
LECTURE 9: FUNCTIONS

Software Engineering

Mike Wooldridge

Lecture 9 Software Engineering

1 Cartesian Products

• As defined earlier, a set is an unstructured
object: the order in which elements occur
in a set is not important.

• However, many objects in formal system
specification require some structure or
ordering — otherwise how could we have
things like Modula-2 RECORDs or C
structures?

• Cartesian products are one way of making
objects which have structure.

Mike Wooldridge 1

Lecture 9 Software Engineering

• Suppose that

A : IP T1

B : IP T2

(i.e., A is a subset of T1 and B is a subset of
T2).
The the cartesian product of A and B is
given by the expression

A× B

and is a set containing all the ordered pairs
whose first element comes from set A and
whose second element comes from set B.

• EXAMPLE. If
A == {1, 2}
B == {3, 4}

then

A× B = {(1, 3), (1, 4), (2, 3), (2, 4)}.

Mike Wooldridge 2

Lecture 9 Software Engineering

• An ordered pair is an example of an
n-tuple; in this case n = 2.

•We list the components of an n-tuple in
parentheses.

• Cartesian products are not restricted to
just 2 sets — we can have as many as we
wish.

• Definition: If

S1, . . . ,Sn

are arbitrary sets, then

S1 × · · · × Sn

is the set of n-tuples over S1, . . . ,Sn:

S1 × · · · × Sn ==
{(e1, . . . , en) | e1 ∈ S1 ∧ · · · ∧ en ∈ Sn}.

Mike Wooldridge 3

Lecture 9 Software Engineering

• Things to note about cartesian products:

– #(S1 × · · · × Sn) = #S1 ∗ · · · ∗#Sn

– ¬∀S1,S2 : Set • (S1 × S2) = (S2 × S1) (i.e.,
the cartesian product operation does
not commute).

• Finally, let S = {S1, . . . ,Sn} be an indexed
set of sets; then the cartesian product over
its component sets is often written:

∏
i∈1..n S

or just
∏S.

• Cartesian products are sometimes called
cross products.

Mike Wooldridge 4

Lecture 9 Software Engineering

2 Functions

• Functions are mathematical objects that
take some arguments and return some values.

• One model for functions is as a set of
ordered pairs.

• EXAMPLE. Imagine a function in a
Modula-2 program that takes as its sole
argument a name representing somebody
in a computer department, and returns as
its sole result their phone number:

PROCEDURE PN(n: Name): PhoneNum

So that

PN(’mike’) = 1531
PN(’eric’) = 1489

We can represent this function as the set

PN == {(mike, 1531), (eric, 1489)}

Mike Wooldridge 5

Lecture 9 Software Engineering

• If PN is so defined, then we say
PN(mike) = 1531, and PN(eric) = 1489.

• QUESTION: Can we define the set of
functions from T1 to T2 as the set of
ordered pairs T1 × T2?

• ANSWER: No — this doesn’t work:
consider the set

PN == {(mike, 1531), (mike, 1455)}

what is PN(mike) defined to be here?

• Functions have a uniqueness property:
every possible input to the function must have
at most one associated output.

Mike Wooldridge 6

Lecture 9 Software Engineering

• Note that it is is possible for two inputs to
map to the same output.

•What happens when we try to put a value
into a function when there is no
corresponding output listed? If

PN == {(mike, 1531)}

then PN(eric) =?

In this case we say that the function is
undefined for that value.

Mike Wooldridge 7

Lecture 9 Software Engineering

3 Domain and Range

• There are two important sets associated
with a function:

– domain: the set representing all input
values for which the function is defined;

– range: the set representing all outputs of
the function that correspond to a
defined input.

• Definition: If f is an arbitary function then

dom f

is an expression returning the domain of f
and

ran f

is an expression returning its range.

