LECTURE 9: FUNCTIONS

Software Engineering
Mike Wooldridge

1 Cartesian Products

- As defined earlier, a set is an unstructured object: the order in which elements occur in a set is not important.
- However, many objects in formal system specification require some structure or ordering - otherwise how could we have things like Modula-2 RECORDs or C structures?
- Cartesian products are one way of making objects which have structure.
- Suppose that
$A: \mathbb{P} T_{1}$
$B: \mathbb{P} T_{2}$
(i.e., A is a subset of T_{1} and B is a subset of T_{2}).
The the cartesian product of A and B is given by the expression

$$
A \times B
$$

and is a set containing all the ordered pairs whose first element comes from set A and whose second element comes from set B.

- EXAMPLE. If

$$
\begin{aligned}
& A==\{1,2\} \\
& B==\{3,4\}
\end{aligned}
$$

then

$$
A \times B=\{(1,3),(1,4),(2,3),(2,4)\} .
$$

- An ordered pair is an example of an n-tuple; in this case $n=2$.
- We list the components of an n-tuple in parentheses.
- Cartesian products are not restricted to just 2 sets - we can have as many as we wish.
- Definition: If

$$
S_{1}, \ldots, S_{n}
$$

are arbitrary sets, then

$$
S_{1} \times \cdots \times S_{n}
$$

is the set of n-tuples over S_{1}, \ldots, S_{n} :

$$
\begin{aligned}
& S_{1} \times \cdots \times S_{n}== \\
& \quad\left\{\left(e_{1}, \ldots, e_{n}\right) \mid e_{1} \in S_{1} \wedge \cdots \wedge e_{n} \in S_{n}\right\} .
\end{aligned}
$$

- Things to note about cartesian products:
$-\#\left(S_{1} \times \cdots \times S_{n}\right)=\# S_{1} * \cdots * \# S_{n}$
$-\neg \forall S_{1}, S_{2}: S e t \bullet\left(S_{1} \times S_{2}\right)=\left(S_{2} \times S_{1}\right)$ (i.e., the cartesian product operation does not commute).
- Finally, let $\mathcal{S}=\left\{S_{1}, \ldots, S_{n}\right\}$ be an indexed set of sets; then the cartesian product over its component sets is often written:

$$
\Pi_{i \in 1 . . n} S
$$

or just
п \mathcal{S}.

- Cartesian products are sometimes called cross products.

2 Functions

- Functions are mathematical objects that take some arguments and return some values.
- One model for functions is as a set of ordered pairs.
- EXAMPLE. Imagine a function in a Modula-2 program that takes as its sole argument a name representing somebody in a computer department, and returns as its sole result their phone number:

PROCEDURE PN(n: Name): PhoneNum So that

PN('mike') = 1531
PN('eric') $=1489$
We can represent this function as the set

$$
P N==\{(\text { mike, 1531 }),(\text { eric }, 1489)\}
$$

- If $P N$ is so defined, then we say
$P N($ mike $)=1531$, and $P N($ eric $)=1489$.
- QUESTION: Can we define the set of functions from T_{1} to T_{2} as the set of ordered pairs $T_{1} \times T_{2}$?
- ANSWER: No - this doesn't work: consider the set

$$
P N==\{(\text { mike }, 1531),(\text { mike }, 1455)\}
$$

what is $P N($ mike $)$ defined to be here?

- Functions have a uniqueness property: every possible input to the function must have at most one associated output.
- Note that it is is possible for two inputs to map to the same output.
- What happens when we try to put a value into a function when there is no corresponding output listed? If

$$
P N==\{(\text { mike }, 1531)\}
$$

then $P N($ eric $)=$?
In this case we say that the function is undefined for that value.

3 Domain and Range

- There are two important sets associated with a function:
- domain: the set representing all input values for which the function is defined;
- range: the set representing all outputs of the function that correspond to a defined input.
- Definition: If f is an arbitary function then $\operatorname{dom} f$
is an expression returning the domain of f and

$\operatorname{ran} f$

is an expression returning its range.

- EXERCISE. Using set comprehension, define the domain and range of a function f which maps values from T_{1} to T_{2}. SOLUTION.

$$
\begin{aligned}
& \operatorname{dom} f==\left\{x: T_{1} \mid \exists y: T_{2} \bullet(x, y) \in f\right\} \\
& \operatorname{ran} f==\left\{x: T_{2} \mid \exists y: T_{1} \bullet(y, x) \in f\right\}
\end{aligned}
$$

