
LECTURE 8: SETS

Software Engineering

Mike Wooldridge



Lecture 8 Software Engineering

1 What is a Set?

• The concept of a set is used throughout
mathematics; its formal definition matches
closely our intuitive understanding of the
word.

• Definition: A set is an unordered collection
of distinct objects.

•We can build sets containing any objects
that we like, but usually we consider sets
whose elements have some property in
common.

• The objects comprising a set are called its
elements or members.

• Note that:

– sets do not contain duplicates;
– the order of elements in a set is not

significant.

Mike Wooldridge 1



Lecture 8 Software Engineering

2 Defining Sets — Enumeration

• By convention, a set can be defined by
enumerating its components in curly
brackets.

• EXAMPLE.

Vowels == {a, e, i, o,u}

EXAMPLE.

Weekend == {Sat,Sun}

• The double-equals symbol (==) is read ‘is
defined to be’; it gives us a method for
naming sets, so that we can subsequently
use them.

• (We can’t use sets unless they have been
previously defined in some way.)

Mike Wooldridge 2



Lecture 8 Software Engineering

• In Z, another equivalent method for
defining sets is allowed . . .

• EXAMPLE.
Vowels := a

| e
| i
| o
| u

• Another standard convention is to allow
number ranges . . .

• EXAMPLE.

Days == 1 . . 365

Mike Wooldridge 3



Lecture 8 Software Engineering

• Some sets occur so often that they have
been pre-defined and given standard
names.

IN the natural numbers:

IN = {0, 1, 2, 3, . . .}

IN1 the natural numbers greater than 0:

IN1 = {1, 2, 3, . . .}

Z the integers:

Z = {. . . ,−2,−1, 0, 1, 2, . . .}

IB the truth values:

IB = {true, false}

Mike Wooldridge 4



Lecture 8 Software Engineering

3 Relational Operators for Sets

• The set theory in Z provides us with a
variety of relational operators for expressing
the properties of sets.

3.1 Set Membership

• To express the fact that an object x is a
member of set S, we write

x ∈ S

Note that an expression with this form is
either true or false; the thing is either a
member or not.

• EXAMPLES.

a ∈ {a, e, i, o,u}
1 ∈ IN
23 ∈ Days

Mike Wooldridge 5



Lecture 8 Software Engineering

• Note that the r.h.s. of the expression x ∈ S
must be an expression which returns a set
of values of the same type as the
expression on the l.h.s returns.

• EXAMPLE. This isn’t allowed:

{1, 2, 3} ∈ {4, 5, 6}

But this is:

{1, 2, 3} ∈ {{6, 7, 8}, {1, 2, 3}}

and so is this:

{1, 2, 3} ∈ {{6, 2, 1}}

The first legal expression above evaluates
to true; the second evaluates to false.

• Note that Z differs in this respect from
what might be called naive set theory: Z is
said to be a typed set theory, (because we
must check the types on the l.h.s and r.h.s.
of our expressions.)

Mike Wooldridge 6



Lecture 8 Software Engineering

3.2 Set Equality

• Definition: Let S and T be arbitrary sets of
the same type. Then

S = T

is true iff S and T contain precisely the
same members.

• Note that the order in which values occur
in the set is not significant.

• EXAMPLES. The following is a true
expression:

{1, 2, 3} = {2, 3, 1}

as is this

Days = 1 . . 365

however, the following is not:

Days = IN.

Mike Wooldridge 7



Lecture 8 Software Engineering

3.3 Subsets

• Definition: Let S and T be arbitrary sets of
the same type. Then

S ⊆ T

is true iff every member of S is also a member
of y.

• EXAMPLES. The following are true
expressions:

{1, 2, 3} ⊆ IN;
{true} ⊆ IB;
IN ⊆ Z;
IN1 ⊆ IN;
{1, 2, 3} ⊆ {1, 2, 3}.

whereas the following are not:

{1, 2, 3, 4} ⊆ {1, 2, 3};
Z ⊆ IN.

• Note that equal sets are subsets of each
other; we can express this fact in the
following theorem about sets:

(S = T)⇒ (S ⊆ T)

Mike Wooldridge 8



Lecture 8 Software Engineering

3.4 Proper Subsets

• As we just saw, if two sets are equal, then
they are subsets of each other. This may
seem strange! We introduce another
relational operator that more accurately
captures our intuitive understanding of
what ‘subset’ means.

• Definition: Let S and T be arbitrary sets of
the same type. Then:

S ⊂ T

is true iff both S ⊆ T and S 6= T.

• If S ⊂ T then then S is said to be a proper
subset of T.

• Note that we can formally define the ⊂
relation using concepts introduced earlier:

S ⊂ T ⇔ (S ⊆ T) ∧ (S 6= T)

• Note the use of⇔ to introduce definitions.

Mike Wooldridge 9



Lecture 8 Software Engineering

4 The Empty Set

• There is a special set that has the property
of having no members; this set is called the
empty set, and is denoted either
{}

or (more usually)
∅

• Note that if x is any value, then the
expression

x ∈ ∅
must be false. (Nothing is a member of the
empty set.)

