
33

Łukasiewicz Games: A Logic-Based Approach to Quantitative
Strategic Interactions

ENRICO MARCHIONI and MICHAEL WOOLDRIDGE, Department of Computer Science,
University of Oxford, UK

Boolean games provide a simple, compact, and theoretically attractive abstract model for studying multia-
gent interactions in settings where players will act strategically in an attempt to achieve individual goals.
A standard critique of Boolean games, however, is that the strictly dichotomous nature of the preference
relations induced by Boolean goals inevitably trivialises the nature of such strategic interactions: a player is
assumed to be indifferent between all outcomes that satisfy her goal, and indifferent between all outcomes
that do not satisfy her goal. While various proposals have been made to overcome this limitation, many of
these proposals require the inclusion of nonlogical structures into games to capture nondichotomous prefer-
ences. In this article, we introduce Łukasiewicz games, which overcome this limitation by allowing goals to
be specified using Łukasiewicz logics. By expressing goals as formulae of Łukasiewicz logics, we can express
a much richer class of utility functions for players than is possible using classical Boolean logic: we can
express every continuous piecewise linear polynomial function with rational coefficients over [0, 1]n as well
as their finite-valued restrictions over {0, 1/k, . . . , (k − 1)/k, 1}n. We thus obtain a representation of nondi-
chotomous preference structures within a purely logical framework. After introducing the formal framework
of Łukasiewicz games, we present a number of detailed worked examples to illustrate the framework, and
then investigate some of their theoretical properties. In particular, we present a logical characterisation of
the existence of Nash equilibria in finite and infinite Łukasiewicz games. We conclude by briefly discussing
issues of computational complexity.

CCS Concepts: ! Theory of computation → Logic; ! Computing methodologies → Artificial intel-
ligence; Knowledge representation and reasoning; Multiagent systems

Additional Key Words and Phrases: Logic, games, Łukasiewicz logics, knowledge representation, multiagent
systems

ACM Reference Format:
Enrico Marchioni and Michael Wooldridge. 2015. Łukasiewicz games: A logic-based approach to quantitative
strategic interactions. ACM Trans. Comput. Logic 16, 4, Article 33 (September 2015), 44 pages.
DOI: http://dx.doi.org/10.1145/2783436

1. INTRODUCTION
Boolean games provide a simple, compact, and elegant abstract mathematical model
for studying multiagent interactions in settings where players will act strategically in
an attempt to achieve individual goals [Harrenstein et al. 2001; Bonzon et al. 2006a;

This work greatly extends the results presented in Marchioni and Wooldridge [2014]. Marchioni acknowl-
edges partial support of the Marie Curie Intra-European Fellowship “NAAMSI” (301625, FP7-PEOPLE-
2011-IEF). Wooldridge was supported by the ERC under Advanced Investigator Grant “RACE” (291528).
Both authors also acknowledge support from the EPSRC under grant EP/M009130/1 (“Combining Qualita-
tive and Quantitative Reasoning for Logic-based Games”).
Authors’ addresses: E. Marchioni and M. Wooldridge, Department of Computer Science, University of Oxford,
Oxford OX1 3QD, UK; emails: {enrico.marchioni, mjw}@cs.ox.ac.uk.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c⃝ 2015 ACM 1529-3785/2015/09-ART33 $15.00
DOI: http://dx.doi.org/10.1145/2783436

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

33:2 E. Marchioni and M. Wooldridge

Dunne et al. 2008; Grant et al. 2011]. In a Boolean game, each player i exercises
unique control over a set of Boolean variables Vi, and will attempt to assign values
for these variables in such a way as to satisfy an individual goal φi, expressed as a
formula of propositional logic over the overall set of variables V. Strategic concerns
in Boolean games arise from the fact that whether i’s goal is in fact satisfied will
depend in part on the choices made by other players, that is, the assignments that they
make to the variables under their control. Players in Boolean games can be understood
as representing nondeterministic computer programs, and the overall framework of
Boolean games provides an elegant mathematical model through which to investigate
issues of strategic interaction in multiagent systems.

A standard critique of Boolean games is that the binary nature of goals (satisfied
or unsatisfied) inevitably trivialises the nature of strategic interactions. For example,
players are assumed to be indifferent between all outcomes that satisfy their goal, and
are indifferent between all outcomes that do not satisfy their goal. This assumption
is clearly unrealistic for many situations, a concern that led researchers to extend
the original Boolean games model with costs, leading to richer and more realistic
preference structures for agents [Wooldridge et al. 2013]. While these refinements
make it possible to model much richer types of interaction, the inherently dichotomous
nature of preferences in Boolean games remains one of their most debated features,
and the work in the present article is directly motivated by this limitation.

Specifically, we introduce Łukasiewicz games, which provide an alternative mech-
anism for going beyond dichotomous preferences in Boolean games. In Łukasiewicz
games, we allow goals to be specified as formulae of Łukasiewicz logics, which form a
family of both infinite- and finite-valued systems. The rationale for using Łukasiewicz
logics is that these logics allow us to represent much richer utility functions than is
possible using two-valued logic, while at the same time staying within the purely log-
ical framework offered by Boolean games. In particular, if we use Łukasiewicz logics
over n variables to represent player goals, then by the McNaughton Theorem (and its
variants), we can express every continuous piecewise linear polynomial function with
integer (and rational) coefficients over [0, 1]n as well as their finite-valued restrictions
over

{
0,

1
k
, . . . ,

k − 1
k

, 1
}n

(see, e.g., Cignoli et al. [2000] and Gerla [2001]). Thus, we argue, Łukasiewicz logics
provide a natural, compact, formally well-defined and expressive logical representa-
tion language for payoff functions, allowing much richer utility functions, and hence
preference structures, than is easily possible in standard Boolean games.

The remainder of this article is structured as follows:

—We begin, in the following section, by discussing the motivation for our work and
related work in more detail.

—In Section 3, we introduce the key technical notions that are used throughout the
article. In particular, since Łukasiewicz logics are not as widely known as Classical
logic, we provide a complete self-contained introduction to the five variations
of Łukasiewicz logic that will be our key formal systems in what follows: infinite-
valued Łukasiewicz logic, Rational Pavelka logic, Rational Łukasiewicz logic,
finite-valued Łukasiewicz logics, and finite-valued Łukasiewicz logics with con-
stants. In addition, we present some technical results relating to these logics that
are used to prove results presented in the main text.

—Section 4 then introduces the formal framework of Łukasiewicz games, and in
Section 5, we present a number of detailed worked examples, which illustrate how a

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

Łukasiewicz Games 33:3

range of strategic scenarios can be formalised within this framework. In particular,
we argue, these scenarios cannot naturally be formalised using conventional Boolean
games.

—In Section 6 we establish some basic properties of Łukasiewicz games and show
that any game can be translated into a normalised form, which preserves the Nash
equilibria of the original game.

—Sections 7 and 8 study finite and infinite Łukasiewicz games, respectively. In both
cases, our key results relate to the presentation of a logical characterisation for the
existence of a Nash equilibrium in the respective game. In particular, we show that
for every Łukasiewicz game G there exists a formula whose satisfiability set coincides
with the set of equilibria of G. In addition, Section 9 presents some results on the
existence of equilibria that are specific to infinite Łukasiewicz games.

—Finally, in Section 10, we investigate the complexity of the key decision problems for
Łukasiewicz games.

2. MOTIVATION AND BACKGROUND
The use of game theoretic concepts has a long history in computing, but the past decade
has been witness to an unprecedented growth of interest in the subject (see, e.g., Nisan
et al. [2007]). This explosion of interest has been largely spurred by the realisation that
in order to understand the behaviour of systems such as internet-based auction sites, it
is necessary to take into account the fact that the participants in such systems will act
strategically in pursuit of their personal goals and preferences. Game theory provides
the basic mathematical framework through which self-interested strategic behavior
can be modelled and analysed.1

Perhaps the most widely applied and best-known model used in game theory is that of
a strategic-form noncooperative game (hereafter just “strategic-form game”), and indeed
this model underpins those that we introduce in the present article. We will therefore
begin by briefly recalling this model and the key concepts used to analyse it. A strategic-
form game is populated by a finite and nonempty set P of agents—the players of the
game. The task of a player is simply to choose one from a set Si of strategies. When every
player has selected a strategy, then the outcome is a strategy profile, s⃗ = (s1, . . . , sn).
Players have preferences over outcomes, given by utility functions

ui : S1 × · · · × Sn → R,

which for every possible combination of choices s⃗ ∈ S1 × · · ·×Sn give a real number ui(s⃗)
representing the utility or payoff that player i would receive if the players made choices
resulting in the outcome s⃗. Utility functions represent the preferences of players in the
following way: player i strictly prefers outcome s⃗1 over outcome s⃗2 if ui(s⃗1) > ui(s⃗2).

Definition 2.1 (Strategic-Form Game). A strategic-form game is given by a structure:
G = ⟨P, {Si}i∈P, {ui}i∈P⟩,

where

(1) P = {P1, . . . , Pn} is a finite and nonempty set of players;
(2) Si is the nonempty set of strategies available to player i; and
(3) ui : S1 × · · · × Sn → R is the utility function for player i.

Players seek to maximize the utility they receive in an outcome. However, since the
utility player i will receive from an outcome depends not just on the choice made by

1The game theory literature is large, and it is difficult to identify a definitive reference. One comprehensive
and authoritative contemporary textbook is Maschler et al. [2013], which also provides extensive references
to the original game theory research literature.

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

33:4 E. Marchioni and M. Wooldridge

player i, but on the choices made by others, then when making her choice of which
strategy to play, i must reason strategically, taking into account the preferences of
other players and the fact that they too will reason strategically. Game theory proposes
a number of solution concepts for strategic-form games, which characterise the possible
rational outcomes of a game under the assumption that players reason strategically.
For the purposes of this article, the most relevant solution concept is that of a (pure
strategy) Nash equilibrium. To define this, we need a little more notation. Where s⃗ =
(s1, . . . , si, . . . , sn) is a strategy profile and s′

i ̸= si ∈ Si, then by (s′
i, s⃗−i) we mean the

strategy profile that is the same as s⃗ except that player i chooses s′
i:

(s′
i, s⃗−i) = (s1, . . . , s′

i, . . . , sn).

We say s⃗ is a pure strategy Nash equilibrium (hereafter just “Nash equilibrium”) if for
all players i ∈ P and for all strategies s′

i ̸= si ∈ Si we have ui(s⃗) ≥ ui(s′
i, s⃗−i). Thus,

the fact that s⃗ is a Nash equilibrium means that no player can benefit by unilaterally
changing their choice.

If we consider strategic-form games from a computational perspective, then many
natural problems suggest themselves (see, e.g., Nisan et al. [2007] for a detailed sur-
vey). The problem to which we address ourselves in the present article is that of
representing games. If we examine the definition of games given above, we see that
utility functions take as input a strategy profile and return as output a real number.
Assuming there are n players in total (|P| = n), and each player has m strategies to
choose between (|Si| = m), then the domain of a utility function ui(· · ·) will be of size
mn. This implies that representing such utility functions explicitly, by listing the value
of the function for every possible input, will be utterly infeasible in general. This mo-
tivates the development of succinct representation schemes for games. Observe that
we cannot hope for a representation scheme that will allow us to represent all games
compactly; a reasonable goal, however, is to seek representation schemes that have
large space requirements in the worst case, but which admit compact representations
for cases of interest. Of course, we cannot divorce the development of succinct rep-
resentation schemes for games from the complexity of computing solutions to these
games: as a general rule, the more compact a representation scheme for games we
devise, the harder will be the associated computational problems for these games. An
important research theme in computational game theory is therefore the development
of representation schemes for games that admit efficient algorithms for the relevant
computational problems (in particular, computing solution concepts), and to map out
the frontier between tractable and intractable cases.

One representation for games that has received considerable attention within the
multiagent systems research community is that of Boolean games [Harrenstein et al.
2001; Bonzon et al. 2006a; Dunne et al. 2008; Grant et al. 2011]. The basic idea of
a Boolean game is that each player in the game is associated with a set of Boolean
variables Vi, and the strategies available to player i correspond to the set of all pos-
sible Boolean assignments that player i can make to her variables. Since a player i
controlling variable set Vi will have 2|Vi | strategies available to choose from, Boolean
games have a compact representation for the set of strategies available to an agent.
When every player has chosen a valuation for their variables, the result will be a propo-
sitional valuation for the total set of variables V =

⋃
i∈P Vi. Preferences in standard

Boolean games are dichotomous: every agent is associated with an individual goal φi,
represented as a propositional logic formula over V, and will attempt to assign values
for the variables Vi under her control so as to satisfy φi. Strategic concerns in Boolean
games arise from the fact that whether i’s goal is in fact satisfied will depend in part
on the choices made by other players, that is, the valuations that they make to their
variables. A player will be assumed to strictly prefer an outcome that satisfies her goal

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

Łukasiewicz Games 33:5

over an outcome that does not, but is indifferent between two outcomes that satisfy
her goal or fail to satisfy her goal. While in the worst case we might need to specify a
player’s goal using a formula of size exponential in the number of Boolean variables V,
the use of logic to specify goals frequently permits a compact representation.

We formally define Boolean games and the strategic-form games corresponding to
them as follows:

Definition 2.2 (Boolean Games). A Boolean game, B, is given by a structure

B = ⟨P, V, {Vi}i∈P, {φi}i∈P⟩,
where

(1) P = {P1, . . . , Pn} is a finite set of players.
(2) V = {p1, . . . , pm} is a finite set of propositional variables.
(3) Vi ⊆ V is the set of propositional variables under control of player Pi, so that the

sets Vi form a partition of V.
(4) φi is a propositional formula over variables V representing the goal of player i.

A strategy for player i ∈ P is a Boolean valuation for the variables under the control of
i, that is, a function si : Vi → {0, 1}. A strategy profile is a tuple s⃗ = (s1, . . . , sn), which
thus gives a valuation for the overall set of variables V. We write s⃗ |= φ to mean that
propositional formula φ is satisfied under the valuation corresponding to s⃗.

The Boolean game B = ⟨P, V, (Vi)i∈P, (φi)i∈P⟩ then induces a strategic-form game
GB = ⟨P, (Si)i∈P, (ui)i∈P⟩ as follows:

(1) The player set P is the same.
(2) For each player i ∈ P we have

Si = {si | si : Vi → {0, 1}}.
(3) For each player i ∈ P and for each outcome s⃗ we have

ui(s⃗) =
{

1 if s⃗ |= φi
0 otherwise.

With this correspondence in place, we can apply the standard game theoretic solution
concepts for strategic-form games to Boolean games. The two most important compu-
tational problems associated with Boolean games are MEMBERSHIP (the task of checking
whether a given outcome is a Nash equilibrium of a given game), and NONEMPTINESS
(the task of checking whether a given game has any Nash equilibrium). MEMBERSHIP is
co-NP-complete, while NONEMPTINESS is "

p
2 -complete [Bonzon et al. 2006a].

Boolean games represent an important model for multiagent systems research for
at least two reasons. First, players in Boolean games can naturally be understood as
an abstract model of nondeterministic computer programs. The choices available to
a player correspond to the assignments of truth or falsity that the player can make
to the variables under her control. The model does not specify which choice a player
will make—hence the nondeterminism in the model. Given their logically specified
preferences, the idea is that a player in a game should resolve their nondeterminism
strategically, attempting to choose values for their variables so as to satisfy their goal.
We can understand the players as generating a computation as they assign values to
their variables. Thus, Boolean games provide a high-level model of multiagent systems
in which players have logically specified goals. As an aside, we note that the model has
something of the flavour of the REACTIVE MODULES system modelling language that is
used in several model checkers [Alur and Henzinger 1999]. This nondeterministic lan-
guage specifies the choices available to agents through rule-like guarded commands.
Boolean games can naturally be captured within this language; the key difference is

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

33:6 E. Marchioni and M. Wooldridge

that in Boolean games, a player can make an arbitrary assignment of values to vari-
ables, while in REACTIVE MODULES, a player can only make an assignment corresponding
to an enabled guarded command.

Second, the use of logic to define the goals of players is consistent both with the stan-
dard model of planning in artificial intelligence, where goals for agents are normally
specified as logical formulae [Ghallab et al. 2004], and also, of course, with the main-
stream computer science approach to the specification of computer systems. Overall,
the framework of Boolean games provides a simple, elegant, compact, and powerful
mathematical model through which to investigate issues of strategic interaction in
multiagent systems, which has a natural computational interpretation.

It is also worth noting that, although their primary interest is as an abstract theoret-
ical model, Boolean games have proved to have an increasing number of applications.
For example, [Levit et al. 2013a] uses Boolean games for modelling recharging schemes
for electric vehicles, while [Levit et al. 2013b] uses Boolean games to model traffic sig-
nalling systems.

