
LECTURE 3: SOFTWARE DESIGN

Software Engineering

Mike Wooldridge



Lecture 3 Software Engineering

1 Design

• Computer systems are not monolithic:
they are usually composed of multiple,
interacting modules.

• Modularity has long been seen as a key to
cheap, high quality software.

• The goal of system design is to decide:

– what the modules are;
– what the modules should be;
– how the modules interact with

one-another.

• In the early days, modular programming
was taken to mean constructing programs
out of small pieces: “subroutines”.

• But modularity cannot bring benefits
unless the modules are autonomous,
coherent and robust.

Mike Wooldridge 1



Lecture 3 Software Engineering

Procedural Abstraction

• The most obvious design methods involve
functional decomposition.

• This leads to programs in which
procedures represent distinct logical
functions in a program.

• Examples of such functions:

– “Display menu”;
– “get user option”.

• This is called procedural abstraction.

Mike Wooldridge 2



Lecture 3 Software Engineering

Programs as Functions

• Another view is programs as functions:

input output
x→ f → f (x)

The program is viewed as a function from
a set I of legal inputs to a set O of outputs.

• There are programming languages (ML,
Miranda, LISP) that directly support this
view of programming.

•Well-suited to certain application domains
— e.g., compilers.

• Less well-suited to distributed,
non-terminating systems — e.g., process
control systems, operating systems like
Win95, ATM machines.

Mike Wooldridge 3



Lecture 3 Software Engineering

2 Five Criteria for Design Methods

•We can identify five criteria to help
evaluate modular design methods:

– modular decomposability;
– modular composability;
– modular understandability;
– modular continuity;
– modular protection.

Mike Wooldridge 4



Lecture 3 Software Engineering

2.1 Modular Decomposability

• This criterion is met by a design method if
the method supports the decomposition of
a problem into smaller sub-problems,
which can be solved independently.

• In general, the method will be repetetive:
sub-problems will be divided still further.

• Top-down design methods fulfill this
criterion; stepwise refinement is an
example of such a method.

• As a counter example, consider the idea of
an initialisation module, which initializes all
variable at the start of a program run.
Such a module does not meet the
decomposability criterion, as the
initialisation module must access data
from all other modules.

Mike Wooldridge 5



Lecture 3 Software Engineering

2.2 Modular Composability

• A method satisfies this criterion if it leads
to the production of modules that may be
freely combined to produce new systems.

• Composability is directly related to the
issue of reusability, (which we will examine
shortly).

• Note that composability is often at odds
with decomposability; top-down design,
for example, tends to produce modules
that may not be composed in the way
desired.
This is because top-down design leads to
modules which fulfill a specific function,
rather than a general one.

Mike Wooldridge 6



Lecture 3 Software Engineering

• EXAMPLES

1. The Numerical Algorithms Group
(NAG) libraries contain a wide range
of routines for solving problems in
linear algebra, differential equations,
etc.

2. The UNIX shell (and to a lesser extent,
MS-DOS) provides a facility called a
pipe, written “—”, whereby the
standard output of one program may
be redirected to the standard input of
another; this convention favours
composability.

Mike Wooldridge 7



Lecture 3 Software Engineering

2.3 Modular Understandability

• A design method satisfies this criterion if it
encourages the development of modules
which are easily understandable.

• COUNTER EXAMPLE 1. Take a thousand
lines program, containing no procedures;
it’s just a long list of sequential statements.
Divide it into twenty blocks, each fifty
statements long; make each block a
method.
The methods that result cannot be
understood without looking at the
preceding and subsequent methods.

• COUNTER EXAMPLE 2. “Go to”
statements.

Mike Wooldridge 8



Lecture 3 Software Engineering

2.4 Modular Continuity

• A method satisfies this criterion if it leads
to the production of software such that a
small change in problem specification
leads to a change in just one (or a small
number of) modules.

• EXAMPLE. Some projects enforce the rule
that no numerical or textual literal should
be used in programs: only symbolic
constants should be used.

• COUNTER EXAMPLE. Static arrays (as
opposed to open arrays) make this
criterion harder to satisfy.

Mike Wooldridge 9



Lecture 3 Software Engineering

2.5 Modular Protection

• A method satisfied this criterion if it yields
architecures in which the effect of an
abnormal condition at run-time only
affects one (or very few) modules.

• EXAMPLE. Validating input at source
prevents errors from propogating
throughout the program.

• COUNTER EXAMPLE. Using int types
where subrange or short types are
appropriate.

Mike Wooldridge 10



Lecture 3 Software Engineering

3 Five Principles for Good Design

• From the discussion above, we can distill
five principles that should be adhered to:

– linguistic modular units;
– few interfaces;
– small interfaces;
– explicit interfaces;
– information hiding.

Mike Wooldridge 11



Lecture 3 Software Engineering

3.1 Linguistic Modular Units

• A programming language (or design
language) should support the principle of
linguistic modular units:

Modules must correspond to
linguistic units in the language used.

• EXAMPLE. Java methods and classes.

• COUNTER EXAMPLE. Subroutines in
BASIC are called by giving a line number
where execution is to proceed from; there
is no way of telling, just by looking at a
section of code, that it is a subroutine.

Mike Wooldridge 12



Lecture 3 Software Engineering

3.2 Few Interfaces

• This principle states that the overall
number of communication channels
between modules should be as small as
possible:

Every module should communicate
with as few others as possible.

• So, in a system with n modules, there may
be a minimum of n− 1 and a maximium of

n(n− 1)

2

links; your system should stay closer to
the minimum.

