LECTURE 9: FUNCTIONS

Software Engineering

Mike Wooldridge




Lecture 9 Software Engineering

1 Cartesian Products

e As defined earlier, a set is an unstructured
object: the order in which elements occur
in a set 1s not important.

e However, many objects in formal system
specification require some structure or
ordering — otherwise how could we have

things like Modula-2 RECORPor C
structures?

e Cartesian products are one way of making
objects which have structure.

Mike Wooldridge 1




Lecture 9 Software Engineering

e Suppose that
AP T1
B:IPT,
(i.e., A is a subset of T and B is a subset of
T5).
The the cartesian product of A and B is
given by the expression
A XB

and is a set containing all the ordered pairs
whose first element comes from set A and
whose second element comes from set B.

e EXAMPLE. If

A——{1,2)
B == {374}
then

Ax B=1{(1,3),(1,4),(2,3),(2,4)}.

Mike Wooldridge 2




Lecture 9 Software Engineering

e An ordered pair is an example of an
n-tuple; in this case n = 2.

e We list the components of an n-tuple in
parentheses.

e Cartesian products are not restricted to
just 2 sets — we can have as many as we

wish.
e Definition: If
S,...,S,

are arbitrary sets, then
S1 % -+ x5y
is the set of n-tuples over Sy, ..., S,

Si X+ X§,==
{(81,...,€n)‘61651/\"'/\67165;1}.

Mike Wooldridge 3




Lecture 9 Software Engineering

e Things to note about cartesian products:

— H#(S1 X -+ X S5y) = #51 % -+ x #S,,

- _I\V/51,52 . Set o (Sl X 52> — (52 X Sl> (i.e.,
the cartesian product operation does
not commute).

e Finally, let S = {Sy,...,S,} be an indexed
set of sets; then the cartesian product over
its component sets is often written:

Hic1.n S
or just

ns.

e Cartesian products are sometimes called
cross products.

Mike Wooldridge 4




Lecture 9 Software Engineering

2 Functions

e Functions are mathematical objects that
take some arqguments and return some values.

e One model for functions is as a set of
ordered pairs.

e EXAMPLE. Imagine a function in a
Modula-2 program that takes as its sole
argument a name representing somebody
in a computer department, and returns as
its sole result their phone number:

PROCEDURE PN(n: Name): PhoneNum
So that

PN('mike’) = 1531
PN(eric’) = 1489

We can represent this function as the set

PN == {(mike, 1531), (eric, 1489)}

Mike Wooldridge 5




Lecture 9 Software Engineering

e If PN is so defined, then we say
PN (mike) = 1531, and PN/(eric) = 1489.

e QUESTION: Can we define the set of
functions from T; to T> as the set of
ordered pairs T x T5?

e ANSWER: No — this doesn’t work:
consider the set

PN == {(mike, 1531), (mike, 1455)}
what is PN(mike) defined to be here?

e Functions have a uniqueness property:
every possible input to the function must have
at most one associated output.

Mike Wooldridge 6




Lecture 9 Software Engineering

e Note that it is is possible for two inputs to
map to the same output.

e What happens when we try to put a value
into a function when there is no
corresponding output listed? If

PN == {(mike, 1531)}

then PN eric) =7

In this case we say that the function is
undefined for that value.

Mike Wooldridge 7




Lecture 9 Software Engineering

3 Domain and Range|

e There are two important sets associated
with a function:

— domain: the set representing all input
values for which the function is defined;

— range: the set representing all outputs of
the function that correspond to a
defined input.

e Definition: If f is an arbitary function then
dom f

is an expression returning the domain of f
and

ran f

1S an expression returning its range.

e EXERCISE. Using set comprehension,
define the domain and range of a function
f which maps values from T to Tb.

SOLUTION.
domf =={x:Ty|3Jdy: Ty e (x,y) €f}
ranf == {x: Ty | Jy: T e (y,x) € f}

Mike Wooldridge 8




Lecture 9 Software Engineering

e EXAMPLE. If
PN == {(eric, 1489), (mike, 1531) }
then
dom PN = {eric, mike}
and

ran PN = {1531, 1489}

e Theorems about domain and range:

#domf > #ranf
dom(f Ug) = (domf) U (domg)

ran(f Ug) = (ranf) U (rang)
dom(f Ng) € (domf) N (domg)
ran(f Ng) C (ranf) N (rang)
dom® = 0
ran() = ()

Mike Wooldridge 9




Lecture 9 Software Engineering

4 Total and Partial Functions

e The most general kind of functions we
consider are partial functions.

e Definition: If f is a function from T} to Ty,
then f is a partial function. The set of all
partial functions from T; to T is given by
the expression

T1 —+ T2.

e Note that:
- @ ~ T1 —+ T2
(i.e, the emptyset is a partial function).

—if f € Ty + T, then f may be undefined
for some value in Tj.

Mike Wooldridge 10




Lecture 9 Software Engineering

e Some partial functions have the property
of being defined for all potential input
values: these are total functions.

e Definition: If f € T} + Ty and domf =T},
then f is said to be a total function from T
to T. The set of total functions from T; to
T, is given by the expression:

T1 — TQ.

e EXERCISE. Define the set T} — T, using
set comprehension.

SOLUTION.

Ty — Ty ==
{fiTl—HTQ‘dOHlf:Tl}

Mike Wooldridge 1




Lecture 9 Software Engineering

e QUESTION: What happens if a function
takes more than one argument?

ANSWER: Then we say that the function
takes just one input, from the cartesian
product of the input argument types.

e EXAMPLE. The function plus takes two
integers as inputs, adds them together and
returns the result;

plus . Z x 2 — Z
e The expression
f:Dyx---xDy— Ry x--- xR,

which specifies the type of the function f is
called the signature of f.