However, the basic model of Boolean games that we described above has an impor-
tant limitation: it is restricted to scenarios in which player preferences are strictly
dichotomous. Thus, players are either satisfied or unsatisfied with an outcome. Various
extensions to the basic Boolean games model have been proposed in an attempt to over-
come this limitation. For example, associating costs with assignments induces pseu-
dodichotomous preference structures: agents always prefer to achieve their goals rather
than otherwise, but secondarily would prefer to minimise costs (see, e.g., Wooldridge
et al. [2013]).

Some proposals to enrich logical models by adding numerical values to represent
payoffs and their maximisation have also been put forward (see Bulling and Goranko
[2013]). The logical systems defined are essentially expansions of existing modal logics
for multiplayer games, obtained by adding arithmetical constraints to the language.
These logics make it possible to express the fact that certain (coalitions of) agents
bring about an outcome with a guaranteed payoff, represented by a classical modal
two-valued formula.

Other alternatives considered in the literature include the use of weighted logical
goal formulae [Mavronicolas et al. 2007]. Also worth mentioning here is the work
of Bonzon et al. [2006b], who investigate a number of possible mechanisms for ex-
tending Boolean games in order to capture nondichotomous preferences. For example,
the authors consider representing preferences via ordered lists of formulae, via sets of
formulae (leading to “distributed evaluation games,” where a player prefers to satisfy
larger sets of goals), and by augmenting Boolean games with a CP-net representa-
tion [Boutilier et al. 2004]. All of these approaches have advantages, but note that all
of them can be understood as augmenting a logical representation with a nonlogical
representation in order to obtain a richer preference structure. In short, they involve
moving away from the attractive purely logical structure offered by Boolean games in
which players simply have a logically specified goal.

Finally, there have also been many attempts to formulate preference logics, typi-
cally as variants of modal logic. However, it is generally acknowledged that existing
proposals have limitations [van Benthem 2014].

The aim of the present article is to develop a representation scheme for games that
retains the purely logical structure of standard Boolean games, but allows for the
definition of much richer utility functions than is possible in those games. That is, we
want to be able to represent nondichotomous preference relations in a purely logical
framework, without tacking on additional nonlogical constructions. In other words,
while it is certainly possible to augment classical logic representations with features for
representing nondichotomous preferences, we believe it is useful and valuable instead

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

Łukasiewicz Games 33:7

to attempt to develop purely logical representations for nondichotomous preferences.
Our proposal in this article represents one such approach. We do not argue that the
approach is necessarily superior to the alternatives presented above but because it is
based on a purely logical representation, it retains the attractive features of such a
representation (precise logical semantics, etc.).

The basic idea underpinning our approach is to use Łukasiewicz logics as specification
languages for player’s goals. We begin our presentation, in the following section, with
an overview of Łukasiewicz logics, introducing the variations of Łukasiewicz logic that
we use, and presenting some key results relating to those systems that we make use
of later in the article.

3. PRELIMINARY DEFINITIONS
Since Łukasiewicz logics are fundamental to our present work, but are not as widely
known as the classical two-valued logic that underpins conventional Boolean games, we
begin by introducing the concepts of Łukasiewicz logics, their related class of functions,
and the theories of their related semantic structures that will be extensively used in
the remainder of the article. Notice that we limit our presentation to the notions that
are needed to understand our treatment of Łukasiewicz games. The interested reader
can find an extensive treatment of Łukasiewicz logics and their semantics in Cignoli
et al. [2000], Di Nola and Leustean [2011], and Mundici [2011].

When we talk about Łukasiewicz logics, we refer to a class of systems that includes
both finite- and infinite-valued logics. The main system in this class is the infinite-
valued Łukasiewicz logic Ł∞, which is the logic of the class of continuous piecewise
linear polynomial functions with integer coefficients over [0, 1]n, called McNaughton
functions. Finite-valued Łukasiewicz logics Łk are the systems obtained by restricting
McNaughton functions over the set

Lk =
{

0,
1
k
, . . . ,

k − 1
k

, 1
}

,

for k ≥ 1. Ł∞ and Łk share the same language and are the systems historically defined
as Łukasiewicz logics.

Here, we include in this class also expansions of Ł∞ and Łk that make it possible to
define constant functions for every rational number in [0, 1] and every element of Lk,
respectively. These logics are

(1) the Rational Pavelka logic RPŁ∞ [Pavelka 1979; Hájek 1998], which is the logic of
McNaughton functions with rational truth constants;

(2) the Rational Łukasiewicz logic RŁ∞ [Gerla 2001], which is the logic of rational
McNaughton functions, that is, continuous piecewise linear polynomial functions
with rational coefficients over [0, 1]n; and

(3) the finite-valued logics Łc
k, which are the logics of restrictions of McNaughton func-

tions over (Lk)n with constants from Lk.

The reason for including also these logics rather than just the basic Łukasiewicz
systems is that we want to take advantage of their greater expressive power to specify
a wider class of games while retaining a common logical framework. We can then offer
a general study of Łukasiewicz games as a whole by exploiting the common properties
shared by the logics of this class, which can be seen as the logics of continuous piecewise
linear function with rational coefficients and their finite-valued restrictions. Table I
offers an overview of the logics we introduce, along with the related class of functions,
semantic structures, and their first-order theory.

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

33:8 E. Marchioni and M. Wooldridge

Table I. Łukasiewicz Logics, Their Associated Class of Functions, Their Semantic structures,
and First-Order Theory

Logic Class of Functions Semantic Structure Theory
Infinite-valued
Łukasiewicz logic

Ł∞

McNaughton functions:
continuous piecewise
linear functions with
integer coefficients over
[0, 1]

Standard Real
MV-algebra:

MV∞ = ⟨[0, 1], ⊕, ¬, 0⟩
Th(MV∞)

Rational Pavelka
logic

RPŁ∞

McNaughton functions
with rational constants

Standard Real
MV-algebra with
rational constants:

MVc
∞ =

〈
[0, 1], ⊕,

¬, {c}c∈Q∩[0,1]
〉

Th(MVc
∞)

Rational
Łukasiewicz logic

RŁ∞

Rational McNaughton
functions:
continuous piecewise
linear functions with
rational coefficients
over [0, 1]

Standard Real
DMV-algebra:

DMV∞ = ⟨[0, 1], ⊕,
¬, {δn}n>1, 0⟩

Th(DMV∞)

Finite-valued
Łukasiewicz logics

Łk

Restrictions of
McNaughton functions
over

Lk=
{

0,
1
k

, . . . ,
k − 1

k
, 1

}

Standard finite
MV-algebra:

MVk = ⟨Lk, ⊕, ¬, 0⟩

Th(MVk)

Finite-valued
Łukasiewicz logics
with constants

Łc
k

All functions
f : (Lk)n → Lk

Standard finite
MV-algebra with
constants:

MVc
k =

〈
Lk,⊕, ¬, 0,

1
k

,

. . . ,
k − 1

k
, 1

〉

Th(MVc
k)

3.1. Łukasiewicz Logics
We begin by defining infinite-valued Łukasiewicz logic Ł∞. The language of Ł∞ is built
from a countable set of variables V = {p1, p2, . . .}, the binary connective “→”, and the
truth constant 0 (for falsity). Further connectives are defined as follows:

¬φ is φ → 0̄,
1 is ¬0,

φ ⊙ ψ is ¬(φ → ¬ψ),
φ ⊕ ψ is ¬(¬φ ⊙ ¬ψ),
φ ⊖ ψ is φ ⊙ ¬ψ ,
φ ∧ ψ is φ ⊙ (φ → ψ),
φ ∨ ψ is ((φ → ψ) → ψ),

φ ↔ ψ is (φ → ψ) ⊙ (ψ → φ),
d(φ,ψ) is ¬(φ ↔ ψ).

We often write nφ as an abbreviation for φ ⊕ · · · ⊕ φ︸ ︷︷ ︸
n

, with n > 1.

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

Łukasiewicz Games 33:9

A valuation, e, is a mapping e : V → [0, 1], which assigns to all propositional variables
a value from the real unit interval. The semantics of Łukasiewicz logic is then defined,
with a small abuse of notation, by extending the valuation e to complex formulae.
Although strictly speaking we only need state the rule for the “→” connective (as we
can define the remaining connectives in terms of this connective and 0), we present the
complete ruleset in the interest of clarity:

e(0) = 0,
e(φ → ψ) = min(1 − e(φ) + e(ψ), 1),

e(¬φ) = 1 − e(φ),
e(1) = 1,

e(φ ⊙ ψ) = max(0, e(φ) + e(ψ) − 1),
e(φ ⊕ ψ) = min(1, e(φ) + e(ψ)),
e(φ ⊖ ψ) = max(0, e(φ) − e(ψ))
e(φ ∧ ψ) = min(e(φ), e(ψ)),
e(φ ∨ ψ) = max(e(φ), e(ψ)),

e(φ ↔ ψ) = 1 − |e(φ) − e(ψ)|,
e(d(φ,ψ)) = |e(φ) − e(ψ)|.

We say that a formula φ is satisfiable if there exists a valuation e such that
e(φ) = 1. Given a formula φ(p1, . . . , pn), Sat(φ(p1, . . . , pn)) denotes the satisfiability
set of φ(p1, . . . , pn), that is,

sat(φ(p1, . . . , pn)) =
{
(a1, . . . , an) ∈ [0, 1]n ∣∣ e(p1) = a1, . . . , e(pn) = an,

and e(φ(p1, . . . , pn)) = 1
}
.

A valuation e is a model for a theory %, that is, a set of formulae, if it satisfies every
ψ ∈ %. We call a formula φ a tautology, if e(φ) = 1 under every valuation e. Note that
these notions of satisfiabilty, satisfiability set, and tautology will be used also for the
rest of the logics introduced next with the obvious modifications.

Rational Pavelka logic RPŁ∞ is defined from Ł∞ by adding to the language a constant
c for every rational in [0, 1]. Each constant c is naturally interpreted as its correspond-
ing rational number, that is, e(c) = c, for all c ∈ Q ∩ [0, 1].

Rational Łukasiewicz logic RŁ∞ is obtained by expanding the language of Ł∞ with
the unary connectives δn for each natural n > 1. Each connective δn functions as a
divisibility operator. It has the following interpretation, for all valuations e into [0, 1]:

e(δnφ) = e(φ)
n

.

In RŁ∞, it is possible to define new constants whose interpretation corresponds to each
rational number in [0, 1]. For example,

1
n is definable as δn(¬0), while m

n is definable as m(δn(¬0)).

Consequently, while RPŁ∞ is an expansion of Ł∞, RŁ∞ is an expansion of RPŁ∞.
Finite-valued Łukasiewicz logics Łk, one for each k ≥ 1, share the same language as

infinite-valued Łukasiewicz logic Ł∞. In such logics, it is assumed that the domain of
all valuations is a set of the following form:

Lk =
{

0,
1
k
, . . . ,

k − 1
k

, 1
}

.

The interpretation of the connectives is the same as the one defined for Ł∞ but restricted
to Lk, which is closed under all Ł∞-operations. Notice that when k = 1, Ł1 simply
corresponds to classical Boolean logic.

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

33:10 E. Marchioni and M. Wooldridge

Finite-valued Łukasiewicz logics with constants Łc
k are obtained from each Łk by

expanding the language with constants c for every value c ∈ Lk. We assume that
valuation functions e interpret such constants in the natural way: e(c) = c.

In all finite-valued Łukasiewicz logics (with or without constants) it is possible to
define the unary connective & as follows:

&φ is ¬(k(¬φ)).

The semantic interpretation of & over Lk is

e(&φ) =
{

1 e(φ) = 1
0 otherwise .

& is a rather important connective since its application always outputs Boolean values,
that is, 0 and 1. We will make explicit use of this fact when we provide a characterisation
of the existence of equilibria in finite Łukasiewicz games in Section 7.

NOTATION 1. We will simply refer to Ł∞, RPŁ∞, and RŁ∞ as infinite Łukasiewicz
logics, while we will refer to Łk and Łc

k as finite Łukasiewicz logics.

Let L be any of the logics introduced above. L is the logic of all tautologies in the
L-language, that is, of all the L-formulae φ such that e(φ) = 1 for every e in the related
class of valuations.2 So, as an example, Łk, for a fixed k, is the logic of all formulae in
the language of Łukasiewicz logic that are given value 1 under all valuations into Lk.

As mentioned above each Łukasiewicz logic L can be shown to be the logic of a special
class of functions. Given an L-formula φ(p1, . . . , pn) we can define a real-valued function
fφ(x1, . . . , xn) so that for each assignment e to the propositional variables p1, . . . , pn,

fφ(e(p1), . . . , e(pn)) = e(φ(p1, . . . , pn)).

The formula φ(p1, . . . , pn) is said to realise fφ(x1, . . . , xn).3
The key notion in describing the functions associated with Łukasiewicz formulae is

that of a McNaughton function.

Definition 3.1 (McNaughton Function). A function f : [0, 1]n → [0, 1] is called a
McNaughton function over [0, 1]n if and only if it satisfies the following conditions:

(1) f is continuous with respect to the natural topology of [0, 1]n;
(2) there are linear polynomials p1, . . . , pk with integer coefficients,

pi(x1, . . . , xn) = bi + mi1x1 + · · · + minxn

(bi, mit ∈ Z), such that for each point y⃗ = (y1, . . . , yn) ∈ [0, 1]n there is an index
j ∈ {1, . . . , k} with f (y⃗) = p j(y⃗).

Since every function f realised by a Ł∞-formula is obtained as a composition of →
and the constant 0, it is easy to see that f is a McNaughton function. The McNaughton
Theorem shows that the converse is also true, that is, infinite-valued Łukasiewicz logic
is the logic of continuous piecewise linear polynomial functions with integer coefficients
over the unit cube [0, 1]n.

2All the Łukasiewicz logics we have introduced have a specific axiomatisation, and their axiom systems are
complete with respect to the semantics given here. Giving the precise axiomatisation is beyond the scope of
this work. All the details can be found in Cignoli et al. [2000], Gerla [2001], Hájek [1998], and Esteva et al.
[2011].
3Notice that whenever variables p1, . . . , pn are explicitly mentioned in a formula, that is, φ(p1, . . . , pn), we
assume they do actually all occur in φ. Similarly, for its associated function fφ(x1, . . . , xn) we assume that all
x1, . . . , xn occur and so fφ is defined over either [0, 1]n or (Lk)n.

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

Łukasiewicz Games 33:11

THEOREM 3.2 ([MCNAUGHTON 1951]). A function f : [0, 1]n → [0, 1] is a McNaughton
function if and only if it is the function realised by some Ł∞-formula φ(p1, . . . , pn).4

McNaughton functions are strongly connected with rational polyhedra. For 0 ≤ m ≤
n, an m-simplex5 in Rn is the convex hull X = conv(x0, . . . , xm) of m + 1 affinely in-
dependent points in the n-dimensional Euclidean space Rn. The vertices x0, . . . , xm are
uniquely determined by conv(x0, . . . , xm). An m-simplex X is called rational if its vertices
are all rational points, that is, x0, . . . , xm ∈ Q. A polyhedron P is the union of finitely
many simplexes Xi in Rn. If all the simplexes Xi are rational, P is called a rational
polyhedron.

The next lemma shows that for every rational polyhedron X ⊆ [0, 1]n there always
exists a McNaughton function f : [0, 1]n → [0, 1] whose zero-set coincides with X.

LEMMA 3.3 ([MUNDICI 2011]). Let ∅ ̸= X ⊆ [0, 1]n. Then the following conditions are
equivalent:

(1) X = {(a1, . . . , an) | f (a1, . . . , an) = 0} for some McNaughton function f : [0, 1]n →
[0, 1].

(2) X = Sat(φ(p1, . . . , pn)) for some Ł∞-formula φ(p1, . . . , pn).
(3) X is a rational polyhedron.

The above lemma will be of fundamental importance in our study of infinite
Łukasiewicz games in Section 8. We will make use of the fact that for every ratio-
nal polyhedron X there exists a formula of infinite-valued Łukasiewicz logic whose
satisfiability set corresponds to X. This is derived from the fact that X is the zero-set of
some McNaughton function f , and consequently, it is the one-set of the function 1 − f .

It is easy to see that RPŁ∞ is the logic of all functions obtained by composition of Mc-
Naughton functions and rational constant functions with the Łukasiewicz operations.
In other words, every function f : [0, 1]n → [0, 1] realised by a RPŁ∞-formula is such
that, for all (x1, . . . , xn) ∈ [0, 1]n,

f (x1, . . . , xn) = g(x1, . . . , xn, c1, . . . , cm),

where

g(x1, . . . , xn, x′
1, . . . , x′

m)

is a McNaughton function g : [0, 1]n+m → [0, 1] and c1, . . . , cm ∈ Q ∩ [0, 1].
RŁ∞ is the logic of rational McNaughton functions.

