
LECTURE 2: REQUIREMENTS

Software Engineering

Mike Wooldridge



Lecture 2 Software Engineering

1 Requirements Analysis and Spec

• Involves:

– feasibility study;
– requirements analysis;
– requirements definition;
– requirements validation;
– requirements specification.

• Aim: to establish derive a complete,
official statement of what developers are
required to do:

The software requirements document.

Mike Wooldridge 1



Lecture 2 Software Engineering

1.1 The Requirements Document

• Should specify only external behaviour.
(Avoid implementation bias.)

• Should specify constraints on
implementation.

• Should be easy to change.

• Should serve as a reference for system
maintainers.

• Should document the expected system
lifecycle.

• Should describe desired responses to
unexpected inputs.

Mike Wooldridge 2



Lecture 2 Software Engineering

2 Requirements Analysis

The role of the analyst is:

• To elicit requirements.

• To resolve different views.

• To advise on what is feasible.

• To clarify requirements.

• To document requirements.

• To negotiate and gain user’s agreement for
the spec.

Mike Wooldridge 3



Lecture 2 Software Engineering

2.1 How to Get Requirements

• Talk to the user:

– listen to needs;
– ask for clarification;
– record the views.

• Clarify views:

– resolve inconsistencies;
– generate a consensus.

• Important to involve all the stakeholders.

Mike Wooldridge 4



Lecture 2 Software Engineering

2.2 Problems with Analysis

• Stakeholders don’t know what they want.

• Stakeholders may have unrealistic
expectations.

• Stakeholders use their own language.

• Different stakeholders have different
requirements.

• Political factors affect requirements.

• Economic/business factors create a
dynamic environment.

Mike Wooldridge 5



Lecture 2 Software Engineering

2.3 Requirements Definition

• Requirements definition is:
High-level, customer-oriented statement of
what system is to do.

• Should be accessible to all stakeholders.

• Two types of requirements:

– functional:
services the system should provide,
how it should respond to inputs, how it
should behave, what it should not do;
“The system should then display all the
titles of books written by the specified
author.”

– non-functional:
constraints the system should operate
under;
“Should be implemented on a Pentium
450 with 64MB of RAM and 2GB hard
disk.”

Mike Wooldridge 6



Lecture 2 Software Engineering

• Should be:

– complete:
document all services to be provided;

– consistent:
not be contradictory.

– structured:
not thrown together!

– systematic:
include evidence of organisation.

– free of implementation bias:
not mandate a solution.

• Use of natural language leads to 3 key
problems:

– lack of clarity;
– requirements confusion;
– requirements amalgamation.

Mike Wooldridge 7



Lecture 2 Software Engineering

2.4 Non-Functional Requirements

• Speed:

– transactions per second;
– user/event response time;
– screen refresh time.

• Size:

– KBytes;
– Number of RAM chips.

• Ease of use:

– required average training time;
– number of help screens.

Mike Wooldridge 8



Lecture 2 Software Engineering

• Reliability:

– mean time to failure;
– availability.

• Robustness:

– time to restart after failure;
– percentage of events causing failure;
– freedom from data corruption on

failure.

• Portability:

– percentage of target-dependent
statements;

– number of target systems.

Mike Wooldridge 9



Lecture 2 Software Engineering

2.5 Kinds of Requirements

• Physical environment:

– where is the equipment to function?
– is there one location or several?
– are there any environmental restrictions

(temperature, humidity . . . )?

• Interfaces:

– is the input coming from one or more
other systems?

– is the input going to one or more other
systems?

– is there a prescribed medium that data
comes in/goes out as (e.g., floppy disk,
CD ROM)?

Mike Wooldridge 10



Lecture 2 Software Engineering

• User and human interfaces:

– who will use the system?
– will there be several types of user?
– what is the skill level of each user?
– what training will be required for

users?
– how easy will it be for users to

use/misuse the system?

• Functionality:

– what will the system do?
– when will the system do it?
– are there any constraints on execution

speeds, response times, or throughput?

Mike Wooldridge 11



Lecture 2 Software Engineering

• Documentation:

– how much documentation is required?
– to what audience is the document

addressed?
– what help features must be provided?

• Data:

– what format should input/output data
have?

– how often will it be received or sent?
– how accurate must it be?
– to what degree of precision must

calculations be carried out to?
– how much data flows through the

system?
– must any data be retained?

Mike Wooldridge 12



Lecture 2 Software Engineering

• Security:

– must access to the system be controlled?
– how will one user’s data be isolated

from another’s?
– how often will the system be backed

up?
– must backup copies be stored at a

separate location?
– should precautions be taken against fire

& theft?

• Quality assurance:

– what are the requirements for
reliability?

– what is the mean time between failure?
– what faults is the system required to

catch?

Mike Wooldridge 13



Lecture 2 Software Engineering

3 Requirements Specification Documents

IEEE Standard 830-1984 specifies three parts:

1. Introduction

2. General Description

3. Specific Requirements

Mike Wooldridge 14



Lecture 2 Software Engineering

3.1 Part 1: Introduction

1. Introduction

1.1 Purpose
1.2 Scope
1.3 Definitions, acronyms, abbreviations
1.4 References
1.5 Overview

Mike Wooldridge 15



Lecture 2 Software Engineering

3.2 Part 2: General Description

2. General Description

2.1 Product perspective
2.2 Product functions
2.3 User characteristics
2.4 General constraints
2.5 Assumptions and dependencies

Mike Wooldridge 16



Lecture 2 Software Engineering

3.3 Part 3: Specific Requirements

3. Specific Requirements

3.1 Functional requirements
3.1.1 Functional requirement 1

3.1.1.1 Introduction
3.1.1.2 Inputs
3.1.1.3 Processing
3.1.1.4 Outputs

3.1.2 Functional requirement 2
∗ . . .

3.1.n Functional requirement n

Mike Wooldridge 17



Lecture 2 Software Engineering

3.2 External interface requirements

3.2.1 User interfaces
3.2.2 Hardware interfaces
3.2.3 Software interfaces
3.2.4 Communications interfaces

3.3 Performance requirements

3.4 Design constraints

Mike Wooldridge 18



Lecture 2 Software Engineering

3.5 Attributes

3.5.1 Security
3.5.2 Maintainability

3.6 Other requirements

Mike Wooldridge 19



Lecture 2 Software Engineering

4 Problems with Requirements

• Noise:
meaningless or irrelevant information.

• Silence:
missing elements.

• Overspecification/implementation bias:
telling the designer how to do their job.

• Contradiction:
when two descriptions of the same thing
differ.

• Unsatisfiability:
specifying something impossible.

• Ambiguity:
not being precise.

• Wishful thinking:
when unrealistic demands are made.

Mike Wooldridge 20



Lecture 2 Software Engineering

5 Requirements Validation

• The process of showing that requirements
define the systems the customer wants.

• Invalid requirements are very expensive!

• Need to check that requirements are:

– complete;
– correct.

• Prototyping is a valuable validation tool.
Particularly useful for GUI-based systems.

Mike Wooldridge 21



Lecture 2 Software Engineering

• Periodic requirements reviews are another
important technique.

• Requirements reviews checks for:

– Verifiability:
is the requirement realistically testable?

– Comprehensibility:
is the requirement understood by
procurers and end users?

– Traceability:
is the origin and rationale of a
requirement stated?

– Adaptability:
is it possible to change a requirement
without affecting other requirements?

Mike Wooldridge 22