- EXAMPLE. If

$$
P N==\{(\text { eric }, 1489),(\text { mike }, 1531)\}
$$

then

$$
\operatorname{dom} P N=\{e r i c, m i k e\}
$$

and

$$
\operatorname{ran} P N=\{1531,1489\}
$$

- Theorems about domain and range:

$$
\begin{aligned}
\# \operatorname{dom} f & \geq \# \operatorname{ran} f \\
\operatorname{dom}(f \cup g) & =(\operatorname{dom} f) \cup(\operatorname{dom} g) \\
\operatorname{ran}(f \cup g) & =(\operatorname{ran} f) \cup(\operatorname{ran} g) \\
\operatorname{dom}(f \cap g) & \subseteq(\operatorname{dom} f) \cap(\operatorname{dom} g) \\
\operatorname{ran}(f \cap g) & \subseteq(\operatorname{ran} f) \cap(\operatorname{ran} g) \\
\operatorname{dom} \emptyset & =\emptyset \\
\operatorname{ran} \emptyset & =\emptyset
\end{aligned}
$$

4 Total and Partial Functions

- The most general kind of functions we consider are partial functions.
- Definition: If f is a function from T_{1} to T_{2}, then f is a partial function. The set of all partial functions from T_{1} to T_{2} is given by the expression

$$
T_{1} \rightarrow T_{2} .
$$

- Note that:
$-\emptyset \in T_{1} \rightarrow T_{2}$
(i.e, the emptyset is a partial function).
- if $f \in T_{1} \rightarrow T_{2}$ then f may be undefined for some value in T_{1}.
- Some partial functions have the property of being defined for all potential input values: these are total functions.
- Definition: If $f \in T_{1} \rightarrow T_{2}$ and $\operatorname{dom} f=T_{1}$, then f is said to be a total function from T_{1} to T_{2}. The set of total functions from T_{1} to T_{2} is given by the expression:

$$
T_{1} \rightarrow T_{2} .
$$

- EXERCISE. Define the set $T_{1} \rightarrow T_{2}$ using set comprehension. SOLUTION.

$$
\begin{aligned}
& T_{1} \rightarrow T_{2}== \\
& \quad\left\{f: T_{1} \rightarrow T_{2} \mid \operatorname{dom} f=T_{1}\right\}
\end{aligned}
$$

- QUESTION: What happens if a function takes more than one argument?
ANSWER: Then we say that the function takes just one input, from the cartesian product of the input argument types.
- EXAMPLE. The function plus takes two integers as inputs, adds them together and returns the result;

$$
\text { plus : } \mathrm{Z} \times \mathrm{Z} \rightarrow \mathrm{Z}
$$

- The expression

$$
f: D_{1} \times \cdots \times D_{m} \rightarrow R_{1} \times \cdots \times R_{n}
$$

which specifies the type of the function f is called the signature of f.

5 Properties of Functions

5.1 Injections

- Definition: A function is one-to-one iff every element in the domain maps to a different element in the range. One-to-one functions are also called injections.
- EXAMPLES. The following is an injection:

$$
\{(\text { mike, 1531), (eric, 1489) }\}
$$

whereas the following is not:

$$
\{(\text { mike, 1531), (eric, 1531) }\}
$$

5.2 Surjections

- Definition: A function f is onto iff every possible element $y \in \operatorname{ran} f$ has some corresponding value $x \in \operatorname{dom} f$ such that $f(x)=y$.
- EXAMPLE. Suppose

$$
\begin{aligned}
& T_{1}==\{a, b, c, d\} \\
& T_{2}==\{e, f, g\} \\
& f_{1}: T_{1} \rightarrow T_{2} \\
& f_{2}: T_{1} \rightarrow T_{2}
\end{aligned}
$$

Then

$$
f_{1}==\{(a, e),(b, f),(c, g)\}
$$

is a surjection; but

$$
f_{2}==\{(a, e),(b, f)\}
$$

is not a surjection, as there is no value $x \in \operatorname{dom} f_{2}$ such that $f_{2}(x)=g$.

- Do not confuse surjections with total functions.
- Finally, if a function is both an injection and a surjection, then it is called a bijection.
- There are operators for building combinations of types:

constructor	returns
\longrightarrow	partial functions
\longrightarrow	(total) functions
\succ	partial injections
\longleftrightarrow	(total) injections
\longrightarrow	partial surjections
\longrightarrow	(total) surjections
\longrightarrow	bijections

6 The Maplet Notation

- A more convenient way of writing the function

$$
\{(\text { mike }, 1531),(\text { eric }, 1489)\}
$$

is to write

$$
\{\text { mike } \mapsto 1531, \text { eric } \mapsto 1489\}
$$

- The symbol \mapsto is called the maplet arrow: the expression mike $\mapsto 1531$ is called a maplet.
- (The maplet notation is just Z syntactic sugar.)

7 Manipulating Functions

- As functions are just sets, we can use the apparatus of set theory to manipulate them.
- However, there are certain things we do so often that it is useful to define operators for them.

7.1 Domain Restriction

- Suppose, given our function $P N$ which maps a person in a department to their phone number, we wanted to extract another function which just contained the details of the logic group.
- Let $L G$ be the set containing names of logic group members.
- Then the following expression will do the trick:

$$
L G \triangleleft P N
$$

- \triangleleft is the domain restriction operator.
- Definition: Suppose f is a function

$$
f: T_{1} \rightarrow T_{2}
$$

and S is a set

$$
S: \mathbb{P} T_{1}
$$

then

$$
S \triangleleft f
$$

is an expression which returns the function obtained from f by removing from it all maplets $x \mapsto y$ such that $x \notin S$.