Definition 3.4 (Rational McNaughton Function). A continuous function f : [0, 1]n →
[0, 1] is called a rational McNaughton function if there are linear polynomials p1, . . . , pk
with rational coefficients,

pi(x1, . . . , xn) = bi + mi1x1 + · · · + minxn

(bi, mit ∈ Q), such that for each point y⃗ = (y1, . . . , yn) ∈ [0, 1]n there is an index j ∈
{1, . . . , k} with f (y⃗) = p j(y⃗).

THEOREM 3.5 ([GERLA 2001]). A function f : [0, 1]n → [0, 1] is a rational McNaughton
function if and only if it is the function realised by some RŁ∞-formula φ(p1, . . . , pn).6

Notice that Lemma 3.3 clearly holds also for McNaughton functions with constants
and for rational McNaughton functions.

4See also Mundici [1994], Cignoli et al. [2000], and Aguzzoli et al. [2011].
5The definitions that appear in this paragraph are taken from Stallings [1967].
6See also Aguzzoli et al. [2011].

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

33:12 E. Marchioni and M. Wooldridge

As for finite-valued Łukasiewicz logics Łk, it is easy to see that the functions asso-
ciated with their formulae are just the restrictions of McNaughton functions over Lk.
So, for instance, the function associated with a formula φ(p1, . . . , pn) of Łk is obtained
by taking the function fφ(p1,...,pn) over [0, 1]n restricted to (Lk)n.

In the case of finite-valued Łukasiewicz logics with constants Łc
k, the functions de-

fined by a formula are combinations of the restrictions of McNaughton functions over
(Lk)n and the constant functions for each c ∈ Lk. Notice that the class of functions
definable by Łc

k formulae coincides with the class of all functions f : (Lk)n → Lk, for
every n ≥ 0. In fact, for any function f : (Lk)n → Lk, we can define a formula realising
f as follows:

∨

c1,...,cn∈(Lk)n

((n∧

i=1

&(pi ↔ ci)

)

∧ f (c1, . . . , cn)

)

.

3.2. MV-Algebras and Their First-Order Theory
Boolean algebras provide the algebraic semantics for Classical logic; in Łukasiewicz
logics, this role is played by MV-algebras. As Łukasiewicz logics generalise Classical
logic, MV-algebras are more general structures than Boolean algebras. In this section,
we introduce some basic notions about the real-valued structures that provide the
standard semantics for Łukasiewicz logics. We simply refer to these structures as
standard MV-algebras and, in the rest of the article, we will often use formulae of
their first-order theory to express game-theoretic properties, such as the existence of
equilibria.

Here a clarification is in order. Notice that in this work we do not deal with MV-
algebras as the algebraic semantics of Łukasiewicz logics, but rather as the first-order
structures of their truth values. This distinction is subtle, but it is the reason why we
do not offer here a survey of the general theory of MV-algebras and simply provide
some basic specific notions that will play a part in our study of Łukasiewicz games.7
Once again, the interested reader can find an exhaustive treatment of the subject in
Cignoli et al. [2000], Di Nola and Leustean [2011], and Mundici [2011].

The standard real MV-algebra MV∞ is the structure
MV∞ = ⟨[0, 1],⊕,¬, 0⟩,

where, for all x, y ∈ [0, 1],
x ⊕ y = min(x + y, 1), ¬x = 1 − x.

The standard real MV-algebra with constants MVc
∞ is the structure

MVc
∞ =

〈
[0, 1],⊕,¬, {c}c∈Q∩[0,1]

〉
,

where ⟨[0, 1],⊕,¬, 0⟩ is the standard real MV-algebra.
The standard real DMV-algebra DMV∞ is the structure8

DMV∞ =
〈
[0, 1],⊕,¬, {δn}n>1, 0

〉
,

where ⟨[0, 1],⊕,¬, 0⟩ is the standard real MV-algebra, and for all x ∈ [0, 1] and natural
n > 1,

δnx = 1
n

x.

7Notice, as an example, that we do not provide the general abstract definition of an MV-algebra, but only
define the particular structures over the real numbers whose theory will be needed in the game-theoretic
setting.
8The “D” in “DMV-algebra” stands for “Divisible.” This is because the operators δn force divisibility for the
set of elements of the domain over MV-algebras in general (see Gerla [2001]).

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

Łukasiewicz Games 33:13

The standard finite MV-algebra

MVk = ⟨Lk,⊕,¬, 0⟩
is simply defined by taking the restriction of MV∞ over the set

Lk =
{

0,
1
k
, . . . ,

k − 1
k

, 1
}

,

Finally, the standard finite MV-algebra with constants

MVc
k =

〈
Lk,⊕,¬, 0,

1
k
, . . . ,

k − 1
k

, 1
〉

is the structure that extends the finite MV-algebra MVk with the constants 1
k , . . . , k−1

k , 1.

NOTATION 2. In the rest of the paper, we will talk about standard MV-algebras to
refer all the above structures. We will simply refer to MV∞, MVc

∞ and DMV∞ as infinite
standard MV-algebras. In a similar fashion, we will refer to MVk and MVc

k as finite
standard MV-algebras. Notice that if we want to specifically talk about MVk, we will
use (if necessary) the expression “the finite standard MV-algebra MVk”. So, unless only
MVk is explicitly mentioned, the expression “finite standard MV-algebras” will refer to
both MVk and MVc

k. This should always be clear from the context.

In all the structures defined above it is possible to introduce an order relation so that
for all x, y ∈ [0, 1] x ≤ y if and only if ¬x ⊕ y = 1. Moreover, the following new operators
can be defined, for all x, y ∈ [0, 1]:

x → y is ¬x ⊕ ¬y, x ∧ y is x ⊙ (x → y),
x ⊙ y is ¬(x → ¬y), x ∨ y is ((x → y) → y),

x ↔ y is (x → y) ⊙ (y → x), d(x, y) is ¬(x ↔ y),
x ⊖ y is x ⊙ ¬y.

All the operations defined above have an interpretation over [0, 1] that corresponds to
the one given in Section 3.1 for the related connectives. MV∞, MVc

∞, DMV∞, MVk, and
MVc

k provide the standard semantics for Ł∞, RPŁ∞, RŁ∞, Łk, and Łc
k, respectively.9

Let L be any standard MV-algebra. We denote by LL the language of L. We use Th(L)
to refer to the first-order theory of L in the language LL, that is, the set of sentences in
LL that hold over L. In particular,

(1) Th(MV∞) is the first-order theory of MV∞ in the language

LMV∞ = ⟨⊕,¬, 0⟩.
(2) Th(MVc

∞) is the first-order theory of MVc
∞ in the language

LMVc
∞ =

〈
⊕,¬, {c}c∈Q∩[0,1]

〉
.

(3) Th(DMV∞) is the first-order theory of DMV∞ in the language

LDMV∞ = ⟨⊕,¬, {δn}n>1, 0⟩.
(4) Th(MVk) is the first-order theory of MVk in the language

LMVk = ⟨⊕,¬, 0⟩.

9The language we use for MV-algebras and Łukasiewicz logics is the same. Still, its meaning should be clear
from the context.

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

33:14 E. Marchioni and M. Wooldridge

(5) Th(MVc
k) is the first-order theory of MVc

k in the language

LMVc
k
=

〈
⊕,¬, 0,

1
k
, . . . ,

k − 1
k

, 1
〉
.

We call a formula of Th(L) a quantified Łukasiewicz formula (sentence if there are
no free variables). We use the symbols ⊓,7,⇒,∼ to denote the Boolean metalanguage
conjunction, disjunction, implication, and negation, respectively. Notice that a strict
inequality relation is definable for all the previous structures as follows:

x < y iff ∼(¬y ⊕ x = 1).

Every quantified Łukasiewicz formula has the form

Q1x1 . . . Qnxn '(x1, . . . , xn, y1, . . . , ym),

where '(x1, . . . , xn, y1, . . . , ym) is a Boolean combination of equalities and strict inequal-
ities in LL and each Qi is either an existential or universal quantifier whose associated
variable xi ranges over the related domain.

THEOREM 3.6. Let L be any standard MV-algebra. The first-order theory Th(L) admits
quantifier elimination in the language LL.

By the above theorem, every quantified Łukasiewicz formula in Th(L)

Q1x1 . . . Qnxn '(x1, . . . , xn, y1, . . . , ym)

is logically equivalent to a quantifier-free formula

((y1, . . . , ym)

in the same language. As a consequence, both formulae define the same set over the
domain L of the related structure L, that is, for all (a1, . . . , am) ∈ Lm:

L |= Q1x1 . . . Qnxn '(x1, . . . , xn, a1, . . . , am) iff L |= ((a1, . . . , am).

Proofs of quantifier elimination for Th(MV∞), Th(DMV∞), and Th(MVk) can be found
in Baaz and Veith [1999], Caicedo [2007], and Lenzi and Marchioni [2014]. Quantifier
elimination for Th(MVc

∞) and Th(MVc
k) is a trivial consequence of the fact that the same

result holds for Th(MV∞) and Th(MVk), and that LMVc
∞ and LMVc

k
are simply expansions

of LMV∞ and LMVk (respectively) including a constant for each element of Q ∩ [0, 1] and
Lk (respectively).

4. ŁUKASIEWICZ GAMES
We now introduce the framework of Łukasiewicz games. First, let V = {p1, . . . , pm} be
a finite set of propositional variables, as above. Our games are populated by a finite,
nonempty set P of players P = {P1, . . . , Pn} (also referred to as “agents”). Note that
throughout this article, we assume that |P| = n. Each player Pi controls a subset of
propositional variables Vi ⊆ V, so that the sets Vi form a partition of V. The fact that
player Pi is in control of the set Vi means that Pi has the unique ability within the
game to choose values for the variables in Vi. It is assumed that variables take values
from the set of truth values L of some Łukasiewicz logic L.

A strategy for an agent Pi is a function si : Vi → L, which corresponds to a valuation of
the variables controlled by Pi. A strategy profile is a collection of strategies (s1, . . . , sn),
one for each player. Every strategy profile directly corresponds to a valuation function
e : V → L and vice versa; we find it convenient to abuse notation a little by treating
strategy profiles as valuations and valuations as strategy profiles.

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

Łukasiewicz Games 33:15

We assume that each player is associated with an L-formula φi, with propositional
variables from V, whose valuation is interpreted as the payoff for player Pi. That
is, the player Pi seeks a valuation si that maximises the value of the corresponding
function fφi . Of course, not all the variables in φi will in general be under Pi ’s control
and, consequently, the utility Pi obtains by playing a certain strategy (i.e., choosing a
certain variable assignment) also potentially depends in part on the choices made by
other players.

We now formally define Łukasiewicz games.

Definition 4.1 (Łukasiewicz Games). For a Łukasiewicz logic L, a Łukasiewicz game
G is given by a structure

G = ⟨P, V, {Vi}i∈P, {Si}i∈P, {φi}i∈P⟩,

where

(1) P = {P1, . . . , Pn} is a finite set of players.
(2) V = {p1, . . . , pm} is a finite set of propositional variables taking values from L.
(3) Vi ⊆ V is the set of propositional variables under control of player Pi, so that the

sets Vi form a partition of V.
(4) Si is the strategy set for player i that includes all valuations si : Vi → L of the

propositional variables in Vi, that is,

Si = {si | si : Vi → L}.

(5) φi is an L formula, built from variables in V, whose associated function

fφi : Lt → L

corresponds to the payoff function (also called utility function) of Pi, and whose
value will be determined by the valuations in {S1, . . . , Sn}.

Notice that we often use both p1, . . . , pm and p⃗1, . . . , p⃗n to refer to the variables in
a game. Both expressions refer to the same set of variables, but, while the former is
often used to talk about the set of variables in general, the latter is used to refer to the
tuples controlled by each player. This difference should be clear from the context.

A strategy profile s⃗ for G is a tuple s⃗ = (s1, . . . , sn), with each si ∈ Si being the strategy
selection for the corresponding player in G. Given a strategy si for Pi, we denote by s⃗−i
the collection of strategies (s1, . . . , si−1, si+1, . . . , sn) not including si, and S−i is the set
of all s⃗−i ’s. With an abuse of notation, we use

fφi (s1, . . . , sn) and fφi (si, s⃗−i)

to denote Pi ’s payoff under the strategy profile (s1, . . . , sn): recall that φi defines a payoff
function fφi , and a strategy profile (s1, . . . , sn) corresponds to a valuation e : V → L.

NOTATION 3. We call a Łukasiewicz game on a finite-valued Łukasiewicz logic a finite
Łukasiewicz game. A Łukasiewicz game on an infinite Łukasiewicz logic is called an
infinite Łukasiewicz game. Whenever we use the expression “Łukasiewicz game” without
specifying whether the game is finite or infinite, we are referring to a game defined on an
arbitrary Łukasiewicz logic. The use of this expression will happen in the most general
cases when results and definitions hold for the whole class of Łukasiewicz games. When
the choice of a specific logic L is relevant, we talk about a Łukasiewicz game on L.

We now introduce the notion of a pure strategy Nash equilibrium for Łukasiewicz
games.

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

33:16 E. Marchioni and M. Wooldridge

Definition 4.2 (Pure Strategy Nash Equilibrium). Let G be a Łukasiewicz game. A
strategy profile (s∗

1, . . . , s∗
n) is called a pure strategy Nash Equilibrium (NE) for G, if

there exist no player Pi and no strategy si such that

fφi (s
∗
1, . . . , s∗

i , . . . , s∗
n) < fφi (s

∗
1, . . . , si, . . . , s∗

n).

Given a game G, the set of its pure strategy Nash equilibria is denoted by NE(G).
Notice that we have defined the elements of NE(G) as strategy profiles. However, in the
rest of the article we will also often see the elements of the set of equilibria as the values
assigned by a strategic choice, that is, by a valuation. So, NE(G) can be equivalently
seen as a set whose elements are certain tuples of strategies (s1, . . . , sn) ∈ S, or tuples
of elements (a⃗1, . . . , a⃗n) ∈ Lm.

5. EXAMPLES
We now introduce a number of examples to illustrate Łukasiewicz games, and in partic-
ular, we choose examples that, we argue, cannot be expressed easily in the framework
of conventional Boolean games (i.e., using classical logic to express goals).

5.1. (A Variant of the) Traveler’s Dilemma
The Traveler’s Dilemma was introduced in Basu [1994] in order to illustrate the tension
between the rational solution suggested by the existence of a Nash equilibrium, and
apparently reasonable behaviour based on intuition. We introduce (a slightly modified
variant of) the Traveler’s Dilemma and show how to formalise it as a Łukasiewicz
game.

The game is as follows. Two travelers fly back home from a trip to a remote island
where they bought exactly the same antiques. Unfortunately for them, their luggage
gets damaged and all the items acquired are broken. Both travelers purchased the
same travel insurance and, for that, they are potentially entitled to a refund of a sum
between £2 and £100. The insurance agent of the airline promises a compensation for
the inconvenience, but, not knowing the exact value of the objects, she puts forward the
following proposal. As per the company’s insurance policy, the airline will refund the
travelers up to a total of £200, between the two of them. Both travelers must privately
write down on paper a natural number corresponding to the cost of the antiques. This
value must be within the amount they are entitled to receive under the insurance rules,
that is, it must be any value between £2 and £100. If they both write the same number,
the agent can assume that they are both telling the truth, so they will both receive
exactly that amount. If the travelers write different numbers, the one who wrote the
lower number, say x (assumed to be the honest one), will receive x plus a reward of two
units. The other player, who is regarded by the agent as dishonest, will receive x with
a penalty of two units.

The travelers are allowed to claim a positive sum below £2 and above £100 (up to
£200), but this would break the insurance agreement. Anybody claiming more than
they are entitled to would receive nothing, since they would be overestimating the
value of their items. If both travelers write any amount between 0 and 2, then they are
both considered as undervaluing the content of their luggage and will get £2 anyway.