• Similarly, if S is an arbitrary set, then
∅ ⊆ S

must be true; this includes of course
∅ ⊆ ∅

(The emptyset is a subset of every set.)

• But note that this is not a theorem:
S ⊂ ∅

Why?

Mike Wooldridge 10



Lecture 8 Software Engineering

5 The Powerset Operator

• Definition: Let S be an arbitrary set. Then
the set of all subsets of S is given by

IP S.

• EXAMPLES.

– If

S = {1}
then

IP S = {∅, {1}}

– If

S = {1, 2}
then

IP S = {∅, {1}, {2}, {1, 2}}

– If

S = {a, b, c}
then

IP S =?

Mike Wooldridge 11



Lecture 8 Software Engineering

•We can again use⇔ to introduce IP as a
derived operator:

T ∈ IP S⇔ (T ⊆ S)

• Note that if S has n members, then IP S has
2n members.

• For this reason, the powerset of a set S is
sometimes denoted by 2S. (But not by us.)

Mike Wooldridge 12



Lecture 8 Software Engineering

6 Manipulating Sets

6.1 Set Union

• The union of two sets is a third set that
contains the members of both.

• The symbol for union is ∪.

• Definition: Let S and T be arbitrary sets.
Then

x ∈ (S ∪ T)

is true iff either x ∈ S or x ∈ T.

• Note that we can introduce this as a
derived operator:

x ∈ S ∪ T ⇔ x ∈ S ∨ x ∈ T.

• EXAMPLES.

{a, e, i} ∪ {o,u} = {a, e, i, o,u};
{a, e} ∪ {e, i} = {a, e, i};
∅ ∪ {a, e} = {a, e}.

Mike Wooldridge 13



Lecture 8 Software Engineering

6.2 Set Intersection

• The intersection of two sets is a third set
that contains only elements common to
both.

• Definition: Let S and T be arbitrary sets.
Then

x ∈ (S ∩ T)

iff both x ∈ S and x ∈ T.

• As a derived operator:

x ∈ (S ∩ T)⇔ (x ∈ S) ∧ (x ∈ T).

• EXAMPLES.

{a, e, i} ∩ {o,u} = ∅;
a¬ ∈ {a, e, i} ∩ {e, i};
IN = IN ∩ Z.

Mike Wooldridge 14



Lecture 8 Software Engineering

6.3 Set Difference

• The notation S \ T denotes the set obtained
from S by removing from it all the
elements of T tha occur in it; in other
words, you take T away from S.

• Definition: Let S and T be arbitrary sets.
Then

x ∈ (S \ T)

is true iff x ∈ S and x 6∈ T.

• As a derived operator:

. . .

• EXAMPLES.

{a, e, i, o,u} \ {o} = {a, e, i,u}
∅ \ {1, 2, 3} = ∅.

Mike Wooldridge 15



Lecture 8 Software Engineering

6.4 Theorems about Sets

Let S, T, and U be arbitrary sets of the same
type. Then:

S ∪ S = S

S ∩ S = S

(S ∪ T) ∪U = S ∪ (T ∪U)

(S ∩ T) ∩U = S ∩ (T ∩U)

S ∪ T = T ∪ S

S ∩ T = T ∩ S

S ∪ (T ∩U) = (S ∪ T) ∩ (S ∪U)

S ∩ (T ∪U) = (S ∩ T) ∪ (S ∩U)

S ∪ ∅ = S

S ∩ ∅ = ∅

Mike Wooldridge 16



Lecture 8 Software Engineering

6.5 Cardinality

• The cardinality of a set is the number of
elements in it.

• Definition: If S is an arbitrary set, then the
cardinality of S is denoted #S.

• Note that for an arbitrary set S:

#S ∈ IN.

• EXAMPLES.

#{1, 2, 3} = 3;
#∅ = 0;
#({1, 2, 3} ∩ {2}) = 1.

Mike Wooldridge 17



Lecture 8 Software Engineering

7 Defining Sets: Comprehension

•We have seen how sets may be defined by
numeration — listing their contents.

• This technique is impractical for large sets!

• Comprehension is a way of defining sets:

– in terms of their properties;
– in terms of other sets.

• Comprehension is best explained via
examples:

{n : IN | (n ≥ 0) ∧ (n ≤ 3)} = {0, 1, 2, 3}
{n : Z | (n > 1) ∧ (n < 1)} = ∅
{n : IN | (n ≥ 0) ∧ (n ≤ 3) • n + 1} =
{1, 2, 3, 4}

Mike Wooldridge 18



Lecture 8 Software Engineering

• In general, a set comprehension expression
will have three parts:

– a signature — specifies the base sets
from which values are extracted;

– a predicate — the defining property of
the set;

– a term — specifies how the actual values
in the set are computed.

• Generally, we omit the term part — we
just have a signature and a predicate, as in
examples (1) and (2), above.

Mike Wooldridge 19


