
LECTURE 6: INTRODUCTION TO
FORMAL METHODS

Software Engineering

Mike Wooldridge



Lecture 6 Software Engineering

1 What are Formal Methods?

• Formal methods is that area of computer
science that is concerned with the
application of mathematical techniques to
the design and implementation of
computer hardware and (more usually)
software.

“That part of computer science
concerned with the application of
mathematical methods to the
production of computer software”.
(Jones, 1986)

•Why bother with formal methods?

1. The correctnesss problem:
– producing software that is “correct”

is famously difficult;
– by using rigorous mathematical

techniques, it may be possible to
make provably correct software.

2. Programs are mathematical objects;
– they are expressed in a formal

language;
Mike Wooldridge 1



Lecture 6 Software Engineering

– they have a formal semantics;
– programs can be treated as

mathematical theories.

Mike Wooldridge 2



Lecture 6 Software Engineering

• Diller (1988) suggests there are two main
parts to formal methods:

1. Formal specification.
Using mathematics to specify the
desired properties of a computer
system.

2. Formal verification.
Using mathematics to prove that a
computer system satisfies its
specification.

• To which many would add:

3. Automated programming.
Automating the process of program
generation.

Mike Wooldridge 3



Lecture 6 Software Engineering

Mike Wooldridge 4



ADVANTAGES



Lecture 6 Software Engineering

• Formal methods can eliminate ambiguity.
A key problem with informal
specifications is the inherent ambiguity of
textual descriptions; using mathematics
can eliminate such ambiguity.

• Mathematics is concise.
Complex properties can be expressed
succinctly.

• Mathematics offers power.
There is little that cannot in some way be
described and reasoned about using
maths.

Mike Wooldridge 6



Lecture 6 Software Engineering

• Maths facilitates proof.
The ability to prove properties of a system
is potentially very valuable.

• Formal specifications, etc., can be manipulated
by computer.

– CASE tools;
– automated specification checkers (e.g.,

CADIZ);
– automated programming.

• Formal methods lead to a deep understanding
of systems.
The precision and detail required brings a
deep understanding of what’s going on.

Mike Wooldridge 7



Lecture 6 Software Engineering

Mike Wooldridge 8



OBJECTIONS/MISCONCEPTIONS



Lecture 6 Software Engineering

• Formal methods eliminate the need for testing.
People can get get sums wrong!

• Formal methods eliminate the need for natural
language.
Ultimately, maths is just symbols: English
is needed to relate these symbols to reality.

• You need a PhD to use formal methods.
All maths looks hard until you get used to
it. . .

Mike Wooldridge 10



Lecture 6 Software Engineering

Mike Wooldridge 11



APPROACHES TO FORMAL
SPECIFICATION



Lecture 6 Software Engineering

• There are two schools of thought on
formal specification:

1. Property based;
2. Model based.

Mike Wooldridge 13



Lecture 6 Software Engineering

Property Based Specification

• In property based specification, you
describe the operations you can perform
on a system, and the relationships
between operations.

• A property oriented specification consists
of:

– a signature part which defines the syntax
of operations (what parameters they
take and return);

– an equations part, which define the
semantics of the operations via a set of
equations called axioms.

Mike Wooldridge 14



Lecture 6 Software Engineering

• EXAMPLES OF PROPERTY ORIENTED
SPECIFICATION TECHNIQUES.

– algebraic specification of abstract data
types (Hoare, 1969).

– the OBJ language (Futatsugi et al., 1985).

Mike Wooldridge 15



Lecture 6 Software Engineering

Model Based Specification

• In model based specification, you use the
tools of set theory, function theory and
logic to build an abstact model of a system.

• You can then specify the operations that
may be performed on your model, either
explicitly, or implicitly (in terms of pre-
and post-conditions).

• The model we construct is:

– high-level;
– idealized;
– free of implementation bias (hopefully!)

Mike Wooldridge 16



Lecture 6 Software Engineering

• A model based specification consists of:

– a definition of the set of states a system
may be in;

– definitions for the legal operations that
may be performed on your system,
indicating how these change current
state.

• EXAMPLES.

– the Z specification language (Abrial,
1980; Hayes 1987; Spivey 1988);

– the VDM (Vienna Development
Method) specification language (Jones
1980, 1986).

Mike Wooldridge 17



Lecture 6 Software Engineering

Mike Wooldridge 18



THE Z SPECIFICATION LANGUAGE



Lecture 6 Software Engineering

• The Z specification language is a
semi-graphical notation for writing formal
specifications.

• It was developed at Oxford University
programming research group in the late
1970s.

• It has been adopted by IBM as their main
formal specification tool (so it’s not just an
academic toy!)

• It was used to specify the IBM Customer
Information Control System (CICS) — a
major piece of software.

Mike Wooldridge 20



Lecture 6 Software Engineering

Mike Wooldridge 21



SOFTWARE TOOLS FOR Z



Lecture 6 Software Engineering

• There are at least three software tools for
developing Z specifications:

– FUZZ. Developed at Oxford by Spivey
et al, in late 1980s.

– CADIZ. Developed at York University,
also in late 1980s (its what we have
here);

– ZED. Developed at Pennsylvania state
University

Mike Wooldridge 23



Lecture 6 Software Engineering

• Briefly, CADIZ will:

– take a Z specification in plain-text
(ASCII) form;

– perform some simple semantic checks
on it;

– typeset (‘pretty print’) it, so that the
schemas can be printed out;

– allow simple interactive browsing of
specifications.

Mike Wooldridge 24