Payoffs in the Traveler’s Dilemma are defined by the following functions:

f1, f2 : {0, . . . , 200}2 → {0, . . . , 200},

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

Łukasiewicz Games 33:17

Fig. 1. Traveler’s Dilemma payoff matrix.

where

f1(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x 2 ≤ x = y ≤ 100
(x + 2) x < y, x ≤ 100, 2 < y
max(y − 2, 0) 100 ≥ x > y, x > 2
0 x > 100
2 x, y ≤ 2

,

f2(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y 2 ≤ x = y ≤ 100
(y + 2) y < x, y ≤ 100, 2 < x
max(x − 2, 0) 100 ≥ y > x, y > 2
0 y > 100
2 x, y ≤ 2

,

and whose payoff matrix is shown in Figure 1.
Given that each player wants to maximise her/his payoff, what choices should they

make? First of all, no traveler has any incentive to claim an amount higher than 100,
since that would result in ending up empty handed. Now, if both travelers choose 100,
they both get 100. However, each traveler soon realises that if she deviates from the
previous choice and writes 99, while the other player sticks to the original selection,
she can increase her payoff to 101. Under the assumption of common knowledge and
rationality, however, the other player is drawn to make the same decision, which leads
to writing 99, yielding a mutual payoff of 99. Still, deviating from this selection is
unilaterally beneficial for each individual, producing again a situation of coordination
between the players’ choices. This reasoning only ends when both players select 2,
thus obtaining only the minimum refund. The same would happen if both travelers
chose to undervalue the cost of their items. The strategy profiles in {0, 1, 2}2 are then
the unique pure strategy Nash equilibria of the game. This, however, clearly clashes
with what intuition would suggest to be a rational choice. It seems implausible that
two individuals would follow the previous line of reasoning and rationally come to the
conclusion that the best solution is ending up either claiming the minimum amount or
even underestimating the value of their possessions.

The Traveler’s Dilemma can be formalised as a Łukasiewicz game over Ł200 as fol-
lows. Define the following game

G =
〈
{T1, T2}, {p1, p2}, {{p1}, {p2}}, {S1, S2}, {φ1(p1, p2),φ2(p1, p2)}

〉
,

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

33:18 E. Marchioni and M. Wooldridge

where T1 and T2 are the two travelers; {p1, p2} is the set of propositional variables, with
p1 being controlled by T1 and p2 being controlled by T2; Si = {si : {pi} → {0, . . . , 200}},
with i ∈ {1, 2}. The payoff formulae are defined as follows:

φ1(p1, p2) :=
[
&

(
p1 → 100

200

)
∧

[((
p1 ∧ & (p1 ↔ p2) ∧ &

(
2

200 → p1

))

∨
((

p1 ⊕ 2
200

)
∧ ¬& (p2 → p1) ∧ ¬&

(
p2 → 2

200

))

∨
((

p2 ⊖ 2
200

)
∧ ¬& (p1 → p2) ∧ ¬&

(
p1 → 2

200

))]]

∨
[

2
200 ∧ &

(
p1 ∨ p2 → 2

200

)]
,

φ2(p1, p2) :=
[
&

(
p1 → 100

200

)
∧

[((
p2 ∧ & (p2 ↔ p1) ∧ &

(
2

200 → p2

))

∨
((

p2 ⊕ 2
200

)
∧ ¬& (p1 → p2) ∧ ¬&

(
p1 → 2

200

))

∨
((

p1 ⊖ 2
200

)
∧ ¬& (p2 → p1) ∧ ¬&

(
p2 → 2

200

))]]

∨
[

2
200 ∧ &

(
p1 ∨ p2 → 2

200

)]
.

The above formulae define payoff functions that can be easily seen to be the linear
transformation of f1 and f2 over L200.

5.2. (A Variant of) Second-Price Sealed-Bid Auctions
A second-price sealed-bid auction with perfect information is an auction in which buyers
independently assign a value, known to the others, to an item they want to purchase,
and submit sealed bids. The buyer with the higher bid wins and pays an amount equal
to the second highest bid (e.g., see Parsons et al. [2011]).

Let Bi, with i ∈ {1, . . . , n}, denote each buyer, and vi denote the value Bi assigns to
the item. Bi ’s payoff is given by the following function:

fi(x1, . . . , xn) =
{

vi − max j ̸=i xj xi > max j ̸=i xj
0 otherwise ,

where the variables x1, . . . , xn stand for the bid submitted by the players.
We can formalise this kind of auction as a finite Łukasiewicz game with certain

restrictions. First, we assume that the bidders’ valuation vi is the same for every i.
Second, we assume that buyers cannot submit a bid that is higher than the assigned
value vi. Notice that whenever at least two players bid a price higher than vi, the
payoff of the winning player is negative. This is clearly a problem in the context of
Łukasiewicz logic, since the range of every function associated with a formula must be
a subset of the set of values of each one of its variables. This restriction also makes it
possible to avoid the winner’s curse, that is, the situation where the player with the
winning bid pays too much and loses money with respect to the item’s valuation.

So, we define this variant of second-price auctions over Lk, with the following payoff
functions gi : (Lk)n → Lk, for each i:

gi(x1, . . . , xn) =
{

1 − max j ̸=i(xj) xi > max j ̸=i(xj)
0 otherwise .

Notice that, since buyers cannot submit bids that exceed the value of the item, we
simply assume that v is 1, that is, the top of our scale.

Define then a game
G = ⟨P, V, {Vi}i∈P, {Si}i∈P, {φi}i∈P⟩

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

Łukasiewicz Games 33:19

over Łk where

(1) P = {B1, . . . , Bn} is the set of bidders;
(2) V = {p1, . . . , pn} is the set of propositional variables;
(3) Vi = {pi} is the set of propositional variables under control of player Bi;
(4) Si is the strategy set for player i that includes all valuations si : Vi → Lk of the

propositional variables in Vi; and
(5) each φi corresponds to the formula

¬&

⎛

⎝pi →

⎛

⎝
∨

j ̸=i

pj

⎞

⎠

⎞

⎠ ∧

⎛

⎝1 ⊖

⎛

⎝
∨

j ̸=i

pj

⎞

⎠

⎞

⎠

whose associated function is the function gi defined above.

5.3. Generalised Matching Pennies
The following game is a generalisation of Matching Pennies,10 the classic example of a
zero-sum game without a pure strategy equilibrium. In the original game, two players
P1 and P2 both have a penny and must secretly choose whether to turn it to head
or tails, revealing their choices simultaneously. If their choices are the same, then P1
takes both pennies; if they are different, P2 takes both.

Imagine that both players must perform an action with a certain cost and are in
charge of the variables p1 and p2, respectively. P1’s overall strategy is to be as close
as possible to P2’s choice. In contrast, P2 wants to keep the greatest possible distance
between the choices. The players’ strategy spaces are given by the sets of functions

S1 = {s1 | s1 : {p1} → [0, 1]}, S2 = {s2 | s2 : {p2} → [0, 1]}.
Recall that the Łukasiewicz logic expression d(p1, p2), defined in Section 3.1, realises
the distance between the values assigned to the variables p1 and p2. Using this ex-
pression, we can define the payoff for P1 as the formula ¬d(p1, p2), whose associated
function is 1 − |x1 − x2|, while P2’s payoff is defined by the formula d(p1, p2), with
associated function |x1 − x2|. The game is formally defined as follows on Ł∞:

G =
〈
{P1, P1}, {p1, p2}, {{p1}, {p2}}, {S1, S2}, {¬d(p1, p2), d(p1, p2)}

〉
.

Figure 2 shows the payoff functions for this generalised version of Matching Pennies
on Ł∞.

5.4. Generalised Prisoner’s Dilemma
Here, we offer a generalisation of the Prisoner’s Dilemma over [0, 1] in terms of
Łukasiewicz games.

Suppose that two prisoners, both accused of committing the same crime, are asked by
the police to provide evidence against each other. Each prisoner can either fully confess
(i.e., defect), by testifying and offering the police the whole body of evidence supporting
the incrimination of the other, or simply cooperate with their fellow criminal and
remain silent. Alternatively, prisoners can choose to only partially confess by providing
more or less evidence against each other. We use the real unit interval [0, 1] as a scale
to formally represent the degree of cooperation of each prisoner, so that 0 means full
cooperation, and 1 full defection, and every other degree in between captures to which
extent the prisoner is willing to defect and collaborate with the police.

We define a function to specify each prisoner’s payoff by fixing the payoff at the
extremes, so that at the points of full cooperation and full defection the outcome

10This example is taken from Kroupa and Majer [2014].

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

33:20 E. Marchioni and M. Wooldridge

Fig. 2. Payoff functions 1 − |x1 − x2| and |x1 − x2| for the generalised Matching Pennies.

Fig. 3. Payoff matrix at the extremes for the Prisoner’s Dilemma.

is compatible with the payoff of the traditional version of the Prisoner’s Dilemma
(Figure 3) (see, for instance, Osborne and Rubinstein [1994] and Maschler et al. [2013]).
We interpret the outcome as the utility for the prisoner depending on the sentence, so
that 1 represents the best case scenario where the prisoner receives no penalty, while 0
means the prisoner is sentenced to the maximum punishment. Suppose the prisoners
disagree in their choice, that is, we have either (1, 0) or (0, 1), so that one defects while
the other cooperates. Then the one who defects maximises her/his outcome, while the
other receives the full punishment. If, instead, the prisoners make the same choice
they will both be punished, but will get a better outcome if they remain silent and
cooperate.

In order to define proper payoff functions over [0, 1]2, we treat these strategy profiles
with their related payoff as coordinate points in [0, 1]3 and use them to define the
planes over which those points lie. A simple calculation shows that the planes are
defined by the functions

f1(x1, x2) = 1
3

x1 − 2
3

x2 + 2
3

, f2(x1, x2) = 1
3

x2 − 2
3

x1 + 2
3

,

which can be easily seen to be rational McNaughton functions whose associated for-
mulae are

φ f1 (p1, p2) = (δ3 p1 ⊖ δ32p2) ⊕ δ32(1), φ f2 (p1, p2) = (δ3 p2 ⊖ δ32p2) ⊕ δ32(1)

and whose graph is displayed in Figure 4.
This modified version of the Prisoner’s Dilemma can be then formalised over RŁ∞ as

the following game

G =
〈
{P1, P2}, {p1, p2}, {{p1}, {p2}}, {φ f1 (p1, p2),φ f2 (p1, p2)}

〉
,

where the payoff formulae for P1 and P2 are the ones defined above.

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

Łukasiewicz Games 33:21

Fig. 4. Payoff functions for the generalised Prisoner’s Dilemma.

It is now natural to ask whether this formalisation of the Prisoner’s Dilemma over
[0, 1] is meaningful and actually respects our intuition when compared to the classical
example. The answer is affirmative. In the classical case, full cooperation for both
players is unstable, since one of them can always obtain a better outcome by deviating.
The same happens in this generalisation, since, whenever the prisoners provide the
same amount of evidence (but not the full amount), increasing the degree of defection
always results in a better payoff for the deviating player. In addition, full defection is
a strictly dominant strategy for each player, and the strategy profile (1, 1) is a pure
strategy Nash equilibrium.

5.5. Continuous Weak-Link Games
Weak-link games11 are a class of coordination games, where the players benefit from
mutually coordinating on the same strategy. The original version of the game (see Van
Huyck et al. [1990]) consists of n players who simultaneously choose a number from a
finite set {1, . . . , m}. Each player i’s payoff is defined by the following function:

ui(x1, . . . , xn) = a + a′ · min(x1, . . . , xn) − a′′ · (xi − min(x1, . . . , xn)),
where xi is the choice made by player i, and a, a′, a′′ are positive parameters. Intuitively,
xi is interpreted as the effort i is willing to make in her interaction with others. The
payoff ui is heavily influenced by the choice of the agent with the lower effort level.
Therefore, each player’s payoff depends on the weakest link in the strategic interaction.
The game has m pure strategy Nash equilibria corresponding to the strategy profiles
in which the players select the same values (see Van Huyck et al. [1990]).

We introduce here a continuous generalisation of weak-link games where each ui is
defined over [0, 1]n, and a, a′, a′′ ∈ (0, 1] (see also Anderson et al. [2001]). It is worth
pointing out that not all instances of continuous weak-link games can be represented
as a Łukasiewicz game, since the set of values assigned to each variable in ui might be
a strict subset of the function’s range. Still, it is always possible to encode a continuous
weak-link game as a Łukasiewicz game for a suitable choice of the parameters a, a′, a′′.
In fact, for a+ a′ ≤ 1 and a′′ ≤ a, the function ui is always such that ui : [0, 1]n → [0, 1].

As an example, let a = 2
3 , a′ = 1

3 , a′′ = 1
4 . Each function

ui(x1, x2) = 2
3

+
(

1
3

· min(x1, x2)
)

−
(

1
4

· (xi − min(x1, x2))
)

,

11Nothing to do with the popular TV game show “The Weakest Link.”

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

33:22 E. Marchioni and M. Wooldridge

Fig. 5. Payoff functions for the continuous weak-link game.

with i ∈ {1, 2}, is a rational McNaughton function (see Figure 5). We can then define a
two-player continuous weak-link game over RŁ∞ in the following form:

G = ⟨P, V, {Vi}i∈P, {Si}i∈P, {φi}i∈P⟩,
where

(1) P = {P1, P2}.
(2) V = {p1, p2}.
(3) Vi = {pi}, with i ∈ {1, 2}.
(4) The strategy space is defined as follows, for each i:

Si = {si | si : {pi} → [0, 1]}.
(5) The players’ payoff formulae are

φ1(p1, p2) := ((δ127p2 ⊖ δ4 p1) ⊕ δ321) ∧ (δ3 p1 ⊕ δ321),

φ2(p1, p2) := ((δ127p1 ⊖ δ4 p2) ⊕ δ321) ∧ (δ3 p2 ⊕ δ321),

and their associated functions correspond to ui, with i ∈ {1, 2}, as defined above.

It is easy to see that
{
(b1, b2) | (b1, b2) ∈ [0, 1]2, b1 = b2

}

is the set of equilibria of the game.

6. BASIC PROPERTIES OF ŁUKASIEWICZ GAMES
In this section, we study some general basic properties common to all Łukasiewicz
games that will be used in the remaining part of this work.

In the normal form representation of noncooperative games, the existence of equi-
libria is equivalent to the nonemptiness of the intersection, for all i, of all the sets of
strategy profiles (si, s⃗−i) such that si maximises ui(xi, s⃗−i). In other words, a strategic
game in normal form admits an equilibrium if and only if

n⋂

i=1

⋃

s⃗−i∈S−i

{

(si, s⃗−i) | argmax
s′
i∈Si

(ui(s′
i, s⃗−i)) = si

}

̸= ∅.

A similar characterisation through (rational) McNaughton functions (and their finite-
valued restrictions) for Łukasiewicz games is not possible since Łukasiewicz games are

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

Łukasiewicz Games 33:23

not defined in normal form. In fact, in a Łukasiewicz game, each payoff formula might
contain a different subset of variables, and the corresponding McNaughton functions
are not defined over the same domain. We show that this problem can be easily over-
come by introducing the concept of a normalised game and showing that every game
can be transformed into a normalised one preserving the equilibria. The concept of a
normalised Łukasiewicz game can be interpreted as a representation in normal form
for Łukasiewicz games. We begin introducing some preliminary notions and definitions.

A Łukasiewicz game G with a set of variables V = {p1, . . . , pm} is called normalised
whenever each payoff formula φi is of the form φi(p1, . . . , pm), that is, all the variables
from V occur in each φi.

Given a game G, let
d : P → {1, . . . , m}

be a function assigning to each player Pi an integer from {1, . . . , m} that corresponds to
the number of variables in Vi: that is,

d(Pi) = mi.

d is called a distribution function.
Given a Łukasiewicz game G, the type of G is the triple ⟨n, m, d⟩, where n is the number

of players, m is the number of variables in V, and d is the distribution function for G. We
say that two Łukasiewicz games G and G ′ belong to the same class if they are defined
on the same Łukasiewicz logic L, they have type ⟨n, m, δ⟩ and ⟨n, m, δ′⟩, respectively,
and there exists a permutation ȷ of the indices {1, . . . , n} such that, for all Pi,

d(Pȷ (i)) = d′(Pi).
Notice that what matters in the definition of a class is not which players are assigned

certain variables, but rather their distribution. In fact, up to a renaming of the variables
and the players, two games in the same class have the same players, the same variables,
and each player controls the same subset of variables.

For instance, take two games G and G ′ both having three players P1, P2, P3 and the
same variables p1, . . . , p6 so that the players control the variables as follows:

G G′

P1 p1 p1, p2, p6
P2 p2, p3 p3
P3 p4, p5, p6 p4, p5

G and G ′ belong to the same class, since they have the same number of players, the
same number of variables, and the permutation ȷ , where

1
ȷ;−→ 2 2

ȷ;−→ 3 3
ȷ;−→ 1,

is such that d
(
Pȷ (i)

)
= d′ (Pi) for all Pi.

Now, let G and G ′ be two Łukasiewicz games of the same class. We say that G and G ′

are equivalent whenever
NE(G) = NE(G ′).

We are now going to see that every game can be transformed into a normalised one
of the same class having the same set of equilibria. The main step is to show that any
payoff formula can be rewritten in an equivalent form in the whole set V of variables.

We say that a formula φ(p1, . . . , pw) in any Łukasiewicz logic L has an equivalent
extension

φ♯(p1, . . . , pw, q1, . . . , qv)

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

33:24 E. Marchioni and M. Wooldridge

in {q1, . . . , qv}, if, for every (a1, . . . , aw) ∈ Lw

fφ(a1, . . . , aw) = fφ♯ (a1, . . . , aw, b1, . . . , bv)

for all (b1, . . . , bv) ∈ Lv. The next lemma shows that for any arbitrary L formula, we can
always find an equivalent extension in any set of variables.