• EXERCISE. Using set comprehension,
define the domain and range of a function
f which maps values from T1 to T2.
SOLUTION.

dom f == {x : T1 | ∃y : T2 • (x, y) ∈ f}
ran f == {x : T2 | ∃y : T1 • (y, x) ∈ f}

Mike Wooldridge 8

Lecture 9 Software Engineering

• EXAMPLE. If

PN == {(eric, 1489), (mike, 1531)}

then

dom PN = {eric,mike}

and

ran PN = {1531, 1489}

• Theorems about domain and range:

dom f ≥ # ran f
dom(f ∪ g) = (dom f) ∪ (dom g)

ran(f ∪ g) = (ran f) ∪ (ran g)

dom(f ∩ g) ⊆ (dom f) ∩ (dom g)

ran(f ∩ g) ⊆ (ran f) ∩ (ran g)

dom ∅ = ∅
ran ∅ = ∅

Mike Wooldridge 9

Lecture 9 Software Engineering

4 Total and Partial Functions

• The most general kind of functions we
consider are partial functions.

• Definition: If f is a function from T1 to T2,
then f is a partial function. The set of all
partial functions from T1 to T2 is given by
the expression

T1 7→ T2.

• Note that:

– ∅ ∈ T1 7→ T2

(i.e, the emptyset is a partial function).
– if f ∈ T1 7→ T2 then f may be undefined

for some value in T1.

Mike Wooldridge 10

Lecture 9 Software Engineering

• Some partial functions have the property
of being defined for all potential input
values: these are total functions.

• Definition: If f ∈ T1 7→ T2 and dom f = T1,
then f is said to be a total function from T1

to T2. The set of total functions from T1 to
T2 is given by the expression:

T1 → T2.

• EXERCISE. Define the set T1 → T2 using
set comprehension.
SOLUTION.

T1 → T2 ==
{f : T1 7→ T2 | dom f = T1}

Mike Wooldridge 11

Lecture 9 Software Engineering

• QUESTION: What happens if a function
takes more than one argument?
ANSWER: Then we say that the function
takes just one input, from the cartesian
product of the input argument types.

• EXAMPLE. The function plus takes two
integers as inputs, adds them together and
returns the result;

plus : Z× Z→ Z

• The expression

f : D1 × · · · ×Dm → R1 × · · · × Rn

which specifies the type of the function f is
called the signature of f .

Mike Wooldridge 12

Lecture 9 Software Engineering

5 Properties of Functions

5.1 Injections

• Definition: A function is one-to-one iff
every element in the domain maps to a
different element in the range. One-to-one
functions are also called injections.

• EXAMPLES. The following is an injection:

{(mike, 1531), (eric, 1489)}

whereas the following is not:

{(mike, 1531), (eric, 1531)}

Mike Wooldridge 13

Lecture 9 Software Engineering

5.2 Surjections

• Definition: A function f is onto iff every
possible element y ∈ ran f has some
corresponding value x ∈ dom f such that
f (x) = y.

• EXAMPLE. Suppose

T1 == {a, b, c, d}
T2 == {e, f , g}
f1 : T1 7→ T2

f2 : T1 7→ T2

Then

f1 == {(a, e), (b, f), (c, g)}

is a surjection; but

f2 == {(a, e), (b, f)}

is not a surjection, as there is no value
x ∈ dom f2 such that f2(x) = g.

• Do not confuse surjections with total
functions.

Mike Wooldridge 14

Lecture 9 Software Engineering

• Finally, if a function is both an injection
and a surjection, then it is called a bijection.

• There are operators for building
combinations of types:

constructor returns
7→ partial functions
→ (total) functions
�7→ partial injections
�→ (total) injections
7→→ partial surjections
→→ (total) surjections
�→→ bijections

Mike Wooldridge 15

Lecture 9 Software Engineering

6 The Maplet Notation

• A more convenient way of writing the
function

{(mike, 1531), (eric, 1489)}

is to write

{mike 7→ 1531, eric 7→ 1489}

• The symbol 7→ is called the maplet arrow:
the expression mike 7→ 1531 is called a
maplet.

• (The maplet notation is just Z syntactic
sugar.)

Mike Wooldridge 16

Lecture 9 Software Engineering

7 Manipulating Functions

• As functions are just sets, we can use the
apparatus of set theory to manipulate
them.

• However, there are certain things we do so
often that it is useful to define operators
for them.

