An
agent might reasonably be unsure as to whether these individuals ever actually existed, and so they might appear
in the domain of some epistemic alternatives, but not all.

It isalso worth noting that in the model structure above, constantswere given arigid interpretation: a constant
has the same denotation in all worlds. What would it mean for this assumption to be dropped, and what would be
the effect? It would be possible to drop the assumption by simply making | amap from Const x Wto D. Consider
the following formula, which is intended to express the fact that an agent believes of the individua that is Prime
Minister of Britain in the actual world, (i.e., theworld as perceived by the author at the time of writing: late April
1992), that he is a cricket fan.

[(]Cricket_Fan(PM)

Here, PM is a constant which in the actual world denotes the individual John Major. But suppose our agent
had been on a desert island since November 1990, and was somehow unaware that Margaret Thatcher was no
longer Prime Minister. For this agent, the constant PM would denote someone entirely different to that which it
denotes for us, and it is unlikely that a rational agent would believe of the individual Margaret Thatcher that she
was acricket fan. Note that the agent could still believe that the individual John Major was a cricket fan, but inits
ignorance, it would use a different constant for thisindividual. The point is that the constant PM has a different
denotation for us and the agent, and, more generally, a different denotation in different worlds. Such constants
are said to be fluent expressions; non-fluent expressions are called rigid designators.

To deal with fluent expressions, Konolige has proposed the technical device of the bullet operator, (“«”).
Suppose a is a constant, then a is an expression returning a constant that always denotes what a denotes for us.
The use of the bullet operator is somewhat complex, and is described in detail in [100, pp38—42 and pp100-104].

21

One difficult issue in the philosophy of modal logicsis that of quantifying-in to modal contexts. Consider the
following English sentence:

It is known that thereis a unicorn. (2.6)
Now consider the following quantified modal logic formulae, each representing one attempt to formalize (2.6):

x O Unicorn(x) (2.7)
[C10x CUnicorn(x) (2.8)

In (2.7), a de re reading of (2.6) is presented. The formulaimplies the existence of some particular individual,
which the believer has a name for, which the agent believes has the property of being a Unicorn. Note that we do
not know who thisindividual is, or have a name for it; we ssimply represent the fact that the agent does.

In (2.8), adedicto reading of (2.6) is presented. Thisreading expresses aweaker property than (2.7): namely,
that the agent believessomeindividual isa Unicorn. The agent does not necessarily haveanamefor theindividual.
Formulae (2.7) and (2.8) thus express quite different properties.

This concludes the review of quantified modal epistemic logic.

2.3.4 Grounded Possible Worlds

Most people, confronted with possible worlds semanticsfor thefirst time are— initially at least — uncomfortable
with the idea:

“[The notion] of one possible world being accessible to another has at first sight a certain air of
fantasy or science fiction about it”. [88, p77]

The problem seems to be with the ontological status of possible worlds: Do they redly exist? If so, where are
they? How do they map onto an agent’s physical architecture? If these questions cannot be answered, then one
would be reluctant to treat epistemic alternatives as anything other than a theoretical nicety.

Some researchers have proposed grounding epistemic alternatives: giving them a precise meaning in the real
world, thus overcoming any confusion about their status'*. Two more or less identical groundings have been
proposed: the first by the distributed systems community, the second by Rosenschein, for his situated automata
paradigm. This section describes grounded possible worlds, and will focus on the distributed systems approach;
the formal treatment is adapted from [53].

Using alogic of knowledge to analyze a distributed system may seem strange. However, as Halpern points
out, when informally reasoning about a distributed system, one often makes statements such as: “processor 1
can't send a packet to processor 2 until it knows that processor 2 received the previous one” [81]. A logic of
knowledge formalizes such reasoning.

The starting point for our study is to define a simple model of distributed systems. A system contains an
environment, which may be in any of a set E of environment states, and a set of n processes {1, ..., n}, each of
which may be in any of aset L of “local” states. At any time, a system may therefore be in any of a set G of
global states.

G=ExLx[IkL
N———r’
n times

Next, arun of asystem isafunction which assignsto each time point aglobal state: time pointsareisomorphic
to the natural numbers, (and time is thus discrete, bounded in the past, and infinite in the future).

Run=N - G
A point is arun together with atime:
Point = Run x N

A point implicitly identifies a global state. Points will serve as worlds in the logic of knowledge to be
developed. A systemisaset of runs.

System = powerset Run
Now, suppose sand s are two global states.

S <e,|1,...,|n>
g = (&0, 1)

11To some extent, we have already seen an example of grounding in the card game example presented earlier.

22

Define arelation [, on states, for each processi:
sOsiff(li=1%)

Notethat [J will be an equivalencerelation. Theterminology isthatif s s, thensand s areindistinguishable
toi, sincethelocal state of i isthe samein each global state. Intuitively, the local state of a process representsthe
information that the process has, and if two global states are indistinguishable, then it has the same information
in each.

“Thecrucia point hereisthat since a processes [choice of] actions ...are afunction of itslocal state,
if two points are indistinguishable to processor i, then processor i will perform the same actions in
each state”. [81, pp46-47]

The next step isto define alanguage for reasoning about such systems. The languageisthat of the multi-agent
epistemic logic defined earlier (i.e., classica propositional logic enriched by the addition of a set of unary modal
operators K;, for i 00 {1, ...,n}). The semantics of the language are presented via the satisfaction relation, “F”,
which holds between triples of the form:

(M,r,u)

and formulae of the language. Here, (r,u) isapoint, and M is a structure;
(R, m)

where R is a system, and
. Point — powerset Prop

returnsthe set of atomic propositionstrue at apoint. The structure (R, 1) is called an interpreted system. The
only non-standard semantic rules are for propositions and modal formulae.

(M,rbuy F p wherep O Prop, iff pO m({r, u})

(M,r,uy F Ko iff (M,r',u’) F ¢foral
r' OR and u' ON such that r(u) O r'(u)

Note that since [0 is an equivalence relation (i.e., it is reflexive, symmetric, and transitive), this logic will
have the properties of the system S5, discussed above. In what sense does the second rule capture the idea of
a processes knowledge? The ideaisthat if r(u) OO r'(u’), then for all i knows, it could be in either run r, time
u, or run r', time u'; the process does not have enough information to be able to distinguish the two states. The
information/knowledge it does have are the things true in all indistingui shable states.

“In this model, knowledge is an external notion. We don’t imagine a processor scratching its head
wondering whether or not it knows a fact ¢. Rather, a programmer reasoning about a particular
protocol would say, from the outside, that the processor knew ¢ becausein all global states [indistin-
guishable] fromits current state (intuitively, all the states the processor could bein, for all it knows),
@istrue’. [80, p6]

A distributed knowledge operator can be defined in a similar way. Define arelation [Jon global states.
sOsiffdid{1,...,n}0OS
The distributed knowledge operator can then be defined.

(M,r,uy E DKo iff (M,r',u) FeforalrOR
and u' O N such that r(u) Or'(u)

This distributed knowledge operator will have exactly the same properties as the distributed knowledge oper-
ator developed earlier.

A number of researchers have investigated a variety of different properties of distributed systems using slight
variations on the basic technique described here (see, e.g., [58], [105], [54], [46]). For example, Fagin and
Vardi have demonstrated a conservation principle of distributed knowledge [54]?. Briefly, they investigate the
properties required for the distributed knowledge of a system to remain constant. A related issue is whether
processes “learn” or “forget” over time.

Interestingly, an essentially equivalent definition of knowledge to that described above has been proposed
independently by Rosenschein and Kaelbling for their situated automata paradigm [142], [143]. The details are

2Note that Fagin and Vardi use the term “implicit knowledge” in the way that we use “ distributed knowledge” .

23

discussed in Appendix B. Rosenschein’saim is to analyze the knowledge content of states of automata. In [143],
an epistemic temporal logicis described, which is used to specify what a designer would have a machine “know”.
Thisintentional description is then compiled down to a gate level description of adigital machine, which satisfies
the properties expressed in its intentional description. The situated automata paradigm is gaining some followers
in Al: see, e.g., [150], [151], [97], and [127] for work based on, or inspired by, situated automata.

While the distributed systems/situated automata analysis of knowledgeis a useful one, allowing usto charac-
terize agent’s states in terms of the information they implicitly carry, it is not clear how such a description relates
to the class of agents under consideration in this thesis. Moreover, the analysis still seems too coarse grained to
be useful. So while the areais of undoubted interest, it is only of minor relevance to thisthesis.

2.3.5 Avoiding Logical Omniscience

A number of attempts have been made to devel op epistemiclogicsthat avoid thelogical omniscience problem, and
yet retain the theoretically attractive properties of possible worlds semantics. Two of the better known examples
of thiswork are reviewed in this section. Thefirst is Levesque's logic of implicit and explicit belief [112], the
second is Fagin and Halpern’slogic of general awareness, which was, in part, inspired by Levesgue's work [52].

Levesgue proposed making a distinction between explicit and implicit beliefs. To define the semantics of
implicit and explicit beliefs, Levesgue proposed the use of situations, a notion borrowed from situation semantics
(see [14], [41], and below). A situation is best thought of as a fragment of a world, or a partial description of
aworld. Situations are similar to possible worlds, but differ in that whereas a world assigns to every primitive
proposition either true or false, a situation may assign it true, false, neither, or both (in this last case, asituation is
said to be incoherent).

L evesgue proceeded by assigning an agent a set of situations, those compatible with its explicit beliefs. An
agent could be said to explicitly believe @ if the truth of ¢ were supported by every situation compatible with
that agent’sexplicit beliefs. Syntactically, Levesgue'slogicis classical propositional logic extended by two unary
modal operators. B, for explicit belief, and L, for implicit belief. Nested beliefs are not allowed.

A model for Levesque's logic is a structure:

(S,B,T,F)

where

* Sisaset of situations;

» B 0O S isthe set of situations compatible with the agent’s explicit beliefs;

» 7:Prop — powerset § takesaprimitive proposition and returns the set of situationswhich support itstruth;

o F:Prop — powersetS takes a primitive proposition and returns the set of situations which support its
fasity.

Rather than the single satisfaction relation of standard logics, Levesgue defines two satisfaction relations, “E7 ",
and “E£", which hold between structures of the form

(M,s)

(where M isamodel, and sis a situation), and formulae of the language. The relation |7 is for “supporting
the truth of ...”, the relation = is for “supporting the falsity of...”. The semantic rules for the main part of the
language are given in Figure 2.3. The first six rules are straightforward: in particular, the first two clearly show
what it means for a situation to support the truth or falsity of a proposition. But how does the seventh rule, that
for explicit belief, overcome the problem of logical omniscience?

Consider the fundamental problem of possible worlds semantics, that of knowing all tautologies (valid formu-
lag). A tautology is known becauseit is assigned the truth valuetrue in all worlds. Thisisbecause, in effect, every
world acts as a propositional valuation, which by definition assigns true to atautology. In Levesque's formalism,
however, atautology is not necessarily assigned true in every situation, (since a situation may assign a primitive
proposition both true and false, either, or neither). In short, situations do not act as propositional valuations, so
the problem does not arise.

Similar arguments show that: 1) explicit belief, so defined, is not closed under logical consequence; 2) agents
can be inconsistent without believing everything, and 3) logically equivalent formulae are not equivaent as
explicit beliefs.

24

(M,s) Fr p where p O Prop, iff sO 7 (p)

(M,s) Fr p where p O Prop, iff sO F(p)

M.s) Er @Oy iff (M) Fr por (M) Fr ¢
M.s) Er @Oy iff (M,S) Er gand (M,S) Er ¢
M Er -@ it (MSFr o

M Er -@ iff(MSFro

(M,s) Fr Bo iff (M,s) Er @fordls OB

M,s) Er Bp iff (M8 fr B

Figure 2.3: Semantics for Levesque's Logic

Now for the implicit belief operator, L. For this operator, a function WV is defined, which takes a situation s,
and returnsthat set of situations which have the following properties: 1) they agree with s on the truth or falsity
of propositions, and 2) they act as propositional valuations. If sisincoherent, then W(s) = { }. The function can
be extended to take a set of situationsin the following way.

WHSL -+ S}) 2 W(s) O 010 W(sn)
The semantic rules for the implicit belief operator can now be given.
(M,s) Er Lo iff (M,s) Er @forals OW(B)
(M,s) Er Lo iff (M,s) g7 Lo

The implicit belief operator thus picks out those situations which are both compatible with the agent’s explicit
beliefs, and act as classical propositional valuations; these situations then act as worlds in the definition of the
implicit belief operator.

Now, suppose By is true in some model. Then every situation s [0 5 supports the truth of ¢. So the subset
picked out by the implicit belief operator will also support its truth. Thus Lo will also be true in the model. This
givesthe following validity:

FBe U Lo

In general, however, the reverse does not hold. Note that L has the properties of a normal modal necessity
operator with logic S5.

Although Levesque's logic appears to solve the problem of logical omniscience, there seem to be four main
objectionstoit (see[138, p135]). First, it does not allow quantification (but see [106], [107]). Second, it does not
allow nested beliefs. Third, the notion of a situation in Levesgue's logic is, if anything, even more suspect than
the notion of aworld in normal epistemic modal logic. Finally, Fagin and Halpern have shown that under certain
circumstances, an agent modelled by Levesque's scheme must still be aware of propositional tautologies [52].

In an effort to recover from this last negative result, Fagin and Halpern have developed a logic of genera
awareness[52]. Thislogic containsthe modal operator L, for implicit belief, an operator A, for “awareness’, and
a derived operator B, for explicit belief. Call the language of the logic LGA, for “logic of general awareness’.

Semantically, the logic is much simpler than Levesque's. Models are structures of the form:

(S, A,B,m

where

* Sisaset of states;

o A:S - powerset Form(LGA) maps each state to the set of formulae that the agent is aware of in that state;
* B 08 xS isatrangtive, seria, euclidean relation on S;

* .S — powerset Prop interprets primitive propositions in states.

The only non-standard semantic rules are for the A and L operators.
(M,s) F Lo iff (M,s)F ¢eforals OSsuchthat (s,s)08B
(M,s) F Agp iff O .A(9

25

TheL operator isthus an ordinary modal necessity operator; the restrictions on the belief accessibility relation
mean itslogic is KD45. The A operator says that an agent is “aware of” aformula. The explicit belief operator
B isthen introduced as an abbreviation.

Bp2 LoOAg

So an agent explicitly believes @ if it is“aware of” @ and @istruein al its epistemic alternatives. In effect,
the awareness set .4(s) of each state s acts as a filter, picking out those beliefs which an agent is aware of, as
opposed to those the agent knows nothing about.

Konolige has presented a detailed critique of the logic of general awareness, in which he comparesit with his
own deduction model of belief (see below, and [100]). He concludes:

“1t does not seem that thereis much to be gained by considering alogic of general awareness, at least
asfar as modelling resource limited reasoning from beliefsis concerned. It is no more powerful than
[the deduction model], and can be re-expressed in those terms. The practice of mixing sentential and
possible-worlds elements in the semantics does not preserve the elegance of the latter, or offer any
insight into the psychological nature of explicit belief”. [101, p248]

2.3.6 Bdiefs, Goals, | ntention and Rational Balance

All of the formalisms considered so far have focussed on just one aspect of intelligent agency: either knowledge
or belief. However, it isto be expected that ageneral theory of agency must integrate reasoning about these facets
of intentionality with other components of an agent’s cognitive makeup: goals, intentions, etc. The best known,
and most sophisticated attempt to show how this might be done is due to Cohen and Levesque [29]. Their logic
of rational agency is the object of study in this section'®.

Cohen and Levesgue'sformalismwas originally used to develop atheory of intention (asin “l intended to...”),
which the authors required as a pre-requisite for atheory of speech acts (see next chapter for a summary, and [30]
for full details). However, the logic has subsequently proved to be so useful for specifying and reasoning about
the properties of agents that it has been used in an analysis of conflict and cooperation in multi-agent dialogue
[66], [65], as well as several studies in the theoretical foundations of cooperative problem solving [174], [113],
[91], [92]. This section will focus on the use of the logic in developing a theory of intention. Thefirst step is to
lay out the criteria that a theory of intention must satisfy.

When building intelligent agents — particularly agents that must interact with humans — it is important that
arational balanceis achieved between the beliefs and goals of the agents.

“For example, thefollowing are desirable properties of intention: An autonomous agent should act on
its intentions, not in spite of them; adopt intentionsit believes are feasible and forego those believed
to be infeasible; keep (or commit to) intentions, but not forever; discharge those intentions believed
to have been satisfied; alter intentions when relevant beliefs change; and adopt subsidiary intentions
during plan formation”. [29, p214]

Following Bratman, ([17], [18]), Cohen and L evesque identify seven specific properties that must be satisfied
by a reasonable theory of intention:

1. Intentions pose problems for agents, who need to determine ways of achieving them.

2. Intentions provide a “filter” for adopting other intentions, which must not conflict.

3. Agentstrack the success of their intentions, and are inclined to try again if their attempts fail.
4. Agents believe their intentions are possible.

5. Agents do not believe they will not bring about their intentions.

6. Under certain circumstances, agents believe they will bring about their intentions.

7. Agents need not intend all the expected side effects of their intentions.

Bunfortunately, the logic is too complex to alow a detailed presentation here. Instead, we outline its most significant components, and
present a detailed technical review in Appendix B.

26

(BEL X ¢) Agent x believes ¢
(GOAL X @) Agent x has goa of @
(HAPPENS a) Action o will happen next
(DONE a) Action a has just happened

Table 2.3: Modalitiesin Cohen and Levesque's Formalism

Given these criteria, Cohen and Levesgue adopt a two tiered approach to the problem of formalizing a theory
of intention. First, they construct the logic of rational agency, “being careful to sort out the relationships among
the basic modal operators’ [29, p221]. On top of this framework, they introduce a number of derived constructs,
which constitute a “ partial theory of rational action” [29, p221]; intention is one of these constructs.

Syntactically, the logic of rational agency is a many-sorted, first-order, multi-modal logic with equality, con-
taining four primary modalities; see Table 2.3. The semantics of BEL and GOAL are given via possibleworlds, in
the usual way: each agent is assigned a belief accessibility relation, and a goal accessibility relation. The belief
accessibility relation is euclidean, transitive, and serial, giving a belief logic of KD45. The goal relation is serial,
giving a conative logic KD. It is assumed that each agent’sgoal relation is a subset of its belief relation, implying
that an agent will not have agoal of something it believeswill not happen. Worldsin the formalism are a discrete
sequence of events, stretching infinitely into past and future.

The two basic temporal operators, HAPPENS and DONE, are augmented by some operators for describing the
structure of event sequences, in the style of dynamic logic [84]. The two most important of these constructors
are";” and“7?':

a;a’ denotes a followed by a’
a? denotesa“test action” a

The standard future time operators of temporal logic, “ []” (always), and “9” (sometime) can be defined as
abbreviations, along with a “strict” sometime operator, LATER:

Oa & [XHAPPENS X, a?)
Ca & -0-a
(LATERpP) 2 -pO9%p

A temporal precedence operator, (BEFORE p () can aso be derived, and holdsif p holds before g. An important
assumption is that all goals are eventually dropped:

O (GOAL X (LATER p))

The first major derived construct is a persistent goal.

(P-GOALXP) & (GOAL X (LATER p)) O
(BEL X = p) O
BEFORE

((BEL xp) O (BEL x [1= p))
- (GOAL X (LATER p))

So, an agent has a persistent goa of pif:
1. It hasagoal that p eventually becomes true, and believesthat p is not currently true.
2. Beforeit dropsthe goal, one of the following conditions must hold:

(a) the agent believesthe goa has been satisfied;

(b) the agent believesthe goal will never be satisfied.
Itisasmall step from persistent goalsto afirst definition of intention, asin “intending to act”. Notethat “intending
that something becomes true” is similar, but requires a slightly different definition; see [29].

(INTEND xa) & (P-GOAL X
[DONE x (BEL x (HAPPENS a))?; a]

)

27

Cohen and Levesgue go on to show how such a definition meets many of Bratman's criteria for a theory of
intention (outlined above).

A critique of Cohen and Levesque's theory of intention is presented in [155]; space restrictions prevent a
discussion here.

24 Meta-Languages and Syntactic M odalities

There is a school of thought — almost a cult — in mathematics, computer science, and Al, which holds that
classical first-order logic isin some sense “canonical”: that anything which can be done in a non-classical (e.g.,
modal) logic can be reduced to a problem in first-order logic. In the area of reasoning about intentional notions,
this thinking manifestsitself in the use of first-order meta-languages to represent and reason about beliefs, goals,
etc.

The basic idea of a meta-language is quite simple. Recall the naive attempt to formalize the statment “ Janine
believes Cronos is the father of Zeus’ presented earlier:

Bel(Janine, Father (Zeus, Cronos)) (2.9

The syntactic problem with this pseudo-formalization isthat Father(Zeus, Cronos) isaformulaof first-order logic,
not a term, so the whole formula is ill-formed. Now suppose the domain of the first-order language (hereafter
called the meta-language) contains formulae of another language (hereafter called the object-language). Suppose
also that the meta-language contains terms which denote object-language formulae. Then it would be possible to
write a meta-language formula capturing the sense of (2.9).

To make meta-language formulae readable, it is useful to employ a quoting convention. Suppose that @isan
object-language formula, then it is usual to let ¢! be an abbreviation for a meta-language term standing for @. A
formulation of the above sentence might then be:

Bel(Janine,! Father(Zeus, Cronos)!) (2.10)

Since [Father(Zeus, Cronos)! is a meta-language term, (2.10) is a syntactically acceptable formula of the meta-
language. Using this approach, belief, knowledge, etc. can be axiomatized using the first-order meta-language
and given whatever properties are deemed appropriate. One obvious difficulty seems to be that it is not possible
to quantify over object-language terms. This difficulty can be overcome by using an un-quoting convention: see
[73, pp241-242] for a discussion of this point.

The quote marks, [1, are sometimes called Frege quotes, or sense quotes. The process of making formulae
into objects in a meta-language domain is sometimes called arithmetization, after Godel, who used a meta-
language techniquein his proof of theincompleteness of arithmetic; the names given to object-language formulae
are sometimes called Godel numbers.

It is often claimed that meta-1anguage approaches enjoy the following advantages over modal languages:

1. Expressive power. The following meta-language formulae have no quantified modal logic counterparts:

Ok [(Bel(i, X) “i believes something”
OxBel(i,x) O Be(j,x) “ibelieveseverythingj believes’

2. Computational tractability. Meta-languages are just many-sorted first-order languages, for which auto-
mated theorem provers exist. It should therefore be possible — in principle at least — to use existing
theorem provers for meta-languages. However, this claim has yet to be satisfactorily demonstrated.

Unfortunately, meta-language approaches also suffer from severe problems. These problems are discussed in
the next section. One meta-language approach is then described in detail [98]. Finally, ahybrid formalism, based
in part on a meta-language approach, and in part on possible worlds, is briefly described [124].

241 Meta-Languages, Self Reference, and I nconsistency

The key difficulty with meta-language approaches is that many naive attempts to treat meta-language predicates
as syntactic modalities run into inconsistency. These difficulties arise, for the large part, from the issue of self
referencel.

14A good discussion of these issues may be found in [131]; the issue of self reference is examined in detail in [129] and [130].

28

Suppose one wished to use a meta-language approach to represent and reason about knowledge and belief.
Following “standard” practice, knowledge may be defined as true belief. One might begin by setting object-
language = meta-language, so that the object- and meta-language are the same; in such circumstances, the meta-
languageis said to be self referential, sinceit may contain termswhich refer to itsown formulae. A truth predicate
can then be defined.

True(Tgl) = o (2.11)
Knowledge may then be defined as a composite concept.
Know('gl) < Bel(Tgl) OTrue(o) (2.12)

The Bel predicate can then be given whatever axiomatization is deemed appropriate. This approach seemssimple,
intuitive, and satisfactory. Unfortunately, in general, any first-order meta-language theory containing axiom (2.11)
turns out to be inconsistent. This problem was first recognized by Tarski; the difficulty is with the possibility of
formulae asserting their own falsity (asin the famous*“liar” paradox).

Several proposals have been put forward to remedy the problem. One possibility is to define True and False
predicates, such that for some formulae ¢, neither True(T¢l) nor False(l ¢!) hold; in effect, one axiomatizes a
system in which the law of the excluded middle does not hold. This solution is unintuitive, however, and seems
rather ad hoc.

Another solution, due to Perlis[129], is to replace (2.11) with an axiom of the form:

True(') = ¢ (2.13)

where ¢Pisthe formulaobtained from ¢ by replacing every occurrence of - True((1) in @by Trug(T- @1). This
simple expedient prevents inconsistency (see [129, pp312-315] for proof). This proposa has been criticized by
Konolige, on a number of grounds, however: see [100, p116] for details.

A problem not alleviated by Perlis' schema was first recognized by Montague [121]. Consider the following
axiom:

Bel(lgl) O ¢
and the following inference rule:
From F ginfer - Bel(l¢l)

(cf. the modal system KT). Montague showed that any moderately sophisticated first-order theory (and in
particular, basic arithmetic) containing the above axiom and inference rule isinconsistent. This result appears to
be devastating, and for along time dampened down research into first-order meta-languages. A similar result by
Thomason ([169]) is similarly discouraging.

However, des Rivieres and Levesgue have recently shown that, while Montague's results are technically
correct, a careful reworking, with slightly different assumptions, leads back to consistency [40]*°. Also, Perlis
has shown how a similar technique to that proposed by him for recovering from Tarski’s result can be used
to recover from Montague's results [130]. Despite these results, the author is not aware of any recovery from
Thomason's negative results.

If nothing else, the above discussion illustrates that the whole issue of self-referential languagesis a difficult
one. It is hardly surprising, therefore, that some researchers have rejected self reference entirely. One critic is
Konolige, who suggests that an observer of a system of agents can hardly have any use for a self referential
language. He argues that the logical puzzles caused by self reference are just that: puzzles, which an agent will
never usually need to consider (unless sheis a philosophy or logic student) [100, p115].

One “standard” alternative to self-referential languagesis to use an hierarchical language structure. Consider
a“tower” of languages:

Lo— Ly — L — 00— Ly — O

Let language Lo be a non-self-referential “base” language; standard first-order logic, for example. Then
let each of the languages Lk, where k > 0, be a meta-language containing terms referring only to formulae of
languages lower down in the hierarchy. Thus no language in the hierarchy is self-referential. It is possible to
write formulae such as (2.10) in any of the languages L, where k > 0, but the paradoxes of self-reference will
not arise.

15| fact, they showed that it was a naive translation from a modal to meta-language that was causing difficulties.

29

The hierarchical approach has problems of its own, however. Consider the following scenario, adapted from
[172]. There are two agents, A and B, each with equal expressive powers of belief: anything A can believe, B
can believe, and vice versa. Consider the following statement.

A believesthat everything B believesistrue. (2.149)

How might this statement be represented, using the hierarchical approach? It obviously cannot be represented in
Lo. One obvious solution is to write:

Bel(A Ox[Bel(B,x) O True(X)!).

Suppose that the inner Bel predicate belongs to language Ly, where k > 0. The variable x in this formula
ranges over all formulae of languages Lj, where j < k. It does not, therefore range over the language of B's
beliefs, but over some language lower in the hierarchy. Moving to alanguage further up the hierarchy does not
solve the problem:

“No matter how far we climb up the object/meta-language hierarchy, we will not be able to capture
the intuitive content of [(2.14)]". [172, pp7-8]

Other objectionsto the hierarchical approach have been raised. For example, Morgenstern points out that the
truth predicate paradox is only resolved by positing an infinite number of truth predicates, one for each language
in the hierarchy. She argues that thisis not a satisfactory solution, for two reasons:

“Inthefirst place, itisimplausible that people are conscioudly aware of using different truth predicates
when they speak. Secondly, we often do not know which truth predicate to use when we utter a
particular statement. Finally, it isimpossible ...to construct a pair of sentences, each of which refers
to the other, although such sentences may make perfect sense”. [125, p104]

So both self-referential and hierarchical languages have their difficulties. One problem common to both is
that meta-languages are, in general, notationally cumbersome, unintuitive, and complex: see [100, p111] for a
discussion of this point. However, the difficulties described above have not prevented the development of some
ingenious and useful meta-language formulations of intentional notions.

24.2 Konolige'sFirst-Order Formalization of Knowledge and Action

In a 1982 paper, Kurt Konolige described a hierarchical meta-language formalism for describing and reasoning
about the knowledge and actions of computational agents [98]. In this section, we briefly review this formalism.

We begin by describing the meta-/obj ect-languagerel ationship, before moving on to the specificsof Konolige's
axiomatization. For the moment, assume that the object-language is a standard first-order language. For each
primitive object-language expression e, there is assumed to be a corresponding meta-language term €. Meta-
language terms denoting compound object-language formul ae are constructed using the meta-language functions
and, or, not, and so on. For example, the object-language formula

p O (qdr)
is denoted by the meta-language term
imp(p', or (g, ')
Since this construction is somewhat cumbersome, sense quotes are used as abbreviations:
=pl 2 not(p)

'pOgl 2 or(p,q)
etc.

To write that an object-language formula reflects the true state of the world, Konolige used a meta-language
truth predicate TRUE, with the following axiomatization:

Of O~ TRUE(F) - TRUE(not(f))
Of g OTRUE() OTRUE(G) ~ TRUE(or(f, g))
etc.

30

Konolige took a syntactic approach for describing the beliefs of agents; each agent is assigned a set of object-
language formulae — its theory — and believes @if @ is provable from its theory. A meta-language function th
is assumed, which takes a term denoting an agent, and returns the set of object-language formulae representing
that agent’stheory. A meta-language predicate FACT(t, f) is assumed, which saysthat f is a member of theory t.
A common fact is aformula which is common to all agent’s theories, and is also true.

Of CCFACT(f) = Oa[FACT(th(a), f) JTRUE(f)

The next step is to introduce a predicate PR, for provability. Thisis a binary predicate, taking a theory and
aformula as arguments. It can be given any axiomatization desired, but Konolige suggests giving it one which
makes provability complete with respect to the object-language. Its axiomatization will thus include modus
ponens, reflexivity, etc.

Ot COf (g CPR(, imp(f, g) OPR(t,f) O PR, g)
Ot COf CPR(L,f) O PR(, f)
etc.

Belief isthen defined using a meta-language predicate which holds between an agent and an object-language
formula: an agent believes @if @is provable from its theory.

DalDf (BEL(a,f) = PR(th(a),f)

Knowledge is defined as true belief, in the usual way. Konolige then goes on to extend his formalism in three
ways:

* heintroduces a standard name function , and a denotation function A, to simplify some of the notational
problems associated the meta-language approach;

» he deals with nested belief, (i.e., beliefs about beliefs) by extending the two-language hierarchy to a three-
language hierarchy;

* heintroduces situations (in the sense of the situation calculus [118]) into the domain of the meta-language
for reasoning about a changing world.

The details of these extensions need not concern us here. A critique of Konolige's formalism has been
developed by Davies[34]. In addition to the drawbacks associated with hierarchical languages generally, Davies
suggests three criticisms of Konolige's formalism:

* thethree layer hierarchy seems ad hoc;
» computationally, Konolige'sformalism seems likely to be unwieldy, due to the “meta-level” overhead;

» some of the axioms for common facts are invalid.

243 Moore'sFormalism

One of the most influential figures in the recent development of intentional logics has been R. Moore. For his
1980 doctoral thesis, he presented adetailed formal examination of theinteraction between knowledge and action,
framed in a multi-modal first-order logic [122], [124]. This logic has a possible worlds semantics, based on the
semantics of normal modal logics as discussed earlier. However, Moore took the novel step of showing how
these semantics could be axiomatized in a first-order meta-language. Modal formulae could then be trandated to
first-order meta-language formulae using the axiomatization. Theorem proving in the modal language is thereby
reduced to a problem of theorem proving in the meta-language. Moore' sformalism is rather complex, and details
are therefore omitted; the interested reader is referred to the cited works.

The first part of the formalism is essentially a treatment of knowledge using possible worlds semantics, ex-
cept that Moore axiomatized the semantics of the modal operators in a first-order meta-language. Moore then
developed a treatment of action, using action constructorsin the style of dynamic logic [84].

Moore went on to present a detailed examination of the way that knowledge and action interact. This culmin-
ated in a definition of ability: what it means for an agent to be able to do something. Moore began his analysis
by noting that knowledge and action interact in two obvious ways:

1. Asaresult of performing an action, an agent can gain knowledge. Agents can perform “test” actions, in
order to find things out.

31

2. In order to perform some actions, an agent needs knowledge: these are knowledge pre-conditions ([126]).
For example, in order to open a safe, it is necessary to know the combination.

Asaresult of these considerations, Moore defined ability as either: 1) having arigid designator for an action such
that the agent knows that as aresult of performing the action, the goal will be achieved, or 2) having someinitial
action which the agent may perform, such that after it is performed, the agent will be in a position to achieve the
goal. This definition has subseguently been extended and refined by several workers (e.g., [126], [111]).

Moore's formalism has one major advantage: since it is ultimately based on a first-order meta-language, it
should be possible to use a first-order theorem prover for it. Moore's formalism has, in fact, been implemented,
by Appelt, in his natural language planning system KAMP [6], [7].

However, there al so seem to be anumber of difficultieswith the formalism. The most important areasfollows:

1. The process of trandlating the modal language into afirst-order one and then theorem proving in the first-
order language is inefficient. Reichgelt observes that “hard-wired” modal theorem provers will probably
be more efficient [138, pp128-129].

2. The formulae resulting from the trandation process are complicated and unintuitive.

3. Moore's formalism is based on possible worlds, and thus falls prey to logical omniscience. As a corol-
lary, the definition of ability is somewhat vacuous (agents know all necessary truths, which weakens the
knowledge precondition) [126, p152].

To conclude, the approach of using afirst-order meta-1anguage to axiomatize the semantics of amodal object-
language was devel oped in order to provide aframework for efficient modal theorem proving. Since thisapproach
seemsto beruled out in practice, it is not clear what advantages this technique has over anormal modal language.

2.5 Other Formalisms

In this section, we examine four formalisms for reasoning about intentional notions that do not fit neatly into
any of the categories described above. First, Konolige's deduction model of belief is examined in detail [100];
Werner’'s formalism [179], situation semantics [14], [41], and Singh’sformalism [153] are then briefly described.

25.1 TheDeduction Model of Belief

In Konolige's 1982 first-order formalization of knowledge and action, described above, an agent’s beliefs were
modelled as a set of formulae and a provability relation. Motivated by some shortcomings of this formalism (see
above), Konolige went on to develop afamily of belief logics based on a semantic model similar to that described
in the 1982 paper. These logics employed a modal language for belief, which isless cumbersome than the meta-
language formalism, and used alimited form of deduction for the provability relation, thereby modelling resource
bounded reasoning. The work was originally described in his 1984 doctoral thesis [99], and was published in a
polished, revised form as [100].

The starting point for the deduction model of belief wasthe observation that: “[T]he most important properties
of belief, for our purposes, are those that are necessary for typical robot planning and problem solving systems’
[100, p1]; “The deduction model was developed in an effort to define accurate models of the beliefs of Al
...Systems’ [100, p3]. This is an important point, often overlooked by critics of the deduction model: his aim
wasto develop amodel of the beliefs of artificial, computational agents, and not amodel of human believers. He
argued that such a model should capture the following properties of beliefs:

» agents (may) derive some conclusions from their beliefs;
* they do not necessarily derive all the logically possible conclusions.

Possible worlds logics of belief capture the first property; they do not capture the second. So how is one to
construct amodel of the beliefs of Al systems that captures both properties? Konolige observed that:

“Because [Al systems] have been constructed by Al researchers, we can actually ook at their design
and answer questions about their internal ‘mental’” structures. In effect, we are using these ...systems
as subjectsin adiscipline that might be appropriately termed experimental robot psychology”. [100,
p3]

32

Inference Queries

Rules
Control
Strategy
Base / ;
Beliefs — Replies

Figure 2.4: Structure of a Typical Al Belief System

Konolige then noted that atypical Al system has a structure such as that illustrated in Figure 2.4 (after [100,
pl9]). The “base beliefs’ correspond to what is often called “knowledge” in an Al system (though “belief” is
surely a more appropriate term). These beliefs are usually expressed in some symbolic language. Thislanguage
may be one of semantic nets or frames, but is more generally alogical language: perhaps a subset of first-order
predicate logic. Call this language the internal language. It is important to distinguish this language from the
external language that will be used by an observer to describe the beliefs of agents. These languages may be the
same, though this is not necessarily the case; there may be no way of talking about the beliefs of agents in the
internal language.

The second featureis some set of inferencerules. Most Al systems have some limited inferential ability, based
on (pseudo-) logical inference. Such inference is inevitably limited by the computational resources available to
the agent. It isnot, in general, possible for an agent to derive all the possible consequences of a set of beliefs, as
there will be an infinite number of such consequences. The application of inference rulesis generaly guided by
some control strategy. Unfortunately, trying to mathematically model control strategiesis often not possible, due
to their inherent complexity. Konolige therefore proposed simplifying the modelling process by assuming that an
agent possessed a finite set of rules, which were applied exhaustively to the agent’s base beliefs. An agent then
believes @ if it is possible to derive ¢ from the agent’s base beliefs using its deduction rules. Thisis perhaps still
an overstrong model of resource bounded reasoners, but it at least manages to capture some incompl ete reasoning,
and has the advantage of simplicity.

The model of belief systems outlined above was formalized in the deduction structure. A deduction structure
isapair:

(B, p)
where
» Aisadatabase of base beliefs: a countable set of formulae in some internal language of belief;
» pisaset of deduction rules.
A deduction ruleis arule of inference that must satisfy the following properties:
* the number of premises of the ruleis fixed and finite;
* theruleis an effectively computable function of those premises.

A relation -, is defined between sets of formulae and formulae of the internal language, for each set of deduction
rules p.

AF, @iff thereisaproof of @ from A
using only the rulesin p

Therelation “F," enjoys many of the properties of the proof relation (“-"), including transitivity and reflex-
ivity. The closure of a set of formulae under a set of deduction rulesis given by the following function?.

close((A, p) 2 {@|Atp @}

16Called bel in Konolige'swork.

33

Suppose d; is the deduction structure of agent i, then belief is given the following meaning.

@Oclose(d)) — i believes @

@ close(d)) — idoesn't believe @
s @Oclose(d) — ibelieves- @
- @close(d) — idoesn'tbelieve- ¢

Note that it may be the case that an agent’s belief system simultaneously satisfies the second and fourth
conditions, thus modelling the possibility that an agent has no opinion on a formula. Note also that deductive
closure, as modelled by the close function, is aweaker property than consequential closure.

K onolige definestwo modal “ external” languagesfor describing beliefs: LB, which does not allow quantifying-
in to modal contexts, and L B9, which does. The language LB is essentially based on an internal language L,
assumed to be a superset of classical first-order logic, augmented by an indexed set of unary moda operators
{[i]}, for agentsi O {1, ... ,n}. A formula[i]@isread: “i believes ¢'.

A model for LB isamodel for first-order logic, augmented by a set of agents {1, ... ,n} and an indexed set of
deduction structures {d;}, fori O {1, ..., n}. The semantics of modal formulae of L& are given by the following
rule.

M,... E [i]Je iff O close(d)
Let the deduction rules of agent i, with respect to some model, be given by p(i). It is not difficult to see that
the following axiom will be sound for all of Konolige’'s models.
[l OOI[ilgn O @where{@, ..., &} Fpiy @
This axiom justifies the following, derived rule of inference.
From F [i]lg

Fo il
and {ou....;} ey @
infer F [i]lo

Konolige develops a tableaux-based decision procedure and resolution system for his logics; the resolution
system makes the formalism attractive from a computational point of view.

Having developed the basic logic, Konolige goes on to devel op two further operators. a common knowledge
operator, and a circumscription operator. The common knowledge operator is based on the idea of a fictitious
agent whose beliefs are those that “any fool would know”. The agent name “0" is reserved for this agent. The
semantics of the common knowledge operator are as follows.

M,... E [Olg iff @O close(d) and [0]¢ O close(d;)
foraliO{1,...,n}

Common knowledge is, therefore, only possible for agents capable of having beliefs about beliefs. The
following axiom will obviously be sound.

[Ol¢ O [iJed[i][0l¢

The circumscription operator is unusual. It is written (i:)¢, and is read: “¢@ is derivable from I" in i’s
deduction structure”. The semantic rule for this operator is:

M,... E (il iffItpi @

To understand how this operator might be used, consider trying to represent the following statement in the
modal language of belief:

Theonly factsi knows about g areT .
Using the circumscription operator, this statement can be formalized as follows:
(Mo~ [i]e
The forward implication tells us that i can prove ¢ from I, (that is, if i believed I, it would believe).
The reverse implication says that it cannot believe ¢ unless it believes I'. In effect, the operator allows us to
circumscribe an agent’s beliefs.

The deduction model is undoubtedly a simple model of belief. For Al researchers, accustomed to building
agents with an architecture along the lines of that described by Konolige, the deduction model seems a far more

34

down-to-Earth semantics than possible worlds. However, the deduction model does have its critics. The com-
monest criticism isthat deductive closureis still an overstrong property for an agent’s belief system to have [138].
Konolige gives two rejoinders to this criticism. First, he outlines a method of modelling belief systems with a
local cost bound on derivations [100, p24]. Second, he argues that the deductive closure property is needed in
order to aleviate the need for modelling the proof trees, agendas, and so on, that would otherwise be required
to model an agent’s belief system. The implication is that a finer grained model of belief could be developed if
required, for specific applications.

Another criticism of the deduction model is that it is ad hoc: modelling belief systems as sets of formulae
seems a haive approach (see, e.g., [156]). This criticism seems unfounded. First, Konolige shows that the
deduction model can be treated as a generalization of possible worlds semantics, and that any of the “standard”
possible worlds systems can be modelled using the deduction model (see[100, Chapter 6]). Second, the deduction
model was developed not as a model of human belief, but as a model of the beliefs of Al systems.

To conclude, while the deduction model is arguably too simplistic to capture the intricacies of human belief,
its serves as an adequate model of the beliefs of Al systems, and is therefore well suited to the purposes of this
thesis.

25.2 Werner's Formalism

In an extensive series of papers published since 1988, Eric Werner has proposed a formalism for modelling and
reasoning about multi-agent societies, which draws on work in game theory, temporal logic, and intentional logics
[178], [176], [177], [179], [180], [181], [182], [183]. A detailed technical review of Werner’'s formalism and his
logic LT [JCAN (or CANPLAN, asit isknown in [182]) is presented in Appendix B.

Werner defines the cognitive state of an agent as atriple:

(1LSV)
where

* | istheinformation state of the agent;
» Sistheintentional state of the agent;
» Visthe evaluative state of the agent.

Theinformation state of an agent is a set of partial histories, corresponding to epistemic alternatives. Each partial
history represents one way the world could have developed, given what the agent knows.

The intentional, or plan state of an agent is a set of strategies. Each strategy represents one course of action
the agent might follow. A strategy is a function from information states to a set of histories leaving the state. So
a strategy (presumably) maps an information state to the states that might result if the strategy were followed.

The evauative state of an agent represents the agent’s preferences; it may be a function which assigns to a
particular history a numerical value, called the utility of the history.

From this simple starting point, Werner investigates a number of aspects of cooperative activity, including
speech acts [176], planning [182], socia structure [179], and so on. Werner’s theory of speech acts is reviewed
briefly in the next chapter; the model of social structure is outlined in Appendix B.

The most interesting aspect of Werner's work has been to model an agent’s intentional state as a set of
strategies. Thisapproach seems moreflexiblethan the goal accessibility relation proposed by Cohen and Levesque
(see above).

2.5.3 Situation Semantics

Situation semantics were originally developed as a formalism for natural 1anguage semantics by the philosophers
Barwise and Perry [14]. The chief motivation for their work was a deep dissatisfaction with Montague’sgrammar,
the then-prevailing formalism for natural language semantics, which is based on possible worlds semantics.

“[WI]e felt that the possible worlds point of view is dead wrong, deeply unsatisfactory, both philo-
sophically and mathematically”. [14, p13]

“The assumption ...built into ...[possible worlds semantics] isthat each world provides total inform-
ation about the extension of every piece of language in that world, for all time”. [14, pl4]

35

Since the publication of Stuations and Attitudes, there has been intense interest in situation semanticsin the
linguistics community, but comparatively little interest by the mainstream Al community. Situation semantics
have recently been reworked to some degree by Devlin, who was interested in building a foundational theory of
information [41].

Interesting and valuable though situation semantics undoubtedly are, it is not yet clear how they might be
employed to reason about multi-agent systems. The subject is, therefore largely tangential to the interests of this
thesis, and will be not be discussed in any further detail; the interested reader is referred to the cited works.

254 Singh’sFormalism

In aseries of papers, Munindar Singh has outlined various aspects of atheory of multi-agent systems[152], [153],
[156]. His motivation appearsto be similar to that of thisthesis: to investigate methods for reasoning about multi-
agent systems. However, the techniques he adoptsare quite different. In hismost detailed analysis of the cognitive
structure of agents, ([156]), he develops a branching time logic of multi-agent systems which includes Believes
and Intends operators, to describe the beliefs and intentions of agents. The semantics of these operators are based
on aunified view of cognition, action, and communication called discour se representation theory (DRT). The goa
of DRT isto provide a theory of discourse meaning that can “capture aspects of information typically encoded
in natural language utterances’ [156, p474]. Unfortunately, an examination of DRT is quite beyond the scope of
thisthesis.