LEMMA 6.1. Let φ(p1, . . . , pw) be a formula in any Łukasiewicz logic L. For any set of
variables {q1, . . . , qv}, there exists an equivalent extension of φ(p1, . . . , pw) in {q1, . . . , qv}.

PROOF. Take a formula φ(p1, . . . , pw) and define

ψ(p1, . . . , pw, q1, . . . , qv) := φ(p1, . . . , pw) ⊕
v⊕

j=1

(qj ⊙ ¬qj).

For all {b1, . . . , bv} ∈ L, the function

f⊕v
j=1(qj⊙¬qj)(b1, . . . , bv)

is constantly equal to 0, since, for all x ∈ L

x ⊙ ¬x = max(0, x + (1 − x) − 1) = 0.

Therefore, for every (a1, . . . , aw) ∈ Lw

fφ(a1, . . . , aw) = fψ (a1, . . . , aw, b1, . . . , bv)

for all (b1, . . . , bv) ∈ Lv, and ψ is the equivalent extension of φ in {q1, . . . , qv}.
Given Lemma 6.1, it is straightforward to prove that all Łukasiewicz games have a

normalised counterpart.

PROPOSITION 6.2. Every Łukasiewicz game G is equivalent to a normalised game.

PROOF. Take any game

G = ⟨P, V, {Vi}i∈P, {Si}i∈P, {φi}i∈P⟩

on an arbitrary L and let, for each i, {p1i , . . . , pmi } be the set of variables occurring in
φi and {q1i , . . . , qm′

i
} be the set of variables not occurring in φi, that is, {q1i , . . . , qm′

i
} =

V \ {p1i , . . . , pmi }. Define a new game of the same type on L

G ′ = ⟨P, V, {Vi}i∈P, {Si}i∈P, {ψi}i∈P⟩,

where each ψi is the equivalent extension of φi(p1i , . . . , pmi) in the variables
{q1i , . . . , qm′

i
}.

Suppose that (s1, . . . , sn) is a NE for G. This means that for each i, for all s′
i

fφi (si, s⃗−i) ≥ fφi (s
′
i, s⃗−i),

which, by Lemma 6.1 is equivalent to the fact that for each i, for all s′
i

fψi (si, s⃗−i) ≥ fψi (s
′
i, s⃗−i),

which, in turn, means that (s1, . . . , sn) is a NE for G ′. This proves that both games have
the same set of Nash equilibria.

As a consequence of the above discussion, we obtain that the existence of equilibria
can be given a functional representation in terms of the (rational) McNaughton payoff
functions (or their finite-valued restriction) of the game, that is,

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

Łukasiewicz Games 33:25

PROPOSITION 6.3. A Łukasiewicz game G admits a Nash equilibrium if and only if

n⋂

i=1

⋃

s⃗−i∈S−i

{

(si, s⃗−i) | argmax
s′
i∈Si

(fφi (s
′
i, s⃗−i)) = si

}

̸= ∅.

From now on, we will tacitly assume each game to be normalised. Also, notice that,
so far, we have been denoting by fφi (si, s⃗−i) the value of the function fφi given the
strategy profile (si, s⃗−i). As mentioned above, this actually is an abuse of notation since
the strategy profile (si, s⃗−i) corresponds to a specific assignment to all the variables in
the game, but for the valuation of fφi only the assignments to the variables actually
occurring in fφi are taken into account. Since every game can be considered normalised,
the use of this notation can now be regarded as correct.

In the remainder of this section, we are now going to explore two properties related
to the existence of equilibria. The first one has to do with a special class of games,
called satisfiable, for which equilibria always exist.

We call Łukasiewicz game G satisfiable if there exists a strategy profile (s1, . . . , sn)
such that

fφi (s1, . . . , sn) = 1

for all i.
The following proposition is an immediate consequence:

PROPOSITION 6.4. Every satisfiable Łukasiewicz game G admits a pure strategy Nash
equilibrium.

PROOF. By definition, there is a strategy profile (s1, . . . , sn) such that fφi (s1, . . . , sn) = 1
for all i. Therefore, the profile (s1, . . . , sn) guarantees the maximum payoff to each player,
and trivially corresponds to a Nash equilibrium.

The notion of a satisfiable game will play an important role in the next section where
we will show that for every finite game G having a Nash equilibrium, there always
exists a satisfiable game equivalent to G.

The second general property of Łukasiewicz games is the fact that the existence of
equilibria can always be expressed through a first-order sentence of the theory of the
related standard MV-algebra. Indeed, take any Łukasiewicz game G on L, let x⃗i, y⃗i
denote tuples of variables assigned to player i, and define the following sentence:

'NE := ∃x⃗1, . . . , x⃗n∀y⃗1, . . . , y⃗n ⊓n
i=1

(
'i(x⃗1, . . . , x⃗i−1, y⃗i, x⃗i+1, . . . , x⃗n)

≤ 'i(x⃗1, . . . , x⃗i−1, x⃗i, x⃗i+1, . . . , x⃗n)
)
,

where each 'i is the first-order term obtained from the payoff formula φi by simply
replacing the propositional variables p⃗1, . . . , p⃗n with the variables x⃗1, . . . , x⃗n, y⃗1, . . . , y⃗n.
It is then easy to check that:

PROPOSITION 6.5. A Łukasiewicz game G on L admits a pure strategy Nash equilibrium
if and only if 'NE holds over L.

We will make explicit use of the previous result both in Section 7 and Section 8 to
prove that the existence of equilibria in finite and infinite games is equivalent to the
satisfiability of a formula of L. While Proposition 6.5 will play a fundamental role in
proving that result for games with finite and infinite strategy spaces, both cases will
require radically different techniques.

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

33:26 E. Marchioni and M. Wooldridge

7. FINITE GAMES: LOGICAL CHARACTERISATIONS
The aim of this section is to provide a characterisation of the existence of pure strategy
Nash equilibria in finite Łukasiewicz games by laying out a step-by-step proof of the
following theorem.

THEOREM 7.1. Let L be any finite Łukasiewicz logic. For each Łukasiewicz game G on
L there exists an L-formula φNE(p⃗1, . . . , p⃗n) such that, for all (a⃗1, . . . , a⃗n) ∈ (Lk)m

(a⃗1, . . . , a⃗n) ∈ Sat(φNE(p⃗1, . . . , p⃗n)) iff (a⃗1, . . . , a⃗n) ∈ NE(G).

Moreover, there exists an L-formula φeq so that the following statements are equivalent:

(1) G admits a pure strategy Nash equilibrium.
(2) φeq is satisfiable.
(3) φNE(p⃗1, . . . , p⃗n) is satisfiable.
(4) There exists a satisfiable normalised game G ′ equivalent to G.

We begin by showing that the existence of equilibria for a finite Łukasiewicz game
is equivalent to the satisfiability of a special formula φeq. We will define φeq by intro-
ducing exponentially many new variables, thus generating a formula whose length is
exponential in the number of the original variables of the game. Still, it is interesting
to notice that φeq can be recursively defined given any game G.

Next, we prove that for any finite Łukasiewicz game G, there exists another special
formula φNE whose satisfiability set coincides with the set of equilibria of the game. A
trivial consequence of this fact is that G admits an equilibrium if and only if φNE is sat-
isfiable. This result is a refinement of the previous one, since φNE includes occurrences
exclusively of each and every one of the variables in G. Still, in spite of its simplicity,
we will see that this formula cannot be generated as easily as φeq, since its definition
requires the elimination of quantifiers.

We conclude the proof of Theorem 7.1 by showing that a finite Łukasiewicz game
G admits an equilibrium if and only if we can define from it an equivalent satisfiable
normalised game G ′. We will explicitly show how to build G ′ from G. What is interesting
about this is the fact that G ′ is satisfiable, and in this particular case, every strategy
profile that belongs to the set of equilibria satisfies and so maximises each of the payoff
functions of the game.

Proof of Theorem 7.1: (1) ⇔ (2)
We now show that the existence of equilibria for an arbitrary finite game is equivalent
to the satisfiability of a special finite-valued formula. Notice that for Łc

k, given the
presence of constants in the language, such a formula always exists. In fact, for each
variable p, we can encode a valuation e(p) = j

k by using constants through formulae of
the form

p ↔ j
k
,

which are satisfiable if and only if e(p) does equal j
k . Therefore, we can build a formula

that expresses the fact that a Nash equilibrium actually exists by encoding all possible
strategy profiles and all possible changes of strategy by each player. Still, we are going
to show that it is still possible to write such a formula even without truth constants,
apart from 0̄, for both Łk and Łc

k.
In order to show how, we need some preliminary results. We begin by proving that

valuations can be encoded by formulae.

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

Łukasiewicz Games 33:27

LEMMA 7.2. For every propositional variable p and every valuation e : {p} → Lk there
exists a formula ψ(p) of a finite-valued Łukasiewicz logic L over Lk such that

e(p) = j
k

iff e(ψ(p)) = 1.12

PROOF. We assume j and k to be coprime. If that is not the case then we have that

e
(
ψ j′

k′
(p)

)
= 1 iff e(p) = j ′

k′ ,

where j ′ and k′ are coprime and j
k = j ′

k′ .
Let q j,k and r j,k denote the quotient and the remainder, respectively, of the Euclidean

division of k by j.
If e(p) = 0, let

ψ0(p) := ¬p.

Then

e(p) = 0 iff e(¬p) = 1.

If e(p) = 1
k , then let

ψ 1
k
(p) := ¬d(¬((k − 1)p), p).

It is easy to check that

e(p) = 1
k

iff e(¬d(¬((k − 1)p), p)) = 1.

In fact,

e(¬d(¬((k − 1)p), p)) = 1 − |(1 − (k − 1)x) − x|
and

1 − |(1 − (k − 1)x) − x| = 1 iff x = 1
k
.

For e(p) = j
k , with j ≥ 2, the proof proceeds by induction. For j and k coprime, let

ψ j
k
(p) = ψ(r j,k,k)(¬(q j,k p)),

while for j and k not coprime, take j ′ and k′ coprime such that and j
k = j ′

k′ and let

ψ j
k
(p) = ψ j′

k′
(p) = ψ(r j′ ,k′ ,k′)(¬(q j ′,k′ p)).

Notice that r j,k < j. So, for instance, if j = 2, then

ψ 2
k
(p) := ψ 1

k
(¬(q j,k p)) = ¬d(¬((k − 1)(¬(q j,k p))),¬(q j,k p)).

This concludes the proof of the lemma.

12Notice that the following proof translates into logical terms the algebraic proof of Lemma 19 in Lenzi and
Marchioni [2014], whose context and content are significantly different from those of the present article.
Also, it is worth pointing out that the same result is a consequence of the McNaughton Theorem. However,
we prefer to offer here an independent constructive proof that does not rely on the notion of a McNaughton
function.

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

33:28 E. Marchioni and M. Wooldridge

Now we are ready to show that for each finite game the existence of an equilibrium is
equivalent to the existence of a special satisfiable formula φeq. We prove this by giving
an explicit construction of φeq. As before, we assume the game to be normalised.

Notice that as an immediate consequence of Lemma 7.2, we have:

COROLLARY 7.3. In every Łukasiewicz game G on a finite Łukasiewicz logic L, for every
strategy profile (s1, . . . , sn) there exists an L-formula ψ so that

fψ (s′
1, . . . , s′

n) = 1 iff si = s′
i

for all i.

In fact, let Vi = {p1i , . . . , pmi } be the set of variables in control of player i, and let

(α1i , . . . ,αmi) ∈ (Lk)mi .

The formula

ψα1i

(
p1i

)

encodes the assignment by player i of the value α1i to the variable p1i , that is,

e(ψα1i

(
p1i

)
) = 1 iff e(p1i) = α1i .

So, the formula

ψα1i

(
p1i

)
∧ · · · ∧ ψαmi

(
pmi

)

encodes player i’s strategy

(α1i , . . . , αmi),

and the formula
n∧

i=1

(
ψα1i

(
p1i

)
∧ · · · ∧ ψαmi

(
pmi

))
(1)

encodes the strategy profile
(
α11 , . . . , αm1 , . . . ,α1i , . . . ,αmi , . . . , α1n, . . . ,αmn

)
.

To avoid any possible confusion, notice that for j ̸= i, we might have that mi ̸= mj ,
since i and j might be in control of a different number of variables.

Take, for each player i the set of all strategies

Si =
{
si | si =

(
β1i , . . . ,βmi

)
∈ (Lk)mi

}
.

Assign to each player i a new set of variables

Vsi =
{
qβ1i

1i
, . . . , qβmi

mi

}
,

for each si ∈ (Lk)mi . This means that if a player controls mi variables, she has (k + 1)mi

different strategy profiles and is therefore assigned mi · (k + 1)mi new variables.
Proceeding as above take the formula

ψβ1i

(
qβ1i

1i

)

that encodes the assignment by player i of the value β1i to the variable qβ1i
1i

, so that the
formula

ψβ1i

(
qβ1i

1i

)
∧ · · · ∧ ψβmi

(
qβmi

mi

)
(2)

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

Łukasiewicz Games 33:29

encodes player i’s strategy

(β1i , . . . ,βmi).

Let
φi(p11 , . . . , pm1 , . . . , p1i−1 , . . . , pmi−1 , . . . , p1i , . . . , pmi ,

p1i+1 , . . . , pmi+1 , . . . p1n, . . . , pmn)
(3)

be player i’s payoff formula, and let

φi(p11, . . . , pm1 , . . . , p1i−1 , . . . , pmi−1 , . . . , qβ1i
1i

, . . . , qβmi
mi ,

p1i+1 , . . . , pmi+1 , . . . p1n, . . . , pmn)
(4)

be the formula obtained from (3) by replacing the variables
{

p1i , . . . , pmi

}

with the new variables
{
qβ1i

1i
, . . . , qβmi

mi

}
.

So, using (3) and (4), the satisfiability of the formula

φi(p11, . . . , pm1 , . . . , p1i−1 , . . . , pmi−1 , . . . , qβ1i
1i

, . . . , qβmi
mi ,

p1i+1 , . . . , pmi+1 , . . . p1n, . . . , pmn) →
φi(p11, . . . , pm1 , . . . , p1i−1 , . . . , pmi−1 , . . . , p1i , . . . , pmi ,

p1i+1 , . . . , pmi+1 , . . . p1n, . . . , xmn)

(5)

encodes the fact that player i’s payoff does not increase. To simplify the notation, we
denote the formula (5) by χ .

Define the formula φeq, where each

s⃗ ∈ (Lk)
∑n

i=1 mi

is a strategy profile:

φeq : =
∨

s⃗∈(Lk)
∑n

i=1 mi

[n∧
i=1

(
ψα1i

(
p1i

)
∧ · · · ∧ ψαmi

(
pmi

))
∧

n∧
i=1

[∧

si∈(Lk)mi

[
ψβ1i

(
qβ1i

1i

)
∧ · · · ∧ ψβmi

(
qβmi

mi

)
∧ χ

]]]
.

(6)

From the above construction, it is easy to check that φeq actually encodes the existence
of equilibria. In fact, φeq is a disjunction indexed by all possible strategy profiles. The
existence of an equilibrium requires at least one of the disjuncts to be satisfiable. Each
disjunct is a conjunction of formulae encoding the requirement that for a given strategy
profile and for every player, every change of strategy does not result in any payoff
increase. So, if any such disjunct is satisfiable, the related strategy profile actually
corresponds to a Nash equilibrium.

LEMMA 7.4. A finite Łukasiewicz game G admits a pure strategy Nash equilibrium if
and only if φeq is satisfiable.

Consequently, we have proved the equivalence between the first two conditions of
Theorem 7.1.

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

33:30 E. Marchioni and M. Wooldridge

Proof of Theorem 7.1: (1) ⇔ (3)
We are now going to refine the previous result by showing that we can obtain a formula
whose set of satisfiable elements coincides with the set of equilibria of the game. First,
we need the following preliminary result that proves that every set definable by a
quantifier-free formula in the first-order theory of a standard finite MV-algebra with or
without constants can be defined by a formula of the corresponding Łukasiewicz logic.

LEMMA 7.5. Let L be a finite-valued Łukasiewicz logic and let L be its corresponding
standard MV-algebra. For every quantifier-free formula '(x1, . . . , xn) in the language
LL there exists an L-formula φ(p1, . . . , pn) such that, for all (a1, . . . , an) ∈ (Lk)n

{(a1, . . . , an) | L |= '(a1, . . . , an)} iff (a1, . . . , an) ∈ Sat(φ(p1, . . . , pn)).