Mike Wooldridge 17

Lecture 9 Software Engineering

7.1 Domain Restriction
• Suppose, given our function PN which

maps a person in a department to their
phone number, we wanted to extract
another function which just contained the
details of the logic group.

• Let LG be the set containing names of logic
group members.

• Then the following expression will do the
trick:

LG � PN

• � is the domain restriction operator.

• Definition: Suppose f is a function
f : T1 7→ T2

and S is a set
S : IP T1

then
S � f

is an expression which returns the
function obtained from f by removing
from it all maplets x 7→ y such that x 6∈ S.

Mike Wooldridge 18

Lecture 9 Software Engineering

• EXAMPLE. Let

PN == {mjw 7→ 1531,

en 7→ 1488,

ajt 7→ 1777}

and
S1 == {mike, en}
S2 == {ajt}

then
S1 � PN = {mjw 7→ 1531, en 7→ 1488}
S2 � PN = {ajt 7→ 1777}

• EXERCISE. Define, by set comprehension,
the � operator.

S � f == {x : T1; y : T2 |
(x ∈ T1) ∧ (x 7→ y) ∈ f
• x 7→ y}

• Theorems about domain restriction:
dom(S � f) = S ∩ dom f

S � f ⊆ f
∅� f = ∅

Mike Wooldridge 19

Lecture 9 Software Engineering

7.2 Range Restriction

• Just as we can restrict the domain of a
function, so we can restrict its range.

• Definition: Suppose f is a function

f : T1 7→ T2

and S is a set

S : IP T2

then

f � S

is an expression which returns the
function obtained from f by removing
from it all maplets x 7→ y such that y 6∈ S.

• Given PN as previously defined, and

S1 == {1531, 1488}
S2 == {1777}

then
f � S1 = {mike 7→ 1531, en 7→ 1488}
f � S2 = {ajt 7→ 1777}.

• EXERCISE. Define �. . .

Mike Wooldridge 20

Lecture 9 Software Engineering

7.3 Domain Subtraction

• Suppose we want to take PN and remove
from it all members of the logic group.

• If LG is the set containing the logic group,
then

LG−� PN

is an expression that will do the trick.

• −� is the domain subtraction operator.
(Also called domain anti-restriction.)

Mike Wooldridge 21

Lecture 9 Software Engineering

• EXAMPLE. Given PN as previously
defined, and

S == {mikew}

then

S−� PN = {en 7→ 1488, ajt 7→ 1777}.

• Definition: Suppose f is a function

f : T1 7→ T2

and S is a set

S : IP T1

then

S−� f

is an expression which returns the
function obtained from f by removing
from it all maplets x 7→ y such that x ∈ S.

• EXERCISE. Define −� — you don’t need a
set comprehension.

S−� f == (dom f \ S) � f

Mike Wooldridge 22

Lecture 9 Software Engineering

7.4 Range Subtraction

• The range subtraction operator is −�.

• EXERCISE. Given PN as previously
defined, and

S = {1531, 1488}

what does

PN −� S

evaluate to?

• EXERCISE. Define −� . . .

f −� S == f � (ran f \ S).

Mike Wooldridge 23

Lecture 9 Software Engineering

7.5 Function Overriding

• Suppose we have the function PN that
gives peoples phone numbers, and
someone changes their extension number
— then we want to reflect this by changing
PN.
Given PN as previously defined; what
expression can we use to change mike’s
number to 1555?

(PN \ {mike 7→ 1531})
∪{mike 7→ 1555}

Yuk!

• Z provides the ⊕ sybol for function
overriding:

PN ⊕ {mike 7→ 1555} = {mike 7→ 1555,

en 7→ 1488,

ajt 7→ 1777}

Mike Wooldridge 24

Lecture 9 Software Engineering

• Definition: If
f1 : T1 7→ T2

f2 : T1 7→ T2

then

f1 ⊕ f2

is an expression returning the function
that results from overwriting f1 with f2:

f1 ⊕ f2 == (dom(f2)−� f1) ∪ f2.

Mike Wooldridge 25

