LECTURE 7: PROPOSITIONAL

 LOGIC (1)Software Engineering Mike Wooldridge

- The syntax of a logic defines the syntactically acceptable objects of the language, which are properly called well-formed formulae (wff). (We shall just call them formulae.)
- The semantics of a logic associate each formula with a meaning.
- The proof theory is concerned with manipulating formulae according to certain rules.

2 Propositional Logic

- When most people say 'logic', they mean either propositional logic or first-order predicate logic.
- However, the precise definition is quite broad, and literally hundreds of logics have been studied by philosophers, computer scientists and mathematicians.
- Any 'formal system' can be considered a logic if it has:
- a well-defined syntax;
- a well-defined semantics; and
- a well-defined proof-theory.
- It is possible to determine whether any given statement is a proposition by prefixing it with:
It is true that ...
and seeing whether the result makes grammatical sense.
- We now define atomic propositions. Intuitively, these are the set of smallest propositions.
- Definition: An atomic proposition is one whose truth or falsity does not depend on the truth or falsity of any other proposition.
- So all the above propositions are atomic.

2.1 The Connectives

- Now, the study of atomic propositions is pretty boring. We therefore now introduce a number of connectives which will allow us to build up complex propositions.
- The connectives we introduce are:

$$
\begin{aligned}
& \wedge \text { and }(\& \text { or } .) \\
& \vee \text { or }(\mid \text { or }+) \\
& \neg \operatorname{not}(\sim) \\
& \Rightarrow \text { implies }(\supset \text { or } \rightarrow) \\
& \Leftrightarrow \text { iff }
\end{aligned}
$$

- (Some books use other notations; these are given in parentheses.)
- Now, rather than write out propositions in full, we will abbreviate them by using propositional variables.
- It is standard practice to use the lower-case roman letters
p, q, r, \ldots
to stand for propositions.
- If we do this, we must define what we mean by writing something like:

Let p be John Major is prime Minister.

- Another alternative is to write something like reactor_is_on, so that the interpretation of the propositional variable becomes obvious.
- Any two propositions can be combined to form a third proposition called the conjunction of the original propositions.
- Definition: If p and q are arbitrary propositions, then the conjunction of p and q is written

$$
p \wedge q
$$

and will be true iff both p and q are true.

- We can summarise the operation of \wedge in a truth table. The idea of a truth table for some formula is that it describes the behaviour of a formula under all possible interpretations of the primitive propositions the are included in the formula.
- If there are n different atomic propositions in some formula, then there are 2^{n} different lines in the truth table for that formula. (This is because each proposition can take one 1 of 2 values - true or false.)
- Let us write T for truth, and F for falsity. Then the truth table for $p \wedge q$ is:

p	q	$p \wedge q$
F	F	F
F	T	F
T	F	F
T	T	T

- The operation of \vee is summarised in the following truth table:

p	q	$p \vee q$
F	F	F
F	T	T
T	F	T
T	T	T

If... Then...

- Many statements, particularly in mathematics, are of the form:
if p is true then q is true.
Another way of saying the same thing is to write:

p implies q .

- In propositional logic, we have a connective that combines two propositions into a new proposition called the conditional, or implication of the originals, that attempts to capture the sense of such a statement.

Lecture 7

Iff

- Definition: If p and q are arbitrary propositions, then the conditional of p and q is written

$$
p \Rightarrow q
$$

and will be true iff either p is false or q is true.

- The truth table for \Rightarrow is:

p	q	$p \Rightarrow q$
F	F	T
F	T	T
T	F	F
T	T	T

- The \Rightarrow operator is the hardest to understand of the operators we have considered so far, and yet it is extremely important.
- If you find it difficult to understand, just remember that the $p \Rightarrow q$ means 'if p is true, then q is true'.
If p is false, then we don't care about q, and by default, make $p \Rightarrow q$ evaluate to T in this case.
- Terminology: if ϕ is the formula $p \Rightarrow q$,

Lecture 7

- The truth table for \Leftrightarrow is:

p	q	$p \Leftrightarrow q$
F	F	T
F	T	F
T	F	F
T	T	T

- If $p \Leftrightarrow q$ is true, then p and q are said to be logically equivalent. They will be true under exactly the same circumstances.

Not

3 Tautologies \& Consistency

- All of the connectives we have considered so far have been binary: they have taken two arguments.
- The final connective we consider here is unary. It only takes one argument.
- Any proposition can be prefixed by the word 'not' to form a second proposition called the negation of the original.
- Definition: If p is an arbitrary proposition then the negation of p is written

```
\neg p
```

and will be true iff p is false.

- Truth table for \neg :

p	$\neg p$
F	T
T	F

- Given a particular formula, can you tell if it is true or not?
- No - you usually need to know the truth values of the component atomic propositions in order to be able to tell whether a formula is true.
- Definition: A valuation is a function which assigns a truth value to each primitive proposition.
- In Modula-2, we might write:

```
PROCEDURE Val(p : AtomicProp):
    BOOLEAN;
```

- Given a valuation, we can say for any formula whether it is true or false.
- EXAMPLE. Suppose we have a valuation v, such that:

$$
\begin{aligned}
& v(p)=F \\
& v(q)=T \\
& v(r)=F
\end{aligned}
$$

Then we truth value of $(p \vee q) \Rightarrow r$ is evaluated by:

$$
\begin{array}{r}
(v(p) \vee v(q)) \Rightarrow v(r) \\
=(F \vee T) \Rightarrow F \\
=T \Rightarrow F \\
=F \tag{4}
\end{array}
$$

Line (3) is justified since we know that $F \vee T=T$.
Line (4) is justified since $T \Rightarrow F=F$.
If you can't see this, look at the truth tables for \vee and \Rightarrow.

- When we consider formulae in terms of interpretations, it turns out that some have interesting properties.

- Definition:

1. A formula is a tautology iff it is true under every valuation;
2. A formula is consistent iff it is true under at least one valuation;
3. A formula is inconsistent iff it is not made true under any valuation.

- Now, each line in the truth table of a formula correponds to a valuation.
- So, we can use truth tables to determine whether or not formulae are tautologies.