Mike Wooldridge 13



Lecture 3 Software Engineering

3.3 Small Interfaces (Loose Coupling)

• This principle states:

If any two modules communicate,
they should exchange as little
information as possible.

• COUNTER EXAMPLE. Declaring all
instance variables as public !

Mike Wooldridge 14



Lecture 3 Software Engineering

3.4 Explicit Interfaces

• If two modules must communicate, they
must do it so that we can see it:

If modules A and B communicate,
this must be obvious from the text of
A or B or both.

•Why? If we change a module, we need to
see what other modules may be affected
by these changes.

Mike Wooldridge 15



Lecture 3 Software Engineering

3.5 Information Hiding

• This principle states:

All information about a module,
(and particularly how the module
does what it does) shoud be private
to the module unless it is specifically
declared otherwise.

• Thus each module should have some
interface, which is how the world sees it:
anything beyond that interface should be
hidden.

• The default Java rule:

Make everything private .

Mike Wooldridge 16



Lecture 3 Software Engineering

4 Reusability

• A major obstacle to the production of
cheap quality software is the intractability
of the reusability issue.

•Why isn’t writing software more like
producing hardware? Why do we start
from scratch every time, coding similar
problems time after time after time?

• Obstacles:

– economic;
– organizational;
– psychological.

Mike Wooldridge 17



Lecture 3 Software Engineering

5 Stepwise Refinement

• The simplest realistic design method,
widely used in practice.

• Not appropriate for large-scale,
distributed systems: mainly applicable to
the design of methods.

• Basic idea is:

– start with a high-level spec of what a
method is to achieve;

– break this down into a small number of
problems (usually no more than 10);

– for each of these problems do the same;
– repeat until the sub-problems may be

solved immediately.

• Breaking down one problem into a
number of smaller ones is known as
refinement.

• Including program code in refinement is
extremely bad practice — this is
implementation bias/

Mike Wooldridge 18



Lecture 3 Software Engineering

6 Object-Oriented Design

• For complex systems, stepwise refinement
is inadequate.

•We use object-oriented design.

• For much of the remainder of this course,
we focus on one particular OO design
approach, using UML (the “unified
Modelling Language”).

•We beging by introducing basic object
concepts.

Mike Wooldridge 19



Lecture 3 Software Engineering

6.1 What is an Object?

• An object is a thing!

– student;
– transaction;
– Lara Croft;
– car;
– customer account;
– employee;
– complex number;
– spreadsheet table;
– spreadsheet cell;
– document;
– paragraph;
– GUI button

. . . and so on.

•When trying to decide what is an object,
look for nouns in your requirements
specification.

Mike Wooldridge 20



Lecture 3 Software Engineering

6.2 What isn’t an object?

• Two sorts of things:

– attribute of object;
– operation on object.

• Attributes:

– speed, color, make, model, owner, and
position are all attributes of a car object.

– number, owner, value might be attributes
of an bank account object.

• Operations:

– turn left, speed up, slow down, turn right
are all operations of a car object.

– open, close, deposit, withdraw, are all
operations on a bank account object.

Operations (a.k.a. behaviours) correspond
to verbs in a requirements specification.
Example: accelerate the car, process the
transaction.

Mike Wooldridge 21



Lecture 3 Software Engineering

6.3 Public & Private

• Each object has an public interface through
which we can manipulate it.
Car object interface: steering wheel,
accelerator, . . .

• The only way that we can manipulate an
object is via its interface.
Lifting the bonnet and fiddling with the
engine directly is not going around the
specification, and can cause problems: poor
practice.

• Behind the scenes, an agent has a private
part — its state and internal operation.

• The internal state & operation are hidden
from the consumer.

• These ideas are known as:

information hiding

which is a good thing.

Mike Wooldridge 22



Lecture 3 Software Engineering

6.4 Objects & Classes

•We usually find it useful to classify objects
into groups of similarity.

• For example, “Renault Clio” is a member
of the class “car”, as is “Peuguot 205”.
We say that “car” is a class and that
“Renault Clio” and “Peuguot 205” are
sub-classes of car.
The sub-class relation is often written
“is-a”.

• Sub-classes are usually specialisations of
their super-class.
They tend to inherit the properties
(attributes & operations) of their
superclass.

Mike Wooldridge 23



Lecture 3 Software Engineering

• A specific object is an instance of a class.
“My Peugot 205” is an instance of the
“Peugot 205” class.

• Another type of relationship between
classes: aggregation (“has-a”).
Example: car object contains four wheel
objects, one steering wheel object, and so
on.

• Individual objects have a unique identity,
which makes them different from other
objects of the same class.
Two objects with the same state are not the
same!

Mike Wooldridge 24



Lecture 3 Software Engineering

6.5 Object-oriented Programming

• The general process of OO software
development involves:

1. developing an appropriate class/object
model, which identifies the classes and
objects in your system;

2. understanding the attributes and
operations of classes;

3. understanding the relationships
between classes and objects
(inheritance, aggregation);

4. iterating steps (1) and (2) until
satisfied;

5. implementing the object model.

Mike Wooldridge 25



Lecture 3 Software Engineering

6.6 Summary

• Objects are things, which may correspond
to physical things, events, legal
institutions, or other abstractions (e.g.,
“discrepancy”).

• Objects have:

– a unique identity;
– attributes;
– operations or behaviours;
– a public interface;
– a private component.

• The public interface acts as a contract, or
specification for the object.

• Objects are instances of a class.

• Classes can be related by:

– the sub-class relationship (“is-a”);
– the aggregation relationship (“has-a”).

• Sub-classes can inherit attributes and
operations from superclasses.

Mike Wooldridge 26