2.6 Agency and Al: Building Agents

This thesis has, so far, been largely concerned with the question of how to reason about agents, when agents are
viewed as intentional systems. This section will move away from such considerations, and turn instead to the
question of how agents have been built: after al, the aim of the thesis is to develop formalisms for reasoning
about systems composed of “real” computational agents.

The question of how to build agentsis, of course, avery big one: in a sense, thisis what the whole Al project
is about. Not only is the question big, it is also vexed. There is an ongoing debate in Al about the best way to
go about building intelligent agents. The protagonists in this debate may be broadly divided into two camps: the
traditional, symbolic, logicist camp, and the aternative, behavioural camp (connectionists have been somewhat
sidelined in this debate)’. In this section, some of the key arguments from each camp will be described.

2.6.1 Symbolic Al and Agency

The foundation on which the whole corpus of symbolic Al has been constructed is the physical-symbol system
hypothesis, formulated by Newell and Simon*®. A physical symbol system isdefined to be a physically realizable
set of physical entities (symbols) that can be combined to form structures, and which is capable of running
processes which operate on those symbols according to symbolically coded sets of instructions. The physical-
symbol system hypothesis then says that such a system is capable of general intelligent action.

It is ashort step from the notion of a physical symbol system to McCarthy’s dream of a sentential processing
automaton, or deliberate agent (the term “ deliberate agent” was introduced by Genesereth, [73, pp325-327], but
is here used in a dlightly more general sense). A deliberate agent is one which satisfies the following properties:

1. It contains an explicitly represented database of formulaein some logical language, representing its beliefs.
2. It operates on a continuous cycle of observe — deliberate — act (I
3. Reasoning and deciding upon actions are based on some form of logical inference.

The deliberate agent is the ultimate aim of the pure logicist Al project, but in alooser sense, it is adescription
of the agent in classical Al generally. It is also worth pointing out that it is the beliefs of such systems that
Konolige was trying to model in his deduction model of belief, (see earlier, and [100]).

171t is worth pointing out that while the members of each camp might not be in complete agreement with each other, they certainly don’t
agree with the members of the opposing camp.
185ee [149] for a detailed discussion of the way that this hypothesis has affected thinking in symbolic Al.

36

“Supportersof classical Al have, in general, accepted the physical symbol system hypothesis....[Clomplacent
acceptance of this hypothesis, or some variant of it, led researchers to believe that the appropriate

way to design an agent capable of finding itsway round and acting in the physical world would be to

equip it with some formal, logic-based representation of that world and get it to do a bit of theorem
proving”. [149, §3.2]

If one accepts this doctrine, then there are at least two important problems to be solved before one can build an
intelligent agent:

1. Thetransduction problem: that of translating the real world into an accurate, adeguate symbolic description
of the world, in time for that description to be useful.

2. The representation/reasoning problem: that of representing information symbolically, and getting agents to
manipul ate/reason with it, in time for the resultsto be useful.

The former problem has led to work on vision, speech understanding, learning, etc. The latter has led to work on
knowledge representation, automated reasoning, automated planning, etc. Despite the immense volume of work
that the problems have generated, many people would argue that neither problem is anywhere near solved. Even
seemingly trivial problems, such as commonsense reasoning, have turned out to be extremely difficult. A detailed
exposition of specific problems would be quite beyond the scope of this thesis, so to illustrate some problems,
work on Al planning is briefly reviewed.

It is widely accepted within the symbolic Al community that a planner will be a central component in the
structure of an artificially intelligent agent. Briefly, a planner takes a goal, (something an agent want to achieve),
and asymbolic representation of the current state of theworld, (the agent’s beliefs), and generates a plan of action,
which, if the agent follows it, will achieve the goal. Planning, it is argued, it a central component of everyday
activity, that every intelligent agent must engage in (see [75], [184]).

The first real planner was the STRIPS system, developed by Fikes in the late 1960s/early 1970s [57]. The
two basic components of STRIPS were a model of the world as a set of formulae of predicate logic, and a set of
action schemata, which describe the pre-conditions and effects of all the actions available to the planning agent.
This latter component has proved to be STRIPS most lasting legacy in the Al planning community: nearly all
implemented planners employ the “STRIPS formalism” for action, or some variant of it. The STRIPS planning
algorithm was based on a principle of finding the “ difference” between the current state of the world and the goal
state, and reducing this difference by applying an action. Unfortunately, this proved to be an inefficient process
for formulating plans, as STRIPS tended to become “lost” in low-level plan detail.

In an effort to overcome this problem, Sacerdoti developed an hierarchical planner called ABSTRIPS, which
works by sorting out high-level plan components before moving to low-level details[144]. Despite the perform-
ance improvements gained by hierarchical planning, the planning process remained time consuming. Further
efforts to improve performance were made [167], [5]. The apotheosis of this work came with Chapman’s work
on TWEAK, anon-linear planner that was proved correct, in the sense that if it produces a solution the solutionis
correct, and if it signifies failure then no solution is possible [26]. However, in the course of his work, Chapman
established some results which delivered something of a body-blow to the Al planning community. It has long
been known that in the worst case, the planning problem is NP-hard, which is adiscouraging result in itself. But
Chapman showed that correct planning is, in the general case, also undecidable.

So planning — an activity long regarded as central to the classical model of artificially intelligent agency —
turns out not only to be a computationally intractable problem, but for planners of even moderate sophistication,
undecidable. It is perhaps this result, more than any other, which has led a number of researchers to reject the
classical Al model of agency altogether and seek an aternative.

2.6.2 Alternative Approaches

Probably the most vocal critic of the symbolic Al notion of agency has been Rodney Brooks, a researcher at
MIT. Brooks was originally a robotic engineer, who apparently became frustrated by Al approaches to building
control mechanisms for autonomous mobile robots. In a 1985 paper, he outlined an alternative architecture for
building agents, the so called subsumption architecture, and began his attack on symbolic Al [19]. The analysis
of alternative approaches begins with Brooks' work.

In recent papers, ([21], [20]), Brooks has propounded three key theses:

1. Intelligent behaviour can be generated without explicit representations of the kind that symbolic Al pro-
poses.

37

2. Intelligent behaviour can be generated without explicit abstract reasoning of the kind that symbolic Al
Proposes.

3. Intelligence is an emergent property of certain complex systems.
Brooks identifies two key ideas that have informed his research:

1. Situatedness and embodiment. “Rea” intelligence is situated in the world, not in disembodied systems
such as theorem provers or expert systems.

2. Intelligence and emergence. “Intelligent” behaviour arises as a result of an agent’s interaction with its
environment (apoint borne out in practical termsby [165]). Also, intelligenceis“intheeye of thebeholder”.

If Brooks was just a Dreyfus-style critic of Al, his ideas would probably not have gained much currency.
However, to demonstrate the validity of his claims, he has built a number of robots, based on the subsumption
architecture. A subsumption architectureisahierarchy of task-accomplishing behaviours. Each behaviour “com-
petes’ with the othersto exercise control over therobot. Lower layers represent more primitive kinds of behaviour,
(such as avoiding obstacles), and have precedence over layers further up the hierarchy. It should be stressed that
the resulting systems are, in computational terms, extremely simple, with no explicit reasoning, or even pattern
matching, of the kind found in symbolic Al systems. But despite this simplicity, Brooks has demonstrated the
robots doing tasks that would be extremely impressive if they were accomplished by symbolic Al systems. For
example, one robot goes around an office building, looking for soda-pop cans, lifting them to seeif they are empty,
and discarding them if they are. Similar work has been reported by Steels, who described simulations of “Mars
explorer” systems, containing a large number of subsumption-architecture agents, that can achieve near-optimal
performance in certain tasks [165].

At about the same time as Brooks was describing his first results with the subsumption architecture, Chapman
was completing his Master’ sthesis, in which hereported the theoretical difficultieswith planning described above,
and was coming to similar conclusions about the inadequacies of the symbolic Al model himself. Together with
his co-worker Agre, he began to explore alternatives to the Al planning paradigm [27].

Agre'swork is conceptually more sophisticated than thats of Brooks. He observed that most everyday activity
is “routine” in the sense that it requires little — if any — new abstract reasoning. Most tasks, once learned, can
be accomplished in a routine way, with little variation. Agre proposed that an efficient agent architecture could
be based on the idea of “running arguments’. Crudely, the idea is that as most decisions are “routing”, they can
be encoded into a low-level structure (such as a digital circuit), which only needs periodic updating, perhaps to
handle new kinds of problems. His approach was illustrated with the celebrated Pengi system [3].

Another sophisticated approach is that of Rosenschein and Kaelbling, who propose describing an agent in
intentional terms, and compiling this intentional description into alow-level device which realises the description
[142], [143]. Their situated automata paradigm has attracted much interest (see, e.g., [151], [97]).

Severa other researchers have described similar work, most noticeably the Phillips group, who have worked
on “behaviour-based” systems [32], [175]. Some “hybrid” systems have also been described (e.g., [76], [96]
[56]), which try to marry classical and alternative approaches, with some success.

2.7 Summary

This chapter began by trying to come to some definition of an agent. This was found to be difficult, as action-
based analyses, and “high-level” analyses of agenthood proved not to be useful. An agent was instead identified
with Dennett’s notion of an intentional system: one that is most simply described in terms of the intentional
notions of belief, desire, and so on. This then motivated a detailed analysis of formal methods for reasoning
about the intentional notions. This analysis began with alook at why classical first-order logic is not appropriate
to the task. It then discussed at length the so-called possible worlds semantics. Some problems (notably logical
omniscience) were identified with the possible worlds approach, and several variations on the possible worlds
theme were discussed. Meta-language approaches to reasoning about knowledge and belief were then reviewed.
Finally, Konolige's deduction model of belief was reviewed, and found to be a good model of the beliefs of Al
systems.

The focus of the chapter then turned from methods for reasoning about Al systems to how agents are actually
built. The classical Al model of agency was found to be in accord with the deduction model of belief, where an
agent is equipped with a set of formulae of some logic, (its beliefs), which constitute a description of its world.
Objectionsto the classical model of agency — notably theoretical difficulties associated with activities generally

38

taken to be at the heart of the classical Al model of agency — were then discussed, and some alternative work
was mentioned. However, since the focus of this thesis is on classical models of agency, this alternative work
will not be discussed further.

This chapter has focussed largely on the “isolated” aspects of agency: the knowledge and beliefs of single
agents. The aim of the next chapter is to move on to aspects of social agency, and in particular, methods for
reasoning about communication, and building socia agents.

39

Chapter 3

Social Agency and Distributed Artificial
Intelligence

By definition, an agent in a DAl system is social: it exists in an environment containing other agents, with
which it will generally be expected to interact in some way. Agentsin DAI are thus situated in a multi-agent
environment; they are not disembodied, isolated intelligences, asthe early Al theorem provers and expert systems
were. Consequently, DAI is largely concerned with the social aspects of agency. It is these aspects of agency
which are the object of study in this chapter.

The chapter is structured as follows. First, the notion of communication is examined. It seems almost axio-
matic that social agents are able to communicate with their peers (though thisis not universally assumed in DAI).
The various ways that communication has been treated in the DAI literature are examined in the next section.
This leads to the recognition of speech acts as the most widely used method for describing and reasoning about
communication in DAI. Section 3.2 examines various formal and semi-formal speech act theoriesin detail, from
their origins with Austin, to recent treatments by Cohen and Levesgue.

Section 3.3 echoes the structure of the preceding chapter by examining the various ways that social agents
have been built in DAI. The chapter closes with a summary.

3.1 Communication and DAI

It is widely accepted that communication plays a central role in DAl systems. Why is this? Consider the twin
problems of coordination, (that of ensuring that the actions of agents in a system do not conflict, and are not
self-defeating), and coherence, (that of ensuring that global system performance is satisfactory), both of which
arisein any non-trivial DAl system (the best currently available account of these problemsis[16, pp19-24]). The
root cause of these problemsis lack of information: it is not generally feasible for agents to maintain complete,
correct, current knowledge of their environments. In short, no agent ever knows precisely what every other agent
is doing. Instead, agents generally maintain partial knowledge (or, as we shall see, in some limited cases, no
knowledge). The basic role of communication is to provide a means of exchanging information: plans, partial
results, synchronization information, and so on.
Werner has identified five ways that communication has been treated in DAI [179, pp5-8]:

1. No communication. The simplest kind of communication is no communication. Agents might infer each
other’s plans without communicating them, [141], or they might employ a structured environment, which
alleviates the need for direct communication [165]. Another alternative is a “pre-established harmony”,
where every agent operates according to some pre-determined scheme to achieve a goal, with no need to
communicate at “run-time”.

2. Signalling. The synchronization of multi-agent activity may be achieved by the use of semaphore-like
signals [74].

11t is worth pointing out that the classic computer science problems of communication, (e.g., the problem of efficiently transmitting a
packet of information from one node to another), are not considered within the scope of DAI. These “low level” problems are generally
considered “solved” for DAI purposes.

40

3. Computation as message passing. Hewitt and Agha have developed a computational paradigm based on
the notion of message passing [2]; the so-called actor systems contain large numbers of very fine-grained
agents working together. More generally, many DAI systems are based on communication via message
passing [70], [189].

4. Plan passing. The problems of coordination and coherence, mentioned above, have been tackled through
the use of plan-exchange, particularly in the partial global planning paradigm [45], [43], [44].

5. Speech acts. The basic axiom of speech act theories is that communication is a form of action, in much
the same way that lifting a block from atable is action. Speech act theories were devel oped by philosoph-
erglinguists in an attempt to understand the workings of human communication.

Thefirst possibility, (no communication), is only practicable in certain circumstances: inferring each others plans
is too time consuming to be practicably useful, and structured environments are only feasible for certain, highly
stylized tasks. Similar comments apply to signalling, which can be used for synchronization in the operating
system sense, but little else.

The actor paradigm dealswith fine-grained, massively concurrent systems, and isthusof limited interest to this
thesis. Plan passing is avery specific technique for coordinating multi-agent activity and is, again, only of minor
interest given the purposes of this thesis. The best developed framework for reasoning about communication is
therefore speech act theories: such theories are reviewed in detail in the next section.

3.2 Speech Acts

Speech act theories, originally a fairly obscure issue in linguistic philosophy, are now a central component of Al
and linguistic theory. Speech act theories are pragmatic theories of language: they deal with language use, in
everyday situations, to achieve everyday ends. Pragmatics can be distinguished from syntax (to do with language
form), and semantics (to do with language meaning).

The basic axiom of speech act theoriesis that utterances made by humansin everyday situations are actions,
typically performed by a speaker with some intention, which change the state of the world in a way analogous
to the way “physical” actions do. Since utterances do not change the state of the physical world in any obvious
way?, it seems appropriate to ask: What exactly is changed by an utterance?

Utterances are always performed in some context, and alter that context. Thisisin essence the basic idea of
pragmatic theories of language. Suppose £ isthe set of all possible utterances of some language, and € is the set
of all contexts. Then a pragmatic theory can be viewed as a function:

f:LxC - C
or, equivalently:
f:L-C-C
(see, eq., [114, pp30-32], and the function Prag in [179, pp15-18], [176] and below). A complete theory
must therefore account for:
1. Theset C of all possible contexts.
2. The“internals’ of the function f.

It is generally accepted that the context of an utterance is composed of the mental states of the utterance parti-
cipants: their beliefs, desires, etc. Thisis consistent with the view of agents as intentional systems, discussed in
the preceding chapter.

The following subsections analyze various devel opmentsin speech act theories: the trestment is adapted from
[114], [9], [245], [146], [31], [30], [132], [8], [67], [179], [176], and [154].

3.21 Speech ActsalaAustin

The origin of speech acts theory is usualy attributed to Austin [9]. In his 1962 book, How To Do Things With
Words, he noted that in everyday spoken language, humans use a class of sentences which do not simply assert

2|gnoring pathological cases, (such as shouting and causing an avalanche), and microsopic effects.

41

some fact, but actually perform some action. Austin called such sentences performatives. He also noted that
performatives can fail in the same sense that non-linguistic actions can fail.

Austin called the conditions required for the successful completion of performatives felicity conditions. He
recognized three important felicity conditions:

1. (a) There must be an accepted conventional procedure for the performative.
(b) The circumstances and persons must be as specified in the procedure.

2. The procedure must be executed correctly and completely.
3. The act must be sincere, and any uptake required must be completed, insofar as is possible.

To illustrate the first condition, consider someone saying: “You are exiled from this country”. Unless the utterer
has gone through all the legal procedures required to exile the hearer, and moreover, has the legal authority to
do s0, then this act is not a performative. This is because there is no conventiona procedure whereby someone
can say: “you are exiled”, and make it so. The second part of the first condition might arise if, for example a
clergyman baptized the wrong baby.

The second condition is relatively straightforward. The third is more subtle. It requires, for example, that
agents must have the appropriate mental state to perform the act, and must carry through any required behaviour.
For example, asking for something while not wanting it, or promising something while having no intention of
carrying out the promise would contravene this condition.

Austin postulated that in uttering a sentence, an agent performs three types of action:

» Locutionary acts. A locutionary act is performed simply by uttering a syntactically acceptable sentence.

* lllocutionary acts. An illocutionary act is often performed with a performative verb. Some examples
of performative verbs are: “request”, “inform”, “insist”, “state”, “demand”, and “argue”’. Austin claimed
that the English language contains over a thousand such verbs. Each performative verb has an associated
illocutionary force. Many performatives have asimilar (if not identical) illocutionary force (e.g., “inform”
and “tell”). Performatives can often be identified by seeing whether they take the adverb “hereby” (e.g., “I

hereby inform you that ...").
» Perlocutionary Acts. Theperlocutionary act isthe bringing about of an effect on the hearer of the utterance.

The term speech act has subsequently become synonomous with the illocutionary act.

3.2.2 Speech Actsala Searle

The next important stagein the devel opment of speech actstheory camein 1969, with the publication of John Searle’s
book, Speech Acts [145] (further developed in [146]). The main thesis of Searle’s work was that conversing in
alanguage is a rule-governed form of behaviour. Searle attempted to formulate the structure of speech acts by
deriving the set of “necessary and sufficient” conditions for their successful completion. For example, the con-
ditions that Searle suggested must hold in order for the successful completion of arequest act are listed below: a
speaker (SPEAKER) is uttering a sentence, which is arequest for a hearer (HEARER) to perform ACTION.

1. Normal 1/O conditions. Normal 1/0O conditions state that HEARER is able to hear the request, (thus
HEARER must not be dedf, ...), the act was performed in normal circumstances (not in afilmor play, ...),
etc.

2. Preparatory conditions. The preparatory conditions state what must be true of the world in order that
SPEAKER correctly choose the speech act. In this case, HEARER must be able to perform ACTION,
and SPEAKER must believe that HEARER is able to perform ACTION. Also, it must not be obvious that
HEARER will do ACTION anyway.

3. Sincerity conditions. These conditions distinguish sincere performances of the request; an insincere per-
formance of the act might occur if SPEAKER did not really want ACTION to be performed.

4. Essential conditions. The act was an attempt by SPEAKER to get HEARER to do ACTION.

42

Searle listed similar sets of conditions for asserting, questioning, thanking, advising, warning, greeting, and
congratul ating.

As observed above, some speech acts have a similar illocutionary force. This begsthe question: isit possible
to classify illocutionary acts according to some abstract typology? Searle believed this was an essentia part of
understanding speech acts. He proposed the following, five-point typology:

1. Representatives. A representative act commits the speaker to the truth of an expressed proposition. A
paradigm case is asserting.

2. Directives. A directiveisan attempt on the part of the speaker to get the hearer to do something. Paradigm
case: requesting.

3. Commissives. Commit the speaker to a course of action. Paradigm case: promising.
4. Expressives. Express some psychological state (e.g., gratitude). Paradigm case: thanking.
5. Declarations. Effect some changesin an institutional state of affairs. Paradigm case: declaring war.

Levinson has criticized this typology on the grounds that it lacks a principled basis; a number of other typo-
logies have been proposed [114, pp240-242]. Whatever the merits of such typologies, it does seem that there are
at least three sentence types common to most languages: declaratives, imperatives, and interrogatives.

3.2.3 Speech Actsala Cohen and Perrault

Inalandmark paper published in 1979, Cohen and Perrault [31] took Searle’s work and attempted to re-formulate
his necessary and sufficient conditions using techniques adapted from mainstream Al work on planning. The
result was the plan based theory of speech acts (PBTSA).

Cohen and Perrault pointed out that one model of humansis as planners, continually generating, debugging,
and executing the plans that constitute their behaviour. They suggested that speech acts could be viewed as
operators in plans, in the same way that physical actions are viewed as operators in planning. The aim of their
work was then to develop a theory of speech acts:

“[B]y modelling them in a planning system as operators defined ...in terms of speakers and hearers
beliefs and goals. Thus speech acts are treated in the same way as physical actions’. [31]

In other words, the context defined by Cohen and Perrault, upon which speech acts operate, is the mental state
of the participants, where the mental states are defined in terms of beliefs and desires. This model is therefore
consistent with the view of agents as intentional systems.

Consider first the Request act: thisact is fundamental. The aim of the Request act will be for a speaker to get
a hearer to perform some action. Table 3.1 defines the Request act. This definition requires some explanation.
Two preconditions are stated: the “cando.pr” (can-do pre-conditions), and “want.pr” (want pre-conditions).

The cando.pr states that for the successful completion of the Request, two conditions must hold. First, the
speaker must believe that the hearer of the Request is ableto perform the action. Second, the speaker must believe
that the hearer also believesit has the ability to perform the action. Thewant.pr states that in order for the Request
to be successful, the speaker must also believe it actually wants the Request to be performed. If the pre-conditions
of the Request are fulfilled, then the Request will be successful: the result (defined by the “effect” part of the
definition) will be that the hearer believes the speaker believes it wants some action to be performed.

While the successful completion of the Request ensures that the hearer is aware of the speakers desires, it
is not enough in itself to guarantee that the desired action is actually performed. This is because the definition
of Request only models the illocutionary force of the act. It says nothing of the perlocutionary force. What is
required is a mediating act. Table 3.1 gives a definition of Cause-to_Want, which is an example of such an act.
By this definition, an agent will cometo believe it wantsto do something if it believesthat another agent believes
it wants to do it. This definition could clearly be extended by adding more pre-conditions, perhaps to do with
beliefs about socia relationships, power structures, etc.

The Informact isasbasic as Request. Theaim of performing an Informwill be for a speaker to get a hearer to
believe some statement. Like Request, the definition of Inform requires an associated mediating act to model the
perlocutionary force of the act. The definitions of Inform and its associated mediating act Convince are given in
Table 3.1. The cando.pr of Inform states that the speaker must believe @istrue. The effect of the act will simply
be to make the hearer believe that the speaker believes ¢. The cando.pr of Convince simply states that the hearer
must believe that the speaker believes ¢. The effect is simply to make the hearer believe .

43

Request(S H, a)

PRECONDITIONS CANDO.PR

WANT.PR
EFFECT

Cause_to_Want(A1, A2, a)

(SBELIEVE (H CANDO a)) U
(SBELIEVE (H BELIEVE (H CANDO a)))

(SBELIEVE (SWANT request.instance))
(H BELIEVE (SBELIEVE (SWANT a)))

PRECONDITIONS CANDO.PR
WANT.PR
EFFECT

Inform(S H, ¢)

(Al BELIEVE (A2 BELIEVE (A2 WANT a)))

X

(A1 BELIEVE (AL WANT a))

PRECONDITIONS CANDO.PR
WANT.PR
EFFECT

Convince(Al, A2, @)

(SBELIEVE @)
(SBELIEVE (SWANT inform.instance))
(H BELIEVE (SBELIEVE ¢))

PRECONDITIONS CANDO.PR
WANT.PR
EFFECT

(Al BELIEVE (A2 BELIEVE ¢))

X

(A1 BELIEVE ¢)

Table 3.1: Definitions from the Plan-Based Theory of Speech Acts

Note that the Inform and Request acts are, to some degree, interchangeable. Suppose an agent SPEAKER
wants some task ACTION to be performed by some agent HEARER. The Request act, described above, provides
the obvious method for causing HEARER to carry out thetask. Examination of the Informact, however, illustrates
at least one other method of achieving the same result. Suppose SPEAKER performed the following act:

Inform(SPEAKER, HEARER, (SPEAKER WANT ACTION))

By the definition of Inform given above, the successful completion of this act would cause HEARER to believe
that SPEAKER believed it wanted ACTION to be performed. This in turn would satisfy the pre-condition part
of Cause-to_Want. Issuing an inform of a want thus appears to achieve the same result as issuing arequest: this
point is examined in [31].

The definitions expounded above have assumed that the result of a speech act may be modelled completely
as the “effect” part of its definition. However, by virtue of the fact that an agent has performed a speech act, it
is possible to make inferences about the cognitive state of the speaker. For example, the hearer may reasonably
infer that the pre-conditions of the act held when the speaker performed the speech act. Thistellsthe hearer about
the cognitive state of the speaker. Such inferences are called “side effects’.

The PBTSA enjoyed some success. For example, it was used in Appelt’s celebrated natural language gener-
ation system, KAMP [€], [7].

Appealing though this formulation of speech actsis, it does have its problems. One of theseis that it seemsto
make the recognition of illocutionary force a necessary component of language use: a point stated explicitly by
Appelt [7, p87]. But it seems extremely unlikely that humans classify acts before understanding them?. So while
ataxonomy of speech acts is useful in its own right, it does not constitute an explanation of a dialogue. There
seems to be general agreement that a deep theory of speech acts should instead be rooted in a theory of rational
action: thisisthe starting point for the work of Cohen and Levesgue, described in the next section.

3Though there might be situations where some explicit reasoning about the type of an act is necessary — perhaps when a hearer is unsure
of whether a speaker is being ironic.

3.2.4 Speech Actsala Cohen and Levesque

Cohen and L evesque have devel oped a theory which arguably represents the state of the art in the logical analysis
of speech acts [30]. Their work proceeds from two basic premises:

1. lllocutionary force recognition is unnecessary.

“What speakers and hearers have to do is only recognize each others intentions (based on mutual
beliefs). [W]e do not require that those intentions include intentions that the hearer recognize
precisely what illocutionary act(s) were being performed”. [30, p223]

2. lllocutionary acts are complex event types, and not primitives.

Given this latter point, one must find some way of describing the actions that are performed. But actions, as
the previous chapter mentioned, are a very sippery concept. Recall Searle’s example of Gavrilo Princip in 1914,
simultaneously pulling a trigger, firing a gun, killing Archduke Ferdinand, and starting World War I. How many
actions are being performed here? Istherejust one action, being described in many ways, or are there anumber of
actions? Cohen and Levesque's solution isto use their logic of rational action, (described briefly in the preceding
chapter, and in more detail in [29] and Appendix B), which provides a number of primitive event types, which
can be put together into more complex event types, using dynamic-logic-style constructions. Illocutionary acts
are then defined as complex event types.

Their approach is perhaps best illustrated by giving their definition of arequest. Some preliminary definitions
arerequired. First, alternating belief.

(ABELNXYyp) 2 (BEL X (BEL Yy (BEL X [II{BEL X p) LI}
~~

n times n times
And the related concept of mutual belief.

(BMB Xy p) 2 On{ABEL NX Y p)

Next, an attempt is defined as a complex action expression — hence the use of curly brackets, to distinguish
it from a predicate or modal operator.

(BEL X = p) O
{ATTEMPT xepq} 2 (GOAL X (HAPPENS x €& p?) O [Ze
(INTEND X € g?)

In English:

“An attempt is a complex action that agents perform when they do something (€) desiring to bring
about some effect (p) but with intent to produce at least some result (g)”. [30, p240]

Theideaisthat p represents the ultimate goal that the agent isaiming for by doing €; the proposition g represents
what it takes to at least make an “honest effort” to achieve p. A definition of helpfulnessis now presented:

(BEL X (GOAL y O(DONE x €))) [
- (GOAL x [[]- (DONE x €))
0 (GOAL x O(DONE X €))

(HELPFUL xy) £ el

In English:

“[Clonsider an agent [X] to be helpful to another agent [y] if, for any action [€] he adopts the other
agent’s goal that he eventually do that action, whenever such agoa would not conflict with hisown”.
[30, p230]

The definition of requests can now be given (note again the use of curly brackets: requests are complex event
types, not predicates or operators):

45

{REQUEST spkr addr ea} & {ATTEMPT spkr e ¢
(BMB addr spkr (GOAL spkr ¢))

}
where @is

O(DONE addr a) O

(INTEND addr a
(GOAL spkr O(DONE addr a)) O
(HELPFUL addr spkr)

In English:

A request is an attempt on the part of spkr, by doing e, to bring about a state where, idedlly, 1) addr
intends a, (relativeto the spkr still having that goal, and addr still being helpfully inclined to spkr),
and 2) addr actualy eventually does a, or at least brings about a state where addr believes it is
mutually believed that it wants the ideal situation.

By this definition, there is no primitive request act:

“[A] speaker is viewed as having performed a request if he executes any segquence of actions that
produces the needed effects’. [30, p246]

In short, any event, of whatever complexity, that satisfies this definition, can be counted arequest. Cohen and
Levesgue show that if arequest takes place, it is possible to infer that many of Searle's preconditions for the act
must have held [30, pp246-251].

Using Cohen and Levesque's work as a starting point, Galliers has devel oped a more general framework for
multi-agent dialogue, which acknowledges the possibility for conflict [66].

3.25 Non-monotonic Reasoning, Belief Revision, and Speech Acts

Ina1987 paper, (reprinted as[132]), Perrault described how Reiter’sdefault logic, ([139]), could be used to reason
about speech acts. Perrault’s insight was to see that a scenario containing communicating participants could be
represented as a default theory. A default theory is a pair, containing a set of formulae called assumptions and a
set of default rules: the key difference between default and classical logic is that default logics do not obey the
monotonicity principle.

For reasoning about speech acts, the assumptions part of the theory contains an observer’s knowledge of the
world before an utterance is made; the rules part contains asmall set of default rules capturing assumptions about
the scenario. An example of such aruleisthe belief transfer rule: if x believesy believes ¢, and @ is consistent
with x's beliefs, then x will also believe ¢. If the default theory is augmented by the statement that an utterance
has been performed, and statements describing who is observing who, then, Perrault claims:

“[Elach extension ...of the [resultant] default theory ...describes a consistent view of the observer’s
knowledge of the world both before and after the utterance”. [132, p170]

One of the positive features of Perrault’stheory isthat it can deal with situations where the pre-conditions for
a speech act do not hold: for example, where a speaker utters an assertion about the world but does not, in fact,
believe the assertion, and the hearer fails to detect the lie.

However, Perrault’s theory has been criticized on a number of grounds [8, pp167-168]:

1. The theory predicts that an agent can come to believe any unsupported proposition simply by uttering it.
Thisis at odds with our everyday experiences.

The theory does not adequately deal with belief revision.
The theory cannot easily be integrated with a theory of action.

The belief transfer rule could not easily be implemented.

a > w0 D

The default logic used in the formalization is not easily implemented.

46

Motivated by these points, Appelt and Konolige proposed using hierarchic auto-epistemic logic (HAEL) ([102])
for reasoning about speech acts. HAEL is essentially an extension of auto-epistemic logic ([123]) developed
in order to alow reasoning about priorities between default theories. Syntactically, auto-epistemic logic is a
classical logic augmented by a single unary modal operator, L, with the formula L¢ having the intended reading:
“1 believe ¢’. Using this operator, it is possible to write formulae expressing: “unless | believe ...”, and thus
achieve simple default reasoning. In contrast to auto-epistemic logic, HAEL contains an indexed set of operators
{L;}, for referring to different evidence spaces, 1;. The evidence spaces are arranged in a hierarchy, defined by
an irreflexive, well-founded partial order, <. If 1, < T1j, then the evidence space T is said to be more specific
than 1j. Information from lower level evidence spaces “filters up” to higher levels. The formula Li@isread: “¢
isinthei’th level evidence space”’. An operator L; can only be applied to evidence spaces lower in the hierarchy
thani. So it is possible to write formulae expressing: “unless | have more specific information ...”. Priorities
between defaults are incorporated by putting them at different levels in the hierarchy; the higher the level, the
lower the priority. So, it is possible to write formulae for reasoning about prioritized defaults. Moreover, it is
readily demonstrated that aHAEL theory hasjust one extension, making it amore tractable system for automation
than Reiter’'slogic.
HAEL can be used for reasoning about speech acts in the following way:

“[A]lssumethat there is a hierarchy of autoepistemic subtheories...[Tp < Ty < T2...]. Thelowest
subtheory, 1o, contains the strongest evidence about the speaker’s and hearer’s mental states. For
example, if it is known to the hearer that the speaker is lying, this information goes into 1.

In subtheory 14, defaults are collected about the effects of the speech act on the beliefs of both
speaker and hearer. These defaults can be overridden by the particular evidence of 1p. Together, 1o
and 11 congtitute thefirst level of reasoning about the speech act. At level 2, the beliefs of the speaker
and hearer that can be deduced in 1; are used as evidence to guide defaults about nested beliefs, that
is, the speaker’s beliefs about the hearer’s beliefs, and vice versa. These results are collected in 1,.
In a similar manner, successive levels contain the result of one agent’s reflection upon his, and his
interlocutor’sbeliefs and intentions at the next lower level”. [8, p170]

The authors show how Perrault’s results can be reconstructed by following this scheme, and also show that
their proposal is not subject to many of the problems of Perrault’s technique.

Finally, Galliers has proposed that autonomous belief revision plays an important role in cooperative interac-
tion. Theideaisthat an agent has a preference ordering on cognitive states: given anumber of different, possible
cognitive states, an agent will choose to be in its preferred state. Agents thus have control over their cognitive
State.

“Revision of another’s cognitive state ...[is] the motivating force for communicative behaviour. But
if there are no specialized rules dictating what is a cooperative response, the success of an utteranceis
not guaranteed. Autonomous agents may or may not comply with the recognized intended effects of
an utterance on their cognitive states. ...Strategic interaction acknowledges all participants sharing
control over the effects of a communication. The aim in utterance planning is to determine one's
own actions according to one's own goals and the context. But, this context includes the other agent
and her autonomy over presumed existing mental states. ...Strategic planning to achieve a desired
changein another’sbelief statesis therefore a matter of setting the goal state based upon a prediction
of the context of that other agent, such that the general rules of rational autonomous belief revision
would then dictate the desired change anyway” . [67, p156]

3.2.6 Werner’'s Formalism and Speech Acts

In several papers, ([176], [179]), Werner has used his formalism for describing the cognitive states of agents (see
preceding chapter and Appendix B) as a canvas on which to paint atheory of speech acts. Central to histheory is
the notion of a pragmaticinterpretation function, Prag. Suppose Rep isthe set of all cognitive, or representational
states of an agent, and L is the set of all formulae of some language. Then Prag is a function:

Prag:L - Rep - Rep

That is, apragmatic interpretation function takes aformulaof thelanguage, and returns a function which maps
acognitive state to a cognitive state. Since Werner has already described the elements of Rep at some length, his
theory concentrates for the most part on describing the properties of this function, for assertions and directives.

47

1. Assertions. “[T]he pragmatic interpretation of the sentence ¢ = ‘Jon opened the door’ is arrived at as
follows: @ refersto the event of Jon opening the door. Prag(¢) is an operator on the hearer’s information
state | such that Prag(¢)! is the reduction of the set | to just those histories where the event occurred. The
hearer A knows @if ¢ holdsin all theworldsin I. Thus, A comesto know that ¢ as a result of receiving
and interpreting the message ¢’ [179, p16]. If an agent’sinformation set | isviewed as a set of epistemic
alternatives, as Werner implies by the above, then on receiving, “interpreting” and “accepting” a message,
an agent comes to know the propositional content.

2. Directives. “For example, if ¢ = *Open the door’, ¢ refersto the situation of the addressee A opening the
door. Prag(¢) operates on A'sintentional state S, such that A opens the door. Prag does this by removing
all those possible plans of A that do not force @. ...Viewed constructively, a plan is incrementally built up
by the Prag algorithm. The result is that the agent performs the directive in parallel with other goals he
may have’ [179, pl7].

So, Werner's theory tells us that an agent comes to believe assertions, and intend to do directives. Werner
appears to envisage histheory in a computational setting:

“...Prag describes the pragmatic competence of an ideal speaker, and not the actua performance.
He may for various reasons not accept the message. Thereis nothing in our account that would force
the recipient of a command to automatically or mechanically obey the command. ...But for him to
understand the conventional meaning of the assertion or directive, the agent must know what the
effect of the message is supposed to be if he were to accept it”. [179, pl7]

So before an agent “ accepts’ a speech act, it computesits force; the force of the act may, or may not, then be acted
upon. Since it seems unlikely that Werner is proposing that humans operate in this manner, it seems reasonable
to suppose that Werner’stheory is computationally motivated. Sadly, Werner gives no more details.

3.2.7 Singh’sFormalism and Speech Acts
Munindar Singh has recently done some work on:

“[Flormally describing the conditions of satisfaction for the different kinds of speech acts’. [154,
p69)

Singh identifies three ways in which a speech act can be satisfied:

1. Extensional satisfaction. A speech act is extensionally satisfied when its propositional content becomes
true — for whatever reason.

2. Whole-hearted satisfaction. “The whole hearted satisfaction of a directive requires not only that the
specified proposition be made true, but made true in a sure-fire manner”. [154, p71]

3. Relevant satisfaction. “This requires that not only must the proposition in the speech act be made true in
asure-fireway, it must be made true because of that speech act”. [154, p71]

Singh’s formal definitions of the three types of satisfaction are based on his own theory of “know how” for
multi-agent systems, ([152]), and a branching time temporal logic CTL" [48]. He defines three operators, one
for each of the three types of satisfaction. The formal definitions are quite simple, but too involved to give here;
instead, we informally state the semantics for the three operators.

Extensional satisfaction. A directiveisextensionally satisfied if its proposition eventually becomestrue. An
assertion is extensionally satisfied if its proposition is currently true.

Whole-hearted satisfaction. A directive is whole-heartedly satisfied if it is extensionally satisfied, and until
it is extensionally satisfied, the hearer of the act knows how to achieve the propositional content, and intends the
propositional content. The condition for assertions is the same as for extensional satisfaction.

Relevant satisfaction. A speech act is relevantly satisfied if it iswhole-heartedly satisfied because the hearer
chose it to be (as aresult of the speech act).

It is not difficult to derive some theorems capturing various properties of satisfaction. The most obvious of
theseis:

Relevant Whole-hearted Extensional
satisfaction satisfaction satisfaction.

48

3.3 Social Agency and DAI: Building Social Agents

Asin the preceding chapter, where the various Al approaches to building intelligent agents were examined, this
chapter will now examine various DAI approaches to building intelligent social agents. The majority of such
work has been firmly in the classical/symbolic Al camp, and only such systems will be examined here.

3.3.1 TheBlackboard Architecture

The discipline of DAI is generally reckoned to have begun with work on the HEARSAY speech understanding
system [55]. HEARSAY wasthe first computer system to employ ablackboard architecture. A blackboard system
contains at least three components:

» aglobally accessible data structure, called the blackboard,;
 aset of demon-like knowledge sources, which constantly watch al or part of the blackboard;

* acentral control mechanism, or protocol, which determines the order in which knowledge sources may
access the blackboard.

Knowledge sources are the basic problem solving elements in a blackboard system. They do not commu-
nicate directly with each other; they only interact with the central control mechanism, and through that with the
blackboard. Each knowledge source continually scans the blackboard, (or at least that portion of the blackboard
towhich it is allocated read access), and when it can make a contribution to the problem, it applies to the central
controller for write access to the blackboard. 1f/when accessis granted, the knowledge source writes its contribu-
tion on the blackboard. In this way, problem solving proceeds with each knowledge source trying to contribute
partial solutions wherever possible.

Many variations on the basic blackboard structure are possible. For example, goal blackboards may be intro-
duced to facilitate goal-directed reasoning. A good reference is [51], where a number of blackboard systems are
described. Some attempts have been made to formalize the blackboard architecture; see [33].

Asaproblem solving architecture, the blackboard has much to commend it. However, the centralized control-
ler imposes a severe bottleneck on problem solving, which is never truly distributed: thereis only ever asingle
thread of control. Knowledge sources are not truly autonomous, but act more like collections of production rules.
The notion of agency is thus not well developed in blackboard systems.

3.3.2 Beings

A dlightly different approach was taken by Lenat, in his beings concept [110]. This work was essentially an
attempt to simulate problem solving by a community of experts, each with domain expertise in distinct aress.
L enat hypothesised that the dominant problem solving strategy in such systemswas a process of question/answer.
Each expert is modelled as a being, (arelatively small fragment of LISP code with a structure described below).
In order to manage problem solving, some beings act as experts in management tasks. To test out the beings
concept, Lenat implemented PUP6, a program generator which contained about one hundred beings. Structurally,
each being in PUP6 resembles a frame, with twenty seven slots (called parts in Lenat’s terminology), each slot
corresponding to a question that may be asked of the being. Beings are activated in a pattern directed fashion,
and are able to communicate by broadcasting messages. Problem solving proceeds by beings receiving messages,
matching them against their slots, which causes other messages to be broadcast, and so on.

The notion of agency is clearly better devel oped in beingsthan in blackboard systems, and the beings concept
in many ways anticipates current work on cooperative problem solving. However, Lenat saw beings as a know-
ledge representation technique, not as a research paradigm in its own right, and the concept was not developed
any further (though many of the ideas were refined and later used in the hugely successful AM project).

3.3.3 Actors

At about the time Lenat proposed beings, Hewitt was devel oping the actor paradigm [85], [86], a concept which
received itsfullest expressionin Agha's 1985 thesis (published as[2]). Unlike beings, actors are still the subject of
ongoing research bothin Al and computer science generally. The actor paradigm influenced the early development
of object-oriented systems, and the actor formalism can be thought of as a framework for concurrent object-
oriented programming. The actor paradigm has a well-devel oped mathematical basis, which makes it of special
interest to this thesis.

49

An actor system contains a set of actors, which remain passive until they receive a message. When an actor
receives a message, it tries to match it against a behaviour®. The behaviour of an actor is so called because it
determines the actor’s response to the message, which may be one of three things:

» send messages to itself or other actors;
* create more actors;
* gpecify areplacement behaviour.

Message passing in the actor formalism is asynchronous, with agents identified by unique mail addresses; each
actor has its own message gqueue, containing messages waiting to be processed. The next message to be processed
will be dealt with by a replacement actor, which the original actor specifiesitself. As soon as an actor specifies
its replacement, the replacement can begin work on the next message. This feature, together with the ability
to create new actors, makes for a computational paradigm with a high potential for concurrency: in principle,
the only constraints on execution speed stem from the logical dependencies in the computation itself, and any
hardware restrictions.

The actor paradigm is an elegant model of concurrent computation. However, actors do not comfortably map
onto the idea of agents as propounded in this thesis. actors are very fine grained.

3.3.4 TheContract Net

Another innovation in the late 1970s was the contract net protocol, developed by Smith [159], [161]. The aim
of the contract net was to provide a framework for efficient cooperative problem solving. A contract net system
contains a number of autonomous agents, or nodes, which communicate through the contract net protocol to
perform cooperative tasks. Each node in a contract net system is capable of making independent decisions about
when to engage in problem solving, and thus has a high degree of autonomy. Frustratingly, Smith gives no
information about the structure of contract net agents, and so a detailed analysis is not possible.

The contract net protocol is the subject of acase study in Chapter 6, where more details are given.

335 MACE

As a discipline, distributed Al “came of age” with the publication in 1987 of the proceedings of the fifth US
workshop on DA, held in 1985 [90]. In these proceedings was a paper describing in detail the Multi-Agent
Computing Environment (M ACE) developed by Gasser and colleagues[70]. MACE can, with some justification,
claim to be the first general experimental testbed for DAI systems.

A MACE system contains five components:

* acaollection of application agents, which are the basic computational unitsin aMACE system (see below);
 acollection of pre-defined system agents, which provide services to users (e.g., user interfaces);
 acollection of facilities, available to all agents, (e.g., a pattern matcher);

» adescription database, which maintains agent descriptions, and produces executable agents from those
descriptions;

» aset of kernels, one per physical machine, which handle communication and message routing, etc.

Gasser et al identify three aspects of agents: they contain knowledge, they sense their environment, and they
perform actions [70, p124]. Agents have two kinds of knowledge: specialized, local, domain knowledge, and
acquaintance knowledge — knowledge about other agents. An agent maintains the following information about
its acquaintances [70, pp126-127]:

 class. agentsare organized in structured groups called classes, which are identified by a class name;
* name: each agent is assigned a name, unique to its class — an agent’s address is a (class, name) pair;

* roles. arole describes the part an agent playsin aclass;

4In early work, behaviours were called scripts.

50

* skills: skills are what an agent knows are the capabilities of the modelled agent;
» goals: goals are what the agent knows the modelled agent wants to achieve;
* plans: plans are an agent’s view of the way a modelled agent will achieve its goals.

Agents sense their environment primarily through receiving messages. An agent’s ability to act is encoded
in its engine. An engine is a LISP function, evaluated by default once on every scheduling cycle. The only
externally visible signs of an agent’s activity are the messages it sends to other agents. Messages may be directed
to a single agent, a group of agents, or al agents. The interpretation of messages is left to the programmer to
define.

Gasser et al describe how MACE was used to construct blackboard systems, a contract net system, and a
number of other experimental systems (see[70, pp138-140], [72]).

MACE has proved to be a hugely influential system. A number of subsequent systems have taken onboard
many of MACE's innovations, (e.g., [164], [189]). The notion of autonomous agency is well defined in MACE,
and the structure of agents is described more explicitly than in previous work.

