LECTURE 10: FIRST-ORDER LOGIC

Software Engineering
Mike Wooldridge

- Consider the following argument:
all monitors are ready
X 12 is a monitor
therefore X12 is ready
- Intuitively, we can see that this argument is sound: if we accept that the two premises (i.e., the statements above the line) are true, then we must accept that the conclusion is true also.
(Later, we shall see how we can do this kind of reasoning formally.)
- The only way we could represent these statements in propositional logic would be:
- let p be all monitors ready;
- let q be ...

And the sense of the argument would be lost; in fact, if we represented the three statement in propositional logic, then we could not derive the conclusion.

- Consider the following statements:
- all monitors are ready;
- X12 is a monitor.
- We saw in an earlier lecture that these statements are propositions: their meaning is either true or false.
- Propositional logic is the most abstract level at which we can study logic.
- As we shall say, it is too coarse grained to allow us to represent and reason about the kind of statement we need to write in formal specification.
- We shall now introduce a generalisation of propositional logic called first-order logic (FOL). This new logic affords us much greater expressive power.
- First, we shall look at how the language of first-order logic is put together.

2.1 Terms

- The basic components of FOL are called
- We can now introduce a more complex class of terms - functions.
- The idea of functional terms in logic is similar to the idea of a function in programming: recall that in programming, a function is a procedure that takes some arguments, and returns a value.
In Modula-2:

```
PROCEDURE f(a1:T1; ... an:Tn) : T
```

this function takes n arguments; the first is of type T1, the second is of type T2, and so on. The function returns a value of type T.

- In FOL, we have a set of function symbols; each symbol corresponds to a particular function. (It denotes some function.)
- Each function symbol is associated with a natural number called its arity. This is just the number of arguments it takes. a constant that stood for (denoted) the individual 'Michael Wooldridge'.
- The second simplest kind of term is a variable.
- A variable can stand for anything in a set of objects.
- That is, a variable of type \mathbb{N} could stand for any of the natural numbers.
- Lets just formalise this before going any further.
- Definition: A constant of type T is a name that denotes some particular object in the set T.
- Definition: A variable of type T is a name that can denote any value in the set T.

Lecture 10

- Each function symbol has a return-type associated with it...
- ... and each function symbol has an argument type associated with it.
- A functional term is then built up by applying a function symbol to the appropriate number of terms, of the appropriate type.
- Formally ...

Definition: Let f be an arbitrary function symbol of type T, with arity $n \in \mathbb{N}$, taking arguments of type T_{1}, \ldots, T_{n} respectively.
Also, let $\tau_{1}, \ldots, \tau_{n}$ be terms of type
T_{1}, \ldots, T_{n} respectively. Then

$$
f\left(\tau_{1}, \ldots, \tau_{n}\right)
$$

is a functional term.

- All this sounds complicated, but isn't. Consider a function plus, which takes just two arguments, each of which is a natural number, and returns the first number added to the second.
Then:
- plus(2,3) is an acceptable functional term;
- plus $(0,1)$ is acceptable;
- plus(plus $(1,2), 4)$ is acceptable;
- plus(plus(plus $(0,1), 2), 4)$ is acceptable;
but
- plus(-1,0) isn't;
- and neither is plus $(0.1,2)$.
- In maths, we have many functions; the obvious ones are

$$
+-/ * \sqrt{ } \sin \cos \ldots
$$

- The fact that we write

$2+3$

instead of something like

$$
\text { plus }(2,3)
$$

is merely a matter of convention, and is not relevant from the point of view of logic; all these are functions in exactly the way we have defined.