PROOF. Let T ermsL be the set of terms t in the language LL and let FormL be the set
of L-formulae. Define a mapping τ : T ermsL → FormL such that

(1) if t is a variable x, then τ (t) = p;
(2) if t is constant c, then τ (t) = c;
(3) if t is t′ ⊕ t′′, then τ (t) = τ (t′) ⊕ τ (t′′);
(4) if t is ¬t′, then τ (t) = ¬τ (t′).

Every quantifier-free formula ' of in LL is a Boolean combination of equalities and
(strict) inequalities between terms. So, define a new mapping λ : FormL → FormL,
where FormL is the set if quantifier-free formulae in LL, as follows:

(1) If ' is (t = t′), then λ(') = &(τ (t) ↔ τ (t′)).
(2) If ' is (t < t′), then λ(') = ¬&(τ (t′) → τ (t)).
(3) If ' is '′ ⊓ '′′, then λ(') = λ('′) ∧ λ('′′).
(4) If ' is ∼'′, then λ(') = ¬λ('′).

It is easy to check that for every formula '(x1, . . . , xn) and all (a1, . . . , an) ∈ (Lk)n

{(a1, . . . , an) | L |= '(a1, . . . , an)} iff (a1, . . . , an) ∈ Sat(λ('(x1, . . . , xn))),

and so '(x1, . . . , xn) is satisfiable if and only if so is λ('(x1, . . . , xn)). In fact, on the
one hand, every function and constant symbol in LL has an interpretation in L cor-
responding to the interpretation of the related connective and constants in L. On the
other hand, the use of the operator & forces each formula of the form &(τ (t) ↔ τ (t′))
and ¬&(τ (t′) → τ (t)) to behave like a Boolean formula, making compositions of such
formulae into Boolean combinations.

The next lemma finally shows that the set of equilibria of a finite game can be defined
by a formula of the corresponding logic.

LEMMA 7.6. For every Łukasiewicz game G on a finite-valued Łukasiewicz logic L
there exists an L-formula φNE(p⃗1, . . . , p⃗n) such that, for all (a⃗1, . . . , a⃗n) ∈ (Lk)m

(a⃗1, . . . , a⃗n) ∈ NE(G) iff (a⃗1, . . . , a⃗n) ∈ Sat(φNE).

PROOF. Once again, let L be a finite-valued Łukasiewicz logic and let L be its corre-
sponding standard MV-algebra.

Take any game G on L. From Proposition 6.5, we know that G has a pure strategy
Nash equilbrium if and only if 'NE holds over L. By dropping the existential quantifiers
in 'NE, we obtain the formula

∀y⃗1, . . . , y⃗n ⊓n
i=1

(
'i(x⃗1, . . . , x⃗i−1, y⃗i, x⃗i+1, . . . , x⃗n) ≤ 'i(x⃗1, . . . , x⃗i−1, x⃗i, x⃗i+1, . . . , x⃗n)

)
, (7)

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

Łukasiewicz Games 33:31

so that 'NE belongs to Th(L) if and only if the set defined by (7), that is,
{

a⃗1, . . . , a⃗n | L |= ∀y⃗1, . . . , y⃗n ⊓n
i=1

(
'i(a⃗1, . . . , a⃗i−1, y⃗i, a⃗i+1, . . . , a⃗n) ≤

'i(a⃗1, . . . , a⃗i−1, a⃗i, a⃗i+1, . . . , a⃗n)
)}

,

is not empty.
Each Th(L) has quantifier elimination in LL. Hence, there exists a quantifier-free

formula

'(x⃗1, . . . , x⃗n) (8)

that is equivalent to (7), which means that G has a pure strategy Nash equilibrium if
and only if

{a⃗1, . . . , a⃗n | L |= '(a⃗1, . . . , a⃗n)} ̸= ∅.

Finally, from Lemma 7.5, we know that there exists an L-formula λ('(x⃗1, . . . , x⃗n))
whose satisfiability set coincides with the set defined by '(x⃗1, . . . , x⃗n), which is the set
of equilibria of the game.

The above lemma proves the equivalence of the first and third conditions in
Theorem 7.1.

Proof of Theorem 7.1: (1) ⇔ (4)
As said above, we want to show that every finite game G admits a pure strategy Nash
equilibrium if and only if it is equivalent to a satisfiable game. We prove this in the
following lemma by making use of the fact that the set of equilibria can be encoded
through the satisfiability set of a finite-valued formula.

LEMMA 7.7. A finite Łukasiewicz game G admits a Nash equilibrium if and only if it
is equivalent to a normalised satisfiable game.

PROOF. Let G be a Łukasiewicz game on any finite Łukasiewicz logic L. One direction
is trivial. In fact, if, given G, there exists an equivalent satisfiable game, by definition
of equivalence and the fact that each satisfiable game has a Nash equilibrium, that is,
Lemma 6.4, we immediately obtain that G has a Nash equilibrium as well.

We now prove the converse statement. From Lemma 7.6, we know that there is an
L-formula φNE(p⃗1, . . . , p⃗n) such that, for all (a⃗1, . . . , a⃗n) ∈ (Lk)m

(a⃗1, . . . , a⃗n) ∈ NE(G) iff (a⃗1, . . . , a⃗n) ∈ Sat(φNE).

Then, define the following game

G ′ = ⟨P, V, {Vi}i∈P, {Si}i∈P, {φ′
i}i∈P⟩,

where

φ′
i := φNE(p⃗1, . . . , p⃗n) ∨ φi.

Suppose that G admits a Nash equilibrium. This means that there exists a strat-
egy profile (s1, . . . , sn) that corresponds to a valuation satisfying φNE(p⃗1, . . . , p⃗n), which
implies that each

φNE(p⃗1, . . . , p⃗n) ∨ φi

is satisfiable. Consequently, G ′ is a satisfiable game and every strategy profile that
corresponds to a Nash equilibrium of G also is an equilibrium for G ′.

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

33:32 E. Marchioni and M. Wooldridge

Take now a strategy profile (s′
1, . . . , s′

n) that is not an equilibrium for G. This means
that the corresponding valuation is such that

fφNE(p⃗1,..., p⃗n)(s′
1, . . . , s′

n) = 0.

So, for each player i the payoff given by φ′
i corresponds to the payoff given by φi, which

is not a Nash equilibrium.
Therefore, the existence of equilibria for G is equivalent to the existence of the

satisfiable game G ′ that is equivalent to G.

The above lemma proves the equivalence of the first and fourth conditions in Theorem
7.1, whose proof is therefore complete.

8. INFINITE GAMES: LOGICAL CHARACTERISATIONS
This section is devoted to a characterisation of the existence of equilibria for infinite
Łukasiewicz games similar to the one given in the previous section.

As mentioned in Section 3, the unary connective & is definable in every finite-valued
Łukasiewicz logic. The presence of & has a central role in proving the results con-
tained in Theorem 7.1. &, however, is not realised by any formula in infinite-valued
Łukasiewicz logics, since its associated function is not continuous. So, to prove a char-
acterisation of the existence of NE similar to the finite case, we need notions and
techniques that are particular to infinite-valued Łukasiewicz logics.13 Our aim is to
prove the following theorem.

THEOREM 8.1. For every Łukasiewicz game G on an infinite-valued Łukasiewicz logic
L, there exists an L-formula φNE(p⃗1, . . . , p⃗n) such that, for all (a⃗1, . . . , a⃗n) ∈ [0, 1]m

(a⃗1, . . . , a⃗n) ∈ Sat(φNE(p⃗1, . . . , p⃗n)) iff (a⃗1, . . . , a⃗n) ∈ NE(G),

and the following statements are equivalent:

(1) G admits a pure strategy Nash equilibrium.
(2) G admits a rational pure strategy Nash equilibrium, i.e.: NE(G) ∩ Qm ̸= ∅.
(3) φNE is satisfiable.

Moreover, for every infinite Łukasiewicz game on either Ł∞ or RPŁ∞, the above condi-
tions are equivalent to the following one:

(4) There exists k ∈ N so that, for all k′ ≥ k such that Lk ⊆ Lk′ , G has a pure strategy Nash
equilibrium on each finite-valued Łukasiewicz logic or finite-valued Łukasiewicz
logic with constants, respectively, over Lk′ .

Proof of Theorem 8.1: (1) ⇔ (2)
Our first step is to prove that if the set of equilibria is not empty, then it must always
contain a rational equilibrium, that is, a valuation such that the values are all rational
numbers in [0, 1]. This is a consequence of the following lemma.

LEMMA 8.2. An infinite Łukasiewicz game G admits a Nash equilibrium if and only
if it admits a rational Nash equilibrium.

13It is possible to expand infinite-valued Łukasiewicz logics by adding & to their language (see Esteva et al.
[2011]). The functions definable in the expanded logics are all piecewise linear polynomial functions with
integer and rational coefficients but are not necessarily continuous [Montagna and Panti 2001]. The addition
of & makes it possible to prove that the equivalence of conditions (1), (3), and (4) from Theorem 7.1 also holds
for infinite games. A proof of these facts can be obtained by using the same arguments used in the proof of
Theorem 7.1.

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

Łukasiewicz Games 33:33

PROOF. Let L be any of the standard infinite MV-algebras defined above. By Proposi-
tion 6.5, we know that the existence of equilibria can be expressed through a first-order
sentence 'NE of Th(L). As proved in Baaz and Veith [1999], Caicedo [2007], and Lenzi
and Marchioni [2014], the substructure LQ of L in the same signature LL defined on
Q ∩ [0, 1] is a model of Th(L) and satisfies the same sentences as L.14 Therefore, 'NE is
valid for L if and only if it is valid for LQ.

Proof of Theorem 8.1: (1) ⇔ (3)
As shown in the previous section, the set of equilibria for games based on a finite-valued
Łukasiewicz logic L can be encoded through the satisfiability set of an L-formula. We are
now going to show that the same result holds for games based on infinite-valued logics.
The key will be to show that the set of pure strategy Nash equilibria in any infinite
Łukasiewicz game is a rational polyhedron. The result will then be a consequence of
Lemma 3.3.

Recall that the first-order theory Th(R) of the ordered group of real numbers is the
set of sentences in the language of ordered groups ⟨+,−, 0,<⟩ that hold over R (see
Hodges [1993]). Th(R) has quantifier elimination in ⟨+,−, 0,<⟩. Trivially, Th(R) also
admits quantifier elimination in the language ⟨+,−, {c}c∈Q,<⟩ obtained by expanding
⟨+,−, 0,<⟩ with a constant for every rational number. We show that every quantifier-
free formula of a standard infinite MV-algebra can be translated into a formula in the
language ⟨+,−, {c}c∈Q,<⟩, so that both formulae define the same set.

LEMMA 8.3. Let L be any infinite Łukasiewicz logic and L be its corresponding stan-
dard MV-algebra. For every quantifier-free formula '(x1, . . . , xn) in LL there exists a
quantifier-free formula '⋄(x1, . . . , xn) in the language ⟨+,−, {c}c∈Q,<⟩ such that for all
(a1, . . . , an) ∈ [0, 1]n,

L |= '(a1, . . . , an) iff R |= '⋄(a1, . . . , an).

PROOF. Every quantifier-free Łukasiewicz formula '(x1, . . . , xn) is a Boolean combi-
nation

Bm
j=1(0 j), (9)

where each 0 j(x1, . . . , xn)15 is an equality or inequality between terms in LL, that is, it
is an atomic formula of the form

t ⋄ t′

with ⋄ ∈ {<,>,=}.
By an unnested atomic formula in LL we mean one of the following formulae:

t = t′, t < t′ t = ¬t′, t = t′ ⊕ t′′, t = δnt′,

where t, t′, t′′ are either variables or constants [Hodges 1993]. A formula is called
unnested if all its atomic subformulae are unnested. As shown in Hodges [1993, The-
orem 2.6.1], every formula in some language L is logically equivalent to an unnested
formula in the same language. So, this result trivially holds for LL as well.

Let

T =
m⋃

j=1

{
t1 j , . . . , tqj

}

14In model-theoretic terms: all the models of Th(L) are elementarily equivalent to each other, and the
structure LQ whose domain is the set of rational numbers in [0, 1] is a prime model, that is, it can be
elementarily embedded into every other model of the theory.
15Without any loss of generality, we can assume that all variables x1, . . . , xn occur in each 0 j .

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

33:34 E. Marchioni and M. Wooldridge

be the set of terms in (9), where each ti j denotes the i j-th term in atomic formula 0 j .
Assign a new propositional variable z to each element of T (same variables for same
terms), and write a new formula for every t ∈ T as follows:

(1) if t is a variable x, then write z = x;
(2) if t is a constant c, then write z = c;
(3) if t is t′ ⊕ t′′, then write z = z′ ⊕ z′′;
(4) if t is ¬t′, then write z = ¬z′;
(5) if t is δnt′, then write z = δnz′.

Let ((x⃗, z⃗) be the conjunction of all the previous formulae, where

x⃗ = x1, . . . , xn, z⃗ = z1, . . . , zm′ ,

and m′ is the number of newly introduced variables. Define the formula

∃z1, . . . ∃zm′ ((x⃗, z⃗) ⊓ B⋆, (10)

where B⋆ is the formula obtained from Bm
j=1(0 j) by replacing each atomic formula t ⋄ t′

with the formula z ⋄ z′, where z, z′ are the variables assigned to t, t′, respectively.
We now translate (10) into a formula in the language ⟨+,−, {c}c∈Q,<⟩, in the following

way:

(1) Replace in (10) every occurrence of unnested atomic formulae with ⊕, ¬, and δn as
follows:

t = ¬t ;→ t = 1 − t′,
t = t′ ⊕ t′′ ;→ ((t′ + t′′ ≤ 1) ⊓ (t = t′ + t′′)) 7 ((t′ + t′′ > 1) ⊓ (t = 1),

t = δnt′ ;→ t + · · · + t︸ ︷︷ ︸
n

= t′.

The newly introduced formulae define the graphs of the basic Łukasiewicz functions
in R, for all the values in [0, 1].

(2) Let (′ be the conjunction of formulae of the form

(0 ≤ z) ⊓ (z ≤ 1)

for every newly introduced variable z.
(3) Write the following formula:

∃z1, . . . ∃zm′ (′ ⊓ [(((x⃗, z⃗) ⊓ B⋆)]. (11)

It is easy to see that (11) is a formula in ⟨+,−, {c}c∈Q,<⟩ such that, for all (a1, . . . , an) ∈
[0, 1]n

L |= '(a1, . . . , an) iff R |= ∃z1, . . . ∃zm′ (′ ⊓ [(((a⃗, z⃗) ⊓ B⋆)].
As mentioned above Th(R) admits quantifier elimination in ⟨+,−, {c}c∈Q,<⟩, and so

there exists a quantifier-free formula '⋄(x1, . . . , xn) that is equivalent to (11).
Consequently, for all (a1, . . . , an) ∈ [0, 1]n,

L |= '(a1, . . . , an) iff R |= '⋄(a1, . . . , an).

An easy inspection of the above proof shows that the translation of any quantifier-
free Łukasiewicz formula (9) into (11) requires only polynomial time in the length of
(9).

The following example illustrates how the above translation works.

Example 8.4. Consider the following quantifier-free formula

(x ⊕ x) ⊕ y <
1
2

.

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

Łukasiewicz Games 33:35

The set of its subterms is the following:

T =
{

x, y, x ⊕ x, (x ⊕ x) ⊕ y,
1
2

}
.

Assign new variables to each subterm as follows:

x ;→ z1, y ;→ z2, x ⊕ x ;→ z3, (x ⊕ x) ⊕ y ;→ z4,
1
2

;→ z5.

Write the following unnested formula, equivalent to the one we started with:

∃z1∃z2∃z3∃z4∃z5

[
(x = z1) ⊓ (y = z2) ⊓ (z1 ⊕ z1 = z3) ⊓ (z3 ⊕ z2 = z4) ⊓

(
1
2 = z5

)]
⊓ (z4 < z5).

Finally, replace the unnested atomic formulae where the symbol ⊕ appears with their
corresponding formulae in ⟨+,−, {c}c∈Q,<⟩, and add the conjunction of the formulae
that specify that each variable must belong to [0, 1]:

∃z1∃z2∃z3∃z4∃z5

[
5
⊓

i=1
((0 ≤ zi) ⊓ (zi ≤ 1)

]
⊓

[
(x = z1) ⊓ (y = z2) ⊓

(
((z1 + z1 ≤ 1) ⊓ (z3 = z1 + z1)) 7 ((z1 + z1 > 1) ⊓ (z3 = 1))

)
⊓

(
((z3 + z2 ≤ 1) ⊓ (z4 = z3 + z2)) 7 ((z3 + z2 > 1) ⊓ (z4 = 1))

)
⊓

(
1
2

= z5

)]
⊓

(
z4 < z5

)
.

This concludes the example.