336 After MACE

Since MACE, many testbeds for DAI have been described. For example, Doran et al describe MCS/IPEM [42].
The MCS/IPEM system is a multi-agent testbed built around the sophisticated IPEM non-linear hierarchical
planner [5]. Each agent in an MCS/IPEM system has a database of beliefs, (represented as PROLOG facts), a set
of operators, (corresponding to actions the agent can perform), and some “demons’ (basically condition/action
pairs, the action being performed when the condition is believed). At runtime, agents have goals, which they
continually strive to achieve. A single “cycle” for an agent is a flaw-fix plan cycle of the IPEM planner, to
which agents have virtual access. Limited communication is possible, by agents writing goals or facts on each
other’sdatabases. Agentsthus have asimple structure, but have accessto a powerful planner, making MCS/1PEM
somewhat unusual in DAI terms.

Other recent testbedsfor DAI are AGENTO, and the agent-oriented programming paradigm, [151], [171], and
Concurrent METATEM [62]. Both of these systems are the subject of case studies in Chapter 6, where they are
described in detail.

34 Summary

Whereas Chapter 2 examined essentially isolated aspects of agency, this chapter has examined aspects of social
agency. Although it is not necessarily the case that agents must communicate in order to cooperate, thisis widely
assumed in DAI. The chapter thus began by examining the various ways that communication has been treated
in DAI. This led to the recognition of speech act theories as being the dominant paradigm for reasoning about
communicationin DAI. A detailed examination of various speech act theorieswasthen presented. Finally, various
attempts to build DAI systems were discussed.

At this stage, it is worth making the point that, (as in Al generally), there is some distance between theory
and practice in DALI. In particular, with the exception of the actor paradigm, there have been few attempts to
incorporate formal theories of communication into real DAl systems. This situation is changing: Shoham’s
agent-oriented programming framework claims to be based on a theory of agency and speech acts [151]. Also,
Cawsey et al describe a distributed expert system which employs Galliers' theory of autonomous belief revision
[25]. However, thiswork is till at an experimental stage.

This concludes the literature survey. The next part of the thesis is concerned with constructing an abstract
model of agents and DAI systems, and a number of logics for reasoning about such systems.

51

Part |11

A Theory of Computational Multi-Agent
Systems and Its Temporal Logics

52

Chapter 4

A Theory of Computational Multi-Agent
Systems

THIs chapter presentsaformal theory of computational multi-agent systems. Thetheory containstwo components.
The first is a model of multi-agent systems; the second is a set of execution models, each of which defines one
way that agents can act and interact.

The chapter is structured as follows. The next section is an informal introduction to most of the ideas that
are later developed in the chapter. Some assumptions are then described, and some comments are made on the
techniques used in the presentation of the theory. Following this introductory material, the model of multi-agent
systemsis introduced. First, amodel of agentsis defined, by taking each component of an agent (belief, action,
communication) in turn. Next, systems are defined to be a collection of named, interacting agents. Two execution
models for multi-agent systems are then defined: a simple synchronous model, and a more realistic interleaved
execution model. The chapter concludeswith a brief 1ook at some waysin which the basic theory may be adapted
and extended.

4.1 Setting the Scene

It isimportant to understand what the theory developed in this chapter is and is not intended to be. Thetheory is
emphatically not intended to model human social systems. The phenomena of human belief, communication and
action are not the objects of study in thisthesis.

Thetheory isintended to be aplausible formal model that capturesthe key features of awide range of classical
DAI agents and systems. This statement requires some qualification, however. Even a superficia reading of the
literature demonstrates that everyone who builds a DAI system has their own ideas about what agents are, how
to deal with communication, what beliefs agents have, and so on. Developing a canonical model of DAI systems
is, therefore, out of the question (at least at the moment). The best we can hope for is an idealized model which
captures the most important properties of a wide range of systems. This is what the theory described herein is
intended to do.

Note that the theory is, of necessity, fairly coarse grained. However, it may be readily adapted, extended
and refined, to model the features of specific systems. Some examples, illustrating how the basic theory can be
adapted, are presented in section 4.6.

So what are the key features of a DAl system, that we hope to capture in the theory? Begin with agents. As
Chapter 2 observed, workersin avariety of disciplines have made liberal use of the term “agent”, and so we have
an obligation to explain our usage of it.

First, agents have significant (but finite) computational resources. They are thus distinct from the fine grained
neuron-like computational agents of connectionism, the algebraic agents of CCS [120], and actors [2].

Agents also have aset of explicitly represented beliefs, and are able to reason about these beliefsin accordance
with the computational resources afforded them. These beliefs are generally taken to represent, for the believer, a
model of the environment in which the believer resides (cf. the acquaintance models of MACE [70] and ARCHON
[185], and beliefs of MCS/IPEM agents [42]). Beliefs are expressed in a well defined cognitive, or internal
language, which shall be called L throughout this thesis. For the moment, no assumptions are made about L,
other than that it is at least alogical language. The nature and role of L are explored in alater chapter. Agents

53

are also assumed to have some ability to reason about their beliefs: given abase set of beliefs, they will typically
derive some of the logical consequences of this set. They will not generally derive all the logically possible ones:
they are thus resource-bounded reasoners.

A model of belief with these properties is the deduction model developed by Konolige (see [99], [100], and
Chapter 2). The deduction model is adopted virtually wholesale for the model of multi-agent systems. The term
cognitive state will occasionally be used to refer to the set of beliefs possessed by an agent.

In addition to being believers, agents can act. Three types of action are distinguished (cf. [23]):

* cognitive actions correspond to an agent employing its own computational resources. An example might be
a database agent performing a “retrieve” operation. The distinguishing feature of cognitive actions is that
they are private, in that they cannot be observed by other agents. Also, the agent performing a cognitive
act has “control” over it; it is not possible for another agent to “interfere” with the act, and prevent its
successful completion.

» communicative actions correspond to sending messages to other agents. An example might be an agent
sending another agent a message containing a request for some piece of information. It is through the
communicative act that agents are able to affect the cognitive state of their peers. In contrast to cognitive
acts, the effect of acommunicative act is not under the complete control of the actor (i.e., the agent sending
the message). So while an agent can predict what effect a communicative act will have, and plan its actions
based on such predictions, the actual effect is under the control of the agent receiving the message.

« effectoric acts are performed in the “real world”, and correspond to what are more normally regarded as
actions. An example might be arobot agent lifting ablock from atable. Such actions are not interference-
free.

A philosopher might find thistypology dubious; after all, an axiom of speech act theory isthat an agent requesting
or informing is performing an action just like any other. However, the typology suits the purposes of this thesis.
It arises when one considers the domain of each action type. The domain of a cognitive act is the actor’s own
cognitive state; the domain of a communicative act is the cognitive state of the message recipient. Both of these
domainswill bewell defined in our formalism, and so we can achieve an effective formalization of cognitive and
communicative acts. In contrast, the domain of an effectoric act is the physical world, which extends beyond any
one agent’s unique control. It has proven extraordinarily difficult to devise redlistic, tractable formalizations of
effectoric acts performed in multi-agent environments, and for this reason they are not considered by this thesis
(see, e.g., [109] for an attempt to formalize multi-agent scenarios where agents can perform effectoric acts).

Note that we are by no means unique in making a distinction between the different types of act: Shoham
[151, p25] distinguishes private/cognitive and communicative acts and, (in his AGENTO system at least), does
not consider effectoric acts. In reactive systemsresearch, (e.g., [12]), adistinction is made between the component
part of a system, which isunder the unique control of the agent, and the environment part of a system, over which
the agent has at best partial control.

Agents can therefore perform two types of action: cognitive and communicative. They will possess a reper-
toire of possible actions.

A formalization of cognitive actionsis straightforward. A cognitive action can be viewed as afunction taking
an agent’s belief set as its argument. The result is an epistemic input [69]: a “new piece of evidence” which
may be incorporated into subsequent belief sets. The mechanism via which epistemic inputs are incorporated into
belief sets is described below.

A formalization of communicative actsis more problematic, since, as the preceding chapter points out, formal
models of communication are rarely adopted within real DAI systems. In the theory of multi-agent systems, the
communicative act is modelled as the exchange of messages whose content is a formula of some well defined
common communication language. It is mostly assumed that the communication language is the same as— or
at least a subset of — the internal language L. The effect of messages on their recipients is modelled via an
interpretation. Theideaisthat amessageisinterpreted in the context of the recipient’s cognitive state; the result
is an epistemic input. An interpretation can be modelled as a function from belief sets and messagesto epistemic
inputs. Each agent will possessits own interpretation. While this schemeis perhaps somewhat arbitrary, it seems
general enough to describe many models of communication. The idea of an interpretation is based on Werner’s
“pragmatic interpretation function”, (Prag), described in the preceding chapter. Note that by this scheme, agents
have autonomy over their cognitive state; this is consistent with Gallier’s theory of autonomous belief revision

[67].

Finally, to the processing of epistemic inputs. The idea is to give each agent a belief revision function. A
belief revision function takes a belief set and a set of epistemic inputs and returns a new belief set. Theideaof a
belief revision function is similar to Gardenfors' definition of an epistemic commitment function (see [69]).

To summarize, the model of agents has the following key features:

» agents maintain a set of beliefs, in the style of Konolige [100];

* agents can perform any of arepertoire of communicative actions (sending messages), and cognitive actions
(using their own computational resources);

» theeffect of acommunicative act is modelled viaan interpretation — each agent possessesan interpretation;

* the result of performing an action is an epistemic input: cognitive actions cause epistemic inputs for the
actor — communicative actions cause epistemic inputs for the message recipient;

* epistemic inputs are incorporated into an agent’s belief set viaa belief revision function.

Having developed a model of agents, one is faced with the problem of defining an execution model, which
says how the activity in asystem composed of anumber of such agents may proceed. Unfortunately, thisinvolves
modelling concurrency. Thisis by no means atrivial problem. The modelling of concurrency is very much an
ongoing research areain its own right (see, e.g., [120]). In thisthesis, we will ignore the difficult issue of “true”
concurrency, and make do with unrealistic but simple execution models, which will alow us to focus on the
properties of agents without requiring us to become bogged down in the deep theoretical issues associated with
concurrency (see the comments on future work in Chapter 8).

Two execution models are defined. Thefirst isasimple synchronous model, where each agent is considered to
be acting simultaneously. The second is a finer grained interleaved model, where agent’s actions are interleaved.
Although the interleaved model ismoreredlistic, it is more difficult to manage formally, and only the synchronous
model is used in the remainder of the thesis.

4.2 Some Assumptions

Any formal theory that purportsto model something existing in thereal world must to some extent involve abstrac-
tion. This abstraction typically involves making assumptions about how unimportant, irrelevant, or technically
intractable portions of the domain operate. The main assumptions made in the theory are as follows:

» Nomodel of control. Control schemesfor agents are generally extremely complex, with al but the simplest
defying attempts at formalization. Moreover, the huge range of control schemes, (from production rule sys-
tems, to ssimple STRIPS-style planners[57], to interleaved plan/execute systems|[5], and intelligent reactive
systems [94]), prevent any unified description. For these reasons, no attempt is made to explicitly model
control within the theory of multi-agent systems. agents are assumed to choose actions via some anonym-
ous decision procedure (cf. [77]). However, there is nothing to prevent specific control schemes being
modelled and grafted onto the basic theory presented here. Also, some control schemes can be effectively
modelled using the logics developed in subsequent chapters; some examples are given in Chapter 6.

» Standard names. A nameisasymbol used to denote some object. Both the observers of a system, and the
agents within the system will use names. There are anumber of technical problems associated with names.
For example, what happens when:

— one object has different names — perhaps within the same agent;
— agents don’'t have names for all objects.
This problem is essentially that of fluent expressions, mentioned in the review of quantified modal logics

in Chapter 2. The solution adopted here is to assign each object a unique standard name, and demand that
only standard names are used to refer to objects. Standard names correspond closely to rigid designators.

55

421 A Comment on Notation

Before proceeding with the technical details of the theory, a brief comment on notation. The mathematical parts
of the theory are presented using techniques based on the VDM specification language — the first seven chapters
of [93] cover all the required material. However, anyone familiar with basic set notation and logic should have no
difficulty in understanding the notation; asummary isgivenin Appendix A. In order to further aid comprehension,
asummary of types appears at the end of the chapter.

4.3 Agents

This section introduces the attributes of agents in four parts: first belief, then communication, and cognitive
(internal) actions. Finally, the components of an agent are put together in an agent architecture.

431 Belief

As mentioned above, the deduction model of belief is adopted virtualy wholesale for the model of agents (see
[100] and Chapter 2). Beliefs are expressed in an internal language L, which is assumed to be alogical language.
A typeisintroduced for belief sets.

Belset = powerset Form(L)

So abelief setisjust aset of formulae of the internal language, L. The type for deduction rulesis Drule. The
symbol A, (with appendages. Ap, 4, ...), is generally used to denote a belief set, and the symbol p is generally
used to denote a set of deduction rules. It isassumedthat as L isalogical language, the proof relation “I" iswell
defined for L. For each set of deduction rules p, arelation I, is defined.

Definition 3 Let A be a set of formulae, ¢ a formula, and p a set of deduction rules, all of the logical language
L. Then At @iff there is a proof of @ from A using only the rules p.

Notethat if p iscompletewith respect to the logical languagein question (L), thent, isequivaent to - (since
everything provable using - will be provable using i-,). The closure of a set of formulae under some deduction
rulesis given by the following function.

close : Belset x powerset Drule — Belset
close(A,p) 2 {@|Ak, ¢}
Changesin an agent’s belief state are caused by epistemic inputs. An epistemic input could be defined to be

anything appropriate, but is here defined to be a set of formulae of the internal language. (Alternative definitions
of epistemic inputs are discussed at the end of the chapter.)

Epin = powerset Form(L)

Agents are able to revise beliefsin order to accommodate new information. A rule determining a new belief
set for every belief set and set of epistemic inputs is called a belief revision function (BRF). A BRF has the
following type.

Brf = Belset x powerset Epin — Belset

The symbol 3 is generally used to denote a belief revision function. We will say a belief revision functionis
consistent if it never produces a logically inconsistent belief set.

4.3.2 Communication

Communication is modelled as the exchange of messages whose content is a formula of some well defined
common communication language (generally assumed to be the internal language L). In the basic theory, it is
assumed that messages are sent point-to-point, rather than broadcast (but see the comments on extensions to
the basic theory, at the end of this chapter). Some method is required to identify agents uniquely, in order that
messages can be “routed” to the intended recipient. The method chosen isto assign each agent an agent identifier,
(or agent id). A typeisintroduced for agent ids.

Agid = an arbitrary countable set.

56

The symbolsi, j, k and | are used for agent ids.

A message is defined to be a triple of sender, recipient, and content: the sender and recipient are agent ids,
the content is a formula of the communication language L. Self addressed messages are not allowed (otherwise
an agent could alter its own cognitive state by sending itself a message).

Mess = Agid x Agid x Form(L)

Thesymbol 1, (with appendages: u', 1, ...), isused to denote amessage. Two selector functions are assumed:
thefunction sender takes a message and returnstheid of the sender; the function recvr takes a message and returns
theid of the receiver. The formal definitions of these functions aretrivial, and are therefore omitted. Using these
functions, the invariant condition for the message type (that agents cannot send messages to themselves) can be
easily defined.

Ou O Mess [{sender (1) # recvr(L))
A message interpretation is a function that takes a belief set and message, and returns an epistemic input.
Messint = Belset x Mess — Epin

The usual symbol for an interpretationis 1. Finally, a set Mess,; of nil messagesis assumed. Theideais that
anil message can be sent by any agent at any time, and will be guaranteed not to be received by any other agent.
Nil messages thus do not affect the state of a system, and provide a conveniently simple method of modelling
agents “doing nothing”.

4.3.3 Action

Each agent possesses a repertoire of actions, both communicative and cognitivel. However, it is not always the
case that all actions are applicable given an agent’s cognitive state. Each action is therefore associated with a
condition, represented as a formula of the internal language. If the condition is believed, then the associated
action is applicable. A condition/action pair is called arule. The idea of associating actions with conditionsis
quite common. For example, in the AOP paradigm, Shoham associates each private (cf. cognitive) action with a
“mental condition” which plays precisely the same role as our conditions [151, p34]. And of course this is the
standard treatment of action in the Al planning community (see e.g., [57]).

An agent possesses anumber of rules, which implicitly definethe actionsavailableto it. An obviouscondition
to demand of rule sets is that they should be weakly complete, in the following sense: there should always be at
least one applicable action/message available to every agent, whatever its beliefs. Presented with a number of
applicable actions, an agent must choose between them. The question of how to choose then arises. This problem
is not aconcern of this thesis; see the comments earlier.

Our task is now to formalize these ideas. First, the type for actions.

Action = Belset — Epin

The symbol o is generally used to denote an action. To model an agent “doing nothing”, a nil action is
assumed. This action produces an empty epistemic input, for all arguments. The idea is that this action can be
used to model an agent “doing nothing”.

A ruleis a condition/action pair: a condition is either a formula of L, or the special condition, “true”. The
condition “true” is always satisfied, and is used for actions that are always applicable. The type for conditionsis
therefore as follows.

Cond = Form(L) O {true}

Two types of rule are defined, (cognitive action rules and message action rules), one for each type of action.
For convenience, “cognitive action rule’ is usualy abbreviated to “action rule”’, and “message action rule” is
abbreviated to “message rule”’. The types are as follows.

Arule = Cond x Action

Mrule = Cond x Mess

The usua symbol for an action rule is ar; for a message rule, mr. The following boolean-valued function
defines what it means for an action rule to be applicable, given some belief set.

Iwe will usually abuse terminology by calling a cognitive action an action, and acommunicative action amessage. Context should always
make meaning clear, however.

57

ar_applic : Arule x Belset — B
ar_applic((@, a),A) & @O(ADO {true})
So an action rule will be applicable if its condition is believed, or true. A similar function, mr_applic, is
assumed to be defined for message rules (the formal definition is essentially identical to that of ar_applic, and is

therefore omitted). The following boolean valued function defines what it means for an action rule to be sound
(compare this definition with that of soundnessin [115]).

sound : Arule - B
sound({,a)) & 0OA U Belset Car-applic({(p, a),A) O (A O doma)

In general, an agent will possess a range of possible actions, represented by a set of action rules and a set of
message rules. The symbol AR is used to denote a set of action rules; the symbol MR is used to denote a set of

message rules.

An important property to demand of an agent’s action/message rules is weak completeness. whatever the
beliefs of an agent, it always has at least one action it can perform and message it can send. The following
boolean valued function defines when a set of action rules is weakly complete?.

ar_wk-cmplt : powerset Arule - B
ar_wk_cmplt(AR) £ [UOA 0O Belset [(Thr O AR Car_applic(ar, A)

Once again, a similar function, mr_wk_cmplt, is assumed for message rule sets. The formal definition is
essentially identical to that of ar_wk_cmplt, and it is therefore omitted.

The following boolean valued function says of any action whether it is legal, given a set of action rules and
abelief set.

ac-legal : Action x powerset Arule x Belset — B
ac_legal(a,AR,A) £ K@ a') OARKa =a') Dar-applic({(@, a'),d)

The function ms.legal is assumed for messages and message rule sets; the definition is essentially identical,
and is omitted.

Finally, it seems sensible to demand honesty of message rule sets; agents are not allowed to send messages
which “lie” about the sender. Honesty is given by the following boolean valued function.

honest : Agid x powerset Mrule — B
honest(i, MR) & (¢, 4) O MR {sender () =)

4.3.4 Agent Architecture
The type for agentsis called Agent. It is defined as follows.
Definition 4 An agent is a structure:

(Do, p, B, 1, MR, AR)

where

» Ag O Belset isan initial belief set;

» p[ODruleisa set of deduction rulesfor L;

» B 0OBrf isabelief revision function;

* [O Messint is a message interpretation function;

* MR O Mruleisa set of message rules such that
mr_wk-cmplt(MR);

23rong completeness would demand that there was always precisely one available action/message.

58

1. Interpret any messages received.
2. Update beliefs by processing epistemic inputs resulting from:

* previous action;
* message interpretation

through the belief revision function.
. Derive deductive closure of belief set.
. Derive set of possible messages, choose one and send it.

. Derive set of possible actions, choose one and apply it.

o o~ W

. Goto ().

Figure 4.1: Operation of Agents

* AR Aruleisa set of action rules such that
ar_wk-cmplt(AR) O Oar O AR Csound(ar).

The operation of an agent is summarized in Figure 4.1 (cf. the “basic loop” of AOP systems[151, p22]).

44 Systems

A group of named agentsis called a system. The type for systemsis called System, and is given in the following
definition. (The definition abuses notation somewhat, for example by using p to denote a map from agent ids to
sets of deduction rules, rather than — as before — a set of deduction rules. However, the abuse helps improve
readability, and meaning will always be clear from context.)

Definition 5 A systemis a structure:
(Ag, D, p, B, 1, MR AR)

where

» Ag [Agid is a countable set of agent ids;

« Mo =Ag = Belset maps each element of Ag to an initial belief set;

« p=Ag— powerset Drule maps each element of Ag to a set of deduction rules;

* B=Ag - Brf maps each element of Ag to a belief revision function;

* I1=Ag . Messint maps each element of Ag to a message interpretation function;
« MR=Ag - powerset Mrule maps each element of Ag to a set of message rules;
« AR=Ag - powerset Arule maps each element of Ag to a set of action rules

such that

i O Ag OAo(i), p(i), B(i), (1), MR(i), AR(i)) O Agent
and
Oi O Ag Chonest(i, MR(i)).

59

T T; T: T. T, T,
O.O 1 O.l 2 0.2 3 0.3 4 D]:l]:l u O_u u+l D]:l]:l

Figure 4.2: States and Transitions

It is convenient to define a function which takes an agent id and system, and extracts the agent associated with
the id from the system.

agent : Agid x System - Agent
agent(i,sys) 2
let (Ag, Do, P, B, 1, MR, AR) = sys in
(Dof(i), p(i), B(i), 1(i), MR(), AR(i))

45 Execution Models

The aim of this section is to define two execution models for multi-agent systems, which show how a group of
agents with the structure described above can operate and interact with one another. Thefirst, and simpler, of the
two execution models assumes that agents act in synchrony: sending/receiving messages, and acting, at the same
time. The second, more realistic model, assumes that at most one agent can act at any one time.

Both execution models hinge on the notion of the state of a system, and of changesin state being caused by
transitions. Crudely, a stateis a“snapshot” of the belief set of each agent in the system at some moment in time.
These belief sets are assumed to be in some kind of “equilibrium” (cf. [69]). A state is denoted by the symbol
0. A state change, or transition, occurs when one or more agents receive some messages and perform cognitive
actions. A transition is denoted by the symbol 7. The history of an executing system can be considered to be a
sequence of state — transition — state — transition ... (see Figure 4.2).

45.1 Synchronous Execution

Each agent (and by extension each system) has a defined initial state. For an agent, the initial state isits initial
belief set, closed under its deduction rules. For a system, the initial state is a collection of initial belief sets, one
for each member agent, each set closed under that agent’s deduction rules.

Agents are able to change state by performing actions of various types. A tuple of actions (one of each type
— communicative and cognitive) is called amove. The move an agent makes does not uniquely determine its
next state. The moves of each agent in a system combine with those of others. A collection of moves, one for
each agent, is called atransition. Given a system state and transition, the resultant state is uniquely defined.

The operation of a system can thus be described as follows. A system has a defined initial state (call it gp).
From this state, each agent picks a (legal) move, which combines with those of others to form a transition, 1.
As aresult of this transition, a new state g; results. The whole process then begins again,with agents choosing
moves which form transition 1, and so on. Theresult is a sequence of states. The processisillustrated in Figure
4.3.

Now to restate these definitions formally. First, the notion of state is formalized. The state of a system is
defined as a map from agent ids to belief sets.

Sate = Agid - Belset
The symbol ¢ is used to denote a state. The initial state of a system is defined to be the state where each
agent has itsinitial belief set, closed under its deduction rules, and is given by the following function.
init_state : System - Sate

init_state(sys) 2
let (Ag, Do, P, B, 1, MR, AR) = sys in
{i — close(Ao(i), p(1)) | 1 O Ag}

60

Time - O 1 2 3 4 5 6

Agent 1 . N . N . N . N . N . N . N
Agent 2 . N . N . N . N . N . N . N
Agent 3 . N . N . N . N . N . N . N
Agent4 - - e - e - - =

e I I N |

Oo T1 01 Tz (o)) T3 03 T4 Oy Ts5 (0] Ts Og 7

JHEEHE B

Bullets (“«”) indicate an agent completing a move and changing state; circles (“o") would indicate
non-completion of a move.

Figure 4.3: Synchronous Execution

Next, a move is a tuple of actions, one of each type (cognitive and communicative).

Move = Action x Mess

The usua symbol for a move is m. Two “selector” functions are assumed for moves. The function action
takes a move and returns the action of the move; the function mess takes a move and returns the message of the
move. The formal definitions of these functions are trivial, and are therefore omitted. Both functions are used

extensively in the sequel.
The following boolean valued function defines when a move is legal for some agent, given some belief set.
nmv-legal : Move x Agent x Belset — B

mv-legal(m,ag,4) 2
let (Ao, p, B,1,MR,AR) = ag in
ac-legal (action(m), AR, A) Oms_legal (mess(m), MR, A)

A nil move is any move which contains the nil action and a nil message.

There is usually more than one agent acting in a system. The actions of each agent combine with those of
others to change the state of the system. Analogous to a move, atransition is defined to be map from agent ids
to the moves performed by the agent.

Trans = Agid — Move
The usua symbol for atransitionis t. A transition islegal just in case each of the movesit suggestsis legal.

trans_legal : Trans x Systemx Sate — B
trans_legal(t,sys,0) £ 0O O domt Onv-legal(z(i), agent(i, sys), a(i))

The possible transitions of a system in some state are the legal transitions of the system. A nil transition is
one where each agent performs a nil move. A function nil_trans is assumed, which takes a system and returns a

nil transition for that system.
Some utility definitions will be useful for transitions. First, a function returning the set of all messages sent

in atransition.

sent : Trans — powerset Mess
sent(t) & {mess(m) |m O mg T} - Messyj|

Next, a function which returns the set of al messages sent to a particular agent in a transition.

recvd : Agid x Trans — powerset Mess
recvd(i,7) 2 {u|p Osent(t) O(recvr(u) = i)}

61

Tou:
m]aoialiaziaslmauﬂm
e N e N — ——

Wo Wi W2 W3 Wu

Figure 4.4: Runs, Worlds and World Sequences

A function is now defined which shows how an agent’s beliefs change as a result of executing a cycle on
which it performs some action and receives some messages.

next_bel : Agent x Belset x powerset Mess x Action — Belset
next_bel(ag, A, ms,a) 2

let (Ao, p, B, 1,MR,AR) = ag in

close(B(A, {a(A)} O {1(A p) | 1 O ms}), p)

A function next_state is now defined, which for some system returns the successor to a state under atransition.

next-state : Systemx State x Trans — Sate
next_state(sys,0,7) £ {i — next_bel(agent(i, sys), a(i), recvd(i, T), action(t(i))) | i O doma'}

Almost all the components of the theory of multi-agent systems are now in place. All that remainsisto define
execution segquences, or runs of a system. Theidea of arun has been illustrated above. A representation for runs
must now be developed. One possibility would be simply to define a run as a sequence of states. However, states
only contain information about the beliefs of agents. For the purposes of the next chapter, it is useful to record in
an execution sequence the cognitive actions performed and messages sent by agents. Thisisachieved by defining
arun as a sequence of worlds, where each world contains a state and the transition that caused the state®. The
idea of associating each state with the transition that gave riseto it isillustrated in Figure 4.4.

The type for worldsis as follows.

World = Sate x Trans

The usual symbol for aworld isw. Two selector functions are assumed for worlds, and are used extensively in
thesequel. Thefirst iscalled state, which takesaworld and returnsthe state associated withit. Thesecondiscalled
trans, which takes a world and returns the transition associated with it. The formal definitions of these functions
aretrivial, and are therefore omitted. Another useful function is next-world, which takes three arguments, (two
worlds and a system), and says whether the second world represents avalid transition of the system from the first
world.

next_world : World x World x System — B

next_world(w,w,sys) 2
trans_legal (trans(w'), sys, state(w)) O
(state(w') = next_state(sys, state(w), trans(w')))

A system has an initial state (see above), but what isitsinitial world? For convenience, the initial world of a
system is defined to be itsinitial state together with anil transition.
init-world : System — World
init-world(sys) £ (init-state(sys), nil-trans(sys))
World-sequences are now defined to be countably infinite sequences of worlds. World sequences are the basic
representation mechanism for runs.
Worldseq = World”

World sequences extend infinitely into the future, and must therefore satisfy the following invariant (recall
that w isthefirst infinite ordinal):

OW O Worldseq len W = w).

3World may seem a peculiar choice of words; it arises for historical reasons. The formal semantics of temporal logics were developed
from modal logics with possible worlds semantics, (described in preceding chapters).

62

Time - O 1 2 3 4 5 6 (i
Agent 1 i — (e} — i — [¢] — L4 — [¢] — ° — D]:l]:l
Agent 2 (o] — ° — (o] — (o) — [e) — ° — (o) — D]:l]:l
Agent 3 (o) — [e] — (o) — ° — [e) — [e) — (o) — D]:l]:l
Agent4 o - o - o - o -~ o 5 o = o -

r" 7+ +® 7+ 1t v r 1 1 1 1 1 U

Jo T1 01 T2 02 T3 03 T4 Oy Ts5 (0] Ts Og 7 N

Bullets (“«") indicate an agent completing a move and changing state; circles (“o”) indicates non-
completion of a move.

Figure 4.5: Interleaved Execution

The next step isto define a function which says of any world sequence whether it is arun of a given system
or not.

run-of : Worldseq x System — B

run-of (W, sys) 2
(W(0) = init_world(sys)) O
Ou O Np Chext-world(W(u— 1), W(u), sys)

This concludes the definition of the synchronous execution model.

45.2 Interleaved Execution

Although synchronous execution models have the advantage of simplicity, they do not paint a realistic picture of
how agents in a real multi-agent system act and interact, as the presence of a global clock seems to be implied.
As Agha points out:

“The concept of a unique global clock is not meaningful in the context of a distributed system of
self-contained parallel agents’. [2, p9]

A morerealistic model of execution — and one that is more in tune with the standard model of reactive systems,
(see, for example, [135], and Appendix C), — is an interleaved execution model, where at most one agent is
allowed to act at any onetime. Suchamodel is presented below. Before moving on to the details of the interleaved
execution model, consider Figure 4.5, which illustrates an imaginary run of a four-agent multi-agent system. As
before, abullet (") indicates that an agent executes one internal cycle of receiving messages, updating beliefs,
and acting, whereas a circle (“o”) indicates that an agent has not completed a cycle.

During the first seven execution steps of this system, agent 1 completes four execution cycles (at times 0, 2,
4, and 6), whereas agent 2 completestwo (at times 1 and 5), agent 3 completes one (at time 3), and agent 4 does
not complete any. It is not difficult to seethat at most one agent is considered to be acting at any one time. Also,
it is easy to see that agent 1 isin some sense running faster than all the other agents: seemingly twice as fast as
agent 2, and even faster than this for the rest. Suppose this run were continued indefinitely, and agent 4 never
completed a cycle. Would this be “fair” to agent 4? Surely, no matter how slow the processor on which agent 4
was based it would ultimately complete at least one cycle, perhaps in some enormous — but nonetheless finite —
time. For thisreason, it is usua to demand that interleaved execution runs satisfy some “fairness’ requirement.
Unfortunately, fairnessis a deep research issue in its own right, and a detailed treatment is quite beyond the scope
of thisthesis. The reader isreferred to [63] for details.

Let us return to the details of the interleaved execution model. The main difference between this and the
synchronous model is that only one agent may act in atransition at any one time; this gives an invariant condition
for transitions. However, it also means that not all messages sent on cycle u are received on cycle u + 1. This
necessitates the introduction of some method for keeping track of al those messages that have not yet been
received; this is called a message pool. (Note that it is still assumed that when an agent executes a cycle it
receives all its outstanding messages.)

A typeisintroduced for pools.

63

Pool = powerset Mess

A state is redefined to be a map from agent ids to belief sets, as before, with the addition of a current message
pool.

Sate' = (Agid - Belset) x Pool
Some selector functions are assumed, bel and pool, each of which takes a state and extracts the belief state
and pool from that state, respectively. The formal definitions are trivial, and are therefore omitted. The initial
state of a system is as before, with an empty message pool.
init_state’ : System - State’

init_state'(sys) 2
let (Ag, Do, P, B, 1, MR, AR) = sys in
({i — close(2o(i), p(1)) | 1 O Ag}. { })

If an agent does execute a cycle, it receives all the messages sent to it that are in the pool.

recvd' : Agid x State’ — powerset Mess
recvd(i,0) 2 {u|p0Opool(c)O(recvr(u) =i)}
A transition is as before, except that only one agent performs a move; all other agents do nothing. Doing
nothing is indicated by a mapping to a distinguished object called nil. This gives:
Trans = Agid — (Move O {nil})
with the invariant:
Or O Trans i O dom T {1 (i) # nil).

(Recall that (1 means: “there exists precisely one...”.)
The legality of atransition is defined as before, with the obvious changes required to deal with transitions as
they now appear; the definition of mv_legal is as before.
trans_legal’ : Trans x System x State’ — B

trans_legal'(t,sys,0) 2
Oi Odomt O
(r(i)#nil) O nmv_legal(t(i), agent(i, sys), bel(o)(i))

The definition of the function sent, which returns all the messages sent in atransition, needs to be restated.

sent' : Trans — Pool
sent'(t) & {mesgm) |(i Odomt) O (T(i) #nil) O(m = 1(i))}
The function next_bel requires no modifications. However afunction is required to give the next belief state
of a system.

next_bel_state : System x Sate’ x Trans — (Agid - Belset)

next_bel_state(sys, o, 1) &
bel(o) T
{i — next_bel(agent(i, sys), bel(o)(i), recvd (i, 0), action(t (i)))
| (i Odomao) O(t(i) Znil)}

The message pool resulting from a transition occurring to a state is given by the following.

next_pool _state : Sate’ x Trans — Pool
next-pool _state(o, 1) £ sent'(t) O (pool(o) — | J{recvd (i, 0) | (i O dom) O(T(i) # nil) })

Finally, the next state function for interleaved execution is as follows.

next-state’ : Systemx Sate’ x Trans - Sate’
next_state'(sys,0,1) £ (next-bel_state(sys, o, T), next-pool _state(a, 1))

Runs and world sequences for interleaved execution can be developed in exactly the same way as for syn-
chronous execution; the definitions are therefore omitted.

Although interleaved executionismorerealistic than synchronous execution, it still does not paint acompl etely
accurate picture of how real systems operate. Moreover, the added complexity of interleaved execution make it
much more awkward to manage formally. For thesereasons, and for the reasons associated with fairness, discussed
earlier, theremainder of the thesiswill deal solely with synchronous execution. In particular, the world sequences
underlying the semantics of the various logics to be developed in subsequent chapters are assumed to be those of
synchronously executing systems.

4.6 Some Extensionsto the Basic M odel

The basic model of agents and systems can be extended in a number of ways. Some possible extensions are
presented below.

4.6.1 Alternative Definitions of Epistemic Inputs

As defined above, an epistemic input is essentially unstructured. It is simply a set of formulae which are crudely
regarded as “new evidence’. While this definition will probably suffice for most simple cases, sophisticated
applications will almost certainly require more information about the input. In this brief section, we outline a
couple of possible ways that epistemic inputs might be redefined to include such information.

The management of uncertainty is a central issue in Al. An obvious possibility would be to incorporate
MY CIN-style certainty factors or probabilities in epistemic inputs, perhaps to indicate the certainty of the new
information being true.

Epin’ = R x powerset Form(L)

Another possibility would be to give an indication of the source of the input, by associating an agent id with
each input.

Epin" = Agid x powerset Form(L)

4.6.2 Broadcast Messages

The communication paradigm modelled by the theory above is point-to-poi nt message passing: a message origin-
ates from some agent, and is routed through a network to itsintended recipient. A simplifying assumption is that
an agent can only send one message at atime. While common, this style of communication is by no means the
only method available. An alternative is broadcast messages, where an agent sends messagesto a group of agents
— possibly every agent — simultaneously. Broadcast message passing is not supported by the theory above, but
is also quite common. For example, it is the basic communication method in Concurrent METATEM [62], and is
at the heart of the Contract Net protocol [161], [160].

The modificationsrequired for broadcast messages are simple. First, the definition of amessageruleisaltered,
so that the second component is a set of messages, rather than a single message as before.

Mrule = Cond x powerset Mess

The idea is that if a message rule is “chosen”, then the set of messages will be sent, rather than the single
message as before. Next, we must alter the definition of a move, to take into account this change.

Move = Action x powerset Mess

And finally, we alter the definition of sent, which, you will recall, extracts the set of all messages sent in a
transition.

sent’ : Trans — powerset Mess
sent'(1) 2 [J{mess(m) |m O mg T} — Messyj

65

No other changes are necessary.

4.6.3 Multiple Preconditionsfor Actionsand M essages

Another obvious extension to the basic theory isto allow multiple preconditions for actions and messages. These
might be accommodated as follows. First, the types for action and message rules are redefined.

Arul€ = powerset Cond x Action
Mrul€ = powerset Cond x Mess
Next, the definitions of applicability need changing.
ar_applic : Arul€¢ x Belset — B
ar_applic((F,a),A) & OOl OpO(AQO {true})

The function mr_applic, for message rules, is essentially identical to this function, and is therefore omitted.
No other changes are necessary.

4.7 A List of Types

For reference, the types which appear in the theory of multi-agent systems presented above are summarized bel ow.
Primed types are alternative definitions of existing types.

Belset A belief set isa set of formulaein the internal language, L. Usual symbol: A.

Drule A deduction rule is a rule of inference which must have a fixed, finite number of premises, and be an
effectively computable function of those premises. Agents possess a set of deduction rules, for which the
usual symbol is p.

Epin An epistemic input results in an agent either as the result of performing a cognitive action, or as the result
of receiving amessage. It representsa“new piece of evidence” that an agent may subsequently believe.

Brf A belief revision function maps a belief set and set of epistemic inputsto a new belief set. Usual symbol: 3.
Agid An agent identifier is assigned to each agent in order to uniquely identify it. Usua symbols: i,j, k,I.
Mess A message is sent between agents. Usual symbol: p.

Messint A message interpretation function maps a belief set and message to an epistemic input. Usual symbol:
I

Action A cognitive action is a function which takes as its argument a belief set, and returns an epistemic input.
Such actions represent the utilization of cognitive (i.e., computational) resources. Usual symbol: a.

Cond A condition is associated with all actions and messages in action/message rules — see below. Usua
symbol: @.

Arule A (cognitive) action ruleisacondition/action pair, the condition determining when the actionis applicable,
being satisfied if it is believed. Usua symbol: ar. An agent possesses a set of such rules, for which the
usua symbol is: AR.

Mrule Analogous to an action rule, a message rule is a condition/message pair, the condition determining when
the message may be sent. Usual symbol: mr. An agent possesses a set of such rules, for which the usual
symbol is: MR.

Agent An agent has an initial belief set, some deduction rules, an interpretation function for messages, a belief
revision function, and some action and message rules. Usua symbol: ag.

System A system is a collection of hamed interacting agents. Usual symbol: sys.

Move A moveisa pair, containing an action of each type (cognitive and communicative). It defines the actions
an agent has performed on one “round”. Usual symbol: m.

66

Trans A transition defines the moves each agent has performed on one “round” of a system; it maps each agent
id in the system to a move. Usua symbol: 7.

Sate The state of a system defines the belief set possessed by each agent on one given “round” of the system. It
maps each agent id in the system to abelief set. Usual symbol: o.

World A world is a state together with the transition that caused the state. Usua symbol: w.

Worldseg A world sequenceis a countably infinite sequence of worlds, representing a run of a system. The first
world in the sequence contains the nil transition and the initial state of the system. Usual symbol: W.

48 Summary

This chapter has introduced a theory of computational multi-agent systems, in which each agent is considered
to possess explicitly represented beliefs, a limited capacity for reasoning about its beliefs, and the ability to act,
either by utilizing its own private, cognitive resources in the performance of a cognitive act, or by sending a
message to another agent. The chapter culminated in the definition of two execution models, which define how
agents act and interact. In subsequent chapters, a number of logicswill be developed which can be used to reason
about multi-agent systems of the type described by the theory.

67

Chapter 5

Linear Time Temporal Logicsfor
Multi-Agent Systems

THE preceding chapter introduced a theory of computational multi-agent systems. The aim of this chapter is to
describe afamily of logics that can be shown, in a precise way, to correspond to this theory, and may therefore
be used to reason about systems modelled by the theory. The common feature of all the logics described in this
chapter is that they are based on alinear model of time; some alternative logics, based on a branching model of
time are described in Chapter 7.

The remainder of this chapter is structured as follows. The next section introduces a logic called AL (for
“Agent Logic"), the simplest in the family of logics developed in this thesis. AL is propositiona (in that it does
not alow quantification), and is based on alinear, discrete model of time. The correspondence with the theory of
multi-agent systems, and the syntax, semantics, and proof theory of AL are all discussed at length. The section
closes with a discussion of how AL might be made more expressive.

Section 5.2 examines the role of the internal languages used by agents, and how the choice of internal lan-
guage affects AL. The possibility of using AL as an interna language is discussed at this point, and found to
be (practically speaking) unworkable, due to an important syntactic restriction on the language. To remedy this,
a hybrid language is developed, by combining AL with a standard first-order temporal logic. Various possible
theorems of this hybrid logic are discussed, with respect to the properties of agents that they correspond to.

Section 5.3 introduces a quantified version of AL called QAL (“Quantified AL"). This language is more
expressive than AL, in that it allows quantification over agents, actions, and individuals in the domain of the
internal language.

51 Thelogic AL

This section introduces thefirst, and simplest of the logics developed in the thesis. Thelogicis called AL, which
stands for “Agent Logic”. It is propositional, in that it does not allow quantification. It contains three atomic
operators:; Bel, for describing the beliefs of agents, Send, for describing the messages that agents send, and Do, for
describing the cognitive actions that agents perform. AL also contains a set of modal temporal operators, which
allow the description of the dynamic properties of agents. Finally, as indicated above, AL is based on amodel of
time that is linear.

511 Syntax

AL isintended to allow reasoning about agents: their beliefs, their actions, and the messages they send. Since
it isn't possible to actually put an action or agent directly into formulae of the language (which after al, are just
strings of symbols), there must be away of referring to these objectsin the language. Thisis achieved by putting
symbols into the language whose denotation is an agent identifier or action. Since quantification isn’t allowed
in AL, these symbols will be constants (or more properly, individual constants). Also, to express the beliefs of
agents, the internal language must appear in AL somewhere.

Definition 6 The alphabet of AL (based on L) contains the following symbals:

68

(Beli @) Agenti believes @
(sendij¢@) Agentisentj message @
(Doia) Agenti performsaction o
Oop Next ¢
Q¢ Last @
oU Y e Until ¢
oS Y @Since Y

Table 5.1: Non-standard Operators in AL

1. The symboals {true, Bel, Send, Do};

N

. A set of constant symbols Const made up of the disjoint sets Constag (agent constants) and Consta (action
constants);

. Al closed formulae of the internal language L;

and the binary propositional connective® [T';

3

4. The unary propositional connective “ —
5. The unary temporal connectives { O, © } and the binary temporal connectives{#/, S };
6

. The punctuation symbols {), (}.

Aninstance of AL (which might be called the “external language”) is parameterized by the internal language,
L. Different internal languages result in different external languages. To identify the language of AL based on
internal language L we write AL(L). For the most part, we are concerned with general properties of AL, and
reference to the internal language will therefore be suppressed. The relationship between AL and the language
upon which it is based is examined in more detail in section 5.2.

Definition 7 The syntax of AL (based on L) is defined by the following rules:

1. Ifi, j areagent id constants, @isa closed formula of L, and o is an action constant, then the following are
formulae of AL:
true (Beli @) (Sendij¢@) (Doia)

2. If @, ¢ are formulae of AL, then the following are formulae of AL:
e Oy

3. If @, Y are formulae of AL, then the following are formulae of AL:
O¢ O¢ Uy oSy

Following standard conventions, parentheses and sgquare brackets will be used to disambiguate formulae where
necessary (the same is true of all the languages defined in the thesis). Table 5.1 summarizes the meaning of the
non-standard operatorsin AL.

5.1.2 Semantics

The purpose of a language's semantics is to assign some formal meaning to syntactic objects of the language.
This section introduces the formal semantics of AL.

The semantics are presented in three parts: the first defines model structures for AL (and shows how the
execution of a system corresponds to these structures), the second gives the semantic rules for AL, and the third
presents the notions of satisfiability and validity for formulae of AL.

Model Structures

Theideawhich underliesthe semanticsof all thelinear timelogicsfor multi-agent systemsdeveloped in thisthesis
isthat of allowing a run of a system to act as a model for a linear discrete temporal logic. The first component
of amodel for AL is therefore a world sequence, representing a run of a system. Unfortunately, to make the
machinery of the logic work, some extra technical apparatus is required.

69

An interpretation for constants is a bijective map from Const to the objects the constants denote (the map
will be bijective as every object is assumed to have precisely one constant associated with it, which is a standard
name for the object). Note that this map must preserve sorts, in that it must only map agent id constants to agent
ids, etc. The symbol | is generally used for an interpretation. The type for AL modelsis called Model 5, and is
defined as follows.

