
LECTURE 1: INTRODUCTION

Software Engineering

Mike Wooldridge



Lecture 1 Software Engineering

1 Why Software Engineering?

• Software development is hard.

• Important to distinguish “easy” systems
(one developer, one user, experimental use
only) from “hard” systems (multiple
developers, multiple users, products).

• Experience with “easy” systems is
misleading.
One-person techniques do not scale up.

• Analogy with bridge building:
— over a stream = easy, one person job
— over River Severn. . .
The techniques don’t scale.

Mike Wooldridge 1



Lecture 1 Software Engineering

• The problem is complexity.

•Many sources of complexity, but size is
key:

– UNIX contains 4 milliion lines of code
– Windows 2000 contains 108 lines of code

“If steel girders could be infinitely long,
and didn’t bend no matter what you did,
then buildings could be as large and
complex and computer systems.”
(Brian Reid)

• Software engineering is about managing
this complexity.

Mike Wooldridge 2



Lecture 1 Software Engineering

2 Goals of Software Development

• Satisfy users requirements.

• High reliability.

• Low maintenance costs.

• Delivery on time.

• Low production costs.

• High performance.

• Ease of reuse.

Note importance of tradeoffs.

Mike Wooldridge 3



Lecture 1 Software Engineering

2.1 Satisfying User Requirements

•Many programs simply don’t do what end
users want.

• Typical percentages for large-scale
commissioned systems:
45% delivered but not used
27% paid for but not delivered
17% abandoned
6% used after changes
5% used as delivered

• Users find it hard to articulate what they
want.

• Developers find it hard to understand
what users say!

Mike Wooldridge 4



Lecture 1 Software Engineering

2.2 High Reliability

•Mistakes in programs are generically
known as bugs.

• A crucial lesson:
You can prove that bugs are there; you can’t
prove that they aren’t.

• Bugs can be expensive, in terms of. . .

– human lives:
in safety critical systems, e.g., nuclear
reactor control, fly-by-wire aircraft

– money:
software bug in failed Ariane 5 launch
cost US$500 million

– poor customer relations:
Microsoft problems with original
Windows release caused the company
huge problems.

Mike Wooldridge 5



Lecture 1 Software Engineering

2.3 Low Maintenance Costs

•Maintenance is what is done to software
after it starts being used.

•Maintenance may be:

– corrective — fixing bugs (21%);
– adaptive — altering software to fit

changing software (25%);
– perfective — to meet new requirements

(50%);
– preventative — to reduce further

maintenance (4%).

•Maintenance is expensive — much
software is “finely balanced”, with
apparently small changes having a major
impact.
(Imagine being a car mechanic, and
having to figure out from scratch how the
engine works every time you start work
on a new car.)

•Maintenance typically accounts for 65% of
overall project costs.

Mike Wooldridge 6



Lecture 1 Software Engineering

2.4 Delivery on Time

• Software projects are notorious for
overrunning.

• It is extraordinarily hard to reliably predict
how much effort a software project will
require, and when it will be completed.

• The relationship between person months
devoted and development time is almost never
linear:

– adding person months of effort to a
project frequently has no effect;

– adding person months of effort often
makes the project slower.

Mike Wooldridge 7



Lecture 1 Software Engineering

2.5 Production Costs

• Software production an enormous
industry:

– in 1985, US$70 billion spent on
development in 1985

– OS/360 cost US$200 million
– estimated expenditure for year 2000:

US$770 billion
– 12% growth per annum!

• Software developer skills in poor supply
⇒ expensive.

Mike Wooldridge 8



Lecture 1 Software Engineering

2.6 High Performance

• Systems that are specially tailored to work
quickly are optimised.

• Optimization can improve throughput
(speed) and memory usage, but:

– resource intensive;
– results in systems tailored to a specific

environment;
– less comprehensible to developers;
– less easy to change;
– less easy to port to other environments.

Mike Wooldridge 9



Lecture 1 Software Engineering

2.7 Ease of Reuse

• Goal of software reuse: use same software
in different systems and software
environments:

– reduce development costs;
– improve reliability.