We now use Lemma 8.3 to prove that the set of equilibria of any infinite Łukasiewicz
game can be encoded through the satisfiability set of a Łukasiewicz formula.

LEMMA 8.5. For every Łukasiewicz game G on an infinite Łukasiewicz logic L, there
exists an L-formula φNE(p⃗1, . . . , p⃗n) such that, for all (a⃗1, . . . , a⃗n) ∈ [0, 1]m

(a⃗1, . . . , a⃗n) ∈ Sat(φNE(p⃗1, . . . , p⃗n)) iff (a⃗1, . . . , a⃗n) ∈ NE(G).

Consequently, G admits a pure strategy Nash equilibrium if and only if φNE(p⃗1, . . . , p⃗n)
is satisfiable.

PROOF. Reasoning as in Lemma 7.7, the set of equilibria of G coincides with the set
defined by the formula

∀y⃗1, . . . , y⃗n

n!

i=1

(
'i(x⃗1, . . . , x⃗i−1, y⃗i, x⃗i+1, . . . , x⃗n) ≤ 'i(x⃗1, . . . , x⃗i−1, x⃗i, x⃗i+1, . . . , x⃗n)

)
. (12)

Th(L) has quantifier elimination in the related language. Hence, there exists a
quantifier-free formula '(x⃗1, . . . , x⃗n) that is equivalent to (12).

As proved in the previous lemma, there exists a quantifier-free formula '⋄(x⃗1, . . . , x⃗n)
in the language ⟨+,−, {c}c∈Q,<⟩ such that, for all (a⃗1, . . . , a⃗n) ∈ [0, 1]m:

L |= '(a⃗1, . . . , a⃗n) iff R |= '⋄(a⃗1, . . . , a⃗n).

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

33:36 E. Marchioni and M. Wooldridge

This means that both '(x⃗1, . . . , x⃗n) and '⋄(x⃗1, . . . , x⃗n) define the same set of elements
of [0, 1]m.

The formula '⋄(x⃗1, . . . , x⃗n) can be equivalently rewritten in disjunctive normal form,
i.e.:

s⊔

i=1

⎛

⎝
r!

j=1

pi j(x⃗1, . . . , x⃗n)▽0

⎞

⎠

where each

pi j(x⃗1, . . . , x⃗n)▽0

is a linear polynomial inequality16 with integer coefficients and

▽ ∈ {<,>,≤,≥}.
The set of solutions Xi ⊆ [0, 1]m of each conjunction

r!

j=1

pi j(x⃗1, . . . , x⃗n)▽0

is a rational polyhedron. This means that the set of solutions of '⋄(x⃗1, . . . , x⃗n) is a finite
union

X =
s⋃

i=1

Xi

of rational polyhedra Xi, which also is a rational polyhedron.
Consequently, the set of equilibria of G is a rational polyhedron, since

(a⃗1, . . . , a⃗n) ∈ NE(G) iff (a⃗1, . . . , a⃗n) ∈ X

for all (a⃗1, . . . , a⃗n) ∈ [0, 1]m.
By Lemma 3.3, there exists a Łukasiewicz formula φNE(p⃗1, . . . , p⃗n) such that, for all

(a⃗1, . . . , a⃗n) ∈ [0, 1]m:

(a⃗1, . . . , a⃗n) ∈ Sat(φNE(p⃗1, . . . , p⃗n)) iff (a⃗1, . . . , a⃗n) ∈ X.

Therefore,

(a⃗1, . . . , a⃗n) ∈ Sat(φNE(p⃗1, . . . , p⃗n)) iff (a⃗1, . . . , a⃗n) ∈ NE(G),

and so φNE(p⃗1, . . . , p⃗n) is satisfiable if and only if G admits an equilibrium.

As an immediate consequence of this result, we obtain:

COROLLARY 8.6. For any infinite Łukasiewicz game G, the set of pure strategy Nash
equilibria is a rational polyhedron.

Proof of Theorem 8.1: (1) ⇔ (4)
We now conclude the proof of Theorem 8.1 and show that an infinite game G based on
Ł∞ or RPŁ∞ has an equilibrium if and only if G has an equilibrium on some finite logic
L on Lk, and there exist infinitely many versions of the same game, each on some finite
logic L′ on Lk′ , such that Lk ⊆ Lk′ , also having an equilibrium.

16Without any loss of generality, we can assume that each polynomial includes occurrences of all variables
x⃗1, . . . , x⃗n.

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

Łukasiewicz Games 33:37

LEMMA 8.7. An infinite Łukasiewicz game G on either Ł∞ or RPŁ∞ admits a pure
strategy Nash equilibrium if and only if there exists some k ∈ N such that, for all k′ ≥ k
so that Lk ⊆ Lk′ , G admits an equilibrium on Łk′ (Łc

k′ , respectively).

PROOF. We give a proof for RPŁ∞. The proof for Ł∞ is essentially identical.
Suppose G on RPŁ∞ has an equilibrium. Then by Lemma 8.2, G must admit a rational

equilibrium a⃗1, . . . , a⃗n. This means that the following universal sentence holds on the
standard MV-algebra with constants MVQ

∞, whose domain is Q ∩ [0, 1]:

∀y⃗1, . . . , y⃗n ⊓n
i=1

(
'i(a⃗1, . . . , a⃗i−1, y⃗i, a⃗i+1, . . . , a⃗n) ≤ 'i(a⃗1, . . . , a⃗i−1, a⃗i, a⃗i+1, . . . , a⃗n)

)
. (13)

Let MVc
k be the finite standard MV-algebra with constants generated by a⃗1, . . . , a⃗n

and the remaining rational constants occurring in (13), i.e., the structure obtained by
taking the closure under the operations ⊕ and ¬ of the set including a⃗1, . . . , a⃗n and the
rational constants in (13). Since (13) is a universal sentence, it trivially holds for MVc

k,
and for every MVc

k′ such that Lk ⊆ Lk′ . Therefore, if G on RPŁ∞ has an equilibrium, it
also has an equilibrium on every Łc

k′ obtained as above.
Conversely, suppose that G does not have an equilibrium. This means that for every

rational tuple a⃗1, . . . , a⃗n, it is always possible to find rationals b⃗1, . . . , b⃗n such that
n!

i=1

(
'i(a⃗1, . . . , a⃗i−1, b⃗i, a⃗i+1, . . . , a⃗n) > 'i(a⃗1, . . . , a⃗i−1, a⃗i, a⃗i+1, . . . , a⃗n)

)
(14)

holds over the standard finite MV-algebra with constants generated by
a⃗1, . . . , a⃗n, b⃗1, . . . , b⃗n plus the remaining constants in (14). In other words, for every
k and standard finite MV-algebra with constants MVc

k, we can always find some k′ and
MVc

k′ such that Lk ⊆ Lk′ and (14) holds over MVc
k′ .

The key idea in the above proof is that the formulae (13) and (14) can be evaluated
over a standard finite MV-algebra. For MV∞ and MVk, this is possible because they
have the same language (and so do their corresponding logics). In the case of MVc

∞,
there obviously is no finite standard MV-algebra with the same language, since MVc

∞
contains all rational constants in [0, 1]. Still, as the proof of Lemma 8.7 shows, it
suffices to take the standard finite MV-algebra MVc

k whose domain is the closure of the
set of elements that satisfy (13) and (14) along with the rational constants appearing
in such formulae. (13) and (14) can then be properly evaluated over MVc

k, since this
structure contains all the constants occurring in both formulae. It is worth pointing
out though, that Lemma 8.7 does not hold for RŁ∞. In fact, if (13) and (14) contain
occurrences of the divisibility operators δn, they cannot be evaluated over a standard
finite MV-algebra, since δn is not definable in the finite setting.

9. INFINITE GAMES: ADDITIONAL RESULTS
In this section, we provide some additional results concerning infinite Łukasiewicz
games. We start by showing that there is a special class of games that always admits a
NE. This is the class of Łukasiewicz games whose payoff formulae are built only from
literals and the operators ⊕,∧, δn (up to provable equivalence). Next, we show that
Łukasiewicz games based on rational McNaughton functions are expressive enough to
capture an approximate notion of equilibria in all games based on continuous functions
with values from [0, 1].

9.1. Łukasiewicz Games with Concave McNaughton Functions
Recall that a function f : Rn → R is called concave in a variable xi if, for all

(a1, . . . , ai−1, ai+1, . . . , an) ∈ Rn−1,

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

33:38 E. Marchioni and M. Wooldridge

the set
{
(b, c) ∈ R2 | c ≤ f (a1, . . . , ai−1, b, ai+1, . . . , an)

}
,

called the hypograph of f (a1, . . . , ai−1, xi, ai+1, . . . , an), is convex.
We call a propositional variable p, a constant c, or their negation ¬p,¬c, a literal.

Any φ(p1, . . . , pn) provably equivalent to an L-formula only built from literals with the
connectives

⊕, ∧, {δn}n>1,

is called a ⟨⊕,∧, δn⟩-formula.

LEMMA 9.1. Let L be any infinite Łukasiewicz logic and let φ(p1, . . . , pn) be any
⟨⊕,∧, δn⟩-formula of L. Then fφ : [0, 1]n → [0, 1] is concave in each xi.

PROOF. First, notice that for any Łukasiewicz literal l, the associated function fl is
obviously concave. The sum and minimum of two concave functions are concave and
so is the product of a concave function by a rational number. So for all literals l, l′, the
formulae

l ⊕ l′, l ∧ l′, δnl

define concave McNaughton functions.
The result then follows by induction on the complexity of the formulae, since, by

assumption, all formulae must be provably equivalent to an expression of the following
form:

φ ⊕ φ′, φ ∧ φ′, δnφ,

where φ,φ′ are ⟨⊕,∧, δn⟩-formulae.

We call an infinite Łukasiewicz game a ⟨⊕,∧, δn⟩ game whenever the following con-
ditions are satisfied, for all 1 ≤ i ≤ n:

(1) V = {p1, . . . , pn}.
(2) Vi = {pi}.
(3) φi is a ⟨⊕,∧, δn⟩-formula.

We want to show that every ⟨⊕,∧, δn⟩-game admits an equilibrium. This will be an
easy consequence of the following general result:

THEOREM 9.2 ([NIKAIDÔ AND ISODA 1955]). Let G be an n-person game where

(1) each player i’s strategy space Si is a nonempty, convex, compact subset of a finite
dimensional Euclidean space;

(2) each payoff function fi(x1, . . . , xn) is continuous;
(3) each payoff function fi(x1, . . . , xn) is concave in xi.

Then G always admits a pure strategy Nash equilibrium.

We can now prove:

PROPOSITION 9.3. Every infinite Łukasiewicz ⟨⊕,∧, δn⟩-game G admits a pure strategy
Nash equilibrium.

PROOF. The result is an easy consequence of Theorem 9.2. In fact, each player’s
strategy space corresponds to [0, 1], which of course is a convex compact subset of R.
Moreover, each payoff function is trivially continuous, being a McNaughton function.
Finally, the fact that each payoff function fi(x1, . . . , xn) is concave in xi, follows by
Lemma 9.1.

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

Łukasiewicz Games 33:39

9.2. Approximation of Continuous Games
Łukasiewicz games provide a game-theoretic model that is more expressive than
Boolean games. However, this model only captures games with payoff functions given
by piecewise linear polynomials. This is certainly a limitation of the model, and many
other classes of games cannot be represented in this framework. Still, rational Mc-
Naughton functions can be used to approximate any continuous function, as shown in
Aguzzoli and Mundici [2003] and Amato and Porto [2000].

THEOREM 9.4 ([AMATO AND PORTO 2000]). Let g : [0, 1]n → [0, 1] be a continuous
function and let 0 < ϵ ∈ R. There exists a rational McNaughton function f : [0, 1]n →
[0, 1] such that | f (x⃗) − g(x⃗)| < ϵ for every x⃗ ∈ [0, 1]n.

A rational McNaughton function that satisfies the above property is said to ϵ-
approximate g. We exploit the above result to show that we can capture an approximate
notion of equilibrium in games based on any continuous functions over [0, 1]n.

A continuous game C is given by a structure

C = ⟨P, V, {Vi}i∈P, {Si}i∈P, {gi}i∈P⟩,
where

(1) P = {P1, . . . , Pn} is a finite set of players;
(2) V = {x1, . . . , xm} is a finite set of variables taking values from [0, 1];
(3) Vi ⊆ V is the set of variables under control of player Pi, so that the sets Vi form a

partition of V;
(4) Si is the strategy set for player i that includes all mappings si : Vi → [0, 1] of the

variables in Vi, that is,

Si = {si | si : Vi → [0, 1]};
(5) gi : [0, 1]m → [0, 1] is a continuous payoff function.

Infinite Łukasiewicz games can be seen to be a special class of continuous games.
Recall that, for any 0 < ϵ ∈ R, a continuous game C is said to have an ϵ-equilibrium

if there exists a strategy profile (a⃗1, . . . , a⃗n) ∈ [0, 1]m such that for every player i there
is no strategy b⃗i such that

gi(a⃗1, . . . , a⃗i−1, b⃗, a⃗i+1, . . . , a⃗n) − gi(a⃗1, . . . , a⃗n) ≥ ϵ.

The notion of ϵ-equilibrium weakens the usual notion of pure strategy Nash equilibrium
by tolerating deviations in the outcome when a player changes her strategy. Still, these
deviations are accepted only when the difference between resulting payoff and the
original is strictly smaller than ϵ.

We can use this notion to show that Łukasiewicz games on RŁ∞ can be used to
approximate continuous games and also their ϵ-equilibria in the sense detailed by the
following proposition.

PROPOSITION 9.5. Let C be a continuous game. Then, for all ϵ ∈ (0, 1], there exists a
Łukasiewicz game G on RŁ∞ such that for all strategy profiles a⃗ = (a⃗1, . . . , a⃗n) ∈ [0, 1]m,

(1) if a⃗ is an ϵ-equilibrium for C, then it is a 2ϵ-equilibrium for G;
(2) if a⃗ is an ϵ-equilibrium for G, then it is a 2ϵ-equilibrium for C.

PROOF. We only prove (1), since the proof of (2) is essentially identical.
Fix an ϵ ∈ (0, 1] and define a Łukasiewicz game G with the same number of players,

same number of variables, and same distribution of variables among the players as in C.
Then, for each player i, take the formula φi, whose corresponding rational McNaughton

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

33:40 E. Marchioni and M. Wooldridge

function fφi is such that, for all (x⃗1, . . . , x⃗n) ∈ [0, 1]m

| fφi (x⃗1, . . . , x⃗n) − g(x⃗1, . . . , x⃗n)| <
ϵ

2
.

This means that each payoff function fi in the Łukasiewicz game G ϵ
2 -approximate the

corresponding function gi in C.
Let a⃗ = (a⃗1, . . . , a⃗n) ∈ [0, 1]m be an ϵ-equilibrium for C. Then for every player i and

every strategy b⃗

gi(a⃗1, . . . , a⃗i−1, b⃗, a⃗i+1, . . . , a⃗n) − gi(a⃗1, . . . , a⃗n) < ϵ.

This means that for every i in G and every strategy b⃗

fi(a⃗1, . . . , a⃗i−1, b⃗, a⃗i+1, . . . , a⃗n) − fi(a⃗1, . . . , a⃗n) < 2ϵ,

since in the worst case scenario

gi(a⃗1, . . . , b⃗, . . . , a⃗n) + ϵ

2
> fi(a⃗1, . . . , b⃗, . . . , a⃗n) > gi(a⃗1, . . . , b⃗, . . . , a⃗n)

and

gi(a⃗1, . . . , a⃗n) > fi(a⃗1, . . . , a⃗n) > gi(a⃗1, . . . , a⃗n) − ϵ

2
,

so the difference between fi(a⃗1, . . . , a⃗i−1, b⃗, a⃗i+1, . . . , a⃗n) and fi(a⃗1, . . . , a⃗n) cannot be
greater than 2ϵ.

Therefore, a⃗ = (a⃗1, . . . , a⃗n) ∈ [0, 1]m, is a 2ϵ-equilibrium for G.

10. COMPLEXITY
In this section, we study the complexity of deciding whether a Łukasiewicz game admits
an equilibrium or whether a certain strategy profile does belong to the set of equilibria.

Recall that, for any standard MV-algebra L, a quantified Łukasiewicz sentence has
the form

Q1x1 . . . Qnxn '(x1, . . . , xn),

where '(x1, . . . , xn) is a Boolean combination of equalities and inequalities in the lan-
guage LL, and each Qi is either an existential or universal quantifier. If all Qi ’s are
existential quantifiers, we say the sentence is existential.

As we have seen in the previous sections, the existence of equilibria can be encoded
through a quantified Łukasiewicz sentence. We then study the general problem of
determining the validity of this kind of formula with respect to the related standard
MV-algebra. We start with the finite case.