Definition 8 A model for AL is a structure:
(W, Ag,Ac, I)
where
* W O Worldseg is a world sequence;
» Ag [Agid isa set of agent ids;
» Ac [Action isa set of actions;

« |: Const < (Ag [Ac) interprets constants.
The following bool ean-valued function defines under what circumstances amodel isamodel of some system.

model _of : Model o % System — B

model_of (M, sys) 2
let (W, AQ',Ac,1) =M in
let (Ag, Do, P, B, 1, MR, AR) = sys in
run-of (W, sys) O
(Ag=Ag) D
(Ac=U{{a | {p.a) DAR()} |i O Ag})

The first conjunct of the condition simply requires that the model represents a valid run of the system. The
second and third conjuncts require that the agents and actions in the model and system correspond. We will say
an AL model M is ordinary iff there is some system of which M isamodel.

ordinary : Modela. — B
ordinary(M) £ [bys O SystemCimodel -of (M, sys)

For the most part, we shall be concerned solely with ordinary models, for obvious reasons. if a model is
not ordinary, then it describes a system which cannot exist! Ordinary models are also useful because they shift
the burden of proof: to show that a theorem is sound for a class of models, it is merely necessary to show that
the property expressed by the theorem holds for all systems modelled by the class. This establishes a kind of
“correspondence theory” for AL.

This correspondence property is so natural and useful that we will frequently abuse terminology by writing
that a theorem is “sound for the class of systems/agents X’ rather than the more technically correct, but long
winded, “sound for the class of models which are models of the system/agent class x”.

Semantic Rules

The semantics of AL are given viathe satisfaction relation, “F”, which holds between pairs of the form:
(M, u)

(where M isamodel for AL, and u O N isatempora index into M), and formulae of AL. The semantic rules
for AL aregivenin Figure 5.1.

The first four rules deal with atomic formulae, (or atoms), of AL. Atoms are the primitive components of the
language. To understand the semantics, it may be helpful to recall that a world-sequenceis a structured object that
representsarun of asystem. It contains al the information about a system that can be expressed in aformula. The
semantic rules are largely concerned simply with “taking this structure apart” to get out the required information.
So, for example, if W is aworld sequence, u O Nisatime, and i is an agent id, then state(W(u))(i) returns the
belief set of agent i at time u in world sequence W.

70

(M,u) E true

(M,u) F (Beli @) iff @ O state(W(w))(1(i))

(M,u)y F (Doia) iff action(trans(W(u))(1(i))) = I(a)
(M,u)y E (sendij @) iff (I(i),1(), @) O sent(trans(W(u)))
MU E -9 iff (M, U) f @

MU E @Og iff (M,u) Egor (Mu) Fy
(M,uy F Opeo iff (M,u+1) Fo

(M,uy E ©O¢ iffu>0and (M,u-1) F ¢

Mu F eUy iff thereissomevONDO/=u

such that (M, v) £ ¢ and

(M,w) F pforal wONL<sw<v
(Mu)y F @Sy iff thereissomev O {0,...,u-1}

such that (M, v) £ ¢ and

(M,w) F opforall wWONI¥<w<u

Figure 5.1: Semantics of AL

Note that state, trans, action and sent are selector functions, fixed for all models: state takes a world and
extracts its state, trans takes a world and extracts its transition, action takes a move and extracts the cognitive
action of the move, and sent takes a transition and returns the set of all messages sent in the transition.

The formulatrue isalogical constant that has the interpretation “true” at all times; it is always satisfied. The
logical constant false is defined as — true; it is never satisfied.

The belief operator (Bel i @) isread: “agent i believes ¢’L. This operator is essentially the belief operator
from Konolige'slogic LB, and obeys the same rules [100]. Where A = {@, ..., @} we let (Bel i A) abbreviate
(Beli @), ..., (Beli @).

The operator (Do i a) describes the performance of cognitive actions. It isread: “agent i performsthe action
a’.

The operator (Send i j ¢) describes the sending of messages, and will be satisfied if agent i has sent j the
message with content ¢ at the appropriate time. It is useful to let (Rev i j ¢) abbreviate (Send j i ¢)2.

These next two rules define the standard propositional connectives = (not) and [(or), which have the usual
semantics. The remaining propositional connectives(O (implies), O(and), and < (logicaly equivalent)), are
defined as abbreviationsin the usua way:

0 ¢ 2 (-eOy)
edy 2 =(=e0-y)
=y 2 (0 Oy O)

The final four rules define the semantics of the temporal operators. This basic stock of temporal operators
turns out to be surprisingly expressive; an early result in the study of temporal logic, due to Kamp, isthat temporal
logicswith (strict) since (* § ”) and until (* ¢/ ") operators are expressively complete over continuouslinear orders;
that is, any imaginable (propositional) connective that expresses a property of such orders can be defined in terms
of them [95].

For convenience, the abbreviations in Table 5.2 are assumed. “O” and “ ©@" are the next and (strong) last
operators respectively: O @ is satisfied if @ is satisfied in the next world; “ ©@” is the past time version of this
operator, so that © @ is satisfied if ¢ was satisfied in the last state of the sequence. “ ©” is said to be strong
because it is always false at the beginning of time. The “ @ operator is the weak version of “ ©”: its argument
is alway satisfied at the beginning of time®. The special symbol “init” is only satisfied at the beginning of time.

“[]” and “I” are the always and heretofore operators respectively: []¢@ will be satisfied iff @ is satisfied
now and in all future moments; “l” is the past time version. (Note, however, that “Bl” is astrict past operator).

1n the discussion that follows, a reference time is assumed.

2Note that we can only do this because we assume that all messages are received the cycle after they are sent. |f we did not make this
assumption, (asis the case, for instance, in the interleaved execution model described in the previous chapter), then it would be necessary to
introduce Rev as an enirely new operator, with its own semantic rule.

3Note that there would be no need for two different kinds of last operator if time was not finite in the past.

71

09 2 -0-9 (Weak) last @

init & - Otrue Initialy ...

Cp 2 trueld @ Sometime ¢

Oe &2 -%0-9 Always @
oWy & [OeOeUy @Unlesy

9o L& trueSo Was ¢

Mo &2 -9-9¢ Heretofore @
eZy 2 Mo O eSyYy o@Zincey

A

S (oUy) @ Before (or precedes) @

Table 5.2: Derived Temporal Operators

“0” and “ © " are the sometime and was operators respectively: Q@ will be satisfied if @ is satisfied now, or
becomes satisfied at least once in the future; “ € ” is the strict past version, so € @ will be satisfied if ¢ was
satisfied at least once in the past.

“U” and “ W’ are the until and unless operators respectively (“ W " is sometimes caled the weak until
operator): U Y will be satisfied if @ is satisfied until ¢y becomes satisfied — (y must eventually be satisfied.
“W?" issimilar to “ ", but allows for the possibility that the second argument never becomes satisfied. The
“8” (since) and“ Z " (zince) operators are the strict past time versions of “2/ " and “ W " respectively.

Finally, the “before” operator, (“ B") describes temporal precedence: if @B s, then @ strictly precedes .

Satisfiability and Validity

Satisfiability and validity are defined in the usual way. Let ¢ beaformulaof AL. Then @is satisfiablein amodel
M if there is some u O N such that (M, u) F ¢, and satisfiable simpliciter iff it is satisfiable in some model. It
istrue in a model M iff (M,u) E @for al u ON, valid in a class of models C (written Fc ¢) iff @istruein all
models in the class, and valid simpliciter iff it is true in the class of all ordinary models. A convenient way of
expressing that gisvalid isto write F ¢.

Thereisan important rel ationship between the satisfiability of belief atomsin AL and the deductive capabilities
of the agents being described. This relationship is captured in the following lemma, which is later used to prove
the soundness of an axiom for belief atoms.

Lemmal ([100]) The (denumerable) set:
{(Beli p), - (Belil)}
is unsatisfiable iff there is some ¢ O I such that A Fp) @.
Proof See[100]. '
5.1.3 Proof Theory

In this section, aproof theory for AL is developed, framed in terms of an axiom system. It isusual practice, when
axiomatizing alogic, to pick the smallest complete set of axioms and inference rules as an axiomatic base. Other
axioms and inference rules are then introduced as derived constructs. However, completeness proofs tend to be
rather involved, and the issue of completenessis not, therefore, addressed in thisthesis. See further commentsin
the conclusions chapter.

Axioms
Begin by noting that the ordinary connectivesJ,[0,~, 00 , = obey classical semantics, and thus:

F ¢ where @isapropositional tautology. (5.
The next axiom captures the fundamental property of belief systems; it is called the attachment axiom (cf. [100]).

F o ((Beli @) OOID(Beli @) O (Beli ¢) (5.2)
where {@, (I gh} Fpi) @

72

The soundness of this latter axiom is an immediate corollary of the attachment lemma (above).

Thelogic of the temporal operators has been studied in great detail; two good references are [116, pp228-234]
and [47, pp1003-1005], both of which list a great many temporal axioms. Another good reference is [79] where
axiom systems for a number of temporal logics are presented, and the soundness of a number of derived axioms
is demonstrated through formal proof. Rather than present a detailed list of axioms here, we simply list some
representative axioms; afuller list is givenin Appendix D.

F O-¢p=-00 (5.3
F oo O Q¢ (5.4
F O O %p (5.5)
F Oe O Op (5.6)
Foouy O Oy (5.7)
F OpO $¢ (5.8)
- HMeO 99 (5.9)
F oSy O éu (5.10)
F MeOy) = CeO0y) (5.11)
FooO(ety) = (el Oy) (5.12)
F e D w O (e 0 Oyw) (5.13)
F @O ¢) O ©e O Oy) (5.14)
F D@0 w) O (Op 0 Ou) (5.15)
F Op- @000 (5.16)
F o= OO e (5.17)

Inference Rules
The propositional connectivesin AL have classical semantics, so Modus Ponens (MP) is arule of inference.
FromF@ O ¢ and F @infer - (5.18)

It is not difficult to see that the following temporal rules are sound.

From F ¢ infer = Og (5.19)
From + ¢ infer = Qg (5.20)
From + ¢ infer = [o (5.22)
From F ¢ infer - @¢ (5.22)
From + ¢ infer - © ¢ (5.23)
From F ¢ infer + Mo (5.24)

5.1.4 Discussion

As with any logical language, it is possible to classify AL in terms of two independent attributes: the language
of formulation, and the underlying model [100, p88]. Each of these parameters may be further decomposed into
those attributes of agents (their beliefs, actions, and messages), and those attributes of time. The main features of
AL are summarized in Table 5.3. Each entry in this table reflects a design decision made during the devel opment
of AL. The aim of this section is to discuss, and, where necessary, to justify these decisions.

First, consider the properties of agents, and the language used to express them. For belief, the linguistic
tool chosen was the sentential modal operator (Bel i ¢): this operator is sentential because its key argument is a
sentence, (or formula), of theinternal language L, and modal asit is not a standard truth-functional operator (i.e.,
it “changes the mode” of aformula). What are the alternativesto such an operator?

The main alternative is to use a first-order meta-language, which contains terms denoting formulae of some
other object-language. The principle advantage of meta-language approaches is that they are more expressive
than their modal language counterparts. It is also often claimed that since meta-languages are just many-sorted
first-order languages, ordinary first-order theorem provers may be used for them (whereas theorem provers for

73

AGENTS TIME
Belief sentential modal Modal (tense) logic
operator with future’past
(Bel i) operators:
Action operator o o0 e
LANGUAGE (Do) ¢ & O
m U S
Comms sentential modal w oz B
operator Expressively complete:
(Sendij ¢) [95].
)) Linear
Belief deduction model)
) o . Discrete
MODEL Action primitive actions .
] Finite past
Comms directed messages o
Infinite future

Table 5.3: The Properties of AL

modal logics are very much an ongoing research ared). Thislatter claim hasyet to be satisfactorily demonstrated,
however.

There are several disadvantages to the meta-language approach. Most importantly, any non-trivial meta-
language reasoning involves manipulating formulae of extraordinary complexity, (this negative attribute has been
reported by several researchers [98], [138]). Also, it seems that modal operators are a more natural language of
expression than their meta-language counterparts[138, §3.3, p128]. For these reasons, a meta-language approach
was rejected in favour of a sentential modal operator for belief.

Now to the actions and messages of agents. These are described by two operators: the sentential modal
operator Send, for messages, and the operator Do, for cognitive acts. Before discussing the semantics of these
operators in any detail, it is worth making some general comments about the suitability of having operators for
describing the cognitive and communicative acts. Two questions arise: 1) Is it necessary to have operators for
describing these actions? 2) If so, could not the two operators be replaced by a single, unified notation?

The first question is posed because much research in Al planning and philosophy has rejected the notion of
actions as primitives — with good reason. Nevertheless, the notion of actions is a very appealing one. Shoham
expressed similar sentiments: when developing the theory which underlies his AOP paradigm, he was at pains
to reject any notion of action. Nevertheless, he found it worth introducing actions into the AGENTO system as
“syntactic sugar” [151, pl15, pp24-27]. So while there may be something deeply suspect about any notion of
primitive action on strictly philosophical grounds, the concept seems too useful to reject solely on the basis of
dogma.

Given that some representation of action in thelanguageis desirable, the second question arises. Isit necessary
to distinguish between cognitive and communicative acts? Could the two operators not be replaced by a single,
unified notation? The question might seem strange to those not familiar with speech act theory, where it is
generally taken as axiomatic that communication is just another form of action, which may be planned for — or
may fail — in precisely the same way that “normal” actions, (such as picking something up from a table), may
fail [9], [145]. Cohen and Levesgue, in their highly influential theory of speech acts, model a*“request” act as any
type of committed attempt to bring about a certain state of affairs (see Chapter 3 for a discussion of Cohen and
Levesque's approach, and [29], [30]). In their theory, no distinction is made between essentially linguistic acts,
(such as saying “ please make me a cup of tea”), and other types of action (such as nodding in the direction of the
kettle). The result isa satisfying theory which does much to clear up the confusion surrounding earlier attemptsto
formalize speech acts. However, Cohen and Levesque are only able to achieve their results by abstracting away
a good deal of information — for example, the distinction between linguistic and other actions. It is not at all

74

certain that such a degree of abstraction is appropriate for describing computational multi-agent systems. There
is a qualitative distinction between sending a message and employing computational resources, and it is surely
useful to retain this distinction for our purposes. For these reasons, a distinction is madein AL.

The models that underly belief, communication and cognitive action are those which appear in the theory
of multi-agent systems. These have been discussed extensively in the preceding chapter, and will therefore be
mentioned only in passing here. The deduction model of belief is adopted because it seems the simplest, and at
the current time, the best developed model of agents with incomplete reasoning abilities. It does have its critics:
Reichgelt, for example, argues that it is still too coarse grained to really capture incomplete reasoning [138].
However, for the reasons just mentioned, the deduction model is adopted within this work.

Reasoning about time in AL is achieved through the use of the language's temporal modal operators (e.g.,
“ ©@”). This approach is, however, by no means the only approach to reasoning about time in general use. The
choice must therefore be justified.

The simplest method for reasoning about time is to use a standard (perhaps many-sorted) first-order logic,
which contains terms denoting times. For example, every n-ary predicate in the logic might be extended to an
(n+ 1)-ary predicate, with the (n + 1) term denoting a time at which the predicate is true. The English sentence
“Jonesis never ill” might then be translated into the following first-order formula.

OtMime(t) O = HI-At(Jones, t)

The very obvious advantage of this approach is that no extra logical apparatus need be introduced to deal with
time: the entire corpus of work on standard first-order logic can be brought to bear directly. The disadvantages
are that the approach is unnatural and awkward for humans to use. Formulae representing quite trivial temporal
properties become large, complicated, and hard to understand. The approach has been caled the method of
temporal arguments [137], or the first-order approach [68].

The second techniqueisto employ afirst-order meta-language which contains terms denoting times, and terms
denoting formulae of an object-language’. 1n such meta-language approaches, one typically finds a predicate such
as Holds(p, t) or True(p, t) to express the fact that the object-language formula denoted by p is true at the time
(or holds over the interval, etc.) denoted by t. This approach is usually called the reified approach to reasoning
about time. The main advantage claimed by proponents of the reified approach is the ability to stay in a (sorted)
first-order language while reasoning about time. The main disadvantage is that even simple temporal properties
are difficult to express, as the logical apparatusis quite cumbersome.

Reichgelt comesto the following conclusion:

“I1f onerestricts oneself to purely logical considerations, then modal treatments of temporal logicsare
superior to [otherg] ...From the computational point of view, [reified or first-order] treatments seem
preferable’. [137, pl176]

Since computational tractability is not a key consideration of this thesis, a modal approach is adopted.

The model of time used in AL may be characterized by four properties: 1) linearity, 2) discreteness, 3) finite
past, 4) infinite future (cf. [68]). The basic aternative to a linear model of time is one that branches. In fact, it
is quite straightforward to construct a branching model of time from the theory of multi-agent systems; see the
comments that close this section, below.

The discreteness property is not disposed of so easily! There are two basic aternatives to discrete models:
thefirst is a dense model, (where the temporally ordered time points may be put in a one-to-one correspondence
with the reals); the second is an interval model, (where timeis not viewed as points at all, but asintervals). There
is no doubt that the simplest of the three is the discrete model: however, it has been suggested, quite reasonably,
that thisis not a good model of “real world” time (are there really “time atoms’?). However, some applications
are inherently based on a discrete model of time, and for these applications, discrete models are satisfactory. One
such application isthe Pnuelian method for reasoning about reactive systems, where time points correspond to the
state of an executing computer program; transitions between states are atomic, and correspond to the execution
of primitive program instructions. Discretenessin the theory of multi-agent systems arises because of the use of
belief sets. If there are not discrete moments when an agent’s beliefs can be said to be fixed, then it is difficult to
see how an agent could ever be said to believe something. How could an agent rationally choose an action on the
basis of continuously changing beliefs? Gardenfors finds the notion of epistemic state similarly fundamental. He
comments that there must be times where an agent’s beliefs are — conceptually at least — at “equilibrium under
all forces of internal criticism” [69, pp9—10]. These “forces of internal criticism” are modelled in the theory of

4The principles are exactly the same as those for using a meta-language approach for representing beliefs — see the discussion above.

75

(Beli OXxP(¥) O QX)) v AgentibdievesOx[P(x) O Q(X).
(Beli P(X)) x P(X) is not asentence of L.
(Bel i P(a)) v Agenti believes P(a).
(Bel i (Bel j P(a))) x (Belj P(a)) is not a sentence of L.
O (Beli P(a)) v Agent i previously believed P(a).
9 (Bel i P(a)) Vv At sometime past, i believed P(a).
Ox OO (Bel i P(X)) x Bad Quantifier!

Table 5.4: Some Syntactically Correct and Incorrect Formulae of AL(Lo)

multi-agent systems by the belief revision function. For these reasons, it is felt that a discrete model of timeis
appropriate for AL.

Having a finite past means that some time point can be recognized as being the “beginning” of time. Finite
past temporal models seem to be reasonable for describing computer systems, whose execution can be said to
have some definite starting point [134].

Finally, having an infinite future (i.e., every time point has a successor), is quite a weak condition. It seems
reasonable for reactive systems, which, as pointed out earlier, are generally intended to execute without terminat-
ing. However, terminating models can be mapped to non-terminating models by the simple expedient of iterating
the final time-point in the sequenceinfinitely (thisis called (infinite) stuttering).

The above discussion has justified the main design decisions made during the development of AL. There are,
however, at least three areas where AL might easily be extended:

1. Internal Languages. Little has been said about the internal language L, or how the choice of L affects
AL. Recdll that L isused to expressthe beliefs of agents. These beliefs generally constitute, for the agent, a
model of theworld in which the agent exists, (i.e., a multi-agent system of thetype AL isused to describe).
An interesting question then arises; Could AL be used as an internal language? This issue is discussed in
the next section.

2. Quantification. A natural extension to AL would be to allow quantification (over at least agents, actions,
and individuals in the internal language). A language called QAL (“Quantified AL”), based on AL but
allowing quantification, is developed in section 5.3.

3. Branching Time. The model of time which underlies AL is linear, in that each time point has a unique
successor. An alternative is to view time as branching into the future. In a branching system, each time
point has a number of possible successors, corresponding to the futures that might arise if various choices
are made. Chapter 7 is entirely devoted to the development of logics, with a similar set of atoms to AL,
that view time as a branching structure.

5.2 Thelnternal Languages of AL

In this section, we examine the expressiveness of AL when it is parameterized by various internal languages. We
assume the existence of an ordinary first-order language, Lo. This language contains a set of predicate symbols
{P.Q,...}, aset of constants {a, b, ...}, aset of variables, {x,y, ...}, theusual connectives {00, O ,...}, and
the quantifiers {OJ, I}. For simplicity, we assume the language has no function symbols other than constants. The
normal formation rules for first-order predicate logic are assumed. Formulae of Ly are said to be ordinary. A
sentence of Lo is a closed formula (one with no free variables). See, e.g., [163] for a presentation of Lo.

We begin our analysis by considering the language AL (L), (i.e., the language formed by allowing agents
to use an ordinary first-order predicate logic as their internal language). AL(Lp) might be called a first-order
intentional language, since while it allows agents to be described in terms of intentional constructs (i.e., belief),
agents themselves are not capable of supporting beliefs about other agents [39]. Some examples of syntactically
correct and incorrect formulae of this language are given in Table 5.4.

The internal language is used to express the beliefs of agents. These beliefs are generally taken to constitute
— for the agent — a description of the environment in which it exists, i.e., a multi-agent system of the type AL
is used to describe. An intriguing possibility arises. Could AL itself be used as an internal language by agents?
If we ignore for a moment the computational issues associated with reasoning using a complex modal language

76

such as AL, the suggestion is quite appealing. The semantics of AL are based on aformal model of multi-agent
systems, that described in the preceding chapter. It would therefore seem to be an ideal language for agents
to express beliefs about such a system. Unfortunately, a naive attempt to apply the idea immediately runs into
difficulties. Consider some examples of formulae of the language AL(AL(Lo)).

(Beli (Belj OxP(X) O QX))

This example is straightforward: i believesj believesOx [(P(x) O Q(X). In contrast, the following formulais
not syntactically acceptable.

(Beli OxP(X) O QX))

Yet the argument to the belief atom is a sentence of Ly. The problem liesin the way that AL is defined: formulae
of the internal language cannot be formulae of AL. This means that although AL could be used in its present form
for representing the beliefs of agents, its would be extremely unwieldy.

One solution to this problem is to develop a hybrid language, which combines (say) a first-order temporal
logic (FOTL) with AL, and allows either formulae of FOTL or formulae of AL to be atoms. Such alanguageis
developed below.

5.2.1 An Expressive Internal Language

As suggested above, an expressive internal language may be derived by “adding” FOTL to AL, and allowing
formulae of FOTL to be atoms of the resulting language, which we will call IAL (“Internal AL"). The FOTL we
use is more or less standard (see e.g., the language FML in [12]); afull (but terse) description is given below.

A First-Order Temporal Logic (FOTL)
For the sake of simplicity in exposition, we present a language with equality but no functions.
Definition 9 The alphabet of FOTL contains the following symbals:
1. A countable set of predicate symbols {P,Q, ... }, each associated with a non negative integer, its arity;
2. A countable set of constant symbols {a, b, ... };
3. A countable set of variable symbols {x,y, ... };
4. The equality symbol “ =";
5. The quantifier * 0", and punctuation symbol “ [7;
6. The punctuation symbols, propositional and temporal connectives of AL.
The syntax of FOTL isthat of Ly augmented by the temporal connectives of AL.
Definition 10 The syntax of FOTL is defined by the following rules:
1. Atermiseither a variable or a constant;

2. An atomis an application of a predicate symbol P to terms 6,, (IT] 6,, written P(64, ... , 6,), where nisthe
arity of P. A ground atom is one containing no variables;

An equality is an expression of the form (6, = 6,) where 6y, 6, are terms;

3.

4. Aprimitiveis either an atom or an equality. All primitives are formulae of FOTL;
5. If pisaformula of FOTL and x is a variable then Ox Lpis a formula of FOTL;
6.

FOTL contains the propositional and temporal formation rules of AL.

An interpretation 1T for FOTL is a map from times N to the powerset of ground atoms. 1(u) is the set of
ground atoms true at time u [0 N.

A variable assignment V is a map from variables to constants. A function is defined that applies a variable
assignment to an arbitrary term. (Note that this function does not return the denotation of aterm, but rather a
constant.)

[lv & if 60 Var
then V(6)
else O

77

(mViu) E P(6y,...,6,) iff P([6.], TG [6]) O mi(u)
(mViu) F (6.=6) iff [6:] = [62]

(mViuy E OxOp iff (mVT{x—a}l,uEoe
for all constants a

Figure 5.2: Semantics of FOTL

IAL iFOTL

AL
An arc from A to B means Form(B) O Form(A).

Lo

Figure 5.3: Relationships Between Languages

Where V isunderstood, [0]y is abbreviated to [0]]. The semantics of FOTL are presented viathe satisfaction
relation “E” in the usual way; the relation holds between triples of the form:

(mV,u)

(where 1T is an interpretation for FOTL, V is a variable assignment, and u [0 N is a temporal index), and
formulae of FOTL. See Figure 5.2 for the semantic rules. Since the propositional and temporal connectives are
essentially standard, their semantic rules are omitted: semantics are just given for atoms and quantified formulae
(the existential quantifier “[1" is assumed to abbreviate - - , as usual).

This completes the survey of FOTL.

Adding FOTL to AL

In this sub-section, we show how FOTL may be added to AL(FOTL), to yield alanguage IAL (“Internal AL").
How isFOTL “added” to AL(FOTL), syntactically and semantically? Syntactically, the atoms of the resultant
language AL are defined to be either sentences of FOTL or formulae of AL. (Notethat AL(FOTL) isabbreviated
to AL for the remainder of this section.) Compound formulae are built up from these atoms using the temporal
and propositional connectives which are common to both AL and FOTL.
For example, the following is a closed formula of FOTL, and is therefore an atom of 1AL.

OxOOP(X) O QX
Also, the following is aformula of AL, and is therefore an atom of 1AL.
(Bel i P(a))

Compound formulae of IAL may be built up from formulae of FOTL and AL. This meansthe followingis a
syntactically acceptable formula of 1AL.

(Beli P(a)) JOXOP(X) O Q(X)

Semantically, amodel for IAL is constructed by adding an interpretation for FOTL to amodel for AL. IAL
contains the temporal and propositional connectives of FOTL/AL, and compound formulae are evaluated in the
usual way. Now to make these definitions formal.

Definition 11 The syntax of 1AL is defined by the following rules:
1. If @isasentence of FOTL then ¢is a formula of 1AL.
2. If pisaformula of AL then @isa formula of IAL.
3. AL contains the propositional and temporal formation rules of AL.
The syntactic relationships between IAL, AL, FOTL and Lo are summarized in Figure 5.3. The semantics of

IAL are as suggested in the informal discussion above.

78

Definition 12 A model for 1AL is a structure:
(T, W, Ag, Ac, 1)

where 1T is an interpretation for FOTL and the remainder form a model for AL.

The satisfaction relation “F” for IAL holds between triples of the form:
(M,V,u)

(where M isa model for IAL, V is a variable assignment for FOTL, and u O N is atempora index into M), and
formulae of IAL. Let Fa_ be the satisfaction relation for AL, and Eror be the satisfaction relation for FOTL.
The semantic rules for IAL are then as follows (semantic rules are only given for atoms of IAL; the remainder
are essentially unchanged, and are therefore omitted).

(M,Vuy F @ iff (r,V,u) From. @ where @is asentence of FOTL
(M,Vuy E o iff ((WAg,ACI),u) Fa. @where pisaformulaof AL

5.2.2 Some Possible Theoremsand Their Interpretation

The following section considers the significance of various formulae of AL(IAL).

Saturation, Consistency, and I ntrospection

Consider the class of agents whose deduction rules are complete and sound with respect to the internal language.
A Dbelief set with this property is closed under logical consequence, and is said to be saturated. The axiom
corresponding to K from classical modal logic is sound for this class (see [100, pp35-36]).

Beligp O ¢) O (Belig) O (Beliy)) (5.25)

Consistency is an interesting property of agents. We say an agent is locally consistent at some time if it does
not believe both a formula and its negation at that time, and globally consistent if it is always locally consistent.
In contrast, an agent is locally inconsistent if it is not globally consistent, and globally inconsistent if it is never
locally consistent. The following schema (corresponding to D in classical modal logic) is sound for the class of
globally consistent agents (cf. [100, p37]).

Beli @) O - (Beli- @) (5.26)

Theorem 1 Any agent with consistent initial belief set, sound deduction rules, and consistent belief revision
function is globally consistent.

Proof We need to show that any agent with these properties will be locally consistent at all timesu O N. The
case for u = 0 is given by the initial set of beliefs being consistent and deduction rules being sound. For u > 0,
the base beliefswill be the result of processing epistemic inputs through the belief revision function. If the belief
revision function is consistent then by definition it will never produce an inconsistent set of base beliefs, so the
belief set that results from deductive closure will be consistent. '

The process of reasoning about one's own beliefs is called introspection, and is examined in detail in [100,
Chapter 5]. The class of positively introspective belief systems is characterized by the following schema (corres-
ponding to axiom 4 in classical modal logic).

(Beli @) O (Beli (Beli ¢)) (5.27)

The following schema (corresponding to axiom 5 in classical modal logic) is characteristic of negatively intro-
spective belief systems.

~(Beli @) O (Beli-(Beli @) (5.29)

79

1. (Belig) O [(Beliq@) Given
2. (Belig) O - (Beli- @) Given
3. O(elig) O - (Beli-) 2, TL
4. [(Belig O = (Beli- @)
O (O@Belig O [O-(Beli- @) TAX
ClBeli @) O [1-(Beli- @) 3,4,PL
(Belig) O [-(Beli @) 1,5 PL

Figure 5.4: Proof of Theorem 2

Temporal Awareness and the Persistence of Belief

Temporal awareness and the persistence of belief are two distinct but related issues. Temporal awareness means
being in some sense aware of the passage of time: being able to distinguish one's present cognitive state from
previous cognitive states. The persistence of belief concerns how long beliefs are held for.

We deal with temporal awareness first, and distinguish two types. Strong temporal awareness means being
explicitly aware of the distinction between all one's previous cognitive states. This is most simply described by
the following schema.

(Belig) O O(Beli OQ (5.29)

It iseasy to seethat astrongly temporally aware agent (by this definition) believing @ at time u will believe ©Y¢
at time u + v (where @V stands for the operator “ ©” iterated v times). Weak temporal awareness, as its name
suggests, is aweaker condition. It means being able to distinguish what is believed now from at least one other,
previous cognitive state. This condition is most easily described by the following schema.

(Beli © @) O(Beli @) O O(Beli © ¢) (5.30)

That is, aweakly temporally aware agent (by this definition) believing @ at time u will believe © @ for all times
v [0 N such that v > u. (Note that the schemata for temporal awareness are not intended to strictly characterize
the associated conditions, but give the simplest and most obvious interpretation to them.)

A related issue is persistence: how long beliefs are held for. We define an agent as being persistent if once
believing something, it aways believesit. The following schemais characteristic.

Beli @) O [I(Beli @) (5.31)

Persistence is a strong limiting condition, as the following theorem shows.

Theorem 2 The following schema is valid for the class of persistent, globally consistent agents.
(Beli@ O [-(Beli- @) (5.32)
Proof See Figure 5.4. '

So consistent, persistent agents must remain largely ignorant about the passage of time: once they come to
believe something they can never believe its negation. It follows that such agents are severely limited in their
scope for reasoning about the world. A more reasonable form of persistence is default persistence (cf. [151,
pp18-19]). Default persistence means carrying on believing everything that used to be believed unless there is
evidence to the contrary. The appropriate schemais

(O(Beli @) 0~ (Beli~@) O (Beli @) (5.33)

This schema has appeared in many guisesin Al. For example, it issimilar to the so called STRIPS assumption for
reasoning about a changing world (i.e., that everything not known to have changed is assumed unchanged [57]).

80

Anticipation and Retention

Suppose an agent is always aware of what messages it sends: such an agent is said to anticipate its messages.
The following schema is characteristic of agents that anticipate all their messages.

(Sendij @) O (Beli(Sendij @) (5.34)

Similarly, consider agentsthat are aware of the messagesthey receive. If an agent receives a message and believes
that it has received that message, then it is said to be message retentive. The following schema is characteristic
of message retentive agents.

(Revij@) O (Beli(Revij @) (5.35)
The following schema s characteristic of agents that anticipate their actions:
(Doia) O (Beli(Doi a)) (5.36)

Some similar properties were examined by Genesereth and Nilsson in Chapter 13 of [73].

Future Directed Beliefs

Future directed beliefsare simply beliefsabout the future. This section exploresthe possibility that future directed
beliefs affect action. To motivate the discussion, consider the following axioms.

(Beli O(Doi a)) O O(Doi a) (5.37)
(Beli O(Sendij @) O O(Sendij ¢) (5.38)

By these axioms, whenever an agent believes it will perform an action or send a message, then it actually does
perform the action/send the message. The axioms describe a direct relationship between the beliefs of an agent
and the actions it performs. An interesting possibility suggests itself: what if an agent has beliefs about what it
will do in the future, and these beliefs have a causal effect on what the agent actually does? The possibility of
axiomatizing such arelationship isexplored in this section. (The ideaof future directed beliefs having a causative
effect on subsequent actions is at the heart of an entire programming paradigm called METATEM [12], [62] —
much of the discussion in this section was motivated by the METATEM approach.)

We begin by more formally defining what we mean by a future directed belief. We say an agent’s belief is
future directed if it satisfies the following conditions:

* the belief refers only to the actions of the believer;

* the belief contains only propositional and future time temporal operators.

The first condition arises because we are only concerned with how an agent’s beliefs about its own future actions
affect its behaviour. An obvious axiom to examineis arestricted form of T from classical modal logic.

(Beli @ O ¢ where @ satisfies the conditions above (5.39)

Clearly, the two axioms given at the start of this section are instances of this schema. The axiom T is generally
taken to be the characteristic axiom of knowledge, i.e., true belief. However, it can be interpreted as expressing
constraints on an agent’s behaviour. If an agent is to satisfy the modified T, then it must pick its actions so asto
satisfy the constraints expressed in its beliefs. Conceptually, we might describe an agent as trying to find a model
for those of its beliefs that satisfy the above conditions. If no such model exists, then there is no way the agent
can act so as to satisfy them. One possibility would then be to relax the constraints — for example by dropping
a belief about future action. In practice, trying to use such a method to choose actions is unworkable, due to the
complexity of the decision problem for even simple temporal logics.

5.3 A First-Order Linear Time Logic for Multi-Agent Systems

It should be clear from the discussions presented above that the expressiveness of AL islimited in a number of
important ways. Among these limitationsis the inability to write AL formulae which correspond to the following
English sentences.

81

Ralph performed an action. (5.40)

Ralph knows who the murderer is. (5.41)
Everyone believes Ralph is the murderer. (5.42)
Ralph sent Freda a request for something. (5.43)
Everyone sent someone a request for something. (5.44)

The problem isthat AL is not afirst-order language. It is not possible to quantify over termsin AL. The aim
of this section is to develop alanguage QAL (“Quantified AL"), based on AL, which rectifies this omission.

5.3.1 Syntax
The alphabet of QAL contains the following symbols in addition to those of AL:
* some extra constants, Consty, for individualsin the domain of the internal language;

+ aset Var of individual variables, made up of the disjoint sets Var o (agent variables), Var s (action variables),
and Vary, (variables denoting individuals in the domain U of L);

* the equality symbol “=";
* the quantifier symbol “0O";
* the punctuation symbol “[7.

Definition 13 Atermiseither a variable or constant. The symbol 0 is used to denote a term. The sort of a term
iseither Ag, Acor U. To indicate that a term 6 is of sort swe write 6s.

The syntax of QAL is given by the following definition.

Definition 14 The syntax of QAL (based on L) is defined by the following rules:

1. Let 65,0's, ... be terms of named sorts, and ¢ be a formula of L. Then the following are atomic formulae
of QAL:
true (Bel Bag @) (Send Bag B'ag @) (Do Bpg Onc) (Os = 6's)

2. If pisaformula of QAL and x is a variable then Ox [pis a formula of QAL.

3. QAL contains the propositional and temporal formation rules of AL.

Note that arbitrary formulae of L are now alowed to be arguments to the Bel operator, rather than the closed
formulae required in AL. The propositional and temporal abbreviations made for AL are assumed. It is easy to
see that the following formulae correspond to the English sentences (5.40) to (5.44), above.

[x ({Do Ralph x) (5.45)
[k [{Bel Ralph Murderer(x)) (5.46)
Ox [(Bel X Murderer(Ralph)) (5.47)
X [{send Ralph Freda Reguest(x)) (5.48)
Ox My [Tz [{Send X y Request(2)) (5.49)

5.3.2 Semantics

The semantics of QAL are presented in two parts: first, model structures are defined, and then the semantics of
the language are presented via the satisfaction relation “F”, in the usual way. The definitions of satisfiability and
validity are essentially standard, and are therefore omitted.

82

Model Structures

The language of QAL contains three non-empty sets of constants which are standard names: Constag (denoting
agents), Constac (denoting actions), and Const (constantsfor individualsin the domain of L). Const isthe union
of these sets. Each of these sets corresponds to a set that occursin QAL model structures:

» Ag— aset of agents;
* Ac— aset of actions;
e U — auniverse of individuals, the domain of L.

The domain of quantification is the union of these sets; so quantification is allowed over agents, actions, and
individualsin thedomain of L. A bijective map between constants and the domain of interpretation that preserves
sortsis an interpretation for constants (asin AL). The symbol | is usually used for an interpretation, asin AL.

The inverse of an interpretation | is a naming function N;. (Where | is understood, N; is abbreviated to N.)
Thus a naming function assigns a unique standard name to each individual in the domain of quantification®. In
addition to constants, QAL containsaset of variablesVar. A mapping from Var to thedomain of quantification that
preserves sortsisavariable assignment. The symbol V isusually used for avariable assignment. A transformation
is now defined on formulae of L.

Definition 15 Let V be a variable assignment, N be a naming function, and ¢ be an arbitrary formula of L. By
@V we mean the formula obtained from ¢ by replacing every variable x which occurs free in @ by N(V(X)).

For example, let P(x,az,y) be a formula of L, V(X) = di, V(y) = ds, N(d1) = a;, and N(dp) = ap, then
P(X, a,y, NV = P(al, dp, 613).

So every freevariableisreplaced by the standard name associ ated with the object the variable denotes. Finally,
afunction [-],v is defined, which returns the denotation of aterm relative to an interpretation for constants and
variable assignment.

[6liv & if 60Const
then 1(6)
else V(6)

Wherel,V are understood, [0]; v is abbreviated to [6] . Model structures for QAL can now be defined.
Definition 16 A modd for QAL is a structure:
(W, Ag,Ac, U, 1)
where
* U isa non-empty universe of individuals (the domain of L),
« 1: Const = (Ag O Ac O U) interprets constants
and the remainder areasin AL.

(Aside. The semantics of QAL require that we know who the individuals are that agents have names for, in
order that they can be assigned names. However, it isnot necessary to know anything about these individuals. So
if the semantics of QAL say that Ralph believes Fredais the murderer, it is necessary to know who the individual
is that the standard name “Freda” denotes. However, it is not necessary to have an opinion on the properties that
Freda has, or how Freda stands in relation to other individualsin the domain.)

Semantic Rules
The satisfaction relation, “F”, for QAL, holds between triples of the form:
(M,V,u)

(where M isamodel for QAL, V isavariable assignment, and u [0 N is a temporal index into M), and formulae
of QAL. The semantic rules for QAL are presented in Figure 5.5. (The rules for propositional and temporal
connectives remain essentially unchanged, and are therefore omitted).

As usual, the existential quantifier “[I' is assumed to abbreviate = 0= .

5The function N plays asimilar role to the naming function r in Konolige'slogic L B9 [100, pp39-40]. It is made simpler by the standard
names assumption.

83

(M,V,u) E (Bel Bpg) iff N O state(W(u))([Oadll)

(M,Viu) E (Do 6Bag Bac) iff action(trans(W(u))([6agll)) = [6acl
(M\VU) E (Send Oag O'ag @) iff ([Oagll, [6'agll, @N) O sent(trans(W(u)))
(MVu) F (6=6') iff [6s] = [6's]

(M,Vuy F OxOp iff (M,Vt{x—d},u)Fe

for al d in the domain of quantification
such that d is the same sort as x

Figure 5.5: Semantics of QAL

5.3.3 Proof Theory

QAL containsall the axioms and inference rules of AL, and in addition the rules of a many-sorted first-order logic
with equality but no functions (the restrictions on the proof theory of a many-sorted first-order logic are largely a
result of the need to substitute objects of the correct sort). The axiomatization below is based on [104, pp45-46].

Throughout the axiomatization, we use the normal form ¢(x) to mean that x isfreein ¢; the meaning of “free”
is standard. Additionally, ¢{x/y] is used to denote the formula obtained from ¢ by systematically replacing every
occurrence of y in @by x; i.e.,, normal substitution.

{ where 8 is aterm that

F OxOp(x) O ¢@6/x] < doesnotoccur freein ¢ (5.50)
and x and 6 are the same sort

F (6=0) (5.51)
F (6=0) 0O (¢ O ¢go'/0]) (5.52)

Axiom (5.50) is the universal instantiation axiom. Axioms (5.51) and (5.52) deal with equality.
Note that the Barcan formulae for temporal operators are sound ([104, p47]). We give afuller list of axioms
in Appendix D; below, we just list the axioms for the“ O” operator.

F OxOO@(x) = ODOxp(x) (5.53)
F XOO@X = OxOx) (5.54)

The only basic inference rule is generalization.

From + o O ¢ {wherethere|sn0free (5.55)

inffer F @ O DOxOyp occurrence of X in @

Some Possible Theorems and Their Interpretation

There are some other interesting theorems which we might consider [100, pp45-47]. The first is the Barcan
formula for belief (see Chapter 2 and [88, pp142-143]).

OxBeli @(x)) O (Beli Ox Cp(X)) (5.56)

Let D be the domain of quantification: the universally quantified variable x ranges over D. This theorem thus
means that “if i believes ¢(d) of every element d 00 D then i believes every d O D has the property ¢’. The
antecedent and conseguent of this implication convey quite different information, as the following exampleillus-
trates.

Suppose there were just two elementsin D (an unlikely occurrence, but bear with us!) Let the names of these
elements be a; and a,. Suppose also that (Bel i ¢(a1)) and (Bel i ¢(az)). Theni believes of every elementd O D
that ¢(d), i.e., the antecedent of the Barcan formula is satisfied. So if the Barcan formula correctly describes i
then i will also believe Ox Cip(X).

The Barcan formulais a fairly extreme property, as it requires that an agent is somehow aware of al the
elements in the domain D. Another interesting property is the reverse implication of the Barcan formula, the
so called converse Barcan formula. This schema characterizes agents whose deduction rules include universal
instantiation.

(Beli Oxp(x)) O Ox[{Beli (X)) (5.57)

Finally, suppose an agent can perform existentia generalization: from believing that a specific agent (named
by a standard name) has a property, it can deduce that some agent has the property. The following schema is
characteristic:

[k (Beli (X)) O (Beli DX (X)) (5.58)

54 Summary

This chapter has described in detail a number of linear time tempora logics for reasoning about multi-agent
systems. The first, simplest, of these logics was the propositional logic AL. The syntax, semantics and proof
theory of this logic were discussed at length. A correspondence was established between systems in the theory
of multi-agent systems presented in the preceding chapter, and models of AL; this correspondence was that of a
model representing a “run” of a system. Some problems were identified with the possibility of using AL as an
internal language; in order to overcome these problem, a “hybrid” language called IAL was developed, based on
afirst-order temporal logic and AL. Some possible theorems of 1AL were presented, and their meaning discussed.
Finally, a quantified version of AL called QAL was developed.
The next chapter will use these logics to develop specifications and axiomatizations of various systems.

85

Chapter 6

Five Examples

THE preceding chapters have laid down a theory of multi-agent systems, and some linear time temporal logics
which may be used to reason about systems modelled by the theory. This chapter presents five case studies,
which demonstrate how these logics may be used for modelling and reasoning about multi-agent systems. The
case studies are divided into two groups:

» axiomatizations of frameworks for building multi-agent systems;
* gpecifications of cooperative problem solving paradigms.

The two frameworks for building multi-agent systems axiomatized are: Shoham’s agent oriented programming
paradigm, and particularly the AGENTO system [151], [171], and Fisher’s concurrent METATEM processes [62],
[60].

The cooperative problem solving paradigms specified are: a simple “master/save” framework, aong the
lines of that described in [140], the cooperative inference technique employed in the FELINE cooperating expert
system [189], and the contract net protocol [159], [161], [160], [162].

Before presenting these case studies, a brief discussion is presented on reasoning about multi-agent systems
using temporal logics.

6.1 Reasoning About Multi-Agent Systems

The literature on reasoning about reactive systems using temporal logic is, quite literally, enormous. A detailed
review of thisliteratureiswell beyond the scope of thisthesis(however, some more detail sappear in Appendix C).
Thereader isthereforereferred to Emerson’s excellent introduction to the area[47], and Pnueli’ sdetail ed technical
reviews[135], [134]. All of these articles have useful bibliographies. A volume devoted to the theoretical aspects
of the logics used in thiswork is [78]. An article by Barringer [11] contains a good example of how a formal,
temporal logic specification may be derived from an informal specification, and servesto outline most of the key
techniques.

