
LECTURE 7: PROPOSITIONAL
LOGIC (1)

Software Engineering

Mike Wooldridge



Lecture 7 Software Engineering

1 What is a Logic?

•When most people say ‘logic’, they mean
either propositional logic or first-order
predicate logic.

• However, the precise definition is quite
broad, and literally hundreds of logics
have been studied by philosophers,
computer scientists and mathematicians.

• Any ‘formal system’ can be considered a
logic if it has:

– a well-defined syntax;
– a well-defined semantics; and
– a well-defined proof-theory.

Mike Wooldridge 1



Lecture 7 Software Engineering

• The syntax of a logic defines the
syntactically acceptable objects of the
language, which are properly called
well-formed formulae (wff). (We shall just
call them formulae.)

• The semantics of a logic associate each
formula with a meaning.

• The proof theory is concerned with
manipulating formulae according to
certain rules.

Mike Wooldridge 2



Lecture 7 Software Engineering

2 Propositional Logic

• The simplest, and most abstract logic we
can study is called propositional logic.

• Definition: A proposition is a statement
that can be either true or false; it must be
one or the other, and it cannot be both.

• EXAMPLES. The following are
propositions:

– the reactor is on;
– the wing-flaps are up;
– John Major is prime minister.

whereas the following are not:

– are you going out somewhere?
– 2+3

Mike Wooldridge 3



Lecture 7 Software Engineering

• It is possible to determine whether any
given statement is a proposition by
prefixing it with:

It is true that . . .

and seeing whether the result makes
grammatical sense.

•We now define atomic propositions.
Intuitively, these are the set of smallest
propositions.

• Definition: An atomic proposition is one
whose truth or falsity does not depend on
the truth or falsity of any other
proposition.

• So all the above propositions are atomic.

Mike Wooldridge 4



Lecture 7 Software Engineering

• Now, rather than write out propositions in
full, we will abbreviate them by using
propositional variables.

• It is standard practice to use the
lower-case roman letters

p, q, r, . . .

to stand for propositions.

• If we do this, we must define what we
mean by writing something like:

Let p be John Major is prime Minister.

• Another alternative is to write something
like reactor is on, so that the interpretation
of the propositional variable becomes
obvious.

Mike Wooldridge 5



Lecture 7 Software Engineering

2.1 The Connectives

• Now, the study of atomic propositions is
pretty boring. We therefore now introduce
a number of connectives which will allow
us to build up complex propositions.

• The connectives we introduce are:

∧ and (& or .)
∨ or (| or +)
¬ not (∼)
⇒ implies (⊃ or→)
⇔ iff

• (Some books use other notations; these are
given in parentheses.)

Mike Wooldridge 6



Lecture 7 Software Engineering

And

• Any two propositions can be combined to
form a third proposition called the
conjunction of the original propositions.

• Definition: If p and q are arbitrary
propositions, then the conjunction of p and
q is written

p ∧ q

and will be true iff both p and q are true.

Mike Wooldridge 7



Lecture 7 Software Engineering

•We can summarise the operation of ∧ in a
truth table. The idea of a truth table for
some formula is that it describes the
behaviour of a formula under all possible
interpretations of the primitive
propositions the are included in the
formula.

• If there are n different atomic propositions
in some formula, then there are 2n different
lines in the truth table for that formula.
(This is because each proposition can take
one 1 of 2 values — true or false.)

• Let us write T for truth, and F for falsity.
Then the truth table for p ∧ q is:

p q p ∧ q
F F F
F T F
T F F
T T T

Mike Wooldridge 8



Lecture 7 Software Engineering

Or

• Any two propositions can be combined by
the word ‘or’ to form a third proposition
called the disjunction of the originals.

• Definition: If p and q are arbitrary
propositions, then the disjunction of p and
q is written

p ∨ q

and will be true iff either p is true, or q is
true, or both p and q are true.

Mike Wooldridge 9



Lecture 7 Software Engineering

• The operation of ∨ is summarised in the
following truth table:

p q p ∨ q
F F F
F T T
T F T
T T T

Mike Wooldridge 10



Lecture 7 Software Engineering

If. . . Then. . .

•Many statements, particularly in
mathematics, are of the form:

if p is true then q is true.

Another way of saying the same thing is to
write:

p implies q.

