
LECTURE 13: A SHORT CASE STUDY

Software Engineering

Mike Wooldridge

Lecture 13 Software Engineering

1 Z Documents

• A Z specification document for a system
contains the following:

– a set of schemas, which define:
∗ the state space of the system;
∗ the operations, or events, which can

occur to the system and possibly
cause state changes;

– explanatory text, to help the reader to
understand the system.

Mike Wooldridge 1

Lecture 13 Software Engineering

2 A Small Case Study

• All modern operating systems contain file
handling subsystems.

• Typically, files are owned by users of the
system.

• Each file occupies a series of disk blocks.

• There is an upper limit to the number of
files that might be owned by any one user.

• Operations which might be performed on
a file system include:

– create (add) a file to the system;
– remove a file from the system;

• In a more sophisticated system, we might
expect the following facilities (à la UNIX):

– access rights (rwx for ugo);
– hierarchical file store;
– disk partitions;
– . . .

•We shall do a specification for a simple file
system.

Mike Wooldridge 2

Lecture 13 Software Engineering

2.1 The Types

•We require three types for our
specification:

1. USERS
the set of all possible system users;

2. FILES
the set of all possible file names;

3. BLOCKS
the set of all possible disk block
numbers.

• To be able to use these types we must
parachute them into our specification. We
do this by including the following
horizontal schema:

[USERS,FILES,BLOCKS]

• Once declared in this way, we can use
them as required.

Mike Wooldridge 3

Lecture 13 Software Engineering

2.2 System Invariants

•What are the invariants on our file system?

1. there is an upper limit to the number
of users;

2. files must be owned by someone;
3. the blocks used to store files are not

free for subsequent use;
4. the blocks not used to store files are

free;
5. only system users are allowed to own

files;
6. no file can be owned by more than one

user;
7. no two files can share the same block;
8. . . .

Mike Wooldridge 4

Lecture 13 Software Engineering

2.3 State Space

• Here is the state-space schema:

FileStore
owns : USERS 7→ IP FILES
occupies : FILES 7→ IP BLOCKS
system users : IP USERS
free blocks : IP BLOCKS
no users : IN (* max no users *)
#system users ≤ no users

∀f : dom occupies • ∃u : dom owns •
f ∈ owns(u)

∀f : dom occupies • ∀b : BLOCKS •
b ∈ occupies(f)⇒ b 6∈ free blocks

dom owns = system users

∀f1, f2 : ran owns •
f1 6= f2 ⇒ f1 ∩ f2 = ∅

Mike Wooldridge 5

Lecture 13 Software Engineering

2.4 The Remove Operation

• Inputs:

– file name;
– user name.

• Pre-conditions:

– the user is known to the system;
– the file is owned by the user.

• Post-conditions:

– number of users does not change;
– ditto system users;
– blocks formerly occupied by file are

now free;
– file is no longer owned by anyone.

Mike Wooldridge 6

Lecture 13 Software Engineering

Remove
∆FileSystem
uname? : USERS
fname? : FILES
uname? ∈ system users

fname? ∈ owns(uname?)

system users′ = system users

no users′ no users

free blocks′ =
free blocks ∪ occupies(fname?)

occupies′ = occupies\
{fname? 7→ occupies(fname?)}

owns′ =
(owns \ {uname? 7→ owns(uname?)})
∪ {uname? 7→

owns(uname?) \ {fname?}}

Mike Wooldridge 7

Lecture 13 Software Engineering

2.5 The Add (Create) Operation

• Inputs:

– file name;
– user name.

• Pre-conditions:

– user is known to system;
– file is not already owned.

• Post-condition:

– the system users, no. of users, and free
blocks remain invariant;

– the user owns the file;
– the file occupies no blocks (i.e, it is

empty).

Mike Wooldridge 8

Lecture 13 Software Engineering

Add
∆FileSystem
uname? : USERS
fname? : FILES
fname? 6∈ owns(uname?)

uname? ∈ system users

system users′ = system users

free blocks′ = free blocks

no users′ = no users

∀u : dom owns •
(u 6= uname?)⇒ owns′(u) = owns(u)

owns′(uname?) =
owns(uname?) ∪ {fname?}

occupies′ = occupies ∪ {fname? 7→ ∅}

Mike Wooldridge 9

Lecture 13 Software Engineering

3 Closing Remarks

• There are many ways we could extend the
basic system; for example, let’s think
about access rights, in the UNIX sense.

• In UNIX, each file has access rights
associated with three types of user:

– user (the file owner);
– group (the user category, e.g., staff or

student);
– other (everyone else).

• For each type of user, there are three
possible access rights:

– read (is able to read file);
– write (is able to alter file);
– execute (is able to execute file).

• For example, you might have all your files
set so that you can read, write and execute
them, your group can read and execute
them, and others cannot read, write or
execute them.

Mike Wooldridge 10

Lecture 13 Software Engineering

•We can model access rights by altering the
FileStore schema. First, we define two new
types:

UTYPES == {u, g, o}
RIGHTS == {r,w, x}

We then alter the FileStore schema thus . . .

• New variable:
access rights :

(FILES×UTYPES) 7→ IP RIGHTS

• New invariant:
dom access rights =

(dom occupies×UTYPES)

Mike Wooldridge 11

Lecture 13 Software Engineering

• The new variable access rights associates
files and user types with access rights; for
example, if

access rights(myfile, g) = {r,w}

then people in the same group as the
owner of file myfile have read (r) and write
(w) access rights to myfile.

• The new invariant means that the function
access rights is defined for all combinations
of files known to the system, and user
types.

• In other words, if myfile is a file known to
the system, then access rights is defined
for:

access rights(myfile,u)
access rights(myfile, g)
access rights(myfile, o)

Mike Wooldridge 12

Lecture 13 Software Engineering

• EXERCISES.
Extend the simple specification given here
to the full UNIX system.
(See the article Specification of the UNIX
filing System by Morgan & Sufrin, in IEEE
Transactions on Software Engineering, Vol.
SE-10 No. 2, 1984.)

Mike Wooldridge 13