How are our logics to be used for specifying, verifying, and more generally, reasoning about multi-agent
systems? Consider the specification case.

Very crudely, a specification is a description of the desired behaviour of a system. During implementation,
one aims for a program that will satisfy the specification. To show that a program satisfies its specification is to
verify it.

Temporal logics have been widely used in the specification of reactive systems, of which multi-agent systems
are an example (see Pnueli’s comments quoted in Chapter 1). Thisis because, when giving a specification for a
reactive system, it is natural to want to express such statements as: “if a request is sent, then a response should
eventually be sent”. Statements such as this can be elegantly expressed in tempora logic, whereas they are not
S0 easy to express in other formalisms. A specification for a multi-agent system can therefore be expressed as a
set of temporal logic formulag; call a specification SPEC. Theideaisthat each formulain SPEC isvalid inthe
class of models representing runs of systems which satisfy the specification.

One useful feature of such specificationsis that it is possible to explore their properties mathematically. For
example, to show that SPEC entails some property PROP, one can try to establish the relation

SPECHPROP

86

using the proof systems established for the logic of specification. An examination of the particular properties of
a system that may be specified in temporal logic is presented in Appendix C.

Now consider the verification case. The verification of a system SYS involves showing that SYS satisfies
its specification SPEC. Verification depends on the idea of the temporal theory of asystem. Thetemporal theory
TH(SYS) of SYS is a set of formulag, true of every run of SYS. The verification process for SYS with
specification SPEC involves demonstrating the relation

TH(SYS) - SPEC

using the proof systems established for the logic of specification. Typically, the temporal theory of a system will
include “system specific” formulae, as well as formulae capturing more general properties of systems.

An obvious question is, given a particular system SY S, implemented using some established framework for
building multi-agent systems, how is 7 H(SYS) to be obtained?

Suppose we were to use AL as the language of specification. The first step in developing 7 H(SYS) would
be to model SYS using the theory of multi-agent systems developed in Chapter 4. The result would be some
system; call it sys. Corresponding to this system would be a set of models for AL:

M(SYS) 2 {M|M OModel oo O model_of (M, sys)}
TH(SYS) isthen the set of formulae valid in M(SYS):

TH(SYS) 2 {@| O Form(AL) O Fmesys) @}

Moving on to the more general case, it may be possible to axiomatize the properties of a specific system, which
may help in the development of the temporal theory of a system.

A Note on the Specifications

All specifications and axiomatizations in this chapter are given using QAL, the quantified version of AL. Free
variablesin formulae are assumed to be universally quantified: in practice, only agent identifiers are left free.

It is worth observing that the specifications/axiomatizations given are not intended to be definitive in any
sense. Specification is apersonal thing. One has choices about what to specify at every step, and different people
will specify different things in different ways. There is also the question of how much detail to go into. Itisa
sad fact that formal specifications tend to require exhaustive, tedious amounts of detail in order to be useful. One
therefore has to make choices about exactly what is specified, and what is |eft unsaid. So the specifications given
herein should be taken as a pointer to what is possible, rather than as definitive statements.

6.2 Axiomatizing Two Frameworksfor Multi-Agent Systems

This section attempts to describe two existing frameworks for multi-agent systems in terms of the theory of
multi-agent systems described earlier, and thereby justify the claim that the theory does indeed reflect how multi-
agent systems are actually built. The frameworks are then axiomatized using the logics developed earlier. The
frameworks chosen are Shoham’s agent oriented programming paradigm, [151], and the AGENTO system in
particular [171], and Fisher’s Concurrent METATEM paradigm [62], [60].

6.2.1 Agent Oriented Programming and AGENTO

Agent Oriented Programming (AOP) is“anew programming paradigm, based on a societal view of computation”
[151, p4]. The idea which informs AOP is that of using mentalistic notions, (such as belief and choice), in a
declarative programming regime. AOP is unusual — perhaps unique — in that it is based, (or, at least, claims
to be based), on a general theory of agency, outlined in [150]. At the time of writing, only a prototype (called
AGENTO) of the AOP paradigm has been implemented [171]. This section showsthat AGENTO can be modelled
within the theory of multi-agent systems described in Chapter 4, and axiomatizes AGENTO using the logics
developed in Chapter 5.
Shoham identifies three components that will make up a complete AOP system [151, p12]:

» aformal (logical) system for defining mental state, (presumably based on the partial theory of agency
reported in [150]);

* aninterpreted programming language for programming agents;

87

B, @ Agentabelieves pattimet
CMIL, @ Agent ais committed to b about @ at time't
CAN, ¢ Agent acan bring about @ at timet

Table 6.1: Modalitiesin AOP

» an “agentification” process, for converting agent programs into low-level executable objects.

AOP therefore admits three levels of description for agents: first, in terms of alogical language; second, in terms
of a programming language, and third, in terms of alow-level device. At the time of writing, only the first two
components have received any attention. (Shoham writesthat “thethird is still somewhat mysteriousto me” [151,
pl12], but later indicates that he is thinking of Rosenschein and Kaelbling's “ situated automata” approach [143].)
The review below will therefore ignore the “ agentification” process.

The first component, the language for defining mental state, isinformally described in [151, 84]. No semantics
aregiven for thelanguage, although it appears to be based on the theory of agency outlined in [150]. Thelanguage
isamodal predicate logic with three modalities: B, for belief, CMT, for commitment, and CAN for capability (see
Table 6.1 for details).

Woven into this language isamethod for reasoning about time, based on the “ method of temporal arguments”,
briefly described in the preceding chapter (and in more detail in [137, pp155-164]). Thus rather than augment
the language with modalities for describing time, each modal operator and predicate is given an extra argument to
describe the time at which it is true. The following is a syntactically acceptable formula of Shoham’s language:

CANS open(door)® O B2 CANS open(door)®

This formulais read: “if at time 5 agent a can ensure that the door is open at time 8, then at time 8 agent b
believesthat at time 5 agent a can ensure that the door is open at time 8”.

Of the three operators, it seems clear what B and CAN mean. The CMT operator is, however, unusual, and seems
worthy of closer study. Sadly, too few details are given for itsrole to be precisely understood.

No proof system is presented for the language, and no restrictions are placed on beliefs and commitments,
other than: 1) beliefs and commitments are assumed to be internally consistent, 2) agents are not committed to
anything they do not believe they are capable of, and 3) agents are aware of what they are committed to, and
what other agents have committed to on their behalf. Finally, some persistence of menta state is assumed (see
the comments on persistence in the previous chapter).

The next component in the makeup of an AOP system isthe interpreted programming language. The concrete
example given by Shoham isthe AGENTO system (see [151, 86] and [171]). This system will now be described.

When devel oping the theory which underlies AOP, Shoham avoids introducing the notion of actions as prim-
itives. However, “since actions are such a natural concept [they are introduced] as syntactic sugar” [151, p15].
In AGENTO, two types of action are available to agents:

* private, or internal (cf. cognitive) actions — it is clear from [171] that private actions correspond to the
invocation of a procedure in a programming language;

» communicative actions— only three types of communicative act are allowed in AGENTO: | NFORM (which
causes the recipient to believe the content of the message), REQUEST, and UNREQUEST, (which attempt to
get the recipient to commit to and un-commit to something, respectively).

An AGENTO agent definition, or program, consists of three components:

» aset of capabilities, each of which is a condition/action pair, the condition determining under what cir-
cumstances the action may be performed — the condition is a formula of the modal language described
above;

» aset of initial beliefs, which are formulae of the modal language described above;

» aset of commitment rules, defining under what circumstances the agent will adopt commitments.

88

Agent Belief
: Ded. rules

System - ¢ Agent - ¢ Act. Rules - Actions - {
. Interpretation

BRF

Cognitive
Communicative

Agent

Figure 6.1: Components of the Theory of Multi-Agent Systems

Of these three components, thefirst and last will remain fixed throughout the execution life of an agent; the beliefs
of the agent will change with time!. The agent program proper isthusjust the set of commitment rules; it isworth
looking in detail at what these rules are.

A commitment rule is simply a quad:

(msgcond, mntlcond, agent, act)

where msgeond is a condition on the messages that have been received by the agent at the current time;
mntlcond is a “mental condition” on the beliefs that the agent currently has; agent is an agent name, and act is
an action expression, dictating an action to be performed. The precise nature of the conditions is not important.
Suffice to say that they may contain variables, which may be quantified universally or existentially. Suppose the
above rule was possessed by agent a. Then on every “cycle” in a's life, it would check to see whether the rule
fired; it would do this by matching the messages received against msgcond, and beliefs held against mntlcond. If
the rule matched, and thus fired, the following belief would be added to a's belief set:

now
CMI3, agent act.

This would mean that a had become committed to performing the action act for agent agent at time “now”
(i.e., the current time). Thus throughout an agent’s life, its commitment rules continually generate commitments
which the agent subsequently tries to discharge. The operation of an agent can therefore be described by the
following loop:

1. Read al current messages, updating beliefs — and hence commitments — where necessary;

2. Execute all commitments for the current cycle where the capability condition of the associated action is
satisfied;

3. Goto (1).

This completes the review of AGENTO. The task is now to see to what extent AGENTO can be modelled by
the theory of multi-agent systems. To do this, each component of the theory is taken in turn, and discussed with
respect to AGENTO. Recall the components of the theory, illustrated in Figure 6.1.

Belief and reasoning. In AGENTO, agents maintain belief setsin precisely the way described by the theory of
multi-agent systems. These beliefs are formulae of the modal language described above, which is therefore iden-
tified as the internal language, L. In the AGENTO implementation described in [171], agents have no deductive
capabilities, and therefore each agent is assigned an empty set of deduction rules.

Rules and actions— cognitive and communicative. Clearly, the private (cf. cognitive) and communicative
actin AOP map directly onto their equivalentsin the theory of multi-agent systems. Moreover, each private action
in AGENTO is associated with a condition determining its applicability — these condition/action pairs, held in
the capabilities database, map directly onto rules. There is, however, one important caveat: mental conditions
may contain quantifiers.

In AGENTO, private acts are allowed to cause epistemic inputs (this is clear from the user manual [171, 85,
p3]). Thereis no interpretation process in AGENTO — the interpretation of a message may be viewed as the
message itsalf.

Belief revision. The belief revision process in AOP is rather complex. It involves the following steps on
every cycle:

1shoham actually suggests that agents possess a“ commitments database”, defining the commitments an agent has. However, since agents
are aware of their commitments, (i.e., if they are committed to something, then they believe they are committed to it), a separate database
seemsredundant — at least conceptually. Indeed, the authors of the AGENTO programming manual write that an agent can gain acommitment
by “asserting the commitment into [its] beliefs’ [171, p5].

89

1. Generating anew belief set by:
« for each received | NFORM message, remove any old beliefs that are inconsistent with | NFORMd in-
formation, and add the new information;
 for each UNREQUEST message, remove from belief set any UNREQUEST' d commitments;

2. Generating new commitments, (by comparing rules against beliefs and epistemic inputs to see which com-
mitment rules fire, as described above), and adding them to the belief set that resulted from the first step.

Axiomatizing AGENTO

What aspects of the behaviour of AGENTO systems may be axiomatized in the languages developed earlier? The
first, and most useful technique is to write axioms for every commitment rule possessed by an agent. Recall that
a commitment rule is a quad:

(msgcond, mntlcond, agent, act)

where mntlcond and msgcond are message conditions and mental conditions, respectively. Such commitment
rules may be rewritten as formulae of QAL, with the following general form:

msgcond
((sendj1i @) OOITI(Send jm i @)

O O (Beli CMT;agentact) (6.2)
O ((Beli @) OO (Bel i @))

mntlcond

Shoham gives an example of a commitment rule, which might be expressed in English: “if I’ve been asked to
perform action a by agent j [the message condition], and | believe j is my friend [the mental condition], then
commit to a”. This rule might be expressed as follows:

(Send j i REQUEST(j,a)) O
O (Bel i MyFriend(j))

The only real failing of this rule with respect to Shoham’s original is that the explicit reference to time that
appeared in the original cannot be expressed in any of the logics developed in this thesis, and has therefore been
dropped. Note that other properties of commitments could be specified, if desired: for example, it would be
possible to specify that commitments were eventually discharged.

The properties of | NFCRMacts are given by the following formula.

O (Beli CMM;; a)

. : (Bel i fact) a
(sendj i I NFORMj, fact)) O (Bel i (B fact)) (6.2)
Similarly, the following property of UNREQUEST acts holds.
(Send j i UNREQUEST(j, a)) O - (Beli CMIj; a) (6.3

For entries in the capabilities database, a similar technique to that used for commitment rulesis used. Entries
in the capabilities database are pairs, of the form

(mntlcond, act)

the meaning being that act can only be performed if mntlcond is believed. This gives axioms of the following
form:

(Doiact) O O ((Beli @) OIITI(Beli @) (6.4)

mntlcond

This concludes the axiomatization of AGENTO.

90

6.2.2 Concurrent METATEM Processes

Concurrent METATEM Processes (CMP) [62], [60] is a framework for building multi-agent systems that is based
on the METATEM temporal logic programming paradigm [12]. A CMP system contains a set of concurrently
executing objects, which are able to communicate through asynchronous broadcast message passing. Each object
has two main components:

» an interface, which defines how the object may interact with its environment (i.e., other objects);

» acomputational engine, which defines how the object acts.

The interface itself consists of three components:
* aunique object identifier (or just object id), which names the object;

» aset of symbols defining what messages may be received by the object — these are called environment
predicates;

» aset of symbols defining messages that the object may send — these are called component predicates.

For example, the interface definition of a “stack” object might be [60]:
st ack(pop, push) [popped, stackful I]

Here, “st ack” isthe nameof the object, {pop, push} arethe environment predicates, and {popped, st ackf ul | }
are the component predicates.

The computational engine of an object is based on the METATEM temporal logic programming paradigm.
The idea which informs this approach is that of directly executing a declarative object specification, where this
specification is given as a set of rules, which are temporal logic formulae of the form:

Antecedent Consequent
about past about future.

The past-time antecedent is a temporal logic formula referring strictly to the past, whereas the future time
consequent is a temporal logic formula referring either to the present or future. The intuitive interpretation of
sucharuleis”onthebasisof the past, do thefuture”, which givesriseto the name of the paradigm: declarative past
and imperative future [64]. The actual execution of an object is, superficialy at least, very simple to understand.
Each object obeys a cycle of trying to match the past time antecedents of its rules against arecorded history, and
executing the consequents of those rules that “fire’.

The language used for object rulesis thefirst-order temporal logic, FOTL, described in the preceding chapter
(in the METATEM literature, the language is called FML — for “First-order METATEM Logic”). To recap, this
language is the ordinary first-order predicate logic Lo, augmented by the set of temporal modal operators that
appear in AL.

The “past O future” form of rules are actualy restricted to be in Separated Normal Form (SNF) [61];
however, the details of SNF are not important here. For our purposes, we can assume that an SNF formulais
simply oneinthe“past O future’ form.

Itisuseful toidentify various subsets of formulae of FOTL. The set Formgy=(FOTL) isthe set of SNF formulae
of FOTL; the set Form«(FOTL) is the set of FOTL formulae referring strictly to the past; Form.(FOTL) is the
set of FOTL formulae referring to the present or future. Any element of Formgy=(FOTL) is called arule; any
element of Form.(FOTL) is called a history formula, and any element of Form.(FOTL) is called a commitment.

A more precise definition of object execution will now be given. Objects continually execute the following
cycle:

1. Update the history of the object by receiving messages from other objects and adding them to the history.
(This process is described in more detail below.)

2. Find out which rules fire, by “matching” the past time antecedents of the rules against the history. Note
that the matching processis a deductive one, not aliteral one. For example, suppose an object has a history
formula @@andarule © @ O then the rule would fire, since @ ¢+~ € o.

2There are obvious similarities between the execution cycle of an object and production systems— but there are also significant differences.
The reader is cautioned against taking the analogy too seriously.

91

rcl(givel)[askl]:
@askl 0 aski;

rc2(give2, askl)[ask2]:
O(asklO-ask?) O ask?;

rp(askl, ask2)[givel, give2]:
Oaskl O Qgivel;
Qask2 O <give2;
@true 0 - (givel Ogive2);
(- askl) Z (givel O- askl) O - givel,
(nask2) Z (give2 0- ask2) O - givez;

Figure 6.2: A Simple CMP System

3. Jointly execute the fired rules, together with any commitments carried over from previous cycles. Thisis
done by first collecting the consequents of newly fired rules and old commitments, which become new com-
mitments. It may not be possible to satisfy all commitments on the current cycle, in which case unsatisfied
commitments are carried over to the next cycle. An object will then have to choose between a number of
execution possibilities. Those commitments which are satisfied are considered to have become “true’.

4. Goto ().

Clearly, step (3) is the heart of the execution process. Making a bad choice at this step may mean that the object
specification cannot subsequently be satisfied. Unfortunately, the process of finding the best choice is difficult
(see[12] for details).

A natural question to ask is, how do objects do things— perform actions and send messages, that is? Theidea
is that an action is performed when a commitment becomes true. If the commitment is a component predicate,
as defined in that objects interface (see above), then that predicate is broadcast as a message to al other objects.
On receipt of a message, each object attempts to match the predicate against the environment predicates in their
interface. If there is a match then they add the predicate to their history, prefixed by a“ @ operator. Finaly, if
the commitment corresponds to an action, then the action associated with the commitment is executed.

To illustrate the CMP paradigm in more detail, Figure 6.2 gives a definition of a CMP system (adapted from
[6Q]). To simplify things a little, this system is a propositional one. The system contains three objects. rp
(resource producer), rcl (resource consumer one) and rc2 (resource consumer two). The object rcl will send an
ask1l message on every cycle. The object rc2 will send an ask2 message on every cycle such that: 1) it did not
“ask” on the previous cycle, and 2) rcl did ask on the previous cycle.

The resource producer object, rp is defined by five rules. The first two rules say that if either object asks, it
will eventually be given to. The third rule says that the producer will never “give’ to both objects at the same
time. The fourth and fifth rules guarantee that an object will not be “given” unless it has asked previously. We
will later prove some properties of this system.

Abstractly, a CMP system can be described as a quintuple:

(obj, env, act, comp, rules)
where
» objisaset of object ids;
 env maps each element of obj to a set of predicate symbols which head messages the object will accept;

* act maps each element of obj to a set of predicate symbols which correspond to actionsthe object is capable
of performing;

» comp maps each element of obj to aset of predicate symbolswhich head messages the object may send;
* rules maps each element of obj to a subset of Formgys(FOTL) representing the object’s program rules.

At each step during its execution, an object will be characterized by a state, which will be a set of formulae
containing the rules, history, and commitments of the object, and will therefore be a subset of:

Formgy=(FOTL) O Forme(FOTL) O Form,(FOTL).

92

This concludes the brief review of Concurrent METATEM processes. The next step is to see how CMP is
described by the theory of multi-agent systems. As before, each component of the theory is discussed in turn.

Belief and reasoning. The beliefs of an agent correspond well to the state of an object. The language FOTL
is thus identified as the internal language, L. Steps (2) and (3) in the execution cycle of a CMP abject (above)
involve matching the history of the object against the specification rulesto determine the new commitments. This
can be viewed as a deductive process.

Rules and actions — cognitive and communicative. Although the CMP framework does not explicitly
identify the notions of cognitive and communicative act, theseideas areimplicit withinit. Taking communicative
acts first, objects communicate by exchanging messages containing ground atoms of the language FOTL. This
maps well into the theory of multi-agent systems®. Cognitive acts appear in CMP as system calls, in the style
of the built-in predicates of the PROLOG language: the epistemic input that results from the performance of a
cognitive act is simply the belief that the action has been performed. This input is then added to the history of
the object. For example, suppose an object performed the action “write(a)”. Then on the next cycle, the object
would have ©@write(a) in its history*.

The notion of conditionsfor actionsisalso implicit in CMPs: in order to perform any action, communicative
or cognitive, the associated predicate must be currently true. So the condition of any actionis simply its associated
predicate.

I nter pretations. Each object has an interface which “filtersout” those messagesthat the object is “interested”
in receiving. This interface consists of a set of predicate symbols. only those messages headed by one of these
predicate symbolswill be accepted by the object. This process can be modelled in an interpretation function.

Belief revision. At every stepinitslife, an object must compareitshistory withitsrules, in order to determine
new commitments. Thismeansthat objects must be (strongly) temporally awarein the following sense: whenever
@ appears in the history of the object on some cycle u, at cycle u+v, ©Y@ must appear in the history. This
effectively means rewriting the history on every cycle, atask that is handled by the belief revision function. The
actual management of epistemic inputsistrivial: they are simply added to the belief set/state of the object. The
belief revision function also handles the updating of commitments, removing those that have become satisfied at
the current time.

Now to the axiomatization of CMPs.

Axiomatizing Concurrent METATEM Processes

Whenever a CMP object believes the predicate associated with an action, it performs the action. This gives the
following axiom (note that in what follows, P is an arbitrary predicate symbol, and a is an arbitrary sequence of
constants):

(BeliP@) O O(poiP@) whereP O act(i) (6.5
An associated safety property ensures that actions are only performed when the condition of the actioniis true.
(Doi P(@) O ©O(BeliP(@) whereP O act(i) (6.6)

Similarly, whenever a CMP object believes a component predicate, it sends the associated message. This gives
the following axiom.

(BeliP@) O O(sendijP@) whereP O comp(i), (i#])) (6.7)
An associated safety condition ensures that messages are only sent when the condition of the message s true.
(SendijP@) O ©O(BeliP@) whereP O comp(i) (6.8)

(Recall that in CM P, messagesare broadcast to all objects except the sender.) CMP objectsbelieveall the messages
they receive, if those messages pass through the “message filter”, which gives the following axiom.

(SendijP(@) O (Belj OP(@) whereP O env(j) (6.9)
Objects maintain accurate histories, and do not lose beliefs. This gives the following.

(Belig) O OYBeli ©'¢) where@isahistory formula (6.10)

3Note, however, that messages in CMP are broadcast, rather than sent point-to-paint.

4Similarly, when an object sends a message, it may generate an epistemic input for the sender of the message, a concept not directly
supported within the theory of multi-agent systems. For example, when an object sends a message such as “ask(rcl)”, its history on the next
cyclewill contain @ask(rcl). Itisnot difficult to extend the theory of multi-agent systems to support this, however.

93

At least conceptually, an object’s rules are part of its state.
(BeliP O F) whereP O F Orules(i) (6.11)

The general rule for adopting commitmentsis, “on the basis of the past, do the future”. This givesthe following
axiom, an instance of the attachment axiom, capturing the basic deductive capabilities of CMP objects.

whereeach @ O T

(BeliP O F) O . is ahistory formula,
(Belil) HEeliRY p o O rules(i), (6.12)
andlN+P
Note that the above two axioms could be simplified to the following.
whereeach @ O T isahistory formula
(Belil) O (BeliF) andthereissomeP O F O rules(i) (6.13)
suchthat I - P

Note that the use of these last two axioms may require the introduction of a subsidiary proof, namely: ' - P.

Finally, an object will eventually discharge all its commitments. To understand the axiom associated with
discharging commitments, it is necessary to understand the notion of an eventuality. Any formula of the form
U or Oy contains eventuality Oy; the formula O ¢ contains eventuality O (. If @isapresent timeformula,
then ¢ contains eventuality ¢.

(Beli F) O O(Beli) where Egisthe eventuality of F (6.14)

Note the use of the “0” operator in this example, used instead of the eventuality operator. This meansif an object
commitsto, say, O givel, it will only be guaranteedto do Ogivel. Thereason for thisisrather subtle and complex;
the reader is referred to the cited references for details.

A Sample Proof

In this section, we show how the temporal theory of a simple CMP system can be derived, and prove some
properties of the system. The system wetake is that described in Figure 6.2. Call the system S1. Using the axio-
matization of CM Ps described above, the temporal theory 7 H(SL) of the system can be systematically derived.
The properties of the system can then be examined through formal proof. The following theorem illustrates this.

Theorem 3 The system Sl has the following property:
TH(SL) F (Sendrcl rpaskl) O Q(Send rp rcl givel)
Proof See Figure 6.3. '

This completes the axiomatization of Concurrent METATEM.

6.3 Specifying Three Paradigmsfor Cooper ative Problem Solving

This section presents specifications of three existing cooperative problem solving paradigms. These are: asimple
“master/dave’ framework, along the lines of that described in [140], the cooperative inference technique em-
ployed in the FELINE cooperating expert system [189], and the contract net protocol [159], [161], [160Q].

6.3.1 Master/Slave Problem Solving Systems

In a 1982 paper, J. Rosenschein outlined a technique for coordinating problem solving activities in simple, mas-
ter/slave style problem solving systems [140]. The technique outlined in the paper was not (to the best of the
author’s knowledge) ever implemented, but it nevertheless quite clearly demonstrates many of the principles of
such systems. The section that follows does not model Rosenschein’s framework faithfully; it issimply an attempt
to useit as the basis from which to describe such systems.

In the specification, the internal language of agents is assumed to be a first-order meta-language (ML), for
reasoning about an ordinary first-order object-language (OL). The usua quoting convention is assumed for this
language; if @is an object-language formula, then ¢l isthe ML term denoting ¢.

94

1. (Belrp @askl) O (Belrp {Qgivel) (6.13)
2. (BelrpQgivel) O <O(Bel rp givel) (6.14)
3. (Belrp @askl) O <(Belrp givel) 1,2,PL
4. (Sendrclrpaskl) O (Belrp @askl) (6.9)
5. (Sendrclrpaskl) O <(Belrp givel) 4,3,PL
6. (Belrpgivel) O O¢(Sendrpj givel) (6.7)
7. Of(sendrpjgivel) O <O(Sendrpj givel) TAX
8. (Belrpgivel) O <(Sendrpj givel) 6,7, PL
9. (Belrpgivel) O <(Sendrp rcl givel) 8
10. [J((Belrpgivel) O <(Send rp rcl givel)) 9,TL
11. [J((Belrpgivel) O <(Send rp rcl givel))

O (O(Belrpgivel) O OO(Sendrprclgivel)) TAX
12. O(Belrpgivel) O OO(Send rp rcl givel) 10, 11, PL
13. O(Belrpgivel) O <(Send rprcl givel) 12, TL, PL
14. (Sendrclrpaskl) O <(Send rprcl givel) 5,13, PL

Figure 6.3: Proof of Theorem 3

MESSAGE TYPES
REQUEST(i, j, a) Agent i requests agent j to perform goa a
| NFORM(, |, @) Agent i informs agent j of fact ¢

DOMAIN PREDICATES

GOAL(i, a) Agenti hasgoa a
FACT(i,[¢!) Agent i believesfact ¢
HASCAP(i, a) Agent i has capability of goa a

W LLPERFORMi, a) Agent i will perform goa o

Table 6.2: Message Types and Domain Predicates for the Master/Slave System

The ML predicate FACT is used to record facts; “self belief” for agent i is recorded via FACT(i,l ¢!). The ML
predicate GOAL is used to record goals. Goals are of two sorts; communicative or cognitive. For example, an
agent may have a goal to REQUEST or | NFORM something, or it may have a goal to perform action a.

Agents may send two types of message: REQUEST, and | NFORM Rosenschein took hisinspiration for messages
from the plan-based theory of speech acts described in [31].

In general, no action — cognitive or communicative — will be performed unless the actor W LLPERFORMt.
Thisis the basic pre-condition for action, and leads to the following axioms, which are safety properties.

(Send i j I NFORMi,j,l ¢!)) O 6.15
O (Bel i FACT(i,l W LLPERFORMi, | NFORMG, j,l @')1)) (615

(Send i j REQUEST(i, }, a)) O

O (Bel i FACT(i,/ W LLPERFORMi, REQUEST(i, j, a))1)) (6.16)
(Doia) O
O (Bel i FACT(i,/ W LLPERFORMi, a)1)) (6.17)
The | NFORMact will not be performed unless its argument is believed beforehand: thisis a safety property.
(sendij I NFORMi,j,f @) O ©(Beli FACT(i,! ¢)) (6.18)

95

Similarly, a REQUEST act will not be performed unless the sender has a goal of its argument: a safety property.
(Send i j REQUEST(i,j,a)) O ©¢(Beli GOAL(i, ar)) (6.19)

The above axioms rule out “insincere” REQUESTs or | NFORMs. The immediate effects of the communicative acts
are given by the following liveness properties.

(Send j i REQUEST(j,i,a)) O O(Beli GOAL(j, a)) (6.20)
(sendj i | NFORMj,i,l @) O O(Beli FACT(, @) (6.21)

The perlocutionary force of the REQUEST act is given by the following axiom, called CAUSE-TO-WANT: a
liveness property.

(Bel i GOAL(j, a)) O

(6ol | ACCEPT(1.) 0 O(Beli GOAL(, @) (6.22)

Theability of j to “persuade” i to adopt o asagoal thus depends on the ACCEPT predicate. The useof this predicate
allows the performance of actions to be dependent on social relationships, and gives agents some measure of
autonomy over what they adopt as a goal. For example, suppose that j was the “master” of i, i.e., it had some
“authority” over i. This might be expressed by the following axioms.

(Bel i FACT(i,l MASTER(, i)1))
(Bel i FACT(i,l Ox OMASTER(x,i) 00 Oy CACCEPT(x,i,y)!))

Then, if i is endowed with suitable reasoning abilities, it will adopt as a goa anything that j requests it to.
Obviously, more sophisticated socia relationships may be built up in a similar fashion.

The perlocutionary force of the | NFORMact is given by the following axiom, called CONVINCE: a liveness
property.

(Bel i FACT(j,l @) 01 g (Bel i FACT(i,l @)) a
(Bel i BESWAYED(j, i, @)] [ﬂ(BeIiFACT(i,f—'(p]))

The BESWAYED predicate in this axiom has an analogous role to the ACCEPT predicate in the CAUSE-TO-WANT
axiom, above, and thus provides agents with a measure of autonomy over what they believe. Note that some
measure of consistency, (or at least non-contradiction), is assured by this definition.

Commitment to action— given by theW LLPERFORMpredi cate— depends on having the appropriate capability
to achieve agoal. Agents commit to all goals they are capable of: aliveness property.

(Beli GALGi,a)) O
(Bel i HASCAP(i, ar))

(6.23)

O O(Bel i FACT(i,l W LLPERFORMi, a))) (6.24)

Another property to specify is that goals are eventually achieved: liveness properties.

(Bel i FACT(i,l W LLPERFORMi, a)1)) O

O(Doi a) a isacognitive action (6.25)
(Bel i FACT(i,l W LLPERFORM(i, | NFORMi, j," @I)))) O 6.6

O(send i j I NFORM(, j,! @) (6.26)
(Bel i FACT(i,l W LLPERFORM(, REQUEST(i, j, a))!1)) O 6.2

O(send i j REQUEST(i,j, a)) (6.27)

This completes the specification of the master/slave system.

6.3.2 A Cooperative I nference Technique

A cooperating expert system is an expert system constructed as a group of agents, each of which contains a
“classical” expert systemwith itsown domain knowledge, inference engine, etc. Through aprocessof cooperative
interaction, the agents pool their resources and solve problemsrequiring their collective domain expertise. A basic
issue in the development of such a system is to devise what might be called a cooperative inference technique:
a method for extending classical, intra-agent reasoning/inference techniques to multiple agent scenarios. This
section gives a specification of one such technique, that employed in the FELINE system [189].

The following description of the FELINE cooperative inference technique is taken directly from [189]:

96

“Each agent in FELINE maintains a data structure representing its beliefs about itself and its en-
vironment. Thisdatastructureis called the environment model. It contains an entry for the modelling
agent and each agent that the modelling agent might communicate with (its acquaintances). Each
entry contains two important attributes:

» Skills. Thisattribute isaset of identifiers denoting hypotheses which the agent has the expertise
to establish or deny. The skillsof an agent will correspond roughly to root nodes of theinference
networks representing the agent’s domain expertise.

* Interests. Thisattributeis aset of identifiers denoting hypotheses for which the agent requires
the truth value. 1t may be that an agent actually has the expertise to establish the truth value of
itsinterests, but is never the less ‘interested’ in them. The interests of an agent will correspond
roughly to leaf nodes of the inference networks representing the agent’s domain expertise.

An agent’s environment model serves to delimit the cooperative problem solving process. Before
describing inter-agent problem solving in detail, we describe the types of message that agents may
send.

First, we define amessage as atriple of sender, receiver, and contents. In FELINE, the contents
field is also atriple, containing message type, attribute, and value. Agents communicate using three
message types:

* Reguest. If an agent sends arequest, then the attribute field will contain an identifier denoting a
hypothesis. It isassumed that the hypothesisis one which lies within the domain of the intended
recipient. A request isassumed to mean that the sender wantsthe receiver to derive atruth value
for the hypothesis.

* Response If an agent receives a request and manages to successfully derive a truth value for
the hypothesis, then it will send a response to the originator of the request. The attribute field
will contain the identifier denoting the hypothesis; the value field will contain the associated
truth value.

* Inform. The attribute field of an inform message will contain an identifier denoting a hy-
pothesis. The value field will contain an associated truth value. An inform message will be
unsolicited; an agent sends oneiif it thinks the recipient will be ‘interested’ in the hypothesis.

We now look in detail at the cooperative problem solving technique used. First, consider goal-
driven problem solving in a normal rule-based system. Typically, goal driven reasoning proceeds by
attempting to establish the truth value of some hypothesis. If the truth value is not known, then a
recursive descent of the inference network associated with the hypothesisis performed. Leaf nodesin
the inference network typically correspond to questions which are asked of the user. Within FELINE,
this well known scheme is augmented by the following principle. When evaluating a leaf-node, if it
is not aquestion, then check the environment model to seeif any other agent hasthe nodeasa’ skill’.
If there is some agent which lists the node as a skill, then send a request to that agent requesting the
hypothesis. Wait until a response is received; the response will indicate the truth value of the node.
This technique is an instance of the general problem solving technique called task sharing [161],
since evaluation tasks are explicitly delegated on the basis of the skills entry in the environment
model.

We now turn to data-driven problem solving. Typically, data-driven problem solving proceeds by
taking a database of facts (hypotheses and associated truth values), and a set of rules, and repeatedly
generating a conflict set of new facts. These new facts are then added to the database, and the process
begins again. If ahypothesis follows from a set of facts and a set of rules, then this style of problem
solving will eventually generate a result. In FELINE, the basic scheme is augmented as follows.
Whenever a new fact is generated, the environment model is consulted to see if any agent has the
hypothesis as an ‘interest’. If it does, then an ‘inform’ message is sent to the appropriate agent,
containing the hypothesis and truth value. Upon receipt of an ‘inform’ message, an agent adds the
fact to its database and enters the forward chaining cycle. This technique is an instance of result
sharing, [161] since agents share results that they believe may be of interest to other agents”. [189]

“

The specification is straightforward. It is assumed that an agent’s “environment model” is a set of formulae
in some restricted first-order language. Table 6.3 summarizes the message types and domain predicates used in
the specification.

97

MESSAGE TYPES
REQUEST(h) A request for the value of h
RESPONSE(h,v) A responseto request: value of hisv
I NFORMh, v) Unsolicited data: h has value v

DOMAIN PREDICATES
MYSKI LL(h) Modelling agent has domain expertise h

SKI'LL(i, h) Agent i has domain expertise h
I NTEREST(i,h) Agenti hasinterest h
GQAL(h) Modelling agent requires value for h

VALUE(h, v) Thevalue of hisv

Table 6.3: Message Types and Domain Predicates for the Cooperative Inference Technique

Request(i,j,h) £ (Sendij REQUEST(h))
Response(i,j,h,v) & (Send i j RESPONSE(h, v))
Inform(i,j,h,v) & (Sendi | NFORMnh,V))

Can(i,h) & (Beli MYSKILL(h))
skill(i,j,h) & (Beli SKILL(j,h))
Interest(i,j,h) £ (Beli | NTEREST(j, h))

Goal(i,h) 2 (Beli GOAL(h))
value(i,h,v) & (Beli VALUE(h,V))

Table 6.4: Abbreviations for the Cooperative Inference Technique

Thus an agent with belief MYSKI LL(h) would have the domain expertise to evaluate hypothesis h; with belief
SKI'LL(i, h) would believe that i had expertise to evaluate h; with belief | NTEREST(i, h) would believe that i was
“interested” in the value of h, and with belief GOAL(h) would be currently trying to find a value for h. The
message types correspond exactly to the informal description given above. In the interests of readability, some
abbreviations are defined in Table 6.4.

Agents may perform two types of (cognitive) action. First, they may forward-chain, in an attempt to derive
new information. Second, they may evaluate a specific hypothesisin order to determine its value. The following
abbreviations are assumed®.

FwdChain(i) £ (Do i FWDCHAI N)
Eval(i,h) & (Doi EVAL(h))

The first property for specification is that evaluation actions will ultimately result in a value being found for
the hypothesis being evaluated: aliveness property.

OhCEval(i,h) O OOvDvalue(i, h, V) (6.28)
Agents can only evaluate things they have the skill for: thisis a safety property.
OhEval(i,h) O ©can(i,h) (6.29)

Next, the various properties of Request acts are given. First, agents will always work toward a hypothesis that
they have appropriate domain expertise for.

Request(j,i,h) 0O .
Ch D[Can(i, h)] O 9OGoal(i, h) (6.30)
If possible, goals will eventually be acted on: aliveness property.
Goal(i,h) O :
Ch D[Can(i, h)] O Qeval(i, h) (6.31)

SNotation is being abused here in the interests of readability: the second argument to a Do operator must be a constant or variable term
denoting an action — not afunction. The meaning is quite clear, however, and all specifications written in this way can be expanded out into
the strictly correct form if necessary.

98

Goals that cannot be evaluated locally, (because of lack of expertise), are “farmed out”; a liveness property.
Requests are also honest; a safety property. Also, we can specify the assumption that an agent with a goal that it
does not have the expertise to evaluate knows of at least one other agent that does have the expertise.

Goal(i,h) O
OhO| = can(i,h) O | O ORrequesti,j,h) (6.32)
skill(i, j, h)
Goal(i,h) O
Oh [Request(i,j,h) O @ | - cCan(i,h) O (6.33)
skill(i, j, h)
DhD[f°cf‘;(ril*(irf)h) D] O 0 oskil(,j, h) (6.34)

Now to the properties of Response actions. First, responses are guaranteed: a classic liveness property.
0Oh [Request(i,j,h) O OOvResponse(j, i, h,V) (6.35)
Responses are solicited: a safety property.
Oh v [Response(j,i,h,v) O € Request(i,j, h) (6.36)
Astheresult of receiving aresponse, an agent will come to believe the datait has been given: aliveness property.
0Oh v [Response(j,i,h,v) O Ovalue(i, h,V) (6.37)

Agents do not “li€” about responses, and must, moreover, have a value before they respond. These are safety
properties.

Oh v CResponse(i, j, h,v) O ©Value(i, h, V) (6.38)

Now to the properties of Inform acts. Informs will always be sent to agents with the appropriate interests: a
liveness property.

Interest(i,j,h) O

OhEVEY Ve, hov)

] O inform(i, j, h,v) (6.39)

The associated saf ety property ensures that Informs will not be sent to agentsthat are not interested, and that agents
are honest about Informs.

Interest(i,j,h) O

Oh [Mv Onform(i,j,h,v) O © [value(i, h,v) (6.40)
The effect of an Inform is captured by the following liveness property.
Oh v Onform(j,i,h,v) O O(value(i, h,v) O O OFwdChain(i)) (6.41)

Finally, some miscellaneous properties. Agents drop goals when a value is found, and never re-adopt them.
Oh Mv Dvalue(i,h,v) O ¢ [~ Goal(i, h) (6.42)
It is also possible to specify that agent’s beliefs about other’s skills are correct.
Oh CBkill(j,i,h)y O can(i,h) (6.43)

This completes the specification of the cooperative inference technique.

99

6.3.3 The Contract Net Protocol

The Contract Net (CNET) protocol isahigh-level protocol for achieving efficient cooperative action in networks
of communicating problem solvers. It was developed by R. Smith while at Stanford University in the USA, and
wasinitially described asearly as 1977 [159]. It formed the basis of Smith’sdoctoral thesis, (published as [161]),
and was further described in [160], [162]. The basic protocol has subsequently been adapted and extended by
several other researchers [173], [170]. The aim of this section isto develop aformal specification of a subset of
the CNET protocol — the description of the protocol given below istherefore a distillation of the cited references,
and is not intended to be definitive.

The CNET protocol makes an interesting case study for several reasons. The first is historical. The protocol
was the first mgjor attempt to address the issue of cooperative problem solving by autonomous problem solvers,
where each participating agent is able to explicitly make choices about what to do. (Earlier work focussed mainly
on blackboard architectures, where autonomy is not an issue.) Secondly, the CNET protocol remains one of the
more completely specified cooperative problem solving paradigms, which makes it well suited to formalization.
Finally, a smple formalization of the CNET protocol has already been achieved, providing a useful point of
comparison [179, pp27-30]°.

The key idea which motivated the CNET work was that negotiation is a central component of cooperative
problem solving’: in essence, the CNET protocol is aframework for managing negotiation. Each agent, (or node,
in Smith’s parlance), in a CNET system is an autonomous problem solver, capable of communicating with its
peers via message passing. During execution, an agent may generate a task to be expedited. This may be done
locally, if the agent has the ability, or the agent may try to get some other agent to expedite it:

“In brief, a node that generates a task advertises existence of that task to other nodes in the net with
a task announcement, then acts as the manager of that task for its duration. In the absence of any
information about the specific capabilities of the other nodes in the net, the manager is forced to
issue a general broadcast to al other nodes. If, however, the manager possesses some knowledge
about which of the other nodes in the net are likely candidates, then it can issue a limited broadcast
to just those candidates. Finaly, if the manager knows exactly which of the other nodes in the net
is appropriate, then it can issue a point-to-poi nt announcement. As work on the problem progresses,
many such task announcements will be made by various managers.

Nodes in the net listen to the task announcements and evaluate them with respect to their own
specialized hardware and software resources. When a task to which a node is suited is found, it
submits abid. A bid indicates the capabilities of the bidder that are relevant to the execution of the
announced task. A manager may receive several such bidsin responseto asingle task announcement;
based on the information in the bids, it selects the most appropriate nodes to execute the task. The
selection is communicated to the successful biddersthrough an award message. These selected nodes
assume responsibility for execution of the task, and each is called a contractor for that task.

m
After the task has been completed, the contractor sends a report to the manager. [161, pp60-61]

[This] normal contract negotiation process can be simplified in some instances, with a resulting
enhancement in the efficiency of the protocol. If a manager knows exactly which nodeis appropriate
for the execution of atask, a directed contract can be awarded. This differs from the announced
contract in that no announcement is made and no bids are submitted. Instead, an award is made
directly. In such cases, nodes awarded contracts must acknowledge receipt, and have the option of
refusal.

m
Finally, for tasks that amount to simple requestsfor information, a contract may not be appropriate. In
such cases, a request-response sequence can be used without further embellishment. Such messages
(that aid in the distribution of data as opposed to control) are implemented as request and information
messages. The request message is used to encode straightforward requests for information when
contracting is unnecessary. The information message is used both as a response to arequest message
and a general datatransfer message”. [161, pp62—63]

61n fact, Werner only formalized a fragment of the CNET protocol. The formalization presented here is also incomplete: those elements
of the original description not described here may be assumed to have been dropped in the interests of simplicity.

“In retrospect, this idea is probably the key contribution of the CNET work. Several researchers — (notably Zlotkin and Rosenschein
[190]) — have subsequently investigated the properties of negotiation strategies using game-theoretic techniques.

100

MESSAGE TYPES
TASKANN(t, €) Sender announces task with id t and e-spec e

Bl D(t) Sender bids for task with id t
AWARD(i, t) Sender awards task with id t to agent i
REQUEST(t) Sender requests information associated with t

| NFORMt, V) Sender informs recipient that value of tisv

DOMAIN PREDICATES
ELI G BLE(e) Agent is eligible for tasks with e-spec e
NEWTASK(t, €) Task t is a newly generated sub-task with e-spec e
ANNOUNCED(t,i) Task with id t has been announced by agent i
AWARDED(t, i) Agent has been awarded task t by agent i
TASK(t) Agent is committed to (eventually) doing task t
GQOAL(t) The task currently being expedited is t
RESULT(t, v) The result of expeditingtisv
BI DDED(i, t) Agent i has bid for t

Table 6.5: Message Types and Domain Predicates for the CNET

In addition to describing the various messages that agents may send, Smith describes the procedures to be
carried out on receipt of a message. Briefly, these procedures are as follows (see [161, pp96-102] for more
details):

1. Task announcement processing. On receipt of a task announcement, an agent decides if it is eligible
for the task. It does this by looking at the eligibility specification contained in the announcement. If it is
eligible, then details of the task are stored, and the agent will subsequently bid for the task.

2. Bid processing. Details of bids from would-be contractors are stored by (would-be) managers until some
deadline is reached. The manager then awards the task to a single bidder.

3. Award processing. Agents that bid for atask, but fail to be awarded it, simply delete details of the task.
The successful bidder must attempt to expedite the task (which may mean generating new sub-tasks).

4. Request and inform processing. These messages are the simplest to handle. A request smply causes an
inform message to be sent to the requestor, containing the required information, but only if that information
isimmediately available. (Otherwise, the requestee informsthe requestor that the information is unknown.)
An inform message causes its content to be added to the recipient’s database. It is assumed that at the
conclusion of atask, a contractor will send an information message to the manager, detailing the results of
the expedited task®.

