LECTURE 7: PROPOSITIONAL LOGIC (1)

Software Engineering
Mike Wooldridge
1 What is a Logic?

• When most people say ‘logic’, they mean either *propositional logic* or *first-order predicate logic*.

• However, the precise definition is quite broad, and literally hundreds of logics have been studied by philosophers, computer scientists and mathematicians.

• Any ‘formal system’ can be considered a logic if it has:
 – a well-defined *syntax*;
 – a well-defined *semantics*; and
 – a well-defined *proof-theory*.
• The syntax of a logic defines the syntactically acceptable objects of the language, which are properly called well-formed formulae (wff). (We shall just call them formulae.)

• The semantics of a logic associate each formula with a meaning.

• The proof theory is concerned with manipulating formulae according to certain rules.
The simplest, and most abstract logic we can study is called *propositional logic*.

Definition: A *proposition* is a statement that can be either *true* or *false*; it must be one or the other, and it cannot be both.

EXAMPLES. The following are propositions:

- the reactor is on;
- the wing-flaps are up;
- John Major is prime minister.

whereas the following are not:

- are you going out somewhere?
- 2+3
• It is possible to determine whether any given statement is a proposition by prefixing it with:

\[
\text{It is true that} \ldots
\]

and seeing whether the result makes grammatical sense.

• We now define *atomic* propositions. Intuitively, these are the set of smallest propositions.

• **Definition:** An *atomic proposition* is one whose truth or falsity does not depend on the truth or falsity of any other proposition.

• So all the above propositions are atomic.
• Now, rather than write out propositions in full, we will abbreviate them by using
 propositional variables.

• It is standard practice to use the
 lower-case roman letters

 \[p, q, r, \ldots \]

 to stand for propositions.

• If we do this, we must define what we
 mean by writing something like:

 \[\text{Let } p \text{ be } \text{John Major is prime Minister}. \]

• Another alternative is to write something
 like *reactor_is_on*, so that the interpretation
 of the propositional variable becomes
 obvious.
Now, the study of atomic propositions is pretty boring. We therefore now introduce a number of connectives which will allow us to build up complex propositions.

The connectives we introduce are:

\[\land \] and (\& or .)
\[\lor \] or (| or +)
\[\neg \] not (~)
\[\Rightarrow \] implies (⊃ or →)
\[\Leftrightarrow \] iff

(Some books use other notations; these are given in parentheses.)
• Any two propositions can be combined to form a third proposition called the conjunction of the original propositions.

• **Definition:** If p and q are arbitrary propositions, then the conjunction of p and q is written

$$p \land q$$

and will be true iff both p and q are true.
• We can summarise the operation of \land in a *truth table*. The idea of a truth table for some formula is that it describes the behaviour of a formula under all possible interpretations of the primitive propositions the are included in the formula.

• If there are n different atomic propositions in some formula, then there are 2^n different lines in the truth table for that formula. (This is because each proposition can take one 1 of 2 values — *true* or *false*.)

• Let us write T for truth, and F for falsity. Then the truth table for $p \land q$ is:

\[
\begin{array}{ccc}
p & q & p \land q \\
F & F & F \\
F & T & F \\
T & F & F \\
T & T & T \\
\end{array}
\]
• Any two propositions can be combined by the word ‘or’ to form a third proposition called the *disjunction* of the originals.

• **Definition:** If p and q are arbitrary propositions, then the *disjunction* of p and q is written

$$p \lor q$$

and will be true iff either p is true, or q is true, or both p and q are true.
• The operation of \lor is summarised in the following truth table:

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \lor q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
If... Then...

- Many statements, particularly in mathematics, are of the form:

 \[\text{if } p \text{ is true then } q \text{ is true.} \]

 Another way of saying the same thing is to write:

 \[p \text{ implies } q. \]

- In propositional logic, we have a connective that combines two propositions into a new proposition called the conditional, or implication of the originals, that attempts to capture the sense of such a statement.
• **Definition:** If \(p \) and \(q \) are arbitrary propositions, then the *conditional* of \(p \) and \(q \) is written

\[
p \Rightarrow q
\]

and will be true iff either \(p \) is false or \(q \) is true.

