
BDI	
 Agent	
 Programming	
 with	
 AgentSpeak

Michael	
 Wooldridge
(mjw @ liv.ac.uk)

What	
 is	
 AgentSpeak?

• A	
 simple	
 but	
 powerful	
 programming	
 language	
 for	
 building	

ra#onal	
 agents

• Based	
 on	
 the	
 belief-­‐desire-­‐inten#on	
 paradigm	

• Intellectual	
 heritage:

• The	
 Procedural	
 Reasoning	
 Systems	
 (PRS)

• developed	
 at	
 SRI	
 in	
 late	
 1980s

• Logic	
 Programming/Prolog

What	
 is	
 Jason?

• An	
 implementaJon	
 of	
 AgentSpeak

• A	
 development	
 environment	
 for	
 AgentSpeak	
 systems

• Implemented	
 in	
 Java,	
 has	
 lots	
 of	
 hooks	
 to	
 call	
 Java	
 code

• Comes	
 with	
 libraries	
 and	
 debugging	
 tools

• Get	
 “up	
 and	
 running”	
 very	
 quickly

The	
 AgentSpeak/PRS	
 Architecture

interpreter

beliefs

plans

intentions

desires

events actions

Java

code

calls

AgentSpeak	
 Control	
 Loop

• agent	
 receives	
 events,	
 which	
 are	
 either

• external	
 (from	
 the	
 environment,	
 from	
 perceptual	
 data)

• internally	
 generated

• tries	
 to	
 handle	
 events	
 by	
 looking	
 for	
 plans	
 that	
 match

• the	
 set	
 of	
 plans	
 that	
 match	
 the	
 event	
 are	
 op#ons/desires

• chooses	
 one	
 plan	
 from	
 its	
 desires	
 to	
 execute:	
 becomes	
 commiTed	

to	
 it	
 -­‐-­‐	
 an	
 inten#on

• as	
 it	
 executes	
 a	
 plan	
 may	
 generate	
 new	
 events	
 that	
 require	
 handling

The	
 AgentSpeak	
 Architecture:	
 Beliefs

• beliefs	
 in	
 AgentSpeak	
 represent	
 informaJon	
 the	
 agent	
 has	

about	
 its	
 environment

• they	
 are	
 represented	
 symbolically

• ground	
 atoms	
 of	
 first-­‐order	
 logic

The	
 AgentSpeak	
 Architecture:	
 Example	
 Beliefs

open(valve32)

father(tom, michael)

father(lily, michael)

friend(michael, john)

at_location(michael, gunne)

on(blockA, blockB)

The	
 AgentSpeak	
 Architecture:	
 Plans

• coded	
 by	
 developer	
 offline,	
 in	
 advance

• give	
 the	
 agent	
 informaJon	
 about

• how	
 to	
 respond	
 to	
 events

• how	
 to	
 achieve	
 goals

• plan	
 structure:

• event

• context

• body

The	
 AgentSpeak	
 Architecture:	
 Plan	
 Structure

triggerCondition :
context <-

body.

The	
 AgentSpeak	
 Architecture:	
 Plan	
 Structure

• triggerCondiJon	

• is	
 an	
 event	
 that	
 the	
 plan	
 can	
 handle

• context	

• defines	
 the	
 condiJons	
 under	
 which	
 the	
 plan	
 can	
 be	
 used

• body	

• defines	
 the	
 acJons	
 to	
 be	
 carried	
 out	
 if	
 the	
 plan	
 is	
 chosen

The	
 AgentSpeak	
 Architecture:	
 Events

• +!	
 P

• new	
 goal	
 acquired	
 -­‐-­‐	
 “achieve	
 P”

• -­‐!	
 P

• goal	
 P	
 dropped

• +	
 B

• new	
 belief	
 B

• -­‐	
 B

• belief	
 B	
 dropped

Hello World

• Set up an empty directory called
“hello_world” in your workspace

• Create a new project, called hello_world

• to do this, use the “new project” button on
JEdit

• Jason will create a template MAS folder

The Template MAS
/* Jason Project */

MAS hello_world {

 infrastructure: Centralised

 agents:
}

What does this say?

• It says that the system is called “hello_world”

• It says that currently, it contains no agents

• So let’s add some agents...

Add An Agent

• Use the button “add agent in project”

• Give it the name “hello”

• Again, Jason will produce a template with the “hello
world” agent in

• if it doesn’t type this in.

The Hello World Agent
// Agent hello in project hello_world.mas2j

/* Initial beliefs and rules */

/* Initial goals */

!start.

/* Plans */

+!start : true <- .print("hello world.").