So to the protocol specification. Once again, it is assumed that agents use an internal language which is some
subset of the first-order language Lo, though it is not necessary for them to have any reasoning capabilities. The
domain predicates and message types used in the specification are given in Table 6.5.

Messages and domain predicates contain terms of four sorts: t is a task id(entifier), (a standard name for a
task); eisan digibility specification, (or e-spec), which allows agents to determine whether they are eligible for
atask; i, asusual, isan agent id, and v isavalue, the result of expediting atask (the domain of values is assumed
to contain one distinguished element, unknown). The meaning of the message types is fairly obvious; domain
predicates require some explanation.

Agents maintain beliefs about what tasks they are eligible for. Thisis achieved via ELI G BLE predicates. A
record of all task announcements the agent has received is kept via ANNOUNCED predicates. If an agent has been
awarded atask, it records the fact via AWARDED predicates— the second argument denotes the manager of the task.
Commitment to (eventually) performing atask is recorded via TASK predicates. Details of tasks currently being
expedited are recorded via GOAL predicates; the result of expediting a task is recorded via RESULT predicates,
which relate a task id to a value. A manager records details of all the bids it receives via Bl DDED predicates,
which relate a task id to a bidder. Finaly, details of new tasks are recorded via NEWTASK predicates. Note that

8This is done via a special report message type in the original CNET framework.

101

TaskAnn(i, j, t, €)
Bid(i,], t)
Award(i, j, k, t)
Request(i, j, t)
Inform(i, j, t, V)
Eligible(i, €)
NewTask(i, t, €)
Announced(i, t,)
Awarded(i, t,])

(Send i j TASKANN(t, €))
(Send i j BI D(t))

(Send i j AWARD(K, t))
(Send i j REQUEST(t))
(Send i j | NFORM(, V)
(Bel i ELI Gl BLE())
(Bel | NEWTASK(t, €))
(Bel i ANNOUNCED(, }))
(Bel | AWARDED(, }))

(DD DD DD DD D

Task(i, t) (Bel i TASK(t))
Goal(i, t) (Bel i GOAL(t))
Result(i, t, v) (Bel i RESULT(t, V)
Bidded(i, j, t) (Bel i Bl DDED(j, t))

Table 6.6: Abbreviations for the CNET

NEWFASK means an agent has a task which it wants expediting; TASK means it has committed to the task; GOAL
meansiit is currently working on the task.

Some definitions are given in order to improve readability; see Table 6.6.

Four further definitions are illuminating. The first two capture the dynamic nature of the roles “contractor”
and “manager”.

(= Ov Onform(i, j, t, v))
Contractor(i,j,t) & S (6.44)
Award(j, i,1,1)
Manager(i,j,t) £ Contractor(j,i,t) (6.45)

An agent is thus a contractor between the time it receives an award and sends the final result. Similarly, an agent
is amanager between the time it sends the award and receives thefinal result — note the symmetry in theseroles.
These definitions can be used to define what it means for a contract to exist between two agents.

- Contractor(i,j,t) O
A
Contract(i,j) & OO D[Manager(i, |, 1)] (6.46)
The fourth definition gives what it means for a contract to be successfully expedited.
oo A | (@Contractor(i,j, 1)) O
Expedited(i, t,j) & [O Cinform(i, . 1, V) (6.47)

Now for the actua properties to be specified. First, task announcements. These are broadcast, giving the
following.

Ot (e CraskAnn(i, j,t,€) O TaskAnn(i,k.t,€) (i #K) (6.48)
The immediate effect of atask announcement is given by the following liveness property.

TaskAnn(j,i,t,e) O

DUEet) eigivie(i, €)

] O <QAnnounced(i, ,]) (6.49)
Agents have correct beliefs about announcements: a safety property.

(6.50)

Ot CAnnounced(i, t,j) O € DgD[TaskAnn(j,i,t,€) 0]

Eligible(i, €)

Agents only announce tasks which they want expediting, and cannot expedite themselves: a safety property.

(6.51)

Ot (e CraskAnn(i,j, t,e) O © [NewTask(l,, &) D]

- Eligible(i, €)

102

Now to the creation of task announcements. An agent with a locally generated task that cannot be expedited

locally will announce the task: aliveness property.

[NewTask(i,t,€) O |

Dtiel _ eigible(i, ¢

O OTaskAnn(i,j,t,€)

However, tasks which can be expedited locally are: aliveness property.

[NewTask(i,t,€) O |

DRl Eigibie(i, @

O OTask(,1)

Agents aways bid for tasks they did not originate, but are eligible for: aliveness property.

Ot CAnnounced(i, t,j) O OBid(i,], t)
Bids are always solicited: a safety property.
Ot (Bid(i,j,t) O € Announced(i,t,])
The effect of receiving a bid is given by the following liveness property.
Ot (Bid(i,j,t) O OBidded(j, i,t)
A manager has correct beliefs about bids: a safety property.
Ot [(Bidded(i,j,t) O € Bid(j,i,t)

Eventually, a would-be manager assesses bids, and sends an award: aliveness property.

Ot [(Te OraskAnn(i, j,t,e) O Ok CAward(i, j, k, t)
Managers only award to agents that bidded: a safety property.
Ot CAward(i, j, k,t) O ©Bidded(i, k, t)
If desired, it can be specified that managers only award to one agent: a safety property.

Award(i, j, k,t) O

DO award(ilj.1.1)

0 (k=)

As with task announcements, awards are broadcast: this gives the following.

Ot CAward(i, j, k,t) O Award(i,l, kt) (i #1)

The successful bidder (now a contractor) will believe it has been awarded the task: aliveness property.

Ot CAward(i, j, k,t) O <>Awarded(k, t,i)

Agents have correct beliefs about what they have been awarded: a safety property.
Ot CAwarded(i, t,j) O ® Award(j, i,1,1)

Contractors eventually become committed to their tasks: a liveness property.
Ot CAwarded(i, t,j) O OTask(i, t)

Unexpedited tasks are eventually adopted as goals: aliveness property.
Ot Crask(i,t) O <QGoal(i, t)

Goals must have been tasks: a safety property.
Ot [Goal(i,t) O € Task(i,t)

The next axiom states that goals are successfully expedited: a liveness property.
Ot [Goal(i,t) O OOv[Result(i, t,V)

103

(6.52)

(6.53)

(6.54)

(6.55)

(6.56)

(6.57)

(6.58)

(6.59)

(6.60)

(6.61)

(6.62)

(6.63)

(6.64)

(6.65)

(6.66)

(6.67)

An agent contracted with a task, who has aresult for that task, will eventually send the result: aliveness property.

Result(i, t, V)

Dty D[Contractor(i, j, t)

a] 0 Omform(i,j,t,) (6.68)

A simple “first come, first served” ordering isimposed on tasks.

Contractor(i, j, t1) Expedited(i, t1,])
Ot t, O B O B
Contractor(i, k, t2) Expedited(i, t2, k)

(6.69)

Inform and request acts have comparatively simple properties. The recipient of an Inform message will add
the appropriate information to its local database: a liveness property.

Ot (v Onform(i, j, t,v) O OResult(j, t, V) (6.70)
Informs are honest: a safety property.

Ot (v Onform(i, j,t,v) O ©@Result(i, t, v) (6.71)
A request will not be sent if the required value is known by the sender: a safety property.

Ot CRequest(i,j,t) O ©- Ov[Result(i, t,V) (6.72)
If the recipient of arequest has the required information, then it will inform the sender of this:; aliveness property.

Ot [Request(j, i, t) OO [Result(i,t,v) O Qinform(i, j,t,V) (6.73)

If the required value is not known by the recipient of the Request, then the recipient tellsthe sender that the value
is unknown.

Request(j, i, t) O

Lt = v [Result(i, t, V)

O Qinform(i, j, t, unknown) (6.74)
Other properties may be specified: for example, the property that there will always be at least one eligible

agent for every task is given as follows.
Ce [I1 CEligible(i, €) (6.75)

This completes the specification of the CNET protocol. Note that although the specification is quite long and
fairly tedious, agreat deal has been left unsaid. For example, the specification has very little to say on the subject
of how long beliefs should be held for. The reason for these omissions is lack of space. The reader should be
aware that the specification could be expanded with considerably more detail.

A Sample Proof

One of the advantages of presenting a specification in this manner isthat its properties may be examined through
formal proof. In this section, we present a sample proof. Call the specification given above SP1. The following
theorem states the property to be proven.

Theorem 4 The specification SP1 has the following property:

NewTask(al,tl,el) 0O
SP1tk | - Eligible(al, 1) 0| O 9Bid(a2 al,tl)
Eligible(a2, €1)

Proof See Figure 6.4. '

104

1. [t MeNewTask(i, t,€) O~ Eligible(i, €)

O OQTaskAnn(i,j,t,€) (6.52)
2. NewTask(al,tl,el) O~ Eligible(al, €1)
0 OQTaskAnn(al,a2,tl,el) 1, PRED, PL
3. [Ot[MeOraskAnn(j, i, t, €) OEligible(i, €)
0 QAnnounced(i, t,) (6.49)
4. TaskAnn(al,a2,tl,el) OEligible(a2, €1)
O <>Announced(a2, t1,al) 3, PRED, PL
5. NewTask(al, t1,el) O~ Eligible(al, €l) O Eligible(a2, el)
O <>Announced(a2, t1,al) 2,4, TL, PL
Ot CAnnounced(i, t,j) O OBid(i, j, 1) (6.54)
Announced(a2,tl,al) O <>Bid(a2, al,tl) 6, PRED
NewTask(al,t1, el) O~ Eligible(al, el) OEligible(a2, €1)
0 9OBid(a2,al,t1) 57, TL, PL

Figure 6.4: Proof of Theorem 4

A Comparison with Werner's Formalization of the Contract Net
In Werner’s formalization of the CNET, [179, pp27-30], a contract net is defined to be a social group®:

M ener = (Lener, G, ZTener, Roles, Qener)
where

* Lcner isthe language for communication in the CNET;
* Gisaset of agents;

* >XTener iSasocial structure defining the abstract cognitive states associated with the roles contractor and
manager;

» Rolesmapsarolein XTcner to each agent in G at each possible time;
* Qcner isthe “space of al possible histories of the system”.

The two most significant parts of this description are the language Lcner and the social structure ZTener.

The language Lcner parallels the message types defined in our formalization (see above). Associated with
the language is a pragmatic interpretation function, Prag, which defines how the cognitive states of agents are
affected by messages. Werner only defines this function for one message type: awards. The effect of being
awarded a contract is to make the awardee reject all possible courses of action that do not lead to the task being
expedited; additionally, the manager “expects that the contractor intends to do the awarded task” [179, p29].

The next item of interest isthe socia structure, ZTener, Which consists of aset of roles: aroleis an “abstract
agent ...that defines the state, information, permission, responsibilitiesand values of that ...role” [179]. However,
Werner does no more than state that there are two rolesin the CNET: contractor and manager.

In what ways are Werner’s and our formalizations alike, and in what ways do they differ? Perhaps the main
similarity isthat they both recognize the dynamic nature of the roles manager and contractor. Additionally, both
formalisms are in broad agreement on the perlocutionary force of the “award” message type. Apart from these
points of comparison, the formalizations differ markedly. The most obvious difference is that our formalization
is axiomatic, with properties that may readily be demonstrated via formal proof, whereas Werner’sis not. This
makes comparison difficult. Werner’s formalization is, in one sense, very much more general than our own:
whereas we assume the existence of specific domain predicates in an agent’s belief set, Werner does not make
any assumptions at all.

9A more detailed description and critique of Werner's formalism may be found in Appendix B.

105

6.4 Summary

Previous chapters have laid out a theory of multi-agent systems, and a number of linear time temporal logics that
may be used to reason about systems modelled by the theory. This chapter was devoted to five case studies, which
demonstrated how these logics might be used for describing, reasoning about, and specifying the properties of
multi-agent systems.

After abrief introduction to the subject of reasoning about systems using temporal logic, two frameworks for
building multi-agent systems were examined and modelled in terms of the theory of multi-agent systems. These
frameworks were then axiomatized using QAL. The two frameworks were AGENTO and Concurrent METATEM.
Subsequently, three existing cooperative problem solving techniques were reviewed, and specified using QAL.
The problem solving techniques were a simple master/slave framework, the cooperative inference technique used
in the cooperating expert system FELINE, and the well known Contract Net.

The next chapter — the final chapter in this main part of the thesis — shows how a number of branching
time temporal logics may be devel oped, and shown to correspond to the theory of multi-agent systems devel oped
earlier. In contrast to the linear models of time that underpin the logics developed in Chapter 5, these branching
time logics are based on a model of time that branches infinitely into the future from any point in time. These
logics are more expressive than their linear time counterparts, and allow the consideration of attributes of agents
(such as cooperative goals), that cannot be described using linear models.

106

Chapter 7

Branching Time Temporal Logics for
Multi-Agent Systems

ALL of the logics that have been described and used in Chapters 5 and 6 have been based on a linear model of
time: one in which each time point has at most one successor. The idea upon which their semantics are based is
that of allowing arun of a multi-agent system to act as amodel for alinear time temporal logic. However, linear
temporal logics are by no means the only type of temporal logic available. A basic alternative isto view time as
branching into the future from each time point. In abranching time structure, each time point may have a number
of successors, depending on what actions are taken to change the state of the system. To see how branching time
structures are related to multi-agent systems, consider the set of all runs of a system. One way of representing
this set is to collect the runs together into a single branching structure. To fully express the properties of such
a structure, one requires not only the ability to talk about things happening in the future, but of things being
true in some possible future or all possible futures. Thisis the language of branching time temporal logic. This
chapter develops two branching time logics for reasoning about multi-agent systems: BAL (“Branching AL") is
a propositional branching time logic based on the expressive branching time system CTL" [48]; the logic QBAL
(“Quantified BAL") extends BAL with quantification, and with the addition of operators for describing the goals
and abilities of agents and groups of agents.

There are several good reasons for supposing that branching time logics are suitable for reasoning about
multi-agent systems:

1. Consider the semantic structures which underly branching time logics. These structures closely resemble
game trees, the extensive representation formalism developed by game theorists for describing game-like
multi-agent interactions. The link between multi-agent systems and game theory is by now well established
(see eg., [141]). So it seems that the semantic structure of branching time logic is appropriate for repres-
enting multi-agent interactions (Ladner and Reif came to similar conclusions [105]). Branching time logic
therefore seems an appropriate linguistic tool for describing multi-agent interactions.

2. Branchingtimelogicshave certain inherent advantagesover their linear counterparts. they allow the consid-
eration of what might happen, rather than just what actually happens. Thisin turn allows the development
of theories of ability, cooperative ability, goals, and cooperative goals, that are literally meaninglessin a
linear structure: this point is examined in detail later in the chapter.

3. Multi-agent systems are inherently reactive (in the Pnuelian sense [133]), and a proven tool for describing
and reasoning about reactive systems is temporal logic (this issue was discussed in Chapter 1).

The remainder of this chapter is structured as follows. The next section develops objects called BAL frames.
These objects are the foundation upon which a branching time semantic structure is built. The subsequent section
develops the basic propositional branching time logic BAL. Section 7.3 then devel ops theories which show how
goals and abilities can be attributed to agentsin a branching time framework. Section 7.4 then incorporates these
theories as operators in a quantified version of BAL called QBAL (see also [188]). Some short examples of the
use of BAL are then given. The chapter concludes with some comments and a summary.

For a good introduction to the technical framework of branching time logics, and to CTL" in particular (the
system on which all the logics in this chapter are based), the reader is referred to [49]. CTL" was originally
described in [48]. A complete axiomatization of CTL" was described in [166].

107

7.1 BAL Frames

The first step in the development of the branching time logics is to define BAL frames, the precursors to model
structures of the language BAL.

Balfrm = powerset World x powerset (World x World)

In other words, aBAL frameisa set of worlds together with abinary relation on worlds: thisiswhat is meant
by a frame in classical modal logic [28]. The idea isthat a BAL frame will represent the set of al runs of a
system, in which case it isamodel of that system (this follows the terminology of Chapters 4 and 5: the reader
might find it useful to glance back at these chaptersin order to refresh their memory on the various function and
type definitions given therein).

The basic idea is as follows. Suppose (W, R) isaBAL frame. Thenif (w,w) O R then w represents one
world that could arise from the world w in the system being modelled. The following function defines what it
means for a BAL frame to be a model of a system.

model _of ' : Balfrm x System — B

model _of '(bfr,sys) £
let (W, R) = bfr in
init-world(sys) O WO
Ow O W Mw O World O
next-world(w,w',sys) O (w OW)O(ww)OR) O
OwOw(O
(w#init_world(sys)) O (init-world(sys),w) O tc(R) O
OwOWIOw OwQd
((ww) OR) O next.world(w,w,sys)

This function requires some explanation. The first conjunct simply demands that the initial world of the
systemisin W. The second conjunct demands that all the legal ways the system could evolve arein W, R. The
third conjunct demands that the only worldsin W are ones that could have arisen through alegal set of transitions
of the system from the initial world. This demand is made via a function tc, which takes a relation and returns
the transitive closure of the relation; the definition of transitive closure is essentially standard, and is therefore
omitted™. The final conjunct ensures that the relation R contains only legal transitions.

A BAL framethat isthe model of some systemis said to be ordinary. Ordinary BAL frames have the property
that the relation in the frame is total, (i.e., that every world has at least one successor). A definition of totality is
given by the following function.

total : Balfrm - B

total(bfr) &
let (W, R) = bfr in
OwOWDw OWOww) OR

The result is stated formally in the following theorem.

Theorem 5 All ordinary BAL frames are total.

Proof By the weak completness properties of agents, every agent will always have at least one possible move. So
every state will have at least one possible transition associated with it. If there are any possible transitions from
a world w then there will be a successor world w', and (w, w') O R by the definition of model_of'. Hence R must
be total. '

Now some utility definitions. First, a path is defined to be a countably infinite sequence of worlds. A type
for this already exists: Worldseq. Paths can thus be defined to be the same type. The reason for the change in
terminology is to retain compatibility with the branching time logic literature.

Path = Worldseq

1Suppose (w,w) O Rand (w,w") O R, then (w,w") would be in the transitive closure of R. The transitive closure of a relation is
sometimes called the ancestral of the relation.

108

In addition, the following notational convention will be used: if p is a path, then the path obtained from p by
omitting the first u elements is denoted pM. The following function defines what it means for a path to be “on”
aBAL frame.

path_on : Path x Balfrm - B
path_on(p, bfr) &
let (W, R) = bfr in
(hdp OW)O
Du O N ({p(u), p(u+1)) O R)
The following function takes a frame and returns the set of paths on it.

paths : Balfrm — powerset Path
paths(bfr) £ {p|(p O Path) Opath_on(p, bfr)}

7.2 ThelLogic BAL

This section introduces the logic BAL (for “Branching AL"). This logic is essentially AL augmented by two
path quantifiers, “E” and “A”, to describe things true in just one possible future, or true in all possible futures.
We begin by defining the syntax of BAL. We subsequently develop model structures, and show how a model
corresponds to a system. The semantics of BAL are then defined in the usual way. Finally, an axiomatization of
BAL is presented.

7.2.1 Syntax

As with AL, the language BAL is parameterized by an internal language L. Thus an instance of BAL based
on L isdenoted BAL(L). The alphabet of BAL is essentially that of AL augmented by the two path quantifiers
mentioned above (note that BAL, like CTL", contains no past-time operators). The path quantifiers turn out to
be duals of each other, so only one is introduced into the language as basic. The other isintroduced as a derived
operator.

Definition 17 The alphabet of BAL (based on L) contains the following symbals:
1. The symbols {true, Bel, Send, Do};

2. A set of constant symbols Const made up of the digjoint sets Constag (agent constants) and Constac (action

constants);
3. All closed formulae of the internal language L ;
4. The unary propositional connective” -~ ” and the binary propositional connective“ 0" ;
5. The unary temporal connective“ O”, binary temporal connective“ ¢/ ", and path quantifier “ A”;
6.

The punctuation symboals {), (}.

The syntax of BAL is given by the following definition.
Definition 18 The syntax of BAL (based on L) is defined by the following rules.

1. If pisaclosed formula of L, a isan action constant, and i, are agent constants, then the following are
formulae of BAL:
true (Beli¢@) (Sendij¢@) (Doia)

2. If @, ¢ are formulae of BAL, then the following are formulae of BAL:
e Uy

3. If @, @ are formulae of BAL, then the following are formulae of BAL:
Ap ouy Op

109

(Beli @) Agenti believes @
(Doia) Agenti performsaction o
(sendij @) Agentisentj message @
Agp On all paths @
Oop Next @ (X)
oU Y @ Until ¢ (V)

Table 7.1: Non-Standard Operatorsin BAL

As observed earlier, the temporal component of BAL is based on the logic CTL" [48]. The notation used in
the original work has been altered slightly, in the interests of compatibility with AL. Table 7.1 summarizes the
meaning of the non-standard operators in BAL. Where appropriate, Emerson and Halpern's original notation is
given in parentheses.

7.2.2 Semantics

The next step is to define the semantics of BAL. This is carried out in three parts. First, model structures are
defined, and a correspondence between model structures and systemsis established. The formal semantics of the
language are then given, as a set of semantic rules in terms of the satisfaction relation, in the usual way. Finaly,
satisfiability and validity for BAL are defined.

Model Structures

The language of BAL contains two non-empty sets of constants, (Constag — agent constants, and Constac —
action constants), which are put in a bijective correspondence with the sets Ag (a set of agents) and Ac (a set of
actions) in model structures by an interpretation, I. Asusual, | must preserve sorts.

As might be expected, a model structure also contains a BAL frame. The type for BAL modelsis Model gay.:
it is defined as follows.

Definition 19 A model for BAL is a structure:
(W, R Ag,Ac,)
where
* (WR) isaBAL frame;
* Ag [Agid isa set of agent ids;
» Ac [Action is a set of actions;
« 1: Const % (Ac O Ag) interprets constants.

Aswith AL, there is a close relationship between models and systems. This relationship is formalized in the
following function, which defines the conditions under which a model is considered to be a model of a system.

model_of " : Model ga X System — B
model_of "(M,sys) 2
let (W R,Ag',Ac,1) =M in
model_of '((W,R), sys) O
let (Ag, Do, P, B, 1, MR, AR) = sys in
(Ag=Ag) 0
(Ac=U{{a | (.a) DARG)} |i O Ag})

110

(M,p) E true

(M,p) E (Beli @ iff @ O state(hd p)(1(i))

(M,p) F (sendij@) iff (1), 1(), ¢) O seni(trans(hdp))

(M,p) F (Doia) iff I(a) = action(trans(hdp)(I(i)))

Mp) F -9o iff (M, p) @

(Mp) F oDy iff (M, p) F @or (M,p) Fy

(M,p) F Ag iff (M,p") E @fordl p' O paths((W,R})
such that (hdp’ = hd p)

(M,p) F Oo iff (M, p™) F @

M,p) E oUy iff (M, pY) E ¢ for someu ON and

(M, p") E pfordl vOND<v<u.

Figure 7.1: Semantics of BAL

Ep & -A-¢ On some path, @
Op L& truel @ Sometime ¢
Op 2 =09 Always @
oWy 42 OeOeuy @Unlesy

Table 7.2: Derived Operators for BAL

So amodel for BAL isamodel of asystem if itsframe defines all execution sequences of the system, and the
set of actions and agents in the model have the same members as the corresponding sets in the system. Aswith
AL, amodel for BAL is ordinary iff it is the model of some system.

Semantic Rules

The semantics of BAL are presented viathe satisfaction relation “fE” in the usual way. The relation holds between
pairs of the form:

(M, p)

(where M isamodel for BAL, and p is a path), and formulae of the language. The semantic rules for BAL
aregivenin Figure 7.1.

The first four rules define the semantics of atomic formulae of BAL. These primitives have the same reading
astheir AL counterparts, and have the same properties (e.g., the attachment lemma for belief till holds). The next
two rules define the usual propositional connectives - (not) and O (or). These operators have standard semantics:
the remaining propositional connectives (0, [0 , = and false) are defined as abbreviations in the usual way.

The A operator isread: “on all paths’. Thus Ag will be satisfied if ¢ is satisfied on all paths that have the
same head as the reference path. The E operator is defined as an abbreviation in Table 7.2. It isread: “on some
path”. Thus E@ will be satisfied if ¢is satisfied on at least one path that has the same head as the reference path.

The final rules define the temporal operators. These are essentially the future time operators from AL (see
Table 7.2 for derived operators). Thus O ¢ will be true if @is satisfied in the next world of the reference path,

[1owill be satisfied if @is satisfied now and at all points along the reference path, and @i/ ¢ will be satisfied if
Y istrue at some future point on the path, and @is true until that point.

Satisfiability and Validity

Satisfiability and validity are defined in the normal way. If @isaformulaof BAL, then @is satisfiablein amodel
M if for some path p, (M, p) F ¢, satisfiable simpliciter if it is satisfiable in some normal model, true in a model
if it is satisfied on all pathsin the model, and valid in a non-empty class of modelsif it istrue in each member of
the class. Finaly, itisvalid simpliciter if it isvalid in the class of al models, this latter property being indicated
by F @.

m

7.2.3 Proof Theory
Axioms
Begin by noting that all instances of propositional tautologies are theorems.
F @ where @isapropositional tautology (7.1)

The following axioms deal with the temporal/path component of BAL (they are adapted from Stirling’ s axiomat-
ization of CTL"[166]). One other axiom from Stirling’ saxiomatization has been omitted, due to its complexity;
see [128] for a discussion of the axiomatization.

F OO ¢) O (e O Ly (7.2)
F =-0¢p- 0O-9¢ (7.3)
F OO ¢) O (OO Ov) (7.4)
F O¢ - ¢00de (7.5)
F Qe O U (0 Lo (7.6)
Foouy O Oy (7.7)
FooUy < ¢ UO(eLO(ei) (7.8)
F @ O Agpif pisatomic (7.9)
F Ep O ¢if pisatomic (7.10)
F Ap O @ (7.11)
F AlpO ¢) O (Ap O AY) (7.12)
F Ap O AAgp (7.13)
F Ep O AEgp (7.14)
F AOCe O OAgp (7.15)

Axioms (7.2) to (7.8) deal with the future time operators, and require no explanation. To see that (7.9) and (7.10)
are sound, recall that an atomic formula can only refer to the present time.

Axiom (7.11) issimply aversion of axiom T, from classical modal logic; axiom (7.12) isaversion of classical
modal axiom K; (7.13) isaversion of classical modal axiom 4, and (7.14) is aversion of classical modal axiom
5. Axiom (7.15) captures the interaction of the next-time operator and the path quantifier “A”.

Finally, there is the attachment axiom for belief operators: the soundness of this axiom follows from the
attachment lemma (see Chapter 5).

[(Beli @) OO (Beli @) O (Beli ¢) (7.16)
where {@, ..., ¢h} Fpi @
Inference Rules

Begin by observing that propositional reasoning is sound, and so modus ponens (MP) is arule of inference.

From F gand - @ O ¢ infert g (7.27)

The following inference rules are from Stirling’s axiomatization of CTL" [166].
From + @infer F (o (7.18)
From F @infer - Ap (7.19)

7.3 Cooperative Ability and Cooper ative Goals

This section shows how the semantic structures developed in previous sections can be used to examine some
important issues in the development of cooperative systems. First, we develop a theory of cooperative ability.
(Ability is here assumed to mean having the power to bring about some state of events—i.e., “know that” rather
than “know how”.) In addition, we develop atheory of cooperative goals. Thistheory does not posit the existence
of adistinguished cognitive“goal” state (cf. [29]), but rather allows us to attribute goals to agents (and groups of
agents). Aswe shall see, when these theories are incorporated into a first-order language QBAL, they provide a
powerful tool for reasoning about cooperative systems.

112

7.3.1 Cooperative Ability

What does it mean to have the ability to achieve a goa? It doesn't mean having a single message or cognitive
action available which will bring about the desired goal, as many goals depend on the successful execution of
complex seguences of actions. We say that an agent (or group of agents) is able to achieve a goa if there is
a plan for the agent (group of agents) telling the agent (group of agents) what moves to make such that if the
agent (group of agents) follows the plan then the goal is guaranteed to be achieved. Two problems: What do we
mean by “plan”, and what do we mean by “guaranteed”? The Al planning community generally views a plan as
a partially ordered sequence of actions. Rather than choose a direct, literal representation of plans, we fix on an
abstraction called strategies, a concept originaly developed by game theorists. A strategy can be thought of as a
strong kind of abstract conditional plan. We model a strategy as a function from belief sets to moves.

Now what do we mean by “guaranteed”? Take some world in a BAL frame, some agent and some strategy.
From that world, a set of futures emerge, the paths rooted in the world. On some (but not necessarily all) of
these futures, the moves performed by the agent will correspond to those “ suggested” by the strategy. Call these
paths the futures of the strategy. If the goal is achieved in every future of the strategy then the goal is a necessary
consequence of following the strategy. Thisis what we mean by a strategy guaranteeing a goal.

This definition rests on arather subtle property of BAL frames; that they actually do contain all the possible
legal ways a system might evolve. If they did not then there might be some future of a strategy which did not
appear in the frame, on which the goal was not achieved. In this case the strategy could not be said to guarantee
thegoal. Notethat this definition of ability can be applied just as easily to groups of agents. The discussion above
is formalized below. First, the type for strategies.

Srat = Belset —~ Move
A strategy will be sound for an agent if it never dictates an illegal move for the agent.

st_sound : Strat x Agent — B
st_sound(st,ag) £ 0OA O Belset Cinv_legal (st(A), ag, A)
The next function defines what it means for a strategy for some agent to hold on a path. Theideais that the
strategy will hold on a path if the agent’s moves on that path correspond to those dictated by the strategy.

s_holds.on : Strat x Agid x Path — B

s.holds_on(st,i,p) 2
OuON; O
let A = state(hd p“D)(i) in
let m = trans(hd p@)(i) in
st(A) =m

The idea of a strategy can be generalized to a group of agents viaajoint strategy. It is convenient to define a
joint strategy as a map.
Jstrat = Agid = Strat
It seems sensible to demand that joint strategies are non-empty, which leads to the following invariant.
Ojs O Jstrat ({domjsz { })
A joint strategy will be sound for a group of agents just in case each of its “member” strategiesis sound.

js-sound : Jstrat x System — B
js-sound(js,sys) & Oi O domjsst-sound(js(i), agent(i, sys))

For convenience, a function is defined returning the set of sound joint strategies for a group of agentsin a
system.

§s : powerset Agid x System — powerset Jstrat
590,59 £ {js|(js0 Jstrat) O(domjs = g) Ojs-sound(js, sys)}

113

The definition of a single strategy holding on a path can easily be extended to encompass joint strategies.

js-holds_on : Jstrat x Path — B

js-holds_on(js,p) &
0i O domjs Cs-holds_on(js(i), i, p)

Now it is possible to define for some joint strategy, BAL frame, and world in the BAL frame, the set of paths
emerging from the world such that the joint strategy holds on the paths: these are called the futures of the strategy.
The ideais somewhat similar to what Werner calls potential [180].

futures : Jstrat x Balfrmx World — powerset Path

futures(js, bfr,w) 2
{p | p O paths(bfr) Ojs-holds_on(js, p) O (hdp = w)}

A joint strategy will then guarantee a goal from some world in aBAL frame if the goal is satisfied on each
future of the strategy from the world. This leads to the following, semi-formal definition of ability: it is semi-
formal because it does not define what it means for a goal to be satisfied on some path. Thisisalogical concept,
which is defined in the semantics of alanguage.

can : powerset Agid x goal x Balfrm x World x System — B

can(g, @, bfr,w,sys) £
Os 0 gs(g, sys) U
Op O futures(js, bfr, w) O
pissdatisfied onp

Note that the definition of ability presented in this section isloosely based on that devel oped by Werner [182];
see also Appendix B. Note also that the definition is quite different to that of Moore, who presented an essentially
mentalistic definition of ability (see [124], and Chapter 2).

7.3.2 Cooperative Goals

This section uses the semantic structures developed earlier to develop atheory of (joint) goals. Thistheory alows
the observer of a system to attribute goalsto agents or groups of agents. The theory does not posit the existence of
distinguished cognitive “goal states’, either in individual agents or groups of agents. It is not possible to identify
any direct representation of a goa in the structure of an agent: there is no internalized collection of possible
worlds with a goal relation holding between them (cf. [29]), nor is there a “goal stack”, or “intention box” (cf.
[76]). An agent — or group of agents — only has goals by virtue of our attributing them.

How are we to go about attributing goals to agents? The idea we adopt was inspired by Seel [148]. The
semantics of goals are developed via possible worlds, but rather than “gratuitously inflict” possible worlds onto
the semantic structures we have developed, we instead look to our model to see where such worlds might lie
latent. If we can find suitable candidates, then they can be used to give a semantics to goals.

Theworldsthat we pick out for the semantics of “goa” are pathsin BAL structures as before. Theideais that
to attribute a goal to an agent you must first look at what it has actually done. Doing involves choosing. Choices
mean expressing a preference for the consequences of one move over another. Preferences are themselves dictated
by goals. In making a choice, say choosing move my to move mp, an agent is preferring the consequences of my
to mp. Crudely, an agent has a goal of the necessary consequences of its actions. Since the consequences of all
moves are contained in aBAL frame, it ought to be possible to somehow “ decode” a path and deduce what goals
an agent had, relative to that path.

Thefirst step is to define what it means for two paths to agree on the actions of a group of agents.

agree : Path x Path x powerset Agid — B

agree(p,p’,g) £
0i O g Mu O N qtrans(hd p®)(i) = trans(hd p'W)(i))

114

For ¢ | 1¥ Move 2™ Move

R m m

F X my
FOrR Y | 1¥ Move 2" Move

R m my

F X X

Table 7.3: Ability and Goals: An Example Scenario

This leads immediately to the following semi-formal definition of joint goals.

goal : powerset Agid x goal x Balfrmx Path — B

goal(g, @, bfr,p) 2
Op' O paths(bfr) O
(hdp=hdp’) Uagree(p,p',g) U
@issatisfied on p'

7.3.3 Ability and Goals. An Example

To illustrate the ideas of the previous sections, an extended example is presented.

Suppose a system contains two agents, Ralph (R) and Freda (F). At every point in time, each agent has two
possible moves. R can perform any of {my, my}, and F can perform any of {mg,my}. To achieveagoa ¢, itis
necessary for R to perform my on the first move, and m, on the second, and for F to perform my on the second
move. (It doesn’'t matter what F does on the first move.) To achievethe goa , it is necessary for R to perform
my. on both moves — it doesn’t matter what F does.

This scenario issummarized in Table 7.3; a cross at the intersection of arow and column indicatesthat it does
not matter what the agent does.

At each pointin timetherewill befour possible transitions of the system, so a sequence of two movesgenerates
atotal of sixteen distinct futures, which we call p; to pig. The possible futures are described in Table 7.4. In
the final two columns, atick (v) indicates that the associated goal is achieved on that path, whereas a cross (%)
indicates that it is not.

On only two of the sixteen futures — those labeled p, and pi2 in the Table — will ¢ be achieved. By the
definition above, the codlition {R,F} can achieve ¢. The strategy simply requires that the agents perform the
moves dictated by the table above. However, neither of the agents can achieve @ individually.

If one asks “do {R,F} have a goal of ¢ on path ps (or p12)”, the answer is yes, because on each path that
agrees with p4/p12 on themoves of {R,F}, @isachieved. However, neither agent individually has agoal of ¢ on
any path in the scenario.

The goa ¢ will be achieved on four of the futures — py, p2, pg and pio. R will have a goal of ¢ on any of
these paths; F will not have agoal of ¢ on any path. By the definition above, R can achieve J, whereas F cannot.

To paraphrase Halpern, ([80]), the definitions of ability and goals are external concepts. We don’'t imagine
an agent scratching its head, wondering if it can achieve @, or wondering if it has a goa of ¢. Instead, we, as
observers and designers may use these notions to describe a system, and perhaps to design it. It is not necessary
for an agent to represent goals or ability in order to have goals and ability.

7.4 A First-Order Branching Time Logic for Multi-Agent Systems

This section draws together the results of the previous chapters and sections by developing a quantified version
of BAL called QBAL (“Quantified BAL”). The logic QBAL alows quantification over agents, actions, and indi-
viduals in the domain of the internal language. It extends BAL by the addition of modal operators for describing
the abilities and goals of agents and groups of agents, and by allowing the relationship between an agent and the
groups of which it is a member to be described. It thus becomes possible to express such statements as “the goal
¢ cannot be achieved without the agent i”, and so on.

115

PaTH | 1% Move | 29 Move | @? | ¢ ?
R F R F
P1 m M |mMm Mg X v
P2 m M |mMm My X v
0] M Mg | Nk m3 X X
Pg |Mg Mg | M My v x
Ps M Mg | My m3 X X
Pe M Mg | My my X X
p7 M Mg | Nk m X X
Ps M Mg | Nk my X X
Po M My |Mg My x v
Po |M My M My x v
Pu |M My | M Mg X X
Pz | M My | M My v X
Pz | M My | M Mg X X
Pa | M My | M My X X
Ps | M My | M Mg X X
P | M My | M My X X

Table 7.4: Paths, Moves, and Goals

74.1 Syntax

The alphabet of the QBAL language extends that of BAL by the addition of the following symbols:
* the symbols {=,[J, Can, Goal};
* extraconstants Consty for individualsin the domain of the internal language;

* a countable set of individual variables Var, made up of the sets Varag (agent variables), Varac (action
variables), Varg (variables denoting groups of agents) and Var, (variables for individuals in the domain
of L);

* the quantifier symbol “ O7;
* the punctuation symbol “[7.

Asusual, aterm is defined to be either avariable or a constant. The symbol 6 will be used to denote aterm.
Each term has an associated sort, which will be one of: Ag, Ac, U or G. To indicate that aterm 6 is of sort swe
write 6. The syntax of QBAL is defined below.

Definition 20 The syntax of QBAL (based on L) is defined by the following rules:

1. If 6, ... areterms of the named sorts, and @ is a formula of L, then the following are formulae of QBAL:
true (Bel Bag @) (Send Bag Bpag' @) (Do Bag Oac)
(6s=6's) (6ag 0 6c)

2. If Bg isatermof sort G, and @is a formula of QBAL then the following are formulae of QBAL:
(Can 6 @) (Goal 6 @)

3. If pisaformula of QBAL and x is a variable then Ox Cpis a formula of QBAL.

4. QBAL contains the propositional, path, and temporal formation rules of BAL.

QBAL thus contains four primitive operators in addition to those provided by BAL. One of these is standard
first-order equality; the remainder are summarized in Table 7.5.
7.4.2 Semantics

The semantics of the language are presented in two parts: first model structures, then semantic rules. The defini-
tions of satisfiability and validity are essentially standard, and are therefore omitted.

116

(Cang @) The group/codition g can make @ true
(Goalg @) The group/coalition g have agoa of ¢
(i0g) Agentiisamember of the group/coalition g

Table 7.5: Non-standard Operatorsin QBAL

Model Structures

QBAL contains terms of four sorts: agent, action, group, and individual in the domain of L. Associated with
each is anon-empty set of individuals, which will appear in model structures:

o Ag— agents,

* Ac — actions;

* U—thedomainof L;

* G — the set of groups of agents (i.e., the set of non-empty subsets of Ag).

The domain of quantification is defined as the union of these sets. The next few definitions deal with the
technical apparatus of quantification, which is essentially the same as the logic QAL in Chapter 5; the reader
familiar with this treatment can safely skip these definitions.

As in BAL, a bijective mapping | is defined between elements of Const and elements of the domain of
quantification, called an interpretation. Interpretations must preserve sorts. The inverse of |, written Nj, is a
naming function; where | is understood, N; is abbreviated to N. Note that constants are assumed to be standard
names, so N assigns each element of the domain of quantification a unique standard name. A mapping between
elements of Var and the domain of quantification that preserves sorts is called a variable assignment.

A transformation is now defined on formulae of L.

Definition 21 Let V be a variable assignment, N be a naming function, and ¢ be an arbitrary formula of L. By
@V we mean the formula obtained from ¢ by replacing every variable x which occurs free in @ by N(V(X)).

So, for example, let P(x,ap,y) be aformulaof L, V(X) = di, V(y) = d3, N(d;) = a1, and N(d,) = ap, then
P(x,a,)NV = P(ay, ay, a3). So every free variable is replaced by the standard name associated with the object
the variable denotes.

A function [-],v is defined, which returns the denotation of a term relative to a variable assignment and
interpretation.

[6liv 2 if 60 Const
then 1(6)
else V(6)

Wherel,V are understood, [6],v is abbreviated to [6] .

Finally, to give the semantics for ability, it will be necessary to include in model structures the function gs,
which returns the set of sound joint strategies for each group. However, as it was defined earlier, one of the
arguments to this function was a system, which is not available in amodel structure. So the function §s, when it
appears in model structures, is assumed to be relativized to the system the model structureis a model of. We can
now define the form of model structures for QBAL.

Definition 22 A model for QBAL is a structure:
(W R Ag,Ac,G, U, I, 9s)
where
* Gisthe set of non-empty subsets of Ag;
* U isanon-empty set of individuals (the domain of L);
« |: Const <™ (Ag 0 Ac 0 G I U) interprets constants;
» gsisafunctionthat returns, for each group of agentsg [0 G, the set of sound joint strategies for that group

and the remaining components are as in BAL.

117

(M,V,p) E (Bel Bag @) iff N O state(hd p)([Bagll)
(M,Vip) E (D0 Bag 6ad) iff action(trans(hd p)([6agl)) = [Oac]
(M,V,p) E (Send Oag O'ag @) iff ([6agll, [6'acll, ®*N) O sent(trans(hd p))
(M,V.p) E (Can 65 9) iff OsO§s([66])0
Op' O futures(js, (W, R}, hd p)C]
(M,V.p)) F o
(M,V,p) E (Goal 65 @) iff Op' O paths((W, R))O
(dp=hdp) O
agree(p, p', [6c]) O
| (MVip) E @
(M,Vip) F (6=6') iff [6s] = [6's]
(M,V,p) E (6ng O 65) iff [6ag] U [6c]
(M,V,p) F OxOp iff (M,Vt{x— d},p)F gforall
d in the domain of quantification
such that d is the same sort as x
Figure 7.2: Semantics of QBAL
Semantic Rules

The semanticsof QBAL are defined viathe satisfaction relation “ ", which holds between structures of the form:
{(M,V,p)

(where M is amodel for QBAL, V is a variable assignment, and p is a path), and formulae of QBAL. The
semantic rules for atomic formulae are given in Figure 7.2. The remaining rules (for propositiona connectives,
temporal operators and path quantifiers) are all essentially unchanged from BAL, and are therefore omitted.

The first three operators have the same intended reading as their BAL counterparts. The remainder are new.
The atomic formula (Can g ¢) is read: “the group g can bring about a world where @ istrue”. Note that ¢ is a
formula of QBAL. The semantics of Can are based on the theory of cooperative ability developed earlier. Thus
being able to achieve something implies the existence of a strategy which guarantees the goal.

The atomic formula (Goal g ¢) is read: “the group g have agoal of ¢’. Its semantics are based on the theory
of cooperative goals outlined above. This operator is perhaps slightly more difficult to understand than Can, as it
expresses a property of paths. It isan impartial assessment of what a group of agent’s goals are if they follow a
particular course of action. It says that the agents acted in such a way as to make the goal inevitable. Note that
the goal operator has an interesting dual.

(WeakGoal g @) & = (Goal g - ¢)

The dual is called weak goal because it suggests that an agent is not entirely antagonistic towards the goal,
i.e., it doesn’'t want the possibility of the goal absolutely excluded, but neither does it want it guaranteed.

The “=" operator is usua first-order equality. Note that its arguments must be of the same sort. The “[00”
operator allows reasoning about the members of a coalition in a simple way: the atomic formula (i O g) isread:
“i isamember of the group g”. Using this operator and equality it is possible to build some other useful operators
for reasoning about coalitions. For example:

(90g) & DOxOxOg) O (xOg)
(@0g) £ (gUg)0-(g=9)
It is occasionally useful to reason about coalitions which contain just a single agent. An operator Grp can be
defined which “ makes a group” out of its first argument.

(Grpig)20OxOxOg) O (x=i).

Using this operator it would be possible to define single agent versions of Can and Goal.
The final rule defines the semantics of universally quantified formulae: this is standard for many-sorted first-
order logics. Asusual, the existential quantifier “[" is defined as the dual of the universal quantifier.

118

7.4.3 Proof Theory

QBAL contains the proof rules and axioms of a many-sorted first-order logic (which largely amounts to ensuring
that substitutions are of the correct sort). Since many-sorted first-order proof systems are standard fare, this
section will focus on the logic of the two new modal operators: Can and Goal.

We begin by looking at the Can operator.

F OxOA(e O @) O ((Canxg@) O (Canxy)) (7.20)
F E@p = XCanXx @) (7.20)
F Oxh (Canx @) O (CanXx- (CanX @) (7.22)
F OxOcanxg@) O OyOxOy) O (Cany @) (7.23)

Axiom (7.20) saysthat if ¢ O (¢ holdson al paths, then if any group can bring about ¢, they can also bring
about .

Axiom (7.21) might be called a principle of achievability: if something is possible, then there is a group
of agents that can achieve it (if something is true on just one path then it requires the “grand coalition” of all
agentsto achieveit). The reverseimplication saysthat anything whichis achievableis also possible. Thereverse
implication is actually a version of the axiom T from classical modal logic.

Axiom (7.22) is aversion of axiom 5 from classical modal logic: it saysthat if a group cannot do something,
then they can bring about a state where they cannot do it.