• The truth table for \(\Rightarrow \) is:

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(p \Rightarrow q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
</tr>
<tr>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
</tr>
<tr>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
</tbody>
</table>
• The \Rightarrow operator is the hardest to understand of the operators we have considered so far, and yet it is extremely important.

• If you find it difficult to understand, just remember that the $p \Rightarrow q$ means ‘if p is true, then q is true’.

If p is false, then we don’t care about q, and by default, make $p \Rightarrow q$ evaluate to T in this case.

• Terminology: if ϕ is the formula $p \Rightarrow q$, then p is the antecedent of ϕ and q is the consequent.
Another common form of statement in maths is:

\[p \text{ is true if, and only if, } q \text{ is true.} \]

The sense of such statements is captured using the \textit{biconditional} operator.

\textbf{Definition:} If \(p \) and \(q \) are arbitrary propositions, then the \textit{biconditional} of \(p \) and \(q \) is written:

\[p \iff q \]

and will be true iff either:

1. \(p \) and \(q \) are both true; or
2. \(p \) and \(q \) are both false.
• The truth table for \iff is:

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \iff q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

• If $p \iff q$ is true, then p and q are said to be **logically equivalent**. They will be true under exactly the same circumstances.
Not

• All of the connectives we have considered so far have been binary: they have taken two arguments.

• The final connective we consider here is unary. It only takes one argument.

• Any proposition can be prefixed by the word ‘not’ to form a second proposition called the negation of the original.

• Definition: If \(p \) is an arbitrary proposition then the negation of \(p \) is written

\[
\neg p
\]

and will be true iff \(p \) is false.

• Truth table for \(\neg \):

<table>
<thead>
<tr>
<th>(p)</th>
<th>(\neg p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F)</td>
<td>(T)</td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
</tr>
</tbody>
</table>
Comments

- We can *nest* complex formulae as deeply as we want.
- We can use *parentheses* i.e.,),(, to *disambiguate* formulae.
- EXAMPLES. If p, q, r, s and t are atomic propositions, then all of the following are formulae:

$$
 p \land q \Rightarrow r \\
 p \land (q \Rightarrow r) \\
 (p \land (q \Rightarrow r)) \lor s \\
 ((p \land (q \Rightarrow r)) \lor s) \land t
$$

whereas none of the following is:

$$
 p \land \\
 p \land q) \\
 p\neg
$$
3 Tautologies & Consistency

- Given a particular formula, can you tell if it is true or not?
- No — you usually need to know the truth values of the component atomic propositions in order to be able to tell whether a formula is true.
- **Definition:** A *valuation* is a function which assigns a truth value to each primitive proposition.
- In Modula-2, we might write:

  ```
  PROCEDURE Val(p : AtomicProp): BOOLEAN;
  ```

- Given a valuation, we can say for any formula whether it is true or false.
EXAMPLE. Suppose we have a valuation \(v \), such that:
\[
\begin{align*}
v(p) &= F \\
v(q) &= T \\
v(r) &= F
\end{align*}
\]
Then we truth value of \((p \lor q) \Rightarrow r \) is evaluated by:
\[
(\underbrace{v(p) \lor v(q)}_{\text{(1)}}) \Rightarrow v(r) = (\underbrace{F \lor T}_T) \Rightarrow F = T \Rightarrow F = F
\]
Line (3) is justified since we know that \(F \lor T = T \).
Line (4) is justified since \(T \Rightarrow F = F \).
If you can’t see this, look at the truth tables for \(\lor \) and \(\Rightarrow \).
When we consider formulae in terms of interpretations, it turns out that some have interesting properties.

Definition:

1. A formula is a *tautology* iff it is true under *every* valuation;
2. A formula is *consistent* iff it is true under *at least one* valuation;
3. A formula is *inconsistent* iff it is not made true under *any* valuation.

Now, each line in the truth table of a formula corresponds to a valuation.

So, we can use truth tables to determine whether or not formulae are tautologies.