Mike Wooldridge 12




Lecture 9 Software Engineering

5 Properties of Functions

5.1 Injections

e Definition: A function is one-to-one itf
every element in the domain maps to a
different element in the range. One-to-one
functions are also called injections.

e EXAMPLES. The following is an injection:
{(mike, 1531), (eric, 1489)}
whereas the following is not:

{(mike, 1531), (eric, 1531)}

Mike Wooldridge 13




Lecture 9 Software Engineering

5.2 Surjections

e Definition: A function f is onto iff every
possible element y € ranf has some
corresponding value x € domf such that

flx) =y.
e EXAMPLE. Suppose
T, == {a,b,c,d}

Iy == {evag}
f1 T+ T
f2 . T1 —+> T2

Then
fl == (aae)a (b,f), (C7g>}
is a surjection; but

f2 - <£l,€>, (b7f)}

is not a surjection, as there is no value
x € dom f, such that fo(x) = g.

e Do not confuse surjections with total
functions.

Mike Wooldridge 14




Lecture 9 Software Engineering

e Finally, if a function is both an injection
and a surjection, then it is called a bijection.

e There are operators for building
combinations of types:

constructor | returns

partial functions
(total) functions
partial injections
(total) injections
partial surjections
(total) surjections
bijections

Lhef s

Mike Wooldridge 15




Lecture 9 Software Engineering

6 The Maplet Notation

e A more convenient way of writing the
function

{(mike, 1531), (eric, 1489)}
1S to write

{mike — 1531, eric — 1489}

e The symbol — is called the maplet arrow:
the expression mike — 1531 is called a
maplet.

¢ (The maplet notation is just Z syntactic
sugar.)

Mike Wooldridge 16




Lecture 9 Software Engineering

7 Manipulating Functions

e As functions are just sets, we can use the
apparatus of set theory to manipulate
them.

e However, there are certain things we do so
often that it is useful to define operators
for them.

Mike Wooldridge 17




Lecture 9 Software Engineering

7.1 Domain Restriction]|

e Suppose, given our function PN which
maps a person in a department to their
phone number, we wanted to extract
another function which just contained the
details of the logic group.

e Let LG be the set containing names of logic
group members.

e Then the following expression will do the
trick:

LG < PN

o < is the domain restriction operator.

e Definition: Suppose f is a function
f:Ty+ Ty
and S is a set
S:IPT;
then
S<f

is an expression which returns the
function obtained from f by removing
from it all maplets x — y such thatx &€ S.

Mike Wooldridge 18




Lecture 9 Software Engineering

e EXAMPLE. Let
PN == {mjw — 1531,

en +— 1488,
ajt — 1777}
and
S1 == {mike,en}
Sy == {ajt}
then

S1 < PN = {mjw — 1531, en — 1488}
Sy <A PN = {ajt — 1777}

e EXERCISE. Define, by set comprehension,
the < operator.

S<f =={x:Ty; y:Ts|
xeT)ANx—y)ef
® XY}

e Theorems about domain restriction:
dom(S < f) = SNdomf

S<f Cf
D<f =10

Mike Wooldridge 19




Lecture 9 Software Engineering

7.2 Range Restriction

e Just as we can restrict the domain of a
function, so we can restrict its range.

e Definition: Suppose f is a function
f:Ty+ T,
and S is a set
S:IPTs
then
f>S

is an expression which returns the
function obtained from f by removing
from it all maplets x — y such thaty & S.

e Given PN as previously defined, and

S; == {1531, 1483}
S, == {1777}

then

f > Sy = {mike — 1531, en — 1488}
f > Sy =A{ajt — 1777}.

e EXERCISE. Define ...

Mike Wooldridge 20




Lecture 9 Software Engineering

7.3 Domain Subtraction

e Suppose we want to take PN and remove
from it all members of the logic group.

o If LG is the set containing the logic group,
then

LG 9 PN

is an expression that will do the trick.

e < is the domain subtraction operator.
(Also called domain anti-restriction.)

Mike Wooldridge 21




Lecture 9 Software Engineering

e EXAMPLE. Given PN as previously

defined, and
S == {mikew}
then

S < PN = {en — 1488, ajt — 1777}.

e Definition: Suppose f is a function
f:Ty+ T,
and S is a set
S:IPT,
then
S<f

is an expression which returns the
function obtained from f by removing
from it all maplets x — y such thatx € S.

e EXERCISE. Define < — you don’t need a
set comprehension.

S<f == (domf\S)<f

Mike Wooldridge 22




Lecture 9 Software Engineering

7.4 Range Subtraction

e The range subtraction operator is b&.

e EXERCISE. Given PN as previously
defined, and

S = {1531, 1483}
what does
PN S

evaluate to?
e EXERCISE. Define b ...

feS==f>(ranf \S).

Mike Wooldridge 23




Lecture 9 Software Engineering

7.5 Function Overriding

e Suppose we have the function PN that
gives peoples phone numbers, and
someone changes their extension number
— then we want to reflect this by changing
PN.

Given PN as previously defined; what
expression can we use to change mike’s

number to 15557

(PN \ {mike — 1531})
U{mike — 1555}

Yuk!
e Z provides the @ sybol for function
overriding:
PN & {mike — 1555} = {mike — 1555,
en — 1488,
ajt — 1777}

Mike Wooldridge 24




Lecture 9 Software Engineering

e Definition: If
f 12T+ Ty
f2 . T1 —+ T2

then

f1 D fo

is an expression returning the function
that results from overwriting f; with f:

f1® fo == (dom(fy) < f1) U fo.

Mike Wooldridge 25