Axiom (7.23) might be called a principle of added value: any group to which an agent adds its efforts can
achieve anything the agent can achieve on its own. This axiom is similar to the “superadditivity” principle in
game theory (which states that the utility of a coalition is equal to the sum of the utilities of the member agents
working in isolation).

The logic of Goal issimilar.

F OxOGoalxe O) O ((Goalx@) O (Goal X)) (7.24)
F OxOcoalx@) O Eg@ (7.25)
F Oxh (Goalx @) O (Goal X (Goal X ¢)) (7.26)
F OxOGoalxe) O OyOxdy) O (Goaly ¢) (7.27)

Axiom (7.24) isjust K, from classical modal logic.

Axiom (7.25) might be called a realism axiom: agents only have goals of things that are possible; it is a
version of T.

Axiom (7.26) is aversion of axiom 5 from classical modal logic, and saysthat if a group don't have a goal
of something, then they have a goal of not having a goa of it. One might say they are “determined” in their
attitudes.

Finally, axiom (7.27) says that a group inherits all the goals of its members.

Before leaving the axioms, note that the following are not theorems.

o OxOcanx@) O OyQyOx) O (Cany @)
o OxHGoalx @) O DOydyOx) O (Goaly @)

In other words, the members of a group do not inherit al the abilities and goals of the group.
There are two new inference rules, one each for Can and Goal. These rules are generalization rules, which
say that groups can vacuously achieve necessary truths, and vacuously have goals of necessary truths.

From F @infer - Ox {Can X ¢) (7.28)
From F @infer - Ox {Goal X ¢) (7.29)

Soundness proofs for all the above axioms and inference rules are straightforward, and are therefore omitted. In
particular, the soundness proofs for axioms K, T, and 5, and the necessitation rule from classical modal logic may
be readily adapted to prove the soundness of most of the above [28].

7.4.4 Examples

Theaim of this section isto present some short examples, showing how QBAL might be used to express desirable
properties of cooperative systems. No larger examples are given as the principles of specification using branching
time logics are essentially the same as those using linear time logics; see Chapter 6.

119

The first example shows how the logic can be used to capture the idea of an agent being required in order to
achieve agoal. Some goals cannot be achieved without the help of some agents. For example, suppose an agent
manages a database containing information that is not replicated elsewhere. Then any goa which involves the
use of that information must require the helpful interaction of the database manager agent. The property of an
agent being required to achieve agoal is captured by the following definition.

(Reqdi) 2 OxCanx @) O (i0Ox) (7.30)

Analogous to the above, we can pick out the set of agents that are required to achieve a goal. Any coalition
which forms to achieve a goal must contain all required membersif it is to succeed.

(GReqdg @) £ OxCanx @) O (gOX) (7.31)

We present aderived operator intended to capture the ideaof a coalition committing to some goal. Theideais
that committing to a goal means restricting your actions to just those that have the goal as a consequence (thisis
superficially similar to the definition of commitment in [150], though we are here using the term commitment in
avery loose sense; we certainly don’t intend it to capture the nuances of commitment that Cohen and Levesque
focus onin [29]).

(Commit g @) & A(Goal g ¢) (7.32)

The following examples will make use of Commit.

Suppose that a specification has been given as a set of formulae {¢, ..., g} of QBAL. These formulae are
assumed to be common goals of the system. That is, each agent works towards achieving each of the goals.
Suppose the formulae are liveness requirements, so that each @@ should be satisfied infinitely often. The simplest
requirement is that this should actually happen.

AC(Op OOITO@,) (7.33)

Note that joint satisfaction of the goalsis not required. Thisisa very genera requirement to place on a system.
It says nothing of how or when the goals are to be achieved. What more specific constraints might we place on
system behaviour? One possibility is to specify that no agent should act to make any goal unachievable.

Al /\ Ox weakGoal X @) (7.34)
Thisformulaisin one sense a safety property, since on onereading it saysthat each agent should not do something

bad (i.e., make a goal unachievable). How do we specify that agents should act positively to achieve goals? One
possibility is to specify that coalitions should form wherever possible in order to achieve goals.

A A DxOcanx@) O (Commitx @) (7.35)

This specification can be extended to express the idea that agents should commit to goals everywhere that such
commitment does not make any other goal unachievable.

(Canx @) O
AO A DXD[((Commitx @) O] O (Commit X @) (7.36)
i0{1,....n} Ajoq1,... n}EO(H)
7.5 Summary

Wheresas earlier chapters have focussed exclusively on linear time temporal logics, this chapter has investigated
the use of branching time temporal logics for multi-agent systems. The idea behind the semantics of such alogic
isto collect all the runs of a system together into a “computation tree”, which can be incorporated into a model
for the logic, in much the same way as arun was used in amodel for alinear time logic.

Two branching time logics were developed. The first, BAL, is the simpler of the two, and is effectively AL
augmented by path quantifiers. The second, QBAL, is based on QAL, but includes operators for describing the
abilities, goals, and structure of agents and groups of agents.

This concludes the main text of the thesis. The final chapter presents some conclusions.

120

Part |V

Conclusions

121

Chapter 8

Conclusions

VLADIMIR: That passed the time.
ESTRAGON: It would have passed in any case.

Samuel Beckett (Waiting for Godot)

THIs chapter concludes the main text of the thesis by first reviewing the work that has been carried out, then
attempting to put this work into context, and finally providing some pointers to possible future lines of research.

8.1 Review

The first part of the thesis contained a detailed literature survey. This survey began, in Chapter 2, by posing
the question: What is an agent? It was shown that several naive attempts to define an agent, either in terms of
action or in terms of high-level cognitive function, were problematic. This discussion led to the recognition of an
agent as an intentional system: onethat is most appropriately described in terms of the intentional notions (belief,
desire, ...). This prompted a detailed analysis of various logic-based formalisms devel oped by researchersin Al,
computer science, philosophy etc. for reasoning about intentional notions. The dominant approach was found
to be the use of normal modal logics with possible worlds semantics. However, some objections to the basic
possible worlds model were found and discussed. A number of variations on the possible worlds theme were then
described. However, for several reasons, this model was not found to be a suitable one for the purposes of this
thesis. One alternative formalism, the deduction model of belief developed by Konolige, was found to be a good
model of the beliefs of Al systems.

Chapter 2 concluded with an examination of the various approaches taken within the Al community to the
problem of building intelligent agents.

Chapter 3 examined the wider issues of social agency. It began by looking at the role of communication and
the various ways that communication has been treated in DAI. This led to the recognition of speech act theories
as being the dominant paradigm for reasoning about communication in DAI. A detailed review of various speech
act theories was then presented. Chapter 3 concluded with areview of the various ways that DAI has addressed
the issue of building intelligent social agents.

The main contribution of the thesis was presented in Chapters 4 through 7. Chapter 4 presented a formal
theory of computational multi-agent systems. The basic components of this theory, agents, were modelled as
having three important attributes:

» agents maintain beliefs, in the style of the deduction model proposed by Konolige [100];

* agentshaveinternal, computational resources upon which they may draw, by performing internal, cognitive
actions;

* agents can affect each other’s cognitive state by sending messages.

Two execution models for multi-agent systemswere then presented, which represent model sof how the agentsina
system may act and interact. Thefirst, simpler of the two models assumes synchronous action, where every agent
is assumed to act simultaneously. The second, more realistic model allows for interleaved execution, where at

122

most one agent is considered to act at any onetime. Some difficultieswith the interleaved model were identified,
and the remainder of the thesis dealt with synchronous action only.

Chapter 5 then developed various linear time temporal logics for reasoning about systems modelled by the
theory developed in Chapter 4. The simplest of these logics was called AL (for “Agent Logic”). AL isapro-
positional temporal logic containing operators for describing the beliefs, actions, and messages of agents. Its
properties were discussed in detail. A version of AL called IAL (for “Internal AL") was then developed, which
was more suited to use as an internal language (i.e., a knowledge representation language). Finally, a quantified
version of AL called QAL (for “Quantified AL") was developed.

Chapter 6 presented five detailed case studies, showing how the logics developed in Chapter 5 could be used
for reasoning about systems. First, it was shown how some properties of systems implemented using AGENTO
or Concurrent METATEM could be captured using the logics. A number of specification examples were then
presented, culminating in a formalization of the contract net protocol.

Chapter 7 developed a number of branching time temporal 1ogics which could be used to reason about multi-
agent systems. The simplest of these, called BAL (for “Branching AL") isbased on AL, but contains the operators
of an expressive branching time logic called CTL". It was then shown how the semantic structures that underly
branching time logics could be exploited to allow the attribution of goals and ability to agents and groups of
agents. A quantified version of BAL (called QBAL) was then devel oped, which includes operators for describing
abilities and goals.

8.2 TheWork in Context

It is never easy to assess how a piece of academic research standsin relation to other work, even with the benefit
of hindsight. Such assessments are particularly hard for the author of the work, without the benefit of hindsight.
Nevertheless, this section will attempt to consider how the work described in this thesis relates to other work in
DAI and related areas.

First, consider the model of agents and multi-agent systems. Very little work in Al/DAI has addressed the
question of developing formal architectural models of agents, (though as Chapters 2 and 3 demonstrated, there
has been much work on agent architectures generally, and on modelling aspects of agency; for example belief
and desire). The author is aware of no similar work on modelling explicitly computational multi-agent systems.

Now consider the logics developed in Chapters 5 and 7. These logics take as their centrepiece the deduction
model of belief developed by Konolige [100]. In his closing comments, Konolige observesthat one line of future
research for the deduction model would be its integration with other aspects of an agent’s cognitive makeup [100,
p157]: thiswork can therefore be seen as extending the deduction model in thisway. The work also extends the
deduction model into the temporal dimension.

Linguistically, thelogicsare superficially similar to thelogic devel oped by Cohen and Levesgue[29]. However,
there are actually many differences. The most obvious of theseis that Cohen and L evesque adopt an ungrounded
possible worlds semantics for beliefs and goals;, we have been at pains not to do this here. The motivation for
Cohen and Levesgue's work was quite different to ours. They were concerned with devel oping theories of men-
talistic aspects of human behaviour (i.e., intention). Our work was not concerned with humans at al, but with
modelling computational systems.

Finally, the general technique of developing a model of agents and multi-agent systems, and then letting a
run of such a system act as amodel for atemporal logic, was adapted from the Pnuelian tradition in mainstream
computer science [135]. The approach is, so far as the author is aware, novel in DAI circles, and seems both
appropriate and useful.

8.3 FutureWork

The scope of the work described in thisthesis has necessarily been broad. The work has raised a number of issues
in awide range of areas. This section will attempt to highlight some of these issues.

Begin with the theory of multi-agent systems. Asit stands, this theory is quite coarse grained, in two senses.
First, the model of agents developed in Chapter 4 is coarse grained. For example, agents are assumed to have a
belief revision function, but the properties of this function are hardly examined at all. A fruitful area for future
work would be in devel oping finer-grained formal models of real computational agents. It isoften claimed that Al
is becoming an unnecessarily formal field, and yet surprisingly few attempts have been made to develop formal

123

models of real Al systems'.

Second, the models of concurrency employed in the theory of multi-agent systems are poor. If oneis ever to
realistically claim that one has proved a property of areal multi-agent system, then the issue of concurrency, (and
the whole can of worms called fairness [63]), must be addressed.

Moving on to the logics developed in the thesis, there are a number of obvious areas for future work. The
first of these is completeness. The axiom systems presented for the various logicsin the AL family are all sound,
but are not shown to be complete. Thisis an important issue, which must be addressed if the logics are ever to
be used by a wider audience?.

A related issue is automation of the logics. Of course, automation of classical logicsis very much an ongoing
research area, but this issue must ultimately be addressed if the logics are to be put in general use. Even if the
logics are never used as knowledge representation formalisms themselves, there is no reason to suppose that
automated versions of the logics could not be used for reasoning about systems, by designers.

Finally, another areafor future work would be attempting to unify the logics developed in Chapter 7 with, for
example, more abstract models of cooperation and cooperative problem solving systems devel oped using Cohen
and Levesque's formalism [66], [113], [91].

INote that even if the alternative models of agency discussed at the close of Chapter 2 do finally come to usurp the classical Al model of
agency, it seems likely that some formal tools will be required to reason about them.
2Thereis alimit to what can be done here, however: first-order temporal logic is not finitely axiomatizable [1].

124

Part V

Appendices and Bibliography

125

Appendix A

Notation

THE techniques used to present the mathematical parts of the theory of multi-agent systems, etc., areloosely based
on the VDM specification language: the first seven chapters of [93] cover all the necessary material. However,
anyone familiar with basic set notation and logic should have no difficulty.

A central ideaisthat of thetype: for the purposes of thisthesis, atype can be thought of as a (possibleinfinite)
set. Five “standard” types are assumed:

N={012,...} the natural numbers

N; ={1,23,...} the natural numbers greater than O
7z={...,-1,0,1,2,...} theintegers

B = {true, false } the truth values

R the real numbers

The set of subsetsof atypeT (i.e., the powerset of T) is given by powerset T.

The type T of all ordered n-tuples whose first element is of type Ty, second element is of type Ty, ..., n!
element is of type T, may be specified in two ways. The simplest method is to define it as the cross product of
its component types:

T=Ty xIIkT,.
The alternative is to name the e ements:
(tg, D tn)

wherety O Tq,t, O Ty, ..., ty O Ty. In general, the latter method is used for large or complex types.
A restriction on atypeis called an invariant, and is generally specified by a first-order formula that the type
must satisfy. The general form of an invariant for type T is:

Ot O T CP()

where P is the property that each element of type T must satisfy. For example, the type T of all natural
numbers divisible by 3 may be specified by

T=N

h

where T must satisfy the invariant
Ot O Tt mod 3) =0.

Following the VDM convention, type names are chosen to be mnemonic, and begin with a capital letter,
followed by a sequence of lowercase letters.
Functions are specified by giving their signature and a direct definition. The general form of function defini-
tionsis:
f:Dyx0IxD, - R
f(dy,...,dn) 2

126

This saysthat the function f takes n arguments, the first of type, (or from domain) Dy, ..., the n' from domain
Dy, and returns a value of type (or fromtherange) R. A direct definition describes how the valueisto be obtained
from the arguments. Direct definitions of boolean functions are given as a first-order formula: if the arguments
of the function satisfy the formula, the result istrue, otherwise it is false.

For example, here is the definition of afunction that takes a set of natural numbers as its sole argument, and
returns true if every element of its argument is even, false otherwise.

all_even : powersetN — B
all_even(ns) & OuOns{(umod 2) =0)

The symbol
A

can be read “is defined as’.

Function names begin with alowercaseletter, to distinguish them from types, and may contain the underscore
character (“_").

A map can be thought of as a partial many-to-one function, or, extensionally, as a set of maplets, written:

{dy —ry, 00 dy — o}

Maps are specified in the same way as functions, except that the map arrow (“ SR ") is used instead of the
function arrow (“ -). So, the following specifies a type which maps a natural number to a set of integers.

T=N1 powerset Z

A bijective map is one that is both one-to-one and onto. Bijective maps are specified using the bijective map
13 m ”
arow, «—— .
A useful operator is the map overwrite, “1”. Its useis best illustrated by example. Suppose my and m, are
maps:
m={1— 32— 4}
m, = {1+~ 5}
Then
mtm={1—52+— 4}

Map application is denoted in the same way as function application: for the previous example, my (1) = 3 and
my(1) =5.

Two standard functions are assumed: dom takes a map or function and returns the set of elements in its
domain for which it is defined; rg takes amap or function and returns the set of elementsin its range for which
the corresponding elements in the domain is defined. For the above example:

dommy ={1,2} dommp = {1}
mgmy = {3,4} mgmp = {5}

Map names follow the convention of function names.

A sequence can be thought of simply as alist of objects, each of which is of the same type. The type T, of
sequences of type T, is specified by:

T=Tr.

A sequence may be listed in square brackets (“[”, “]”). The ni" element of a sequence is picked out by
indexing. So for some sequence s, the k" element is (k). Sequences may be infinite in length, (unlikein VDM,
where sequences must generally be finite), in which case they have a length of w (where w is the first infinite
ordinal). The length of a sequence sisgiven by lens.

For example, here is a sequence:

s=[1,2,4,8]
Then
hds=1 ¢0)=1
lens=4 g(2)=4

127

This thesis deals with several languages. the symbols ¢, ¢, and (¢ are used as meta-variables, ranging over
the formulae of these languages. The symbols A and I' are used as meta-variables ranging over sets of formulae
of these languages. Form(L) denotes the set of all formulae of alanguage L. Where L is afirst-order language,
a sentence of L is assumed to be a closed formula, i.e., one with no free variables (where “free’ has its usua
meaning). So, for some language L, formula @ of L, and set of formulae A of L, we have: ¢ O Form(L),
A O Form(L), and A O powerset Form(L).

Formal logic proofs are presented in the usual way: the abbreviation PL is used to denote simple but tedious
steps of propositional reasoning, PRED is used to indicate predicate logic reasoning, TL is used to indicate

temporal logic reasoning, and TAX is used to denote the introduction of atemporal axiom. All formal proofs are
closed by the symbol “—".

128

Appendix B

Technical Reviews

THIS appendix presents detailed technical reviews of various formalisms, that were held over from the main text
of the thesis due to their complexity. Three formalisms are described: the situated automata paradigm [142],
Cohen and Levesgue's logic [29], and Werner’s formalism [179], [182].

B.1 Situated Automata

It was pointed out in Chapter 2 that many people regard the ontological status of possible worlds and epistemic
alternatives as problematic. Do worlds exist? If so, where arethey? Few researchersin Al would take an extreme
realist view, that possible worlds actually do exist, and are worlds like our own; but even the moderate realist
view, that worldsdon’t have to exist, but are a useful abstraction for theorizing, isacontentiousone. A solutionis
to provide some method for grounding epistemic alternatives: giving them a precise meaning in real-world terms.
One method for doing this in distributed systems was discussed in Chapter 2, where a node was said to know ¢
if @ wastruein all indistinguishable runs of a system. An alternative, but essentially equivalent grounding has
been described by Rosenschein, in his situated automata paradigm [142], [143]. Thisis basically an analysis of
the information implicit in the state of an automaton. The situated automata paradigm is the object of study in
this section.
First, a definition of what an automaton is. An automaton, or machine, M, is a structure:

(SZ,A0,A, %)
where
» Sisaset of states;
* X isaset of stimuli, or inputs;
» Alisaset of output actions;
* J:SxX - Sisanext state function;
* A:S - Aisan output function;
* 5 0 Sisaninitial state.

The automaton will interact with its environment by sending outputs, (which intuitively change the state of
the environment), and the environment then providing some stimulus o O %, which, taken together with the
machine's internal state s [0 S causes a state transition through 0, defining the next output, and so on.

Let ® bethe set of world conditions; thingsthat can betrue of theworld. A world stateisa {environment-state, machine-state)
pair. If wisaworld state, then denote by @(w) the fact that condition ¢ holds of w. Assume that there is some
distinguished world condition ¢, which corresponds to the strongest condition the world must satisfy when the
machineisin itsinitial state 5. The idea is that this property is guaranteed to hold at the “start” of arun. Note
the distinction between a world, w, which is an environment state/machine state pair, the fact that ¢(w) holds of
world w, and the state of a machine. These are distinct notions.

Next, afunction is defined for every state o 0 %, which maps ® to ®. This function is called the strongest
post-condition function. Theideaisthat ¢/ o is the most specific world condition that can be guaranteed to hold
at timet' given that @ holds at t and the stimulus o is sensed over the time interval [t, t'].

129

The “/” operator can be extended to sequences of stimuli. As usual, let =" be the set of finite sequences of
elements of Z, (i.e, the set of strings over the alphabet %). Let A be the null sequence, let @ be some element of
=5 and“;” be the concatenation operator. Then extend the function as follows:

A
@(o;0) & (go)o
Now an automaton will not necessarily be able to distinguish between all world conditions. It therefore makes
sense to define what is knowabl e for the automaton. These are the things that, given some sequence of inputs, the
automaton will be able to distinguish; unknowable things never have any impact on the state of the automaton.

® L {@/o|o 0

The important point is that the states of an automaton divide the set =" into equivalence classes. In general,
automata with coarse equivalence classes will not be able to distinguish as much about the world as those with
fine equivalence classes.

Next, for each state s of the automaton, there is a set of input sequences, or language, Ls, each element of
which is guaranteed to leave the automaton in state s when it started in state 5. Ls is defined in two parts; first,
d is extended to sequences.

3(s,\) A s
o(s0;0) & 4(8(s0),0)
Then L is defined as follows.
Ls={o 02"|8(x2,0) =5}

Now the condition of a language is the strongest condition guaranteed to hold after any input sequence
contained in the language (when the automaton startsin itsinitial state). The condition of alanguage L is denoted
¢@(L). So after any sequencein the language L is “fed” to the automaton, the condition ¢(L) can be guaranteed to
hold, and nothing else can be guaranteed. The condition of alanguage is defined as follows.

L) £ Voo (@/o)

From this definition, it is possible to characterize the infor mation content of a state as those things which can
be guaranteed to hold in the world, given that the automaton is in the state.

info(s) & @(Ls)
It is then possible to define an epistemic accessibility relation R. Let w and w' be worlds. Then let state(w)
denote the state of the automaton in world w. Then the relation R can be defined as follows:
(w,w') O Riff state(w) = state(w)

Note that R will be an equivalence relation.
Now let us writew | @if ¢ follows from info(state(w)). The semantics of a knowledge operator K can then
be given as follows

w F Ko iffw F ¢@foralw suchthat (w,w)OR

Note that since R is an equivalence relation, the logic of K will be S5 (see [28]).
This concludes the review of situated automata.

B.2 Cohen and Levesque's Formalism

In Chapter 2, Cohen and Levesque's formalism for reasoning about rational agents was briefly described. The
syntax and semantics of the formalism are, unfortunately, rather complex: for this reason they have been held
over to this appendix. The following two sections define the syntax and semantics of the logic, and some of its
properties. The material in this section is adapted and summarized from [29]. It was originally intended to also
review the work of [66], [113], and [91], but this review has been omitted due to space restrictions.

130

action-var) ::= a,dy,...

{

(agent-var) iz XX, ...

(regular-var) ::= i,iq,...

(variable) :1= (action-var) |
(agent-var) |
(regular-var)

(pred) ;1= ({pred-symbol) (variable)s, ..., (variable),)

(wiff) ii= (pred)
= (wiff)
(wiff) O (wff)

Kvariable) C{wff)

({variable) = (variable))
(HAPPENS (action-exp))
(DONE (action-exp))

(AGT (agent-var) (action-var))
(BEL (agent-var) (wff))
(GOAL (agent-var) (wff))
(time-prop)

(action-var) < (action-var)

(time-prop) ::= (numeral)

(action-exp) ::= (action-var) |
(action-exp); (action-exp) |
(action-exp)“ | " (action-exp) |
(wif)? |
(action-exp)”

Figure B.1: Syntax of Cohen and Levesgue's Formalism
B.2.1 Syntax

The logic of rational agency is a many-sorted first-order multi-modal logic, with four key modalities: BEL (for
belief), GOAL (for goals), HAPPENS (for what happens next), and DONE (for what has just happened). The logic
allowsdirect referenceto time, (by including timesastermsin thelanguage), and the more usual relative reference
to time found in normal temporal modal logics. The syntax of the logic is defined in BNF form in Figure B.1.

Reference to time is assumed through the use of numerals; however, Cohen and Levesque allow for times
such as“2.30PM, 3rd July 1992”; such time references have an obvious interpretation. The ordering relation “<”
isfor actions. The action constructors, defined by the final production, have the following meaning:

a;a’ a followed by aa’

a|a" aora’, nondeterministicaly
a? test action

a” iterative action

These pseudo-dynamic logic constructs provide an effective method for talking about action sequences.

B.2.2 Semantics

The basic semantic components of the language are worlds, which are sequences of events, stretching infinitely
into both past and future. Time is discrete; the sequences are therefore indexed by the integers, Z. Belief and
goa accessihility relations are defined, indexed by each agent, on the set of worlds.

Assume E isa set of primitive event types. The type for worldsis then as follows:

World=7 - E
A model for the logic is then a structure:
(6,P,E Agt, T,B,G, d)

131

(M,o,v,n) F P,%) iff (v(x1),...,v(x)) O PP o,n)

(M,o,vn) E -@ iff (M,o,v,n) g @

(M,o,vyn) E @Oy iff (M,g,v,n} F@or (M,o,vn) EY

(M,o,v,n) F xOp iff (M,o,vt{x—d},n)Foe
for somed O D

(M,ovin) F (a=X) iff v(x1) = V(x2)

(M,o,v,n) E (time-prop) iff v({time-prop)) = n

(M,o,v,n) F (e1<e) iff v(ey) isan initial sub-sequence of v(e;)

(M,o,v,n) E (AGT xe€) iff AGT(v(e)) = {v(¥)}

(M,o,v,n) E (HAPPENS a) iff OmOZ (m=n) O(M,o,v,n[a]lm)

(M,o,v,n) E (DONE Q) iff om0 Z 0(m< n) O(M, o,v,m[a]n)

(M,o,v,n) E (BELX @) iff Do’ OWorldQo,v(x),n,c') 0B O
(M, o’ vm E o

(M,o,v,n) F (GOALX @) iff Jo'OWorlddo,v(x),n,0") 0G O
(Mo’ vm) E o

Figure B.2: Semantics of Cohen and Levesque’'s Formalism — Part 1
where

» Oisaset of things, (i.e., a universe of discourse);
» Pisaset of people/agents;
» Eisaset of primitive event/action types;
» Agt: E - P givesthe agent of an event;
o T O World is aset of worlds;
* BOTxPxZxT isthe belief accessibility relation, and is assumed to be euclidean, transitive, and serial;
« GOTxPxZxTisthegoa accessibility relation: it is assumed that G is serial, and G O B;
* @ interprets predicates.
The domain of quantification, D, is defined:
D=00OPOE"

So it is possible to quantify over people, things and sequences of primitive event types. Also, the function
AGT is assumed to give the agents of a sequence of events; this function can be derived from Agt.

The semantics of the language are defined via the satisfaction relation “F”, as usual. The relation holds
between structures of the form:

(M, g,v,n)
(where M is a model, o is a sequence of events, (i.e., aworld), vis avariable assignment,andn 00 Z isa
temporal index), and formulae of the language. The semantics are given in two parts: Figure B.2, and Figure B.3.

Therulesin Part 1 define the semantics of the modal operators, etc. Therulesin Part 2 are somewhat unusual,
and define the semantics of action constructors. Note the use of the [-] construct: n[a] m meansthat a occurs
between time points n and m. This construct is itself defined in terms of satisfaction.

132

(M,o,v,n[eln+m) iffve) =e,e,..,end0(N+i)=g,1<i<m
(M,o,v,n[a |a'lm) iff (M,o,v,n[a]lm) or (M, g,v,n[a'Tm)

(M,o,vn[a;a'lm) iff kOzOn<k<m)O(M,o,v,n[alk) O
(M, o,v,k[a'Tm)
(M, g,v,n[a?]n) iff (M,o,v,n) Fa

(M, o,v,n[a"m) iff Chy,...,nO0ZOng=n)0(ng=m) O
Oi0zOl<ism O (M,o,v,n[a]nis)

Figure B.3: Semantics of Cohen and Levesque’'s Formalism — Part 2

IFQTHEN @ ELSEQ’' & ¢?a |- ¢?a’
WHILE @ DO o A (@2 a)5- ¢@?
o) A [X{HAPPENS X; ¢?)
Lo A -0-0
(DONE x a) 4 (DONE a) O(AGT x a)
(HAPPENS X a) A (HAPPENS a) O(AGT X Q)
(LATER @) A -0
A

(BEFORE ¢ i) OcHAPPENS G @w?) O Do Qa<c)O

(HAPPENS a; ¢?)

Figure B.4: Derived Operators for Cohen and Levesque's Formalism

B.2.3 Derived Operators and Properties of the Logic

A number of derived constructs are possible for the logic; for example, the empty action nil and empty sequence
NIL; the empty event sequence is a subsequence of every other sequence. Some other derived constructs are
defined in Figure B.4. These derived operators have fairly obviousinterpretations; the derived versions of DONE
and HAPPENS simply associate the last/next action with an agent. LATER is a strict future “sometime” operator.
BEFORE allows the temporal order of events to be described.

Cohen and Levesque do not define an axiom system in the normal way, but study the validities of their logic
instead. Some of these validities are obvious: for example, axioms K45D for belief, and axiom D for goals.
Necessitation works for beliefs and goals. Another important property is the following:

E(BELx¢@ O (GOALX Q)

This, perhaps unusual looking, axiom is a consequence of an agent’s goal accessibility relation being a subset
of its belief accessibility relation.
This concludes the review of Cohen and Levesque's formalism.

B.3 Werna’'sFormalism

In an extensive sequence of papers published since 1988, Eric Werner has described a formalism for reasoning
about multi-agent systems which draws upon work in mathematical logic, game theory, and linguistics [178],
[176], [177], [179], [180], [181], [182], [183]. This section will describe the basic components of the formalism,
including hismodel of socia groupsand social structure, and hislanguage LT [JCAN (later renamed CANPLAN).
The material described here is mainly taken from [179] and [182].

“Let P,Py, ... be properties, and R",R], ... be n-ary relations for n = 2. Let O be the set of
individuals. Let T be the set of time instants ordered by a relation <. The elements of T will be
denoted by t, t', t;, etc. Let TP be the set of time periods. The elements of TP will be denoted by T,
T', etc.

A situation sis a set of objectsin O that have properties P and that stand in various relations R
to one another. For example,

s= {Pa; yes. Qa; no. R(a, b); yes.}

133

is a situation where property P holds of a, a does not have the property Q, nothing is said about
b'sproperties, and ais related to b by the relationship R. Let Sts be the set of all possible situations.

A state o isacomplete situation where all properties and relations are specified. Let > be the set
of al states. Histories or worlds are series of states. More formally, a history H is a function from
times T to the set of states 3. Let H; be the value of the function H at t. ...Let Q be the set of all
possible histories or worlds H. Let H! be the partial history of H up to and including the timet O T.
Let Hist(Q) be the set of possible partial histories H! for all timest 00 T. Partial histories H! are then
partial functions where H{, is the state of the partial history at time to. Events are situations over a
time period 1, i.e., eventsare functionstaking timest O T to situations s [Sits. Actions a are events
with agents given by the function Agent(a). ...Aneventeisrealized inH at 7 if eiscontained in H
and the domain of eistime period 7. ...

Aninformation state | isaset of partial historiesthat are possible given the available information.
Each information set | has an associated set of alternatives or choices Alt(l). Each alternativeisa set
of possible histories leaving I. ...The possible information states of an agent A in the environment
Q form an information partition =5. A strategy [or plan] is a function from information states | to
the alternatives at |. [The potential] 71 [of strategy 1] is the set of possible histories consistent with
the strategy

The cognitive or representational state R of an agent is described by three components

R=(I,SV).

| isthe information state of the agent. Sis the intentional state of the agent. Sisa set of possible
strategies that guide the actions of the agent. V is the evaluative state of the agent. V representsthe
agent’s evaluation and focus on situations. The representational state Ry may include the agent A’s
representation of B's representation, RE”. [179, pp11-12]

Before moving on to social groups and social structures, some comments on the formalism so far. Firgt,
information states: these seem to be epistemic alternatives in much the standard sense. However, the use of
situations is unusual: some comments are made on this later.

Next, to Werner’s definition of socia groups and social structures. First, arole is defined to be an “abstract
agent” defined by a particular representational structure...

“that defines the state information, permissions, responsibilities and values of that agent role. When
an agent A assumes arolerol, heinternalizesthat role by constraining his representational state Ra to
Ra + R. Positively expressed, when an agent A assumes a role rol, he changes his representational
state so that Ry becomes a part of Ry”. [179, p20]

A social structure 2T is a set of roles {roly, ... ,rol,}. A social group is a social structure in a particular
setting. A social group 2T is a structure:

(L,G, =T, Roles, Q)

where

» Lisalanguage;

» Gisagroup of agents,

* >Tisasocia structure;

e Roles G - 5T maps each member of the group to arole;
* Qistheset of all possible histories of the environment.

An example socia group (Werner’s formalization of the contract net [179, pp27—-29]) is described in Chapter 6,
and contrasted with the formalization of the contract net developed therein.

The next step is to develop alanguage for describing and reasoning about the systems described by the model
of multi-agent systems. Werner defines such alanguage: in[180] it ascalled LT [JPLAN, andin[182] itiscalled
CANPLAN. The treatment here is adapted from the latter source.

134

Po Was, or sometime past ¢ (strict)

Fo Sometime ¢ (strict)

Lag It is necessary for agent A that @
>aA @ Agent A plansthat ¢
>c @ The group G plans that ¢

CAN A@ Agent A can bring about ¢
COCANAp Agent A can coordinate with others to achieve ¢
COOPCANG@ Group G can cooperatively achieve @

Table B.1: Operators in Werner’s Language CANPLAN

B.3.1 Syntax of CANPLAN

CANPLAN is a propositional multi-modal logic containing eight basic modalities (see Table B.1). Formulae of
CANPLAN are then built up in the obvious way over some set of primitive propositions Prop.

B.3.2 Semanticsof CANPLAN

The semantics of CANPLAN require some preliminary definitions. Suppose rtis a strategy, then the potential of
that strategy, 71, is the set of all histories compatiblewith that strategy. Also, if | isan information state, then the
potential 1™ of | isthe set of all histories compatible with the state. Finally, define r[1] as follows:

& nnl

Thus 1] is: “the set of worlds allowed by the strategy 1T given the information 1” [182, p§].
Next, it is necessary to introduce the idea of an information ensemble. If Q is the set of all histories of a
system, then an information ensemble = for Q isaset of information sets such that the following conditions hold:

1. For any partia history H' 0 Hist(Q), there is an information set | [= such that H' O .
2. Forany 1LJO=,ifI2Jthenl nJ={}.

Clearly, any partial history H' O Hist(Q) is a member of just one information set in =; call this information set
[(HY). However, it does not follow that all information sets in an information ensemble are singletons; only that
partial histories are not duplicated between different information sets in the ensemble.

If H' is a partial history, then denote by I(H!) the information set that H! is a member of, relative to some
information ensemble. Each agent is associated with an ensemble, which implicitly defines the “information
conditions” ([182]) for the agent at all times: it is possible to define for each information ensemble a time
dependent epistemic accessibility relation, which will be used to give the semantics of “informational necessity”.

(H,K) O IZ iff K O 1(HY)

Next, let STRAT be a function taking an agent and returning the set of all strategies for that agent. Finally, if
Sisan intentional state, then S{1) isthe potential of that state, given information | (see [182, pp8-9]).
Models for CANPLAN are structures of the form:

(Z,T,<,Q,Ag, 5, S,9)
where
* X isthe set of all states;
* Tisaset of timeinstants,
* <isanorderingon T,
» Qistheset of al histories of the system;
* Ag=1{1,...,n} isaset of agents;

* =,§==1,S,...,2n, $ aretheinformation and plan ensembles for agentsi [Ag;

135

(M,0) F where p O Prop iff p O ®(0)
(M,H,t} F wherep O Prop iff (M,H:) Ep
(M,H,t) E Po iff ' OT O <t) O(MHt) F o
(M,H,t) E Fo iff ' OTQt<t) O(MH,t) F o
(MH,t) E ao iff OKOQOH,K)OIT* O

MK, o
(MJHt) E Dao iff OK O Sa(la(HY))"OM, K, 1) £ @
(MHt) E Do iff OK O Ss(le(H))?OM,K,t) E @
(M,H,t) E CANA@ iff OO0 STRATA [OK O {Ia(HY]O
(MKt Fo
(M,H,t) F COCAN @ iff [rr 0 STRATAO

TIA(HY] 0 SP2(IA(HD) 2 { } O
OK O i Ia(HY] 0 S5(1aH))™D
MK EQ
(M,H,t) E COOPCANge iff 0O OGOl O STRAT;O
NioTi L li(HY] #{} O
oK O mDGrqD[Ii(Ht)]D
MK E@

Figure B.5: Semantics of Werner’s Language CANPLAN

o @:3 - powerset Prop interprets propositionsin states.

The semantic rules for the language are presented in Figure B.5. Semantics are defined viathe usual satisfac-
tion relation “E”, which holds between structures of the form: (M, g) or (M, H,t), (where M isamodel, o O Z,
HOQandt OT), and formulae of CANPLAN. Thefirst rule defines the satisfaction of propositions with respect
to amodel and state. The second defines the satisfaction of propositions with respect to amodel, time and history.
The second rule is defined in terms of thefirst; recall that if H isa history and t is atime, H; returns the state of
H at timet. The semantic rules for propositional connectives are omitted.

Let us now examine these semantics. The rules for propositions, propositional connectives, and the two
temporal operators seem clear enough, with one caveat. Werner uses the notion of a situation extensively in his
semantic structures, but then defines an ordinary propositional valuation for states: in other words, states act as
possible worlds in the standard modal 1ogic sense. Thus situations turn out to be redundant for the language, since
they are not used in any way.

The “informational necessity” operator seems to be a standard modal epistemic knowledge operator. The two
“plan” operatorsare also straightforward: the single agent plan operator captures theidea of an agent’sintentional
state “forcing” a goal to be true. The group plan operator simply generalizes this definition to a multi-agent case.

The final operators — COCAN and COOPCAN — are more complex. COCAN A says that if there is
a strategy for A such that there is at least one history consistent with the strategy which coincides with A’s
representation of the other agent’s intentional states, and on all the histories which do coincide, @ is achieved.

COOPCAN ¢ says that the group G can cooperate to achieve ¢. Semantically, thiswill be true if the group
have “nonconflicting strategies” which ensure the outcome of ¢.

This concludes the review of Werner’s formalism.

136

Appendix C

Temporal Logic and Reactive Systems

SINCE Amir Pnueli published hislandmark 1977 paper on the use of temporal logic for reasoning about programs
([133]), an enormous amount of literature has been produced on the subject: awhole thesisinitself could not do
justice to the extraordinary wealth of material. In any case, much of the work is not relevant to this thesis. The
aim of this appendix is not, therefore, to present a detailed review of the area, but to outline how programs are
modelled in the Pnuelian framework, and to point to some major developments in the area. The material in this
appendix has been adapted from [47], [78], [135] and [168, Chapter 4]. Thereader isassumed to be familiar with
the elements of modal logic (see, e.g., [88], [28], [89] or [78]).

C.1 A Plethoraof Temporal Logics

There seem to be almost as many different temporal logics as there are people using temporal logics to reason
about programs. In this section, we briefly describe some important devel opments in temporal logics.

The earliest temporal logic studied in detail was the modal logic K, corresponding to a modal system with
two basic moda operators, (often written “[P]” or “H” — “heretofore”, or “aways past”, and “[F]” or “G” —
“henceforth”, or “always’) [136]. The semantics of these operators are given viatwo ordering relations Re and Re
on the set of worlds, such that the two relations are the inverse of each other. The usual “was’ and “sometime”
operators, (written “(P)” or “P" and “(F)” or “F") are defined as the duals of these operators. This logic is
discussed at length in [78, Chapter 6].

Although such a system can be used to crudely reason about programs, it cannot describe the “fine structure”
of the state sequences generated by executing programs (see below). For this reason, a*“ next time” operator was
used by Pnueli in his original proposal [133]. Also, the standard heretofore/always combination of operators was
discovered to be inadequate for expressing many properties, and so the basic temporal logic was augmented by
the since and until operators (written “S” and “ ”). In his 1968 doctora thesis, Kamp demonstrated that the
logic with since and until operators was expressively complete over continuous linear orders [95]*.

The “standard” linear discrete temporal logic — and the one employed for the most part in this thesis — is
that based on until/since and next/last. In the propositional case, this logic is decidable, (though the problem is
PSPACE complete — see, e.g., [157] for discussions on the complexity of such logics), and is generally regarded
as expressive enough to capture many interesting properties of reactive systems. Gough has devel oped tabl eaux-
based decision procedures for thislogic [79]; Fisher has developed resolution methods [59].

In the first-order case, temporal logics containing these operators are not decidable, but this should come as
no surprise! Perhaps more worrying is that first-order temporal logic is not finitely axiomatizable [1].

A temporal logic based solely on these operators does have its limitations, however. Sistla et al showed that
it could not be used to describe an unbounded FIFO buffer [158]. Another disadvantage isthat it cannot express
the fact that a proposition is true on every even moment.

Many variations on this basic temporal logic theme exist. For example, the use of fixpoint operators has been
discussed. Baniegbal and Barringer describe alogic which keeps the next operator as basic, but then defines two
fixpoint operators from which the other standard operators of linear discrete temporal logic can be derived [10].
Wolper has described a logic ETL, which extends the standard temporal logic with a set of grammar operators
[186]. Yet another variation isto add a chop operator, C, which “composes’ two finite sequences[13].

1The since/until operators are assumed to be strict: the since operator refers strictly to the past, the until operator refers strictly to the
future.

137

All of the logics mentioned above have assumed the model of time is discrete (i.e., that for any time point,
there exists a time such that no other time point occurs between them) and linear (i.e., that each point in time has
at most one successor). But these assumptions are not essential: atemporal logic of reals (where the worlds are
isomorphic with the real numbers) has been devel oped; however, such logics are complex and uncommon.

Much more common are branching time logics. Briefly, a branching time structure is one where each time
point may have a number of “successor” times, each one intuitively corresponding to one way things could turn
out. The repertoire of operators in linear temporal logic is not sufficient to express all the properties of such
structures (despite Lamport’s claims in his famous 1980 paper [108]).

The earliest branching timelogic to be studied at length was UB (unified system of branching time) [15]. This
logic extended linear time temporal logic by the addition of two operators “A” (“on all paths...”) and “E” (“on
some path ..."), called path quantifiers, which could be prefixed to any formulacontaining at most one occurrence
of the usual linear time temporal operators. This introduces an obvious restriction on the expressibility of UB.

UB does not contain an “until” operator; this omission was rectified in alogic CTL (computation tree logic).
However, CTL is still not expressive enough to capture many interesting properties of branching time structures.
The most expressive branching time logic so far studied in any detail is called CTL" [48]. This logic alows
path quantifiers to be prefixed to arbitrary formulae of the language: intermixing of path quantifiers and standard
temporal logic operatorsis freely allowed, resulting in a highly expressive logic. In the propositional case, all of
these branching time logics are known to be decidable: a complete axiomatization of CTL" is given in [166]. A
good general review of branching time logics is provided in [49].

This concludes the overview of temporal logics.

C.2 Program Modelling

To show how temporal logic can be used to reason about aprogram, we define asimple model of parallel programs;
this model is analogous to the model of multi-agent systems developed in Chapter 4. We then show how a first-
order linear discrete temporal logic can be used to reason about such a program.

Consider aparallel program:

Py || O] P

consisting of afinite, fixed, non-zero number of concurrently executing processes P; O {P4, ..., Pn}. These
processes are assumed to share the same variables, so that one process may communicate with another by changing
the value of avariable. The “memory state” of a program may thus be defined as a tuple of variable values:

(X1, .ev s Xn)-

These variables will be called program variables to distinguish them from logical variables. Let mst be the
set of al possible memory states. The “internals’ of mst depend on what values the variables may take; thisis
not considered here. Each of the program variables is assumed to have an initial value, which is set at the start of
computation.

Each process can be represented as a finite, connected, directed graph. Each node in the graph is associated
with alabel. Each arc (¢,¢') in the graph of a process is associated with an instruction which may be executed
by the process whenever the process is selected for execution and the current state of the processis ¢. Let loc
be a function which takes a process and returns the set of all locations for that process. Each process P; has a
distinguished initial node, 2, where it “starts execution” from.

Aninstruction is defined to be an ordered pair, (C, A), where C isacondition and A is an assignment operation
of the form:

(X1, .o %)= (€1, ... ,&n)

where g are expressions.

The “execution” of an instruction thus implicitly defines a change in the state of the program variables, and
a process moving from one label to another. The purpose of the condition, or “guard” is to define when the
instruction can be executed. An instruction with a satisfied condition is said to be enabled.

The state of a program is therefore defined as follows.

Sate = (loc(P1) x OIx loc(Pk)) x mst
Now consider an execution of a program to be a (possibly infinite) sequence of states:

S0, S, S, -

138

where
* in sy, each processisinits “initial” state, and the variables have their initial values;

o if 54 exists, for k O N, then s.41 represents the state resulting from the execution of one processes enabled
instruction from state s¢. (Note that this will mean a change to the state of the program variables, dictated
by the assignment operation, and a change to the state of one processes label.)

Note that the execution of program instructions is interleaved: only one process ever changes the state of
the program at any one time. It is widely accepted that the set of all such executions of a program represent
all the possible ways execution of the corresponding “real” program could evolve: if something can be shown
never to occur in any execution of the program, then it can reasonably be said to have been proved not to occur
in the “real” program. Similarly, something true in all executions of the program must be truein al runs of the
corresponding “real” program.

Thissimple model of programs can capture many interesting aspects of imperative programs. It isnot difficult
to derive similar models of systems based on, for example, message passing. Note that there are, however,
problems in trying to represent the properties of sophisticated, high-level programming languages using such
frameworks.

How can a temporal logic be used to reason about a program? A run of a program is a sequence of discrete
states: it is possible to incorporate such arun into the model structure of afirst-order temporal logic, and to write
formulae of thelogic to express properties of the run. In thisway, the logic can be used to reason about properties
of the program. We do not go into details of first-order temporal logics here; see the cited references above. We
simply give an indication of what properties can be described and reasoned about. It is worth pointing out that
the set of all computations of a program can be collected together into a branching structure, called acomputation
tree: a branching time logic can then be used to express properties of such a structure, and hence the program.