•Most software has two parts:

– environment independent part — can
be moved between environments quite
easily (usually includes the “logic” of
the system);

– environment dependent part — cannot
be moved easily (includes e.g., GUI,
hardware controllers, . . . )

A clear separation between the 2 is crucial.

• Requires designing for reuse.

Mike Wooldridge 10



Lecture 1 Software Engineering

3 The Software Process

• The waterfall model of the software
lifecycle:

Mike Wooldridge 11



Lecture 1 Software Engineering

• Requirements analysis and definition.

– The system’s services, constraints, and
goals are established.

– Requirements analysis means long
consultations with the end-user to
establish exactly what they want.

– Requirements definition means stating
what the user wants, in terms that are
understandable by both end-users and
system developers; relatively informal.

– Requirements specification is a more
formal statement which sets out
proposed system services in detail. This
document may act as contract between
system procurer and developer.

– Software specification is an abstract
description of system structure &
operation, intended to serve as the basis
for the design stage.

– Deliverables: requirements definition
document, requirements specification
document & software specification
document.

Mike Wooldridge 12



Lecture 1 Software Engineering

• System and software design.

– Requirements are divided into those
relating to hardware and those relating
to software.

– Software design then means
representing the functions of each unit
in a way that may be transformed into
code.

– Deliverables: unit and system designs.

Mike Wooldridge 13



Lecture 1 Software Engineering

• Implementation and unit testing.

– Unit designs are transformed into
programs.

– Individual units are then tested, to
ensure that they satisfy their
specification.

– Deliverables: implemented and tested
unit programs.

Mike Wooldridge 14



Lecture 1 Software Engineering

• System testing.

– Individual programs & units are
integrated (gradually!) and tested to
ensure that system requirements have
been met.

– The system is then installed.
– The system is then maintained.
– Deliverables: implemented, tested

system.

Mike Wooldridge 15



Lecture 1 Software Engineering

4 Other Development Models

• Prototyping:

– develop “quick and dirty” system
quickly;

– expose to user comment;
– refine;

until adequate system developed.
Particularly suitable where:

– detailed requirements not possible;
– powerful development tools (e.g., GUI)

available.

• Formal transformation:

– inolves use of mathematical methods
for specification, development,
verification;

– despite several decades of effort, not
usable without special skills;

– used in certain applications (e.g.,
verification of DS1 controller).

Mike Wooldridge 16



Lecture 1 Software Engineering

5 Challenges for Software Engineering

• The legacy challenge.

– Hardware evolves much faster than
software.

– Most software systems in use today
were developed many years ago.

– They are technologically obsolete (cf
COBOL Y2K problem) but perform
business-critical tasks.

– Frequently, nobody understands how
the software works.

– Modifications over the years have
meant that the software logic has
become corrupted and confused.

– Original developers have moved on.
– How to manage, maintain, replace,

integrate this software?

Mike Wooldridge 17



Lecture 1 Software Engineering

• The heterogeneity challenge.

– Isolated software systems — once the
norm — are now the exception.

– Most commercial systems are now
networked.

– Implies that software systems must
cleanly integrate with other different
software systems, built by different
organisations & teams using different
hardware and software platforms.

Mike Wooldridge 18



Lecture 1 Software Engineering

• The delivery challenge.

– Software projects are notorious for
being overdue and over budget.

– The delivery challenge is about
consistently being able to deliver
systems on budget and on schedule.

– As the complexity of systems that we
develop increases, this challenge
becomes harder.

Mike Wooldridge 19



Lecture 1 Software Engineering

6 Professional Issues

• Bridge builders and other types of
“conventional” engineer are acutely aware
of their professional responsibilities.

• Software engineers have professional
responsibilities as well:

– Confidentiality.
Engineers should respect the
confidentiality of their employers and
clients.

– Competence.
Engineers should not misrepresent their
level of competence.

– Intellectual property rights (IPR).
These relate to who owns ideas.
Typically, your employer does! You
need to understand laws governing
these, and how they relate to the work
you are doing.

Mike Wooldridge 20



Lecture 1 Software Engineering

– Computer misuse.
Software engineers should not misuse
their skills to misuse other people’s
computers.

Mike Wooldridge 21


