
LECTURE 12: Z SPECIFICATIONS &
THE SCHEMA CALCULUS

Software Engineering

Mike Wooldridge

Lecture 12 Software Engineering

1 The Truth About Schema Inclusion

•We saw last week how, a schema could be
included by just listing its name in the
declarations part of a schema. We now
look at what this actually means.

• Suppose we had the following definition:

S1

v1 : T1

v2 : T2

P1

P2

and later on

S2

S1 (* schema inclusion *)
v3 : T3

P3

Mike Wooldridge 1

Lecture 12 Software Engineering

• Then this would have been equivalent to:

S2

v1 : T1

v2 : T2

v3 : T3

P1

P2

P3

Mike Wooldridge 2

Lecture 12 Software Engineering

•We now need to introduce schema
decoration.

• Suppose we had the following declaration:

S3

S′1
P4

then this declaration would have been
equivalent to

S3

v′1 : T1

v′2 : T2

P1

P2

with all references to v1, v2

changed to v′1, v′2.
P4

• Remember that the decorated form of a variable
means “the variable after the operation has
been performed”; the undecorated version
means “the variable before the operation has
been performed”.

Mike Wooldridge 3

Lecture 12 Software Engineering

• Let’s now consider the ∆ notation.

• Suppose we had:

S4

∆S1

P5

• This would have been equivalent to

S4

S1 (* include S1 *)
S′1 (* include S′1 *)
P5

Mike Wooldridge 4

Lecture 12 Software Engineering

• The Ξ notation means something similar.
Suppose we had the schema:

S5

ΞS1

P5

then this would expand to

S5

S1

S′1
P5

v′1 = v1

v′2 = v2

• So when we use the Ξ notation before a
schema, it means “include the decorated
and undecorated version of this schema,
with the postcondition that all the
variables remain unchanged.”

Mike Wooldridge 5

Lecture 12 Software Engineering

2 The Schema Calculus

• One of the nice things about Z is that it
allows us some sort of modular
construction; we can build things in little
pieces and put them together to make big
pieces.

• The way we do this is by using the schema
calculus.

• First we need to introduce horizontal form
schemas (as opposed to the vertical form
schemas we have been looking at so far).

Mike Wooldridge 6

Lecture 12 Software Engineering

• Definition: The following vertical-form
schema

S
Declarations
P1

P2

· · ·
Pn

may be defined in the following horizontal
form

S =̂ [Declarations | P1; P2; · · ·Pn]

• The symbol =̂ is for schema definition; it
may be read ‘is defined to be’.

• Using =̂, we can make one schema an alias
for another:

NewPhoneBook =̂ PhoneBooks

• On the RHS of the =̂ symbol can be any
valid schema calculus expression.

Mike Wooldridge 7

Lecture 12 Software Engineering

• Such an expression may be a schema
definition (as above); but we can also
make new schemas using the
propositional connectives ∧, ∨, ¬,⇒,
Although these symbols are the same as in
propositional logic, they have a different
(but related) meaning.

• Definition: Two schemas are said to be
type compatible if every variable common
to both has the same type in both.

•We can use the connectives to make new
schemas out of old ones only if they are
type compatible. Let α be an arbitrary
unary connective, β be an arbitrary binary
connective, and S and T be the two
schemas

S =̂ [D1; · · · ; Dm | P1; · · · ; Pn]
T =̂ [Dm+1; · · · ; Dm+p | Pn+1; · · · ; Pn+q]

α S is the following schema
[D1; · · · ; Dm | α(P1 ∧ · · · ∧ Pn)]

If S and T are type compatible, then S β T
is the following schema

[D1; · · · ; Dm+p |
(P1 ∧ · · · ∧ Pn)β(Pn+1 ∧ · · · ∧ Pn+q)]

Mike Wooldridge 8

Lecture 12 Software Engineering

Mike Wooldridge 9

Lecture 12 Software Engineering

• EXAMPLE: Specification of a robust ‘Find’
operation (i.e. one whose behaviour is
defined even when the input name is not
known).

• First define a schema which assigns the
string ‘okay’ to a variable. This schema
will be used to signify that an operation
has been successful.

Success
rep! : REPORT
rep! = ‘okay′

Mike Wooldridge 10

Lecture 12 Software Engineering

• Then define a schema to capture the
situation where a phone number is not in
the database. Note that the schema causes
an error message to be assigned to the
report variable rep!.

NotKnown
ΞPhoneBook
name? : NAME
rep! : REPORT
name? 6∈ known
rep! = ‘name not known′

Mike Wooldridge 11

Lecture 12 Software Engineering

• The robust ’Find’ operation is

DoFindOp
=̂ (Find ∧ Success) ∨ NotKnown

the full expansion of which is:

DoFindOp
known : IP NAME
known′ : IP NAME
tel : NAME 7→ PHONE
tel′ : NAME 7→ PHONE
name? : PHONE
phone! : PHONE
rep! : REPORT
((dom tel = known ∧ dom tel′ = known
∧ known′ = known ∧ tel′ = tel
∧ name? ∈ known
∧ phone! = tel(name?))
∧ rep! = ‘okay′)
∨
(dom tel = known ∧ dom tel′ = known
∧ known′ = known ∧ tel′ = tel
∧ name? 6∈ known
∧ rep! = ‘name not known′)

Mike Wooldridge 12

Lecture 12 Software Engineering

• After logical simplification, the expanded
schema becomes:

DoFindOp
known : IP NAME
known′ : IP NAME
tel : NAME 7→ PHONE
tel′ : NAME 7→ PHONE
name? : PHONE
phone! : PHONE
rep! : REPORT
dom tel = known
∧ known′ = known ∧ tel′ = tel
∧ ((name? ∈ known
∧ phone! = tel(name?)
∧ rep! = ‘okay′)
∨
(name? 6∈ known
∧ rep! = ‘name not known′))

Mike Wooldridge 13

Lecture 12 Software Engineering

Things to Note

• The use of abstraction: The derived
version of DoFindOp is easier to read and
understand than the expanded version!

• The behaviour of the system is now
rigorously specified. For instance, we
could prove that, when the precondition of
the find operation is satisfied, then a
phone number is found.

• Notice that the value of the variable phone!
is undefined when the operation fails.

Mike Wooldridge 14