So suppose we want to use alinear temporal logic to reason about a program. A predicate ati(¢;) is generally
used to represent the fact that the execution of process i has reached label ¢;. The value of variables can be
described using standard first-order equality.

Suppose it was desired to specify that execution of a process P; would always proceed from label £ to £'. This
could be done using the formula:

Oati()) O Qati(£)).

Similarly, suppose that two processes P; and P; have critical regions ¢ and ¢ respectively. Mutual exclusion
could be specified by the following:

(1= (ati(fci) |:|'5‘tj(£cj))-

Many other properties of a program can be specified in a similar way.

Suppose a specification SPEC has been developed, and a program PROG has been developed. How might
it be possibleto verify PROG, i.e., to show that it satisfies its specification? Theideaisto develop the temporal
theory 7TH(PROG) of PROG, and show that:

TH(PROG) F SPEC

Thetemporal theory of the program is usually derived from the text of aprogram by a transformation process.
For example, for each arc, or transition in each processes graph, there will be an axiom in the temporal theory
describing the effect of that transition. The effect will be to change the state of the variables and change the state
of the program so that at the next time instant, the executed process will be at a new label.

In addition to the program specific axioms in a temporal theory, there will be other axioms capturing more
genera properties of acceptable execution sequences. For example, there will typically be an axiom of the
following form:

which states that a process can only ever be at one label. Other axioms might specify that if a transition
occurs, then its guard condition must have held, and so on.
This concludes the review of program modelling.

139

C.3 Specification and Temporal Logic

This section reviews the properties of areactive system that may be specified using temporal logic. It isgenerally
accepted that such properties fall into two categories: the so-called safety properties, and liveness properties?.

Informally, a safety property can beinterpreted as saying that “ something bad won't happen”. More formally,
a safety property states that every finite prefix of a run satisfies some requirement. For obvious reasons, safety
properties are sometimes called invariance properties. The simplest kind of safety property is global invariance,
expressed by aformula of the form:

Oe.
A local invariance, stating that whenever @ holds, (¢ must hold also, is given by the following formula:

Do O ¥).

Where asystem terminates, partial correctness may be specified in terms of aprecondition ¢, which must hold
initially, apostcondition ¢, which must hold on termination, and a condition ¢, which indicateswhen termination
has been reached.

intde O (¢ O y)

A mutual exclusion property is a global invariance of the form:

Oha=1).

This formula states that at most one of the properties @ O { ¢, (IJ @} should hold at any onetime. (The
notation arises if one imagines that truth is valued at 1, falsity at O; the above formulais read “a most one of
@ O{@,..., @} istrue’. Any formulawritten in Z-form, (where n is finite), can be expanded into an ordinary
formulaif required; the Z-notation may therefore be regarded as an abbreviation.)

A liveness property is one that states that “something good will eventually happen”. The simplest liveness
properties have the form:

Op
Termination is an example of liveness. The basic termination property is:
initdp O O¢
which states that every run which initially satisfied the property ¢ eventually satisfied the property ¢. Here ¢

is the property which holds when a run has terminated.
A more useful liveness property is temporal implication:

(e O Oy)

which states that “every @isfollowed by a ¢”.

Responsiveness is a classic example of temporal implication: suppose ¢ represents a“request”, and (¢ a“re-
sponse”. The above temporal implication would then state that every request is followed by aresponse. Another
example of temporal implication istotal correctness, which states that a systeminitialy satisfying property @ will
eventually terminate (given by ¢), and on termination will satisfy property .

C@initOe O (¢ OY))
There are a class of properties which deal with the temporal ordering of events in a system. The simplest

example of such a property isthe “absence of unsolicited response”. If gisarequest, and ¢ aresponse, then this
property can be given as:
Oy O ¢ o).
A crude way of specifying that requests should be honoured on afirst-in, first-out basisis:
L(@Bg) O (¢By).

This concludes the review of properties that may be specified using temporal logic.

2The material in this section has been adapted from [47, p1049-1054].

140

Appendix D

Axioms from Chapter 5

THE axioms listed below are from the logics AL and QAL, developed in Chapter 5.

D.1 Axiomsfrom Section 5.1

Thefirst set arefrom AL. Thelist below has been adapted and extended from [116, pp228-234] and [47, pp1003—
1005].
The following three rules axiomatize the interaction of the next/last temporal operators.

F O-¢9-=-0¢ (D.2)
F - 0¢p- @-¢ (D.2)
F O@p- 0 (D.3)
Some useful forward implications, dealing with future time operators, are:
e O Op (D.4)
F Op O %p (D.5)
F Qe O Op (D.6)
Foeuy O Oy (D.7)
F e O ¢ (D.8)
F Oe O O¢p (D.9)
F OO OOe (D.10)

These axioms have fairly obvious past time “mirrors’ — there is not a precise correspondence, as 1) time is
bounded in the past, and 2) past time operators are strict, whereas future time operators are not.

F OO 99 (D.11)
FooSy O &y (D.12)
F Mo O @9 (D.13)
F Ho U oMo (D.14)
The following axioms show that iterating any of {¢, [1} makes no difference;
00 = Op (D.15)
F OOe- e (D.16)
F €000 90 (D.17)
F Hloe O Mo (D.18)

The following axioms capture the interaction of the next/last operators with the sometime-always-until operators
(and past time equivalents).

F 0%p - 0009 (D.19)

141

F Ole- HO¢p
F (OoU(OyY)) = O(pU y)

(D.20)
(D.21)
(D.22)

The distributivity properties of the operators {0, [1, ¢ ,M, i, S } are captured by the following axioms.

F OeOy) = QeOoy)
(eOy) = (LeOy)

O (e0y) - (9900 y)
H(eUy) - (MeUAY)

(U SY) = (¢S YY) O(eSy))
F(9S(e0Y)) = (S U(¢SY))

The following are similar implications that do not hold in the reverse direction.

F (HeO0y) O D(eDy)
UeOy) O (9 OCY)

MeOMy) 0 M(eOy)
O (pdy) O (900 ® y)

T—_ T T T T T

(00QuUY) « (9U y) O (elU Y))
(U (eOy)) = (90U T(PU P))

(U UWue) O (90U
(U (eOy)) O (9U @ T(oU)

(S 0WsSe) O (00PY)S)

Fo(@S(eUy) O (¢S9)T(¢Sy)

The following axioms show that temporal operators are “monotonic in each argument” [47, p1005].

-

(e O ¢v) O (Le O)
OO0 ¢) 0 O O Oy)
(e O ¢) O (Ce O Oy

HeU y)0 Me D MY
B0) J (90 ©y)
HeU ¢)0 (00 OY)
MU)0 (eS¢) 0 (S

—_ T T T T T T T

-

F Qo= @000

F Oe= 00 e

FoeUy < g O(e0O(el y))

FoeBY - -y U(eUO(eBY))
Finally, there is an induction axiom.

F eO O O (¢ 0 Lo

D.2 Axiomsfrom Section 5.3

The following list includes the Barcan formulae for temporal operators ([104, p47]).

F OxOO@(x) = ODOxp(x)

LD ¢) O (eu¢) O (wU)
Lo 0 ¢) O (eUe) O (9UY))

)

MO ¢)0 (659 O (¢SY)
The fixpoint characteristics of the temporal operators are given by the following axioms.

142

(D.23)
(D.24)
(D.25)
(D.26)
(D.27)
(D.28)
(D.29)
(D.30)

(D.31)
(D.32)
(D.33)
(D.34)
(D.35)
(D.36)
(D.37)
(D.38)

(D.39)
(D.40)
(D.41)
(D.42)
(D.43)
(D.44)
(D.45)
(D.46)
(D.47)
(D.48)

(D.49)
(D.50)
(D.51)
(D.52)

(D.53)

(D.54)

T— T T T T T T

X0 @Xx) = OXIX)
IxO0@p(x) = O©UOxpX)
XOO@PX) - ©OOXIX)
Ox O @(x) = C10Ox Op(x)
Ox M e(x) = HOxOp(X)
X 0p(x) = O [p(x)
X9 @x) = © x[Ip(x)

143

(D.55)
(D.56)
(D.57)
(D.58)
(D.59)
(D.60)
(D.61)

Bibliography

[1] M. Abadi. Temporal Logic Theorem Proving. PhD thesis, Computer Science Department, Stanford Uni-

(2]

(3]

[4]
(5]

6]

[7]
(8]

(9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

versity, Stanford, CA 94305, 1987.

G. Agha. ACTORS: A Model of Concurrent Computation in Distributed Systems. The MIT Press. Cam-
bridge, MA, 1986.

P. Agre and D. Chapman. PENGI: An implementation of a theory of activity. In Proceedings of the Sxth
National Conference on Artificial Intelligence (AAAI-87), pages 268-272, Seattle, WA, 1987.

J. F. Allen. Towards a general theory of action and time. Artificial Intelligence, 23(2):123-154, 1984.

J. Ambros-Ingerson and S. Steel. Integrating planning, execution and monitoring. In Proceedings of the
Seventh National Conference on Artificial Intelligence (AAAI-88), pages 8388, St. Paul, MN, 1988.

D. E. Appelt. Planning natural language utterances. In Proceedings of the Second National Conference on
Artificial Intelligence (AAAI-82), pages 59-62, Pittsburgh, PA, 1982.

D. E. Appelt. Planning English Sentences. Cambridge University Press: Cambridge, England, 1985.

D. E. Appelt and K. Konolige. A nonmonotonic logic for reasoning about speech acts and belief revision.
In M. Reinfrank, J. de Kleer, M. L. Ginsberg, and E. Sandewall, editors, Non-Monotonic Reasoning —
Proceedings of the Second International Workshop (LNAI Volume 346), pages 164-175. Springer-Verlag:
Heidelberg, Germany, 1988.

J. L. Austin. How to Do Things With Words. Oxford University Press. Oxford, England, 1962.

B. Baniegbal and H. Barringer. A study of an extended temporal language and a temporal fixed point
calculus. Technical Report UMCS-86-10-2, Department of Computer Science, Manchester University,
Oxford Rd., Manchester M13 9PL, UK, 1986.

H. Barringer. Up and down the temporal way. Technical Report UM CS-85-9-3, Department of Computer
Science, Manchester University, Oxford Rd., Manchester M13 9PL, UK, 1985.

H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens. METATEM: A framework for programming
intemporal logic. In REX Workshop on Stepwise Refinement of Distributed Systems: Models, Formalisms,
Correctness (LNCS \olume 430), pages 94-129. Springer-Verlag: Heidelberg, Germany, June 1989.

H. Barringer, R. Kuiper, and A. Pnueli. Now you may compose temporal logic specifications. In Proceed-
ings of the Sxteenth ACM Symposium on the Theory of Computing, pages 51-63, 1984.

J. Barwise and J. Perry. Stuations and Attitudes. The MIT Press: Cambridge, MA, 1983.

M. Ben-Ari, Z. Manna, and A. Pnueli. The temporal logic of branching time. In Proceedings of the Eighth
ACM Symposium on the Principles of Programming Languages (POPL), 1981.

A. H. Bond and L. Gasser, editors. Readings in Distributed Artificial Intelligence. Morgan Kaufmann
Publishers: San Mateo, CA, 1988.

M. E. Bratman. Intentions, Plans, and Practical Reason. Harvard University Press. Cambridge, MA,
1987.

144

[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]
[27]

[28]
[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

M. E. Bratman. What isintention? In P. R. Cohen, J. L. Morgan, and M. E. Pollack, editors, Intentionsin
Communication, pages 15-32. The MIT Press. Cambridge, MA, 1990.

R. A. Brooks. A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automa-
tion, 2(1):14-23, 1986.

R. A. Brooks. Intelligence without reason. In Proceedings of the Twelfth International Joint Conference
on Artificial Intelligence (1JCAI-91), pages 569-595, Sydney, Australia, 1991.

R. A. Brooks. Intelligence without representation. Artificial Intelligence, 47:139-159, 1991.

H. J. Burckert and J. Muller. RATMAN: Rational agents testbed for multi-agent networks. In Y. De-
mazeau and J.-P. Muller, editors, Decentralized Al 2 —Proceedings of the Second European Workshop on
Modelling Autonomous Agents and Multi-Agent Worlds (MAAMAW-90), pages 217-230. Elsevier Science
Publishers B.V.: Amsterdam, The Netherlands, 1991.

B. Burmeister and K. Sundermeyer. Cooperative problem solving guided by intentions and perception. In
E. Werner and Y. Demazeau, editors, Decentralized Al 3 — Proceedings of the Third European Workshop
on Modelling Autonomous Agents and Multi-Agent Worlds (MAAMAW-91), pages 77-92. Elsevier Science
Publishers B.V.: Amsterdam, The Netherlands, 1992.

S. Cammarata, D. McArthur, and R. Steeb. Strategies of cooperation in distributed problem solving. In
Proceedings of the Eighth International Joint Conference on Artificial Intelligence (1JCAI-83), Karlsruhe,
Federal Republic of Germany, 1983.

A. Cawsey, JR. Galliers, S. Reece, and K. Sparck Jones. Automating the librarian: Belief revision as a
base for system action and communication with the user. The Computer Journal, 25(3):221-232, June
1992.

D. Chapman. Planning for conjunctive goals. Artificial Intelligence, 32:333-378, 1987.

D. Chapman and P. Agre. Abstract reasoning as emergent from concrete activity. In M. P. Georgeff and
A. L. Lansky, editors, Reasoning About Actions & Plans — Proceedings of the 1986 Wbrkshop, pages
411-424. Morgan Kaufmann Publishers: San Mateo, CA, 1986.

B. Chellas. Modal Logic: An Introduction. Cambridge University Press: Cambridge, England, 1980.

P. R. Cohen and H. J. Levesque. Intention is choice with commitment. Artificial Intelligence, 42:213-261,
1990.

P. R. Cohen and H. J. Levesque. Rational interaction as the basis for communication. In P. R. Cohen,
J. Morgan, and M. E. Pollack, editors, Intentions in Communication, pages 221-256. The MIT Press:;
Cambridge, MA, 1990.

P. R. Cohen and C. R. Perrault. Elements of a plan based theory of speech acts. Cognitive Science,
3:177-212, 1979.

D. Connah and P. Wavish. An experiment in cooperation. In Y. Demazeau and J.-P. Milller, editors,
Decentralized Al — Proceedings of the First European Workshop on Modelling Autonomous Agents in
Multi-Agent Worlds (MAAMAW-89), pages 197-214. Elsevier Science Publishers B.V.: Amsterdam, The
Netherlands, 1990.

I. Craig. Formal Specification of Advanced Al Architectures. Ellis Horwood: Chichester, England, 1991.

N. J. Davies. A first-order theory of reasoning agents. Technical Report CSM-130, Department of Computer
Science, University of Essex, Colchester, UK, 1989.

N. J. Davies. A first-order theory of truth, knowledge and belief. In Logicsin Al — Proceedings of the
European Wor kshop JELIA-90 (LNAI Volume 478), pages 170-179. Springer-Verlag: Heidelberg, Germany,
1991.

Y. Demazeau and J.-P. M{lller, editors. Decentralized Al — Proceedings of the First European Workshop on
Modelling Autonomous Agents in Multi-Agent Worlds (MAAMAW-89). Elsevier Science Publishers B.V.:
Amsterdam, The Netherlands, 1990.

145

[37]

[38]
[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]
[51]
[52]

[53]

[54]

[55]

[56]

Y. Demazeau and J.-P. Mlller, editors. Decentralized Al 2—Proceedings of the Second European Workshop
on Modelling Autonomous Agents and Multi-Agent Worlds (MAAMAW-90). Elsevier Science Publishers
B.V.: Amsterdam, The Netherlands, 1991.

D. C. Dennett. Brainstorms. The MIT Press: Cambridge, MA, 1978.
D. C. Dennett. The Intentional Sance. The MIT Press. Cambridge, MA, 1987.

J.desRivieresand H. J. Levesque. The consistency of syntactical treatments of knowledge. InJ. Y. Halpern,
editor, Proceedings of the 1986 Conference on Theoretical Aspects of Reasoning About Knowledge, pages
115-130. Morgan Kaufmann Publishers: San Mateo, CA, 1986.

K. Devlin. Logic and Information. Cambridge University Press. Cambridge, England, 1991.

J. Doran, H. Carvajal, Y. J. Choo, and Y. Li. The MCS multi-agent testbed: Developmentsand experiments.
In S. M. Deen, editor, CKBS-90 — Proceedings of the International Working Conference on Cooperating
Knowledge Based Systems, pages 240-254. Springer-Verlag: Heidelberg, Germany, 1991.

E. H. Durfee. Coordination of Distributed Problem Solvers. Kluwer Academic Publishers: Boston, MA,
1988.

E. H. Durfee and V. Lesser. Negotiating task decomposition and allocation using partial global planning.
In L. Gasser and M. Huhns, editors, Distributed Artificial Intelligence Volume 11, pages 229-244. Pitman
Publishing: London and Morgan Kaufmann: San Mateo, CA, 1989.

E. H. Durfee and V. R. Lesser. Using partial global plans to coordinate distributed problem solvers. In
Proceedings of the Tenth International Joint Conference on Artificial Intelligence (1JCAI-87), Milan, Italy,
1987.

C. Dwork and Y. Moses. Knowledge and common knowledge in a byzantine environment |: Crash failures
(extended abstract). In J. Y. Halpern, editor, Proceedings of the 1986 Conference on Theoretical Aspects
of Reasoning About Knowledge, pages 149-170. Morgan Kaufmann Publishers: San Mateo, CA, 1986.

E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of Theoretical Computer
Science, pages 996-1072. Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1990.

E. A. Emerson and J. Y. Halpern. *Sometimes' and ‘not never’ revisited: on branching time versus linear
time temporal logic. Journal of the ACM, 33(1):151-178, 1986.

E. A. Emerson and J. Srinivasan. Branching timelogic. In J. W. de Bakker, W.-P. de Roever, and G. Rozen-
berg, editors, REX School-Workshop on Linear Time, Branching Time and Parial Order in Logics and
Models for Concurrency (LNCS Volume 354), pages 123-172. Springer-Verlag: Heidelberg, Germany,
1988.

H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.
R. Engelmore and T. Morgan, editors. Blackboard Systems. Addison-Wesley: Reading, MA, 1988.

R. Fagin and J. Y. Halpern. Belief, awareness, and limited reasoning. In Proceedings of the Ninth Inter-
national Joint Conference on Artificial Intelligence (IJCAI-85), pages 480490, Los Angeles, CA, 1985.

R. Fagin, J. Y. Halpern, and M. Y. Vardi. What can machines know? on the properties of knowledge in
distributed systems. Journal of the ACM, 39(2):328-376, 1992.

R. Fagin and M. Y. Vardi. Knowledge and implicit knowledge in a distributed environment: Preliminary
report. In J. Y. Halpern, editor, Proceedings of the 1986 Conference on Theoretical Aspects of Reasoning
About Knowledge, pages 187-206. Morgan Kaufmann Publishers: San Mateo, CA, 1986.

R. D. Fennell and V. R. Lesser. Pardlelism in artificial intelligence problem solving: A case study of
Hearsay I1. |EEE Transactions on Computers, 26(2), 1977.

I. A. Ferguson. Towards an architecture for adaptive, rational, mobile agents. In E. Werner and Y. De-
mazeau, editors, Decentralized Al 3 — Proceedings of the Third European Workshop on Modelling
Autonomous Agents and Multi-Agent Worlds (MAAMAW-91), pages 249-262. Elsevier Science Publish-
ersB.V.: Amsterdam, The Netherlands, 1992.

146

[57] R. E. Fikesand N. Nilsson. STRIPS: A new approach to the application of theorem proving to problem
solving. Artificial Intelligence, 5(2):189-208, 1971.

[58] M. Fischer and N. Immerman. Foundations of knowledge for distributed systems. In J. Y. Halpern, editor,
Proceedings of the 1986 Conference on Theoretical Aspects of Reasoning About Knowledge, pages 171—
186. Morgan Kaufmann Publishers: San Mateo, CA, 1986.

[59] M. Fisher. A resolution method for temporal logic. In Proceedings of the Twelfth International Joint
Conference on Artificial Intelligence (IJCAI-91), Sydney, Australia, August 1991.

[60] M. Fisher. Concurrent METATEM Processes — the language and itsimplementation. (In preparation), 1992.

[61] M. Fisher. A normal form for first-order temporal formulae. In Proceedings of Eleventh International
Conference on Automated Deduction (CADE-92). Springer-Verlag: Heidelberg, Germany, June 1992.

[62] M. Fisher and H. Barringer. Concurrent METATEM Processes— alanguagefor distributed Al. In European
Smulation Multiconference, Copenhagen, Denmark, June 1991.

[63] N.Francez. Fairness. Springer-Verlag: Heidelberg, Germany, 1986.

[64] D. Gabbay. Declarative past and imperative future. In B. Baniegbal, H. Barringer, and A. Pnudli, editors,
Proceedings of the Colloguium on Temporal Logic in Specification (LNCS Volume 398), pages 402—450.
Springer-Verlag: Heidelberg, Germany, 1989.

[65] J R. Galliers. A strategic framework for multi-agent cooperative dialogue. In Proceedings of the Eighth
European Conference on Artificial Intelligence (ECAI-88), pages 415420, Munich, Federal Republic of
Germany, 1988.

[66] J. R. Galliers. A Theoretical Framework for Computer Models of Cooperative Dialogue, Acknowledging
Multi-Agent Conflict. PhD thesis, Open University, UK, 1988.

[67] J. R. Galliers. Cooperative interaction as strategic belief revision. In S. M. Deen, editor, CKBS90 —
Proceedings of the International Working Conference on Cooperating Knowledge Based Systems, pages
148-163. Springer-Verlag: Heidelberg, Germany, 1991.

[68] A.Galton. Tempora logic and computer science: An overview. In A. Galton, editor, Temporal Logics and
their Applications, pages 1-52. Academic Press, 1987.

[69] P. Géardenfors. Knowledge in Flux. The MIT Press: Cambridge, MA, 1988.

[70] L. Gasser, C. Braganza, and N. Hermann. MACE: A flexible testbed for distributed Al research. In
M. Huhns, editor, Distributed Artificial Intelligence, pages 119-152. Pitman Publishing: London and Mor-
gan Kaufmann: San Mateo, CA, 1987.

[71] L. Gasser and M. Huhns, editors. Distributed Artificial Intelligence Volume 11. Pitman/Morgan Kaufman,
1989.

[72] L. Gasser, N. Rougette, R. W. Hill, and J. Lieb. Representing and using organizational knowledge in DAI
systems. In L. Gasser and M. Huhns, editors, Distributed Artificial Intelligence Volume 11, pages 55-78.
Pitman Publishing: London and Morgan Kaufmann: San Mateo, CA, 1989.

[73] M. R. Genesereth and N. Nilsson. Logical Foundations of Artificial Intelligence. Morgan Kaufmann
Publishers: San Mateo, CA, 1987.

[74] M. P. Georgeff. Communication and interaction in multi-agent planning. In Proceedings of the Third
National Conference on Artificial Intelligence (AAAI-83), Washington, D.C., 1983.

[75] M. P. Georgeff. Planning. Annual Review of Computer Science, 2:359-400, 1987.

[76] M. P. Georgeff and A. L. Lansky. Reactive reasoning and planning. In Proceedings of the Sxth National
Conference on Artificial Intelligence (AAAI-87), pages 677—682, Seattle, WA, 1987.

[77] M. L. Ginsberg. Decision procedures. In M. Huhns, editor, Distributed Artificial Intelligence, pages 3-28.
Pitman Publishing: London and Morgan Kaufmann: San Mateo, CA, 1987.

147

[78] R. Goldblatt. Logics of Time and Computation. Centre for the Study of Language and Information —
Lecture Notes Series, 1987. (Distributed by Chicago University Press).

[79] G.D. Gough. Decision procedures for temporal logic. Master’s thesis, Department of Computer Science,
Manchester University, Oxford Rd., Manchester M13 9PL, UK, October 1984.

[80] J. Y. Halpern. Reasoning about knowledge: An overview. In J. Y. Halpern, editor, Proceedings of the
1986 Conference on Theoretical Aspects of Reasoning About Knowledge, pages 1-18. Morgan Kaufmann
Publishers: San Mateo, CA, 1986.

[81] J.Y.Hapern. Using reasoning about knowledgeto analyze distributed systems. Annual Review of Computer
Science, 2:37-68, 1987.

[82] J. Y. Hapern. Knowledge and common knowledge in a distributed environment. Journal of the ACM,
37(3), 1990.

[83] J.Y.Halpernand Y. Moses. A guide to completeness and complexity for modal logics of knowledge and
belief. Artificial Intelligence, 54:319-379, 1992.

[84] D.Harel. First-Order Dynamic Logic (LNCS \Volume 68). Springer-Verlag: Heidelberg, Germany, 1979.

[85] C. Hewitt. A universal modular ACTOR formalism for Al. In Proceedings of the Third International Joint
Conference on Artificial Intelligence (1JCAI-73), pages 235-245, 1973.

[86] C.Hewitt. Viewing control structures as patternsof passing messages. Artificial Intelligence, 8(3):323-364,
1977.

[87] J. Hintikka. Knowledge and Belief. Cornell University Press: Ithaca, NY, 1962.
[88] G.E. Hughesand M. J. Cresswell. Introduction to Modal Logic. Methuen and Co., Ltd., 1968.
[89] G.E. Hughesand M. J. Cresswell. Companion to Modal Logic. Methuen and Co., Ltd., 1984.

[90] M. Huhns, editor. Distributed Artificial Intelligence. Pitman Publishing: London and Morgan Kaufmann:
San Mateo, CA, 1987.

[91] N. R. Jennings. On being responsible. In E. Werner and Y. Demazeau, editors, Decentralized Al 3 —
Proceedings of the Third European Workshop on Modelling Autonomous Agents and Multi-Agent Worlds
(MAAMAW-91), pages 93-102. Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1992.

[92] N.R. Jennings. Towards a cooperation knowledge level for collaborative problem solving. In Proceedings
of the Tenth European Conference on Artificial Intelligence (ECAI-92), pages 224228, Vienna, Austria,
1992.

[93] C. B. Jones. Systematic Software Development using VDM (second edition). Prentice Hall, 1990.

[94] L. P. Kaelbling. An architecture for intelligent reactive systems. In M. P. Georgeff and A. L. Lansky,
editors, Reasoning About Actions & Plans — Proceedings of the 1986 Workshop, pages 395-410. Morgan
Kaufmann Publishers: San Mateo, CA, 1986.

[95] J. A. W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University of California, 1968.

[96] G. Kiss. Variable coupling of agentsto their environment: Combining situated and symbolic automata. In
E. Werner and Y. Demazeau, editors, Decentralized Al 3—Proceedings of the Third European Workshop on
Modelling Autonomous Agents and Multi-Agent Worlds (MAAMAW-91), pages 231-248. Elsevier Science
Publishers B.V.: Amsterdam, The Netherlands, 1992.

[97] G. Kiss and H. Reichgelt. Towards a semantics of desires. In E. Werner and Y. Demazeau, editors,
Decentralized Al 3—Proceedings of the Third European Workshop on Modelling Autonomous Agents and
Multi-Agent Worlds (MAAMAW-91), pages 115-128. Elsevier Science Publishers B.V.: Amsterdam, The
Netherlands, 1992.

[98] K.Konolige. A first-order formalization of knowledgeand action for amulti-agent planning system. InJ. E.
Hayes, D. Michie, and Y. Pao, editors, Machine Intelligence 10, pages 41-72. Ellis Horwood: Chichester,
England, 1982.

148

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

K. Konolige. A Deduction Model of Belief and its Logics. PhD thesis, Computer Science Department,
Stanford University, Stanford, CA 94305, 1984.

K. Konolige. A Deduction Model of Belief. Pitman Publishing: London and Morgan Kaufmann: San
Mateo, CA, 1986.

K. Konolige. What awareness isn’'t: A sentential view of implicit and explicit belief (position paper).
In J. Y. Halpern, editor, Proceedings of the 1986 Conference on Theoretical Aspects of Reasoning About
Knowledge, pages 241-250. Morgan Kaufmann Publishers: San Mateo, CA, 1986.

K. Konolige. Hierarchic autoepistemic theoriesfor nonmonotonic reasoning: Preliminary report. In M. Re-
infrank, J. de Kleer, M. L. Ginsberg, and E. Sandewall, editors, Nonmonotonic Reasoning — Proceedings
of the Second International Workshop (LNAI Volume 346), pages 42-59. Springer-Verlag: Heidelberg,
Germany, 1988.

S. Kripke. Semantical analysis of modal logic. Zeitschrift fur Mathematische Logik und Grundlagen der
Mathematik, 9:67-96, 1963.

F. Kroger. Temporal Logic of Programs (EATCS Monographs on Theoretical Computer Science Vol 8).
Springer-Verlag: Heidelberg, Germany, 1987.

R. E. Ladner and J. H. Reif. The logic of distributed protocols: preliminary report. In Proceedings of
the 1986 Conference on Theoretical Aspects of Reasoning About Knowledge, pages 207—222. Morgan
Kaufmann Publishers: San Mateo, CA, 1986.

G. Lakemeyer. Steps towards a first-order theory of explicit and implicit belief. In J. Y. Halpern, editor,
Proceedings of the 1986 Conference on Theoretical Aspects of Reasoning About Knowledge, pages 325—
340. Morgan Kaufmann Publishers: San Mateo, CA, 1986.

G. Lakemeyer. A computationally attractive first-order logic of belief. In JELIA-90: Proceedings of the
European Workshop on Logics in Al (LNAI Volume 478), pages 333-347. Springer-Verlag: Heidelberg,
Germany, 1991.

L. Lamport. Sometimes is sometimes not never — but not always. In Proceedings of the Seventh ACM
Symposium on the Principles of Programming Languages (POPL), 1980.

A. L. Lansky. A representation of parallel activity based on events, structure, and causality. In M. P,
Georgeff and A. L. Lansky, editors, Reasoning About Actions & Plans — Proceedings of the 1986 Work-
shop, pages 123-160. Morgan Kaufmann Publishers. San Mateo, CA, 1986.

D. B. Lenat. BEINGS: Knowledge asinteracting experts. In Proceedings of the Fourth International Joint
Conference on Artificial Intelligence (IJCAI-75), Stanford, CA, 1975.

Y. Lespérance. A formal account of self knowledgeand action. In Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence (IJCAI-89), pages 868874, Detroit, M|, 1989.

H. J. Levesque. A logic of implicit and explicit belief. In Proceedings of the Fourth National Conference
on Artificial Intelligence (AAAI-84), pages 198-202, Austin, TX, 1984,

H. J. Levesgue, P. R. Cohen, and J. H. T. Nunes. On acting together. In Proceedings of the Eighth National
Conference on Artificial Intelligence (AAAI-90), pages 94-99, Boston, MA, 1990.

S. C. Levinson. Pragmatics. Cambridge University Press. Cambridge, England, 1983.

V. Lifschitz. On the semantics of STRIPS. In M. P. Georgeff and A. L. Lansky, editors, Reasoning About
Actions & Plans — Proceedings of the 1986 Workshop, pages 1-10. Morgan Kaufmann Publishers: San
Mateo, CA, 1986.

Z. Manna and A. Pnueli. Verification of concurrent programs. The temporal framework. In R. S. Boyer
and J. S. Maore, editors, The Correctness Problem in Computer Science. Academic Press, 1981.

J. McCarthy. Ascribing mental qualities to machines. Technica report, Stanford University Al Lab.,
Stanford, CA 94305, 1978.

149

[118] J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint of artificial intelligence.
In B. Meltzer and D. Michie, editors, Machine Intelligence 4. Edinburgh University Press, 1969.

[119] J. McCléelland and D. Rumelhart. Parallel Distributed Processing. The MIT Press. Cambridge, MA, 1987.
[120] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[121] R. Montague. Syntactical treatments of modality, with corollaries on reflexion principles and finite axio-
matizations. Acta Philosophica Fennica, 16:153-167, 1963.

[122] R. C. Moore. Reasoning about knowledge and action. In Proceedings of the Fifth International Joint
Conference on Artificial Intelligence (IJCAI-77), Cambridge, MA, 1977.

[123] R. C. Moore. Semantical considerationsin non-monotonic reasoning. Artificial Intelligence, 25(1), 1985.

[124] R. C. Moore. A formal theory of knowledge and action. In J. F. Allen, J. Hendler, and A. Tate, editors,
Readings in Planning, pages 480-519. Morgan Kaufmann Publishers: San Mateo, CA, 1990.

[125] L. Morgenstern. A first-order theory of planning, knowledge, and action. In J. Y. Halpern, editor, Pro-
ceedings of the 1986 Conference on Theoretical Aspects of Reasoning About Knowledge, pages 99-114.
Morgan Kaufmann Publishers: San Mateo, CA, 1986.

[126] L. Morgenstern. Knowledge preconditionsfor actionsand plans. In Proceedings of the Tenth Inter national
Joint Conference on Artificial Intelligence (1JCAI-87), pages 867-874, Milan, Italy, 1987.

[127] Y. Moses and M. Tennenholtz. On formal aspects of artificial social systems. Technical Report CS91-01,
Weizmann Ingtitute of Science, Rehovot: Israel, 1991.

[128] W. Penczek. Branching time and partial order in temporal logic. Technical Report UMCS-91-3-3, De-
partment of Computer Science, Manchester University, Oxford Rd., Manchester M13 9PL, UK, 1991.

[129] D. Perlis. Languages with self reference I: Foundations. Artificial Intelligence, 25:301-322, 1985.

[130] D. Perlis. Languages with self reference I1: Knowledge, belief, and modality. Artificial Intelligence,
34:179-212, 1988.

[131] D. Perlis. Metainlogic. In P Maes and D. Nardi, editors, Meta-Level Architectures and Reflection, pages
37-49. Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1988.

[132] C.R. Perault. An application of default logic to speech acts theory. In P. R. Cohen, J. Morgan, and M. E.
Pollack, editors, Intentionsin Communication, pages 161-186. The MIT Press: Cambridge, MA, 1990.

[133] A.Pnueli. Thetemporal logic of programs. |n Proceedings of the Eighteenth Symposiumon the Foundations
of Computer Science, 1977.

[134] A. Pnueli. Specification and development of reactive systems. In Information Processing 86. Elsevier
Science Publishers B.V.: Amsterdam, The Netherlands, 1986.

[135] A. Pnueli. Applications of temporal logic to the specification and verification of reactive systems. In
REX School-Workshop on Linear Time, Branching Time, and Partial Order in Logics and Models for
Concurrency, Noordwijkerhout, Netherlands, 1988.

[136] A. Prior. Past, Present and Future. Oxford University Press: Oxford, England, 1967.

[137] H. Reichgelt. A comparison of first-order and modal logics of time. In P. Jackson, H. Reichgelt, and F. van
Harmelen, editors, Logic Based Knowledge Representation, pages 143-176. The MIT Press: Cambridge,
MA, 1989.

[138] H. Reichgelt. Logicsfor reasoning about knowledge and belief. Knowledge Engineering Review, 4(2):119—
139, 1989.

[139] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81-132, 1980.
[140] J. S. Rosenschein. Synchronisation of multi-agent plans. In Proceedings of the Second National Conference
on Artificial Intelligence (AAAI-82), Pittsburgh, PA, 1982.

150

[141] J. S. Rosenschein. Rational Interaction: Cooperation Among Intelligent Agents. PhD thesis, Computer
Science Department, Stanford University, Stanford, CA 94305, 1985.

[142] S. Rosenschein. Formal theories of knowledge in Al and robotics. New Generation Computing, pages
345-357, 1985.

[143] S. Rosenscheinand L. P. Kaelbling. The synthesis of digital machines with provable epistemic properties.
In J. Y. Halpern, editor, Proceedings of the 1986 Conference on Theoretical Aspects of Reasoning About
Knowledge, pages 83-98. Morgan Kaufmann Publishers: San Mateo, CA, 1986.

[144] E. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial Intelligence, 5:115-135, 1974.

[145] J. R. Searle. Speech Acts: An Essay in the Philosophy of Language. Cambridge University Press. Cam-
bridge, England, 1969.

[146] J. R. Searle. Expression and Meaning. Cambridge University Press. Cambridge, England, 1979.
[147] N. Sedl. Agent Theories and Architectures. PhD thesis, Surrey University, Guildford, UK, 1989.

[148] N. Sedl. Intentional descriptions of reactive systems. In Y. Demazeau and J.-P. Mller, editors, Decent-
ralized Al 2 — Proceedings of the Second European Workshop on Modelling Autonomous Agents and
Multi-Agent Worlds (MAAMAW-90), pages 15-34. Elsevier Science Publishers B.V.: Amsterdam, The
Netherlands, 1991.

[149] N. Shardlow. Actionand agency in cognitive science. Master’sthesis, Department of Psychlogy, University
of Manchester, Oxford Rd., Manchester M13 9PL, UK, 1990.

[150] Y. Shoham. Time for action: on the relation between time, knowledge and action. In Proceedings of the
Eleventh International Joint Conference on Artificial Intelligence (1JCAI-89), pages 954-959, Detroit, M1,
1989.

[151] Y. Shoham. Agent-oriented programming. Technical Report STAN-CS-1335-90, Computer Science De-
partment, Stanford University, Stanford, CA 94305, 1990.

[152] M. P. Singh. Towards a theory of situated know-how. In Proceedings of the Ninth European Conference
on Artificial Intelligence (ECAI-90), pages 604—609, Stockholm, Sweden, 1990.

[153] M. P Singh. Group ability and structure. In'Y. Demazeau and J.-P. Mller, editors, Decentralized Al 2 —
Proceedings of the Second European Wor kshop on Modelling Autonomous Agents and Multi-Agent Worlds
(MAAMAW-90), pages 127-146. Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1991.

[154] M. P. Singh. Towards a formal theory of communication for multi-agent systems. In Proceedings of
the Twelfth International Joint Conference on Artificial Intelligence (IJCAI-91), pages 69-74, Sydney,
Australia, 1991.

[155] M.P Singh. A critical examination of the Cohen-Levesguetheory of intention. In Proceedings of the Tenth
European Conference on Artificial Intelligence (ECAI-92), pages 364-368, Vienna, Austria, 1992.

[156] M. P. Singh and N. M. Asher. Towards a formal theory of intentions. In Logics in Al — Proceedings
of the European Workshop JELIA-90 (LNAI Volume 478), pages 472-486. Springer-Verlag: Heidelberg,
Germany, 1991.

[157] A. Sistla. Theoretical issuesin the design and verification of distributed systems. Technical Report CMU-
CS-83-146, School of Computer Science, Carnegie-Mellon University, Pittsburgh, PA, 1983.

[158] A. P Sistla, E. M. Clarke, N. Francez, and A. R. Meyer. Can message buffers be axiomatized in temporal
logic? Information and Control, 63(1/2), 1985.

[159] R. G. Smith. The CONTRACT NET: A formalism for the control of distributed problem solving. In
Proceedings of the Fifth International Joint Conference on Artificial Intelligence (IJCAI-77), Cambridge,
MA, 1977.

[160] R. G. Smith. The contract net protocol. |EEE Transactions on Computers, C-29(12), 1980.

151

[161]
[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]
[170]

[171]

[172]
[173]

[174]

[175]

[176]

[177]

[178]

[179]

R. G. Smith. A Framework for Distributed Problem Solving. UMI Research Press, 1980.

R. G. Smith and R. Davis. Frameworks for cooperation in distributed problem solving. |EEE Transactions
on Systems, Man, and Cybernetics, 11(1), 1980.

R. M. Smullyan. First-Order Logic. Springer-Verlag: Heidelberg, Germany, 1968.

L. Sommaruga, N. Avouris, and M. Van Liedekerke. An environment for experimentation with interact-
ive cooperating knowledge-based systems. In N. Shadbolt, editor, Research and Development in Expert
Systems V1. Cambridge University Press: Cambridge, England, 1989.

L. Steels. Cooperation between distributed agents through self organization. In Y. Demazeau and J.-P.
M{ller, editors, Decentralized Al — Proceedings of the First European Workshop on Modelling Autonom-
ous Agentsin Multi-Agent Worlds (MAAMAW-89), pages 175-196. Elsevier Science Publishers B.V.: Am-
sterdam, The Netherlands, 1990.

C. Stirling. Completeness results for full branching time logic. In REX School-Workshop on Linear Time,
Branching Time, and Partial Order in Logics and Modelsfor Concurrency, Noordwijkerhout, Netherlands,
1988.

A. Tate. Generating project networks. In Proceedings of the Fifth International Joint Conference on
Artificial Intelligence (IJCAI-77), Cambridge, MA, 1977.

A. Thayse, editor. From Modal Logic to Deductive Databases. John Wiley & Sons: Chichester, England,
1989.

R. Thomason. A note on syntactical treatments of modality. Synthese, 44:391-395, 1980.

G. Tidhar and J. Rosenschein. A contract net with consultants. In Proceedings of the Tenth European
Conference on Artificial Intelligence (ECAI-92), pages 219-223, Vienna, Austria, 1992.

M. Torrance and P. A. Viola. The AGENTO manual. Technical report, Program in Symbolic Systems,
Stanford University, CA, 1991.

R. Turner. Truth and Modality for Knowledge Representation. Pitman Publishing: London, 1990.

H. Van Dyke Parunak. Manufacturing experience with the contract net. In M. Huhns, editor, Distributed
Artificial Intelligence, pages 285-310. Pitman Publishing: London and Morgan Kaufmann: San Mateo,
CA, 1987.

H. van dyke Parunak. Distributed Al and manufacturing control: Someissuesandinsights. In'Y. Demazeau
and J.-P. Muller, editors, Decentralized Al — Proceedings of the First European Workshop on Modelling
Autonomous Agents in Multi-Agent Worlds (MAAMAW-89), pages 81-104. Elsevier Science Publishers
B.V.: Amsterdam, The Netherlands, 1990.

P. Wavish. Exploiting emergent behaviour in multi-agent systems. In E. Werner and Y. Demazeau, editors,
Decentralized Al 3—Proceedings of the Third European Workshop on Modelling Autonomous Agents and
Multi-Agent Worlds (MAAMAW-91), pages 297-310. Elsevier Science Publishers B.V.: Amsterdam, The
Netherlands, 1992.

E. Werner. A formal computational semantics and pragmatics of speech acts. In Proceedings COLING-88,
pages 744—749, 1988.

E. Werner. Social intentions. In Proceedings of the Eighth European Conference on Artificial Intelligence
(ECAI-88), pages 719-723, Munich, Federal Republic of Germany, 1988.

E. Werner. Toward a theory of communication and cooperation for multiagent planning. In M. Y. Vardi,
editor, Proceedings of the Second Conference on Theoretical Aspects of Reasoning About Knowledge, pages
129-144. Morgan Kaufmann Publishers: San Mateo, CA, 1988.

E. Werner. Cooperating agents: A unified theory of communication and social structure. In L. Gasser and
M. Huhns, editors, Distributed Artificial Intelligence Volume 11, pages 3—36. Pitman Publishing: London
and Morgan Kaufmann: San Mateo, CA, 1989.

152

[180]

[181]

[182]

[183]

[184]

[185]

[186]
[187]

[188]

[189]

[190]

E. Werner. Distributed cooperation algorithms. In'Y. Demazeau and J.-P. Muller, editors, Decentralized Al
— Proceedings of the First European Workshop on Modelling Autonomous Agents in Multi-Agent Worlds
(MAAMAW-89), pages 17-32. Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1990.

E. Werner. What can agents do together: A semantics of co-operative ability. In Proceedings of the Ninth
European Conference on Artificial Intelligence (ECAI-90), pages 694—701, Stockholm, Sweden, 1990.

E. Werner. Planning and uncertainty. In Proceedings of the Tenth Workshop of the Planning Special Interest
Group, Cambridge, UK, 1991.

E. Werner. A unified view of information, intention and ability. In Y. Demazeau and J.-P. Mller, editors,
Decentralized Al 2 — Proceedings of the Second European Workshop on Modelling Autonomous Agents
and Multi-Agent Worlds (MAAMAW-90), pages 109-126. Elsevier Science Publishers B.V.: Amsterdam,
The Netherlands, 1991.

D. Wilkins. Practical Planning: Extending the Classical Al Planning Paradigm. Morgan Kaufmann
Publishers: San Mateo, CA, 1988.

T. Wittig. ARCHON: Cooperation of heterogeneous on-line systems. In Wissenbasierte Systeme — Pro-
ceedings of the Third International Congress. Springer-Verlag: Heidelberg, Germany, 1989.

P. Wolper. Temporal logic can be more expressive. Information and Control, 56, 1983.

M. Wooldridge. An approach to reasoning about multi-agent systems. In Proceedings of the Third UK
Workshop on Belief Representation and Agent Architecture (BRAA-92), University of Durham, UK, June
1992.

M. Wooldridge and M. Fisher. A first-order branching time logic of multi-agent systems. In Proceedings
of the Tenth European Conference on Artificial Intelligence (ECAI-92), pages 234238, Vienna, Austria,
1992.

M. Wooldridge, G. M. P. O'Hare, and R. Elks. FELINE — a case study in the design and implementation
of a co-operating expert system. In Proceedings of the Eleventh European Conference on Expert Systems
and Their Applications, Avignon, France, May 1991.

G. Zlotkin and J. S. Rosenschein. Negotiation and task sharing among autonomous agents in cooperative
domains. In Proceedings of the Eleventh International Joint Conference on Artificial Intelligence (IJCAI-
89), pages 912917, Detroit, M1, 1989.

153

