
LECTURE 11: Z

Software Engineering

Mike Wooldridge



Lecture 11 Software Engineering

1 Introduction

• In this lecture, we introduce schemas, the
most distinctive feature of the Z
specification language.

•We show how a simple computer system
can be specified in Z.

Mike Wooldridge 1



Lecture 11 Software Engineering

Model-Based Specification

• Z — like VDM, its main rival — is a
model-based specification framework.

• The idea is to contruct an abstract model of
the system we desire to build.
This model is:

– high level;
– idealised;
– does not detail with implementation

specifics.

•What does the model consist of?

– description of system state space;
– description of system operations.

• System state-space is the set of all states
that the system could be in.

• The state of a system describes the value of
each variable (and memory location).

Mike Wooldridge 2



Lecture 11 Software Engineering

• The most fundamental operation we use is
the assignment statement, ‘:=’ . . . such
statements change the state of a system.

• In Z, we represent the state space of a
system as a collection of functions, sets,
relations, sequences, bags, etc., together
with a collection of invariant properties on
these objects.

• These invariant properties describe
regularities between state changes.

• How about operations? What level of
abstraction to we deal with them? Lowest
level would be assignment statement level.
We start with more abstract descriptions.

• Operations are usually defined in terms of
pre- and post- conditions.

• Operations define acceptable state
transitions.

Mike Wooldridge 3



Lecture 11 Software Engineering

2 Schemas

• The Z schema is a 2-dimensional graphical
notation for describing:

– state spaces;
– operations.

• Definition: A vertical-form schema is
either of the form

SchemaName
Declarations
Predicate1; · · · ; Predicaten

or of the form

SchemaName
Declarations

• In the latter case, the predicate part is
assumed to be ‘true’.

Mike Wooldridge 4



Lecture 11 Software Engineering

• Once introduced, SchemaName will be
associated with the schema proper, which
is the contents of the box.

• The declarations part of the schema will
contain:

– a list of variable declarations; and
– references to other schemas (this is

called schema inclusion).

• Variable declarations have the usual form:

x1, x2, . . . , xn : T;

• The predicate part of a schema contains a
list of predicates, separated either by
semi-colons or new lines.

Mike Wooldridge 5



Lecture 11 Software Engineering

2.1 State Space Schemas

• Here is an example state-space schema,
representing part of a system that records
details about the phone numbers of staff.
(Assume that NAME is a set of names, and
PHONE is a set of phone numbers.)

PhoneBook
known : IP NAME
tel : NAME 7→ PHONE
dom tel = known

• The declarations part of this schema
introduces two variables: known and tel.

• The value of known will be a subset of
NAME, i.e., a set of names.
This variable will be used to represent all
the names that we know about — those
that we can give a phone number for.

• The value of tel will be a partial function
from NAME to PHONE, i.e., it will
associate names with phone numbers.

Mike Wooldridge 6



Lecture 11 Software Engineering

• The declarations part is separated from the
predicate part by the horizontal line.

• The predicate part contains the following
invariant:

The domain of tel is always equal to
the set known.

Mike Wooldridge 7



Lecture 11 Software Engineering

2.2 Operation Schemas

• In specifying a system operation, we must
consider:

– the objects that are accessed by the
operation, and of these:
∗ the objects that are known to remain

unchanged by the operation (cf. value
parameters);
∗ the objects that may be altered by the

operation (cf. variable parameter);
– the pre-conditions of the operation, i.e.,

the things that must be true for the
operation to succeed;

– the post-conditions — the things that will
be true after the operation, if the
pre-condition was satisfied before the
operation.

Mike Wooldridge 8



Lecture 11 Software Engineering

• Return to the telephone book example,
and consider the ‘lookup’ operation: we
put a name in, and get a phone number
out.

– this operation accesses the PhoneBook
schema;

– it does not change it;
– it takes a single ‘input’ — a name for

which we want to find a phone number;
– it produces a single output — a phone

number.
– it has the pre-condition that the name is

known to the database.

• Here is a Z schema specifying the lookup
operation:

Find
ΞPhoneBook
name? : NAME
phone! : PHONE
name? ∈ known
phone! = tel(name?)

Mike Wooldridge 9



Lecture 11 Software Engineering

This illustrates the following Z conventions:

• placing the name of the schema in the
declarations part ‘includes’ that schema —
it is as if the variables were declared where
the name is;

• ‘input’ variable names are terminated by a
question mark;

• . . . the only input is name?

• ‘output’ variables are terminated by an
exclamation mark;

• . . . the only output is phone!

• the Ξ (Xi) symbol means that the
PhoneBook schema is not changed;

• if we have written a ∆ (delta) instead of Ξ,
it would mean that the PhoneBook schema
did change.

• the pre-condition is that name? is a
member of known;

• the post-condition is that phone! is set to
tel(name?).

Mike Wooldridge 10



Lecture 11 Software Engineering

• Here is another schema: this one add’s a
name/phone pair to the phone book.

AddName
∆PhoneBook
name? : NAME
phone? : PHONE
name? 6∈ known
tel′ = tel ∪ {name? 7→ phone?}

• This schema accesses PhoneBook and does
change it (hence the use of ∆ rather that Ξ.)

• Two inputs: a name (name?) and phone
number (phone?).

• Pre-condition: the name is not already in
the database.

• Post-condition: tel after the operation is
the same as tel before the operation with
the addition of maplet name? 7→ phone?.

• Appending a ′ to a variable means ‘the
variable after the operation is performed’.

Mike Wooldridge 11



Lecture 11 Software Engineering

• EXERCISE. Rewrite this schema to get rid
of post-condition, and allow overwriting
of existing names.

Mike Wooldridge 12



Lecture 11 Software Engineering

3 CADIZ

• CADIZ is an automated checker and
typesetter for Z specifications.

• It takes as its input a plain ASCII file,
prepared using an ordinary text editor.
This file contains various instructions
describing Z schemas.

• It then performs some checks on this
specification, and depending on what
command-line options you gave, it will:

– typeset your spec., producing a binary
file with a .dit extension, which can
be printed off with the printz
command;

– allow you to browse through the spec.,
and get feedback on certain parts of it.

Mike Wooldridge 13