• In propositional logic, we have a
connective that combines two propositions
into a new proposition called the
conditional, or implication of the originals,
that attempts to capture the sense of such
a statement.

Mike Wooldridge 11



Lecture 7 Software Engineering

• Definition: If p and q are arbitrary
propositions, then the conditional of p and q
is written

p⇒ q

and will be true iff either p is false or q is
true.

• The truth table for⇒ is:
p q p⇒ q
F F T
F T T
T F F
T T T

Mike Wooldridge 12



Lecture 7 Software Engineering

• The⇒ operator is the hardest to
understand of the operators we have
considered so far, and yet it is extremely
important.

• If you find it difficult to understand, just
remember that the p⇒ q means ‘if p is
true, then q is true’.
If p is false, then we don’t care about q, and
by default, make p⇒ q evaluate to T in
this case.

• Terminology: if φ is the formula p⇒ q,
then p is the antecedent of φ and q is the
consequent.

Mike Wooldridge 13



Lecture 7 Software Engineering

Iff

• Another common form of statement in
maths is:

p is true if, and only if, q is true.

• The sense of such statements is captured
using the biconditional operator.

• Definition: If p and q are arbitrary
propositions, then the biconditional of p
and q is written:

p⇔ q

and will be true iff either:

1. p and q are both true; or
2. p and q are both false.

Mike Wooldridge 14



Lecture 7 Software Engineering

• The truth table for⇔ is:
p q p⇔ q
F F T
F T F
T F F
T T T

• If p⇔ q is true, then p and q are said to be
logically equivalent. They will be true under
exactly the same circumstances.

Mike Wooldridge 15



Lecture 7 Software Engineering

Not

• All of the connectives we have considered
so far have been binary: they have taken
two arguments.

• The final connective we consider here is
unary. It only takes one argument.

• Any proposition can be prefixed by the
word ‘not’ to form a second proposition
called the negation of the original.

• Definition: If p is an arbitrary proposition
then the negation of p is written

¬p

and will be true iff p is false.

• Truth table for ¬:
p ¬p
F T
T F

Mike Wooldridge 16



Lecture 7 Software Engineering

Comments

•We can nest complex formulae as deeply as
we want.

•We can use parentheses i.e., ),(, to
disambiguate formulae.

• EXAMPLES. If p, q, r, s and t are atomic
propositions, then all of the following are
formulae:

p ∧ q⇒ r
p ∧ (q⇒ r)

(p ∧ (q⇒ r)) ∨ s
((p ∧ (q⇒ r)) ∨ s) ∧ t

whereas none of the following is:

p ∧
p ∧ q)

p¬

Mike Wooldridge 17



Lecture 7 Software Engineering

3 Tautologies & Consistency

• Given a particular formula, can you tell if
it is true or not?

• No — you usually need to know the truth
values of the component atomic
propositions in order to be able to tell
whether a formula is true.

• Definition: A valuation is a function which
assigns a truth value to each primitive
proposition.

• In Modula-2, we might write:

PROCEDURE Val(p : AtomicProp):
BOOLEAN;

• Given a valuation, we can say for any
formula whether it is true or false.

Mike Wooldridge 18



Lecture 7 Software Engineering

• EXAMPLE. Suppose we have a valuation
v, such that:

v(p) = F
v(q) = T
v(r) = F

Then we truth value of (p ∨ q)⇒ r is
evaluated by:

(v(p) ∨ v(q))⇒ v(r) (1)
= (F ∨ T)⇒ F (2)

= T ⇒ F (3)
= F (4)

Line (3) is justified since we know that
F ∨ T = T.
Line (4) is justified since T ⇒ F = F.
If you can’t see this, look at the truth tables
for ∨ and⇒.

Mike Wooldridge 19



Lecture 7 Software Engineering

•When we consider formulae in terms of
interpretations, it turns out that some have
interesting properties.

• Definition:

1. A formula is a tautology iff it is true
under every valuation;

2. A formula is consistent iff it is true
under at least one valuation;

3. A formula is inconsistent iff it is not
made true under any valuation.

• Now, each line in the truth table of a
formula correponds to a valuation.

• So, we can use truth tables to determine
whether or not formulae are tautologies.

Mike Wooldridge 20