- Using functions, constants, and variables, we can build up expressions, e.g.:

$$
(x+3) * \sin 90
$$

(which might just as well be written

Lecture 10
Software Engineering

- EXAMPLE. Let $g t$ be a predicate symbol with the intended interpretation 'greater than'. It takes two arguments, each of which is a natural number.
Then:
- $g t(4,3)$ is a predicate, which evaluates to true;
- $g t(3,4)$ is a predicate, which evaluates to false.
but

$$
-g t(-1,2) \text { isn't a predicate. }
$$

- The following are standard mathematical predicate symbols:

$$
><=\geq \leq \neq \in \subset \subseteq \ldots
$$

- Once again, the fact that we are normally write $x>y$ instead of $g t(x, y)$ is just convention.
- We can build up more complex predicates using the connectives of propositional logic:

$$
(2>3) \wedge(6=7) \vee(\sqrt{4}=2)
$$

- So a predicate just expresses a relationship between some values.
- What happens if a predicate contains variables: can we tell if it is true or false?
Not usually; we need to know an interpretation for the variables.
- In Z, we shall use three quantifers:
\forall - the universal quantifier;
is read 'for all...'
\exists - the existential quantifier;
is read 'there exists...'
\exists_{1} - the unique quantifier;
is read 'there exists a unique...'

```
Man(x)
Mortal(x)
Malfunctioning(x)
```

- Predicate that have arity 0 (i.e., take no arguments) are called primitive propositions.
- The simplest form of quantified formula in Z is as follows:
quantifier signature - predicate
- We now come to the central part of first order logic: quantification.
- Consider trying to represent the following statements:
- all men have a mother;
- every natural number has a prime factor.
- We can't represent these using the apparatus we've got so far; we need quantifiers.
where
- quantifier is one of $\forall, \exists, \exists_{1}$;
- signature is of the form
variable : type
- and predicate is a predicate.

Lecture 10

- EXAMPLES.
$-\forall x$: Man • $\operatorname{Mortal}(x)$
'For all x of type Man, x is mortal.'
(i.e. all men are mortal)
- $\forall x$: Man • $\exists_{1} y$: Woman • MotherOf (x, y)
'For all x of type Man, there exists a unique y of type Woman, such that y is the mother of x.'
- $\exists m$: Monitor • MonitorState(m, ready)
'There exists a monitor that is in a ready state.'
$-\forall r:$ Reactor $\bullet \exists_{1} t: 100 \ldots 1000 \bullet \operatorname{Temp}(r)=$ t
'Every reactor will have a temperature in the range 100 to 1000 .'
- Note that universal quantification is similar to conjunction:

$$
\forall n:\{2,4,6\} \bullet \operatorname{Even}(n)
$$

is the same as

```
Even(2) ^ Even(4) ^Even(6).
```

- In the same way, existential quantification is the same as disjunction:

$$
\exists n:\{7,8,9\} \bullet \operatorname{Prime}(n)
$$

is the same as
$\operatorname{Prime}(7) \vee \operatorname{Prime}(8) \vee \operatorname{Prime}(9)$.

- More examples:
$-\exists n: \mathbb{N} \bullet n=(n * n)$
'Some natural number is equal to its own square.'
- ヨc: EC • Borders(c, Albania)
'Some EC country borders Albania.'
- $\forall m, n:$ Person • \neg Superior (m, n)
'No person is superior to another.'
- $\forall m$: Person • $\neg \exists n$: Person •

Superior (m, n)
Ditto.

- The universal and existential quantifiers are in fact duals of each other:

$$
\forall x: T \bullet P(x) \Leftrightarrow \neg \exists x: T \bullet \neg P(x)
$$

Saying that everything has some property is the same as saying that there is nothing that does not have the property.

$$
\exists x: T \bullet P(x) \Leftrightarrow \neg \forall x: T \bullet \neg P(x)
$$

Saying that there is something that has the property is the same as saying that its not the case that everything doesn't have the property.

5 Decidability

- In propositional logic, we saw that some formulae were tautologies - they had the property of being true under all interpretations.
- We also saw that there was a procedure which could be used to tell whether any formula was a tautology - this procedure was the truth-table method.
- A formula of FOL that is true under all interpretations is said to be valid.
- Now we can't use truth tables to tell us whether a formula of FOL is valid.
- Is there any other procedure that we can use, that will be guaranteed to tell us, in a finite amount of time, whether a FOL formula is, or is not, valid?
- The answer is $n o$.
- FOL is for this reason said to be undecidable.