- EXAMPLE. Let

$$
\begin{aligned}
P N== & \{m j w \mapsto 1531, \\
& \text { en } \mapsto 1488, \\
& \text { ajt } \mapsto 1777\}
\end{aligned}
$$

and

$$
\begin{aligned}
& S_{1}=\{\text { mike }, e n\} \\
& S_{2}==\{a j t\}
\end{aligned}
$$

then

$$
\begin{aligned}
& S_{1} \triangleleft P N=\{m j w \mapsto 1531, e n \mapsto 1488\} \\
& S_{2} \triangleleft P N=\{a j t \mapsto 1777\}
\end{aligned}
$$

- EXERCISE. Define, by set comprehension, the \triangleleft operator.

$$
\begin{aligned}
S \triangleleft f== & \left\{x: T_{1} ; y: T_{2} \mid\right. \\
& \left(x \in T_{1}\right) \wedge(x \mapsto y) \in f \\
& \bullet x \mapsto y\}
\end{aligned}
$$

- Theorems about domain restriction:

$$
\begin{aligned}
\operatorname{dom}(S \triangleleft f) & =S \cap \operatorname{dom} f \\
S \triangleleft f & \subseteq f \\
\emptyset \triangleleft f & =\emptyset
\end{aligned}
$$

7.2 Range Restriction

- Just as we can restrict the domain of a function, so we can restrict its range.
- Definition: Suppose f is a function

$$
f: T_{1} \rightarrow T_{2}
$$

and S is a set

$$
S: \mathbb{P} T_{2}
$$

then

$$
f \triangleright S
$$

is an expression which returns the function obtained from f by removing from it all maplets $x \mapsto y$ such that $y \notin S$.

- Given $P N$ as previously defined, and

$$
\begin{aligned}
& S_{1}==\{1531,1488\} \\
& S_{2}==\{1777\}
\end{aligned}
$$

then

$$
\begin{aligned}
& f \triangleright S_{1}=\{\text { mike } \mapsto 1531, \text { en } \mapsto 1488\} \\
& f \triangleright S_{2}=\{a j t \mapsto 1777\} .
\end{aligned}
$$

- EXERCISE. Define $\triangleright \ldots$

7.3 Domain Subtraction

- Suppose we want to take $P N$ and remove from it all members of the logic group.
- If $L G$ is the set containing the logic group, then

$$
L G \notin P N
$$

is an expression that will do the trick.

- \forall is the domain subtraction operator.
(Also called domain anti-restriction.)
- EXAMPLE. Given PN as previously defined, and

$$
S==\{\text { mikew }\}
$$

then

$$
S \not P N=\{e n \mapsto 1488 \text {, ajt } \mapsto 1777\} .
$$

- Definition: Suppose f is a function

$$
f: T_{1} \rightarrow T_{2}
$$

and S is a set

$$
S: \mathbb{P} T_{1}
$$

then

$$
S \notin f
$$

is an expression which returns the function obtained from f by removing from it all maplets $x \mapsto y$ such that $x \in S$.

- EXERCISE. Define $\triangleleft-$ you don't need a set comprehension.

$$
S \notin f==(\operatorname{dom} f \backslash S) \triangleleft f
$$

7.4 Range Subtraction

- The range subtraction operator is \triangleright.
- EXERCISE. Given $P N$ as previously defined, and

$$
S=\{1531,1488\}
$$

what does

$$
P N \triangleright S
$$

evaluate to?

- EXERCISE. Define $\triangleright \ldots$

$$
f \triangleright S==f \triangleright(\operatorname{ran} f \backslash S) .
$$

7.5 Function Overriding

- Suppose we have the function $P N$ that gives peoples phone numbers, and someone changes their extension number - then we want to reflect this by changing $P N$.
Given $P N$ as previously defined; what expression can we use to change mike's number to 1555 ?

$$
\begin{gathered}
(P N \backslash\{\text { mike } \mapsto 1531\}) \\
\cup\{\text { mike } \mapsto 1555\}
\end{gathered}
$$

Yuk!

- Z provides the \oplus sybol for function overriding:

$$
\begin{aligned}
P N \oplus\{\text { mike } \mapsto 1555\}= & \{\text { mike } \mapsto 1555, \\
& \text { en } \mapsto 1488, \\
& \text { ajt } \mapsto 1777\}
\end{aligned}
$$

- Definition: If

$$
\begin{aligned}
& f_{1}: T_{1} \mapsto T_{2} \\
& f_{2}: T_{1} \rightarrow T_{2}
\end{aligned}
$$

then

$$
f_{1} \oplus f_{2}
$$

is an expression returning the function that results from overwriting f_{1} with f_{2} :

$$
f_{1} \oplus f_{2}==\left(\operatorname{dom}\left(f_{2}\right) \notin f_{1}\right) \cup f_{2} .
$$