THEOREM 10.1. Let L be any standard finite MV-algebra. Checking whether a quanti-
fied Łukasiewicz sentence in LL belongs to Th(L) is PSPACE-complete. Checking whether
an existential Łukasiewicz sentence in LL belongs to Th(L) is NP-complete.

PROOF. Let ' be a quantified Łukasiewicz sentence with n variables. PSPACE-
containment can be proved with an argument very similar to the one given for quanti-
fied Boolean formulae (see Arora and Barak [2009]). We describe a recursive procedure
to determine the validity of ' that requires only an amount of space that is polynomial
in the number of variables and the size m of the formula.

If n = 0, then there are no variables, so ' only contains constants. Clearly, in this
case, checking the validity of ' can be simply computed in polynomial time.

So, assume that n > 0. Let, for each r ∈ Lk, 'r be the formula obtained by eliminating
the first quantifier Q1 and replacing all occurrences of x1 in ' with r. If Q1 is an

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

Łukasiewicz Games 33:41

existential quantifier ∃, then the algorithm outputs 1 if, when applied to the formula
'r, it also outputs 1 for at least some r ∈ Lk. If Q1 is a universal quantifier ∀, then the
algorithm outputs 1 if, when applied to the formula 'r, it also outputs 1 for all r ∈ Lk.
The algorithm then runs recursively by reusing the same space and retaining only the
output of a specific computation.

To prove hardness, take any quantified Boolean formula

Q1x1 . . . Qnxn '(x1, . . . , xn). (15)

For each variable xi, let

(1
0 (xi) := (xi = 0) 7 (xi = 1).

Rename y1, . . . , ym and z1, . . . , zn−m the variables from {x1, . . . , xn} that are under the
scope of a universal and an existential quantifier, respectively. Rewrite the above for-
mula as follows:

Q1 . . . Qn

⎛

⎝
n−m!

j=1

(1
0 (zj)

⎞

⎠ ⊓
((m!

i=1

(1
0 (yi)

)

⇒ '(y1, . . . , ym, z1, . . . , zn−m)

)

, (16)

where Q1 . . . Qn is the sequence of quantifiers with the same alternation as in (15)
obtained by replacing the previous variables with the new ones.

It is clear that (16) can be obtained in polynomial time from (15). In addition, it
is obvious by construction that (16) is valid over Lk if and only if (15) is valid over
{0, 1}. In fact, notice that the values in (16) are restricted to only {0, 1}, and, under this
restriction, the Łukasiewicz operations behave in the same way as the Boolean ones.

As for the existential case, take a sentence of the form

∃1x1 . . . ∃nxn '(x1, . . . , xn)

and guess a tuple (a1, . . . , an) ∈ (Lk)n. Checking if

L |= '(a1, . . . , an)

requires computing whether the equalities and inequalities in '(x1, . . . , xn) are true
or false for the values a1, . . . , an, and computing the value of the resulting Boolean
combination. This can be done in polynomial time.

Hardness can be proved similar to the case of quantified sentences by exploiting the
fact that checking the validity of an existential Boolean formula is in NP.

We now focus on the problem of deciding quantified Łukasiewicz sentences for the
infinite case.

THEOREM 10.2. Let L be any standard infinite MV-algebra. Checking whether a
quantified Łukasiewicz sentence in LL belongs to Th(L) is in 2-EXPTIME. Checking
whether an existential Łukasiewicz sentence in LL belongs to Th(L) is in NP.

PROOF. Take a quantified Łukasiewicz formula

Q1x1 . . . Qnxn '(x1, . . . , xn). (17)

'(x1, . . . , xn) is a Boolean combination

Bm
j=1(0 j), (18)

where each 0 j(x1, . . . , xn) is an equality or inequality between terms in LL.
Following the same reasoning as in Lemma 8.3, the formula

∃z1, . . . ∃zm′ Q1x1 . . . Qnxn (′ ⊓ [(((x⃗, z⃗) ⊓ B⋆)] (19)

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

33:42 E. Marchioni and M. Wooldridge

is a formula in ⟨+,−, {c}c∈Q,<⟩ that holds over R if and only if (17) holds over L.
Moreover, it is easy to check that (19) can be obtained in polynomial time in the length
of (17).

As shown in Ferrante and Rackoff [1975], deciding the validity of an arbitrary quan-
tified formula of length n in the theory Th(R) of the ordered group of real numbers
requires at most deterministic time 22pn, for some fixed constant c < 0. Moreover,
checking the validity of an existential sentence in Th(R) can be done in nondeterminis-
tic polynomial time (see Bradley and Manna [2007]).

We can now easily apply the previous discussion to determining the complexity of
some game-theoretic problems.

Definition 10.3. For a Łukasiewicz game G, the MEMBERSHIP problem is the problem
of determining whether a rational strategy profile (s1, . . . , sn) belongs to the set of pure
strategy Nash equilibria. The NONEMPTINESS problem is the problem of determining if
the set of pure strategy Nash equilibria is not empty.

Given the previous results, it is then easy to prove the following theorem.

THEOREM 10.4. For all Łukasiewicz games the MEMBERSHIP problem is in CO-NP. For
finite Łukasiewicz games the NONEMPTINESS problem is in PSPACE, while for infinite
Łukasiewicz games the NONEMPTINESS problem is in 2-EXPTIME.

PROOF. By Proposition 6.5, the existence of equilibria can be expressed through
a first-order sentence. Similarly, whether a rational strategy profile a⃗1, . . . , a⃗n ∈ Qm

belongs to the set of equilibria can be eoncoded by the universal sentence

∀y⃗1, . . . , y⃗n

n!

i=1

(
'i(a⃗1, . . . , a⃗i−1, y⃗i, a⃗i+1, . . . , a⃗n) ≤ 'i(a⃗1, . . . , a⃗i−1, a⃗i, a⃗i+1, . . . , a⃗n)

)
.

Therefore, the result follows from Theorem 10.1 and Theorem 10.2 .

11. CONCLUSIONS
A key challenge in the use of logic for game-theoretic reasoning is the development
of techniques for representing the preferences or utilities of agents. In particular, the
most widely used logic-based models for games assume that player’s preferences are
defined by logically specified Boolean goals. For many domains, this approach, leading
to dichotomous preferences, is too simple. By using Łukasiewicz logics to specify player
goals/utility functions, as we do in Łukasiewicz games, it becomes possible to express
much richer preferences and utility functions, while at the same time staying within
the attractive purely logical framework offered by Boolean games. In this article, we
hope to have demonstrated the value of this approach.

At this point, we should point out some possible links to related work, which may
prove fertile ground for future research. One avenue to explore further is the link
between Boolean games and logic programs. To pick one example, De Vos and Vermeir
[1999] discuss the relationship between Nash equilibria and a semantic model for logic
programs, namely, stable model semantics. Now, given that there has been much work
recently on Łukasiewicz versions of logic programming (see, e.g., Schockaert et al.
[2009, 2012]), it is natural to ask whether such results can be recast in a Łukasiewicz
logic programming framework. For example, disjunctive linear programs have the
same expressive power as Łukasiewicz logic, and this therefore suggests several novel
approaches to Łukasiewicz games: for example, we might investigate the possibility
of allowing a user to specify a game in Łukasiewicz logic, and then automatically
translate this specification into disjunctive logic programming (or vice versa). With

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

Łukasiewicz Games 33:43

respect to solving games, given the natural connection between Łukasiewicz logics and
linear polynomial functions, we expect to use some tools and techniques from linear
and mixed integer programming for this task.

Many other avenues suggest themselves for future research. Extensions to cooper-
ative games are one natural avenue for investigation. Another is to consider iterated
games, in which players repeatedly meet in a strategic scenario: in this case, a key
issue will be how to lift utility functions from individual games to sequences of games.

REFERENCES
S. Aguzzoli, S. Bova, and B. Gerla. 2011. Free algebras and functional representation for fuzzy logics. In

Handbook of Mathematical Fuzzy Logic, Volume II, P. Cintula, P. Hájek, and C. Noguera (Eds.), College
Publications, 713–792.

S. Aguzzoli and D. Mundici. 2003. Weierstrass approximation theorem and Lukasiewicz formulas with one
quantified variable. In Beyond Two: Theory and Applications of Multiple-Valued Logic, M. Fitting et al.
(Eds.), Springer-Verlag, Berlin, 315–335.

R. Alur and T. A. Henzinger. 1999. Reactive modules. Formal Methods in System Design 15, 11 (1999), 7–48.
P. Amato and M. Porto. 2000. An algorithm for the automatic generation of a logical formula representing a

control law. Neural Network World 10 (2000), 777–786.
S. P. Anderson, J. K. Goereeb, and C. A. Holt. 2001. Minimum-effort coordination games: Stochastic potential

and logit equilibrium. Games and Economic Behavior 34, 2 (2001), 177–199.
S. Arora and B. Barak. 2009. Computational Complexity. A Modern Approach. Cambridge University Press.
M. Baaz and H. Veith. 1999. Quantifier elimination in fuzzy logic. In Computer Science Logic, Lecture Notes

in Computer Science, Vol. 1584, Springer-Verlag, Berlin, 399–414.
K. Basu. 1994. The traveler’s dilemma: Paradoxes of rationality in game theory. American Economic Review

84, 2 (1994), 391–395.
E. Bonzon, M.-C. Lagasquie-Schiex, J. Lang, and B. Zanuttini. 2006. Boolean games revisited. In Proceedings

of the 17th European Conference on Artificial Intelligence (ECAI-2006).
E. Bonzon, M.-C. Lagasquie-Schiex, J. Lang, and B. Zanuttini. 2006. Compact preference representation and

Boolean games. In PRICAI 2006: Trends in Artificial Intelligence, Lecture Notes in Computer Science,
Vol. 4099, Springer-Verlag, Berlin, 41–50.

C. Boutilier, R. Brafman, C. Domshlak, H. Hoos, and D. Poole. 2004. CP-nets: A tool for representing and
reasoning with conditional Ceteris Paribus preference statements. In Journal of Artificial Intelligence
Research 21 (2004), 135–191.

A. R. Bradley and Z. Manna. 2007. The Calculus of Computation. Springer-Verlag, Berlin.
N. Bulling and V. Goranko. 2013. How to be both rich and happy: Combining quantitative and qualitative

strategic reasoning about multi-player games. In Electronic Proceedings in Theoretical Computer Science
112 (2013), 33–41.

X. Caicedo. 2007. Implicit operations in DMV-algebras and the connectives of Łukasiewicz logic. In Algebraic
and Proof-Theoretic Aspects of Non-Classical Logics, S. Aguzzoli, A. Ciabattoni, B. Gerla, C. Manara,
and V. Marra (Eds.), Lecture Notes in Computer Science, Vol. 4460, Springer-Verlag, Berlin, 50–68.

R. Cignoli, I. M. L. D’Ottaviano, and D. Mundici. 2000. Algebraic Foundations of Many-Valued Reasoning
(Trends in Logic Volume 7). Kluwer Academic Publishers, Dordrecht, The Netherlands.

M. De Vos and D. Vermeir. 1999. Choice logic programs and Nash equilibria in strategic games. In Computer
Science Logic, Lecture Notes in Computer Science, Vol. 1683, Springer, Berlin, 266–276.

A. Di Nola and I. Leustean. 2011. Łukasiewicz logic and DMV-algebras. In Handbook of Mathematical Fuzzy
Logic, Volume II, P. Cintula, P. Hájek, and C. Noguera (Eds.), College Publications, 469–584.

P. E. Dunne, S. Kraus, W. van der Hoek, and M. Wooldridge. 2008. Cooperative boolean games. In Proceedings
of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-2008).

F. Esteva, L. Godo, and E. Marchioni. 2011. Fuzzy logics with enriched language. In Handbook of Math-
ematical Fuzzy Logic, Volume II, P. Cintula, P. Hájek, and C. Noguera (Eds.), College Publications,
627–712.

J. Ferrante and C. Rackoff. 1975. A decision procedure for the first order theory of real addition with order.
SIAM Journal on Computing 4, 1 (1975), 69–76.

B. Gerla. 2001. Many-Valued Logics of Continuous t-Norms and Their Functional Representation. Ph.D.
thesis, University of Milan, Italy.

M. Ghallab, D. Nau, and P. Traverso. 2004. Automated Planning. Morgan Kaufmann.

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

33:44 E. Marchioni and M. Wooldridge

J. Grant, S. Kraus, M. Wooldridge, and I. Zuckerman. 2011. Manipulating boolean games through commu-
nication. In Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI-11).

P. Hájek. 1998. Metamathematics of Fuzzy Logic (Trends in Logic Volume 4). Kluwer Academic Publishers,
Dordrecht, The Netherlands.

P. Harrenstein, W. van der Hoek, J.-J. Ch. Meyer, and C. Witteveen. 2001. Boolean games. In Proceedings of
the 8th Conference on Theoretical Aspects of Rationality and Knowledge (TARK VIII), J. van Benthem
(Ed.), 287–298.

W. Hodges. 1993. Model Theory, Volume 42 of Encyclopedia of Mathematics and Its Applications. Cambridge
University Press.

T. Kroupa and O. Majer. 2014. Optimal strategic reasoning with McNaughton functions. International Jour-
nal of Approximate Reasoning 55, 6 (2014), 1458–1468.

G. Lenzi and E. Marchioni. 2014. An algebraic characterization of o-minimal and weakly o-minimal MV-
chains. Journal of Pure and Applied Algebra 218 (2014), 90–100.

V. Levit, T. Grinshpoun, and A. Meisels. 2013a. Boolean games for charging electric vehicles. In Proceedings
of the 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent
Agent Technology (IAT).

V. Levit, T. Grinshpoun, A. Meisels, and A. Bazzan. 2013b. Taxation search in boolean games. In Proceedings
of the 12th International Conference on Autonomous Agents and Multiagent Systems (AAMAS’13).

E. Marchioni and M. Wooldridge. 2014. Łukasiewicz games. In Proceedings of the 13th International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS’14). 837–844.

M. Maschler, E. Solan, and S. Zamir. 2013. Game Theory. Cambridge University Press.
M. Mavronicolas, B. Monien, and K. W. Wagner. 2007. Weighted boolean formula games. In Internet and

Network Economics, Lecture Notes in Computer Science. Vol. 4858, Springer, Berlin, 469–481.
R. McNaughton. 1951. A theorem about infinite-valued sentential logic. Journal of Symbolic Logic 12, 1

(1951), 1–13.
F. Montagna and G. Panti. 2001. Adding structures to MV-algebras. Journal of Pure and Applied Algebra

164 (2001), 365–387.
D. Mundici. 1994. A constructive proof of McNaughton’s theorem in infinite-valued logic. Journal of Symbolic

Logic 59, 2 (1994), 596–602.
D. Mundici. 2011. Advanced Łukasiewicz Calculus and MV-Algebras (Trends in Logic Volume 35). Springer,

The Netherlands.
H. Nikaidô and K. Isoda. 1955. Note on non-cooperative convex game. Pacific Journal of Mathematics 5, 5

(1955), 807–815.
N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. 2007. Algorithmic Game Theory. Cambridge Uni-

versity Press.
M. J. Osborne and A. Rubinstein. 1994. A Course in Game Theory. MIT Press.
S. Parsons, J. A. Rodrı́guez-Aguilar, and M. Klein. 2011. Auctions and bidding: A guide for computer scientists.

ACM Computing Surveys 43, 2, Article 10 (2011).
J. Pavelka. 1979. On fuzzy logic I, II, III. Zeitschrift für Mathematische Logik und Grundlagen der Mathe-

matik 25 (1979), 45–52, 119–134, 447–464.
S. Schockaert, J. Janssen, D. Vermeir, and M. De Cock. 2009. Answer sets in a fuzzy equilibrium logic. In Web

Reasoning and Rule Systems, Lecture Notes in Computer Science, Vol. 5837, Springer, Berlin, 135–149.
S. Schockaert, J. Janssen, and D. Vermeir. 2012. Fuzzy equilibrium logic: Declarative problem solving in

continuous domains. ACM Transactions on Computational Logic 13, 4, Article 33.
J. R. Stallings 1967. Lectures on Polyhedral Topology. Tata Institute of Fundamental Research, Mumbay,

India.
J. van Benthem. 2014. Logic in Games. MIT Press.
J. B. Van Huyck, R. C. Battalio, and R. O. Beil 1990. Tacit coordination games, strategic uncertainty, and

coordination failure. The American Economic Review 80, 1 (1990), 234–248.
M. Wooldridge, U. Endriss, S. Kraus, and J. Lang. 2013. Incentive engineering for Boolean games. Artificial

Intelligence 195 (2013), 418–439.

Received August 2014; revised March 2015; accepted May 2015

ACM Transactions on Computational Logic, Vol. 16, No. 4, Article 33, Publication date: September 2015.