About the Hello World Agent

• The agent has a single initial goal: !start

• this goal is there when the agent starts up

• The exclamation mark says “this is a goal”

• There is a single plan, which says “if you have acquired the
goal “start”, then print “hello world”

• Run the system by pressing the “play” button

Running and Debugging

• A console will open, which will show the output of all
agents

• It should show:

• [hello] hello world.

• Congratulations!

• Press the “debug” button on the console to see inside the
agent’s heads..

• Notice you have to explicitly stop the system from the
jEdit console

Plans

• A plan has the form

• triggering_event : context <- body

• meaning

• if you see this “triggering_event”

• and believe the “context” is true

• then you can execute “body”

A More Complex Example

• Create a new project “factorial1”, with a single agent
“factorial1”

The Agent “factorial1”

fact(0,1).

+fact(X,Y)
 : X < 5
 <- +fact(X+1, (X+1)*Y).

+fact(X,Y)
 : X == 5
 <- .print("fact 5 == ", Y).

Initial Belief

• Initial belief says “the factorial of 0 is 1”

The First Rule

• If you acquire the belief that the factorial of X is Y, and X is
less than 5, then add the belief that the factorial of X+1 is (X
+1)*Y

+fact(X,Y)
 : X < 5
 <- +fact(X+1, (X+1)*Y).

The Second Rule

• If you acquire the belief that the factorial of X is Y, and X
== 5, then print “fact ...”

• Notice the use of “==”.

• Don’t use “=” as it means something different

• Run the program and explore the agent’s mind

+fact(X,Y)
 : X == 5
 <- .print("fact 5 == ", Y).

Inside the agent’s mind

• Here are all the beliefs the agent has accumulated.

• [source(self)] is an annotation, indicating where the belief
came from...

• we will see how to use these shortly

fact(5,120)[source(self)].
fact(4,24)[source(self)].
fact(3,6)[source(self)].
fact(2,2)[source(self)].
fact(1,1)[source(self)].
fact(0,1)[source(self)].

A Small Modification

• Modify the agent so that intermediate results are printed
as they are generated

Internal Actions

• .print(...) is an internal action

• other internal actions:

• .stopMAS() -- stop system running

• .time(H,M,S) -- put time into vars H,M,S

• .wait(X) -- pause for X milliseconds

• .random(X) -- put random value into X (0 <= X <= 1)

Further Modifications

• Modify your solution so that after the value is printed, the
system pauses 3 seconds and then terminates.

• You should see the console displayed for 3 secs then
disappear...

A Data Driven Solution

• Notice that the solution we have developed is data driven/
event driven

• It is the arrival of a partial solution that causes another
partial solution to be generated...

• We can also look at a goal driven solution

factorial2

• Create a new project, “factorial2”, and within it a single
agent “factorial2”

!print_fact(5).

+!print_fact(N)
 <- !fact(N,F);
 .print("Factorial of ", N, " is ", F).

+!fact(N,1) : N == 0.

+!fact(N,F) : N > 0
 <- !fact(N-1,F1);
 F = F1 * N.

factorial2

• Here the agent starts with a single goal, which is to print
the factorial of 5

• The first rule says, if you have this as a goal, then

• first compute the factorial of N

• then print it

• The second and third rules say how to compute the
factorial of N

Communication

• One agent is boring! Lets add more!

• We’ll have an agent that knows how to compute factorial,
and another that doesn’t

• The expert will receive queries from the idiot and will
respond to them

The .send(...) Action

• The basic mechanism for communication is the .send(...)
action:

.send(rcvr, type, content)

• Causes a message to be sent to agent called “rcvr”, with
message type “type”, and content “content”

Example

• .send(mjw, tell, fact(3,6))

• this will cause the agent mjw to add the belief fact(3,6)

• .send(mjw, achieve, go(10,10))

• causes +!go(10,10) to be added as an event for mjw

• Actually its more complicated than that: the recipient
annotates with the source

The Client-Server

• Create a new project, “factorial3”, with 2 agents: idiot and
expert

The Idiot Agent
// Agent idiot in project factorial3.mas2j

/* Initial goals */

!start.

/* Plans */

+!start : true
	 <- .print("starting..");
	 !query_factorial(2);
	 !query_factorial(4);
	 !query_factorial(6);
	 !query_factorial(10).
	
+!query_factorial(X) : true <-
	 .send(expert,tell, giveme(X)).
	
+fact(X,Y) : true <-
	 .print("factorial ", X, " is ", Y, " thank you expert").

Another Modification

• Modify the idiot agent so that it:

• starts by asking for the factorial of 0

• as soon as it gets a reply for the factorial of X, waits 2
seconds and then asks for the factorial of X+1.

• You will have to kill this when it runs and runs...

