LECTURE 14: BAGS (MULTISETS)

Software Engineering
Mike Wooldridge

1 Bags

- We have seen that sets are unordered collections of items, which do not contain duplicates.
- A sequence is an ordered collection of items, that may contain duplicates.
- A bag is an unordered collection of items that may contain duplicates.
- Bags are sometimes called multisets.

	Ordered?	Duplicates?
Set	N	N
Sequence	Y	Y
Bag	N	Y

- Definition: The set of all bags over type T is given by the expression bag T.
- Like sets and sequences, bags may be enumerated, by listing theeir contents between Strachey brackets: 【】.
- EXAMPLE. Suppose

$$
B: \operatorname{bag} \mathbb{N}
$$

then

$$
B==\llbracket 1,1,2,3 \rrbracket
$$

assigns to B the bag containing the value 1 twice, the value 2 once, and the value 3 once.
Note that this is not the same as the set

$$
\{1,2,3\} .
$$

However,

$$
\llbracket 1,1,2,3 \rrbracket=\llbracket 1,2,3,1 \rrbracket .
$$

2 Bag Membership and Sub-bags

- The 'equivalent' of the set membership predicate \in is 'in'.
(This is sometime written ' '.)
- Definition: If

$$
\begin{aligned}
& B: \operatorname{bag} T \\
& x: T
\end{aligned}
$$

then the predicate

$$
x \text { in } B
$$

is true iff x appears in B at least once.

- The 'equivalent' of the subset predicate \subset is \sqsubseteq.
- Definition: If

$$
B_{1}, B_{2}: \operatorname{bag} T
$$

then the predicate

$$
B_{1} \sqsubseteq B_{2}
$$

is true iff each element that occurs in B_{1}
occurs in B_{1} no more often than it occurs in B_{2}.

- Summary:

$$
\begin{array}{l|l}
a \text { in } b & a \text { is a member of } \operatorname{bag} b \\
\hline b \sqsubseteq c & b \text { is a sub-bag of } c
\end{array}
$$

- EXAMPLES.
jan in 【mar, mar, feb】
$\neg(a p r$ in \llbracket mar, mar,$f e b \rrbracket)$
$\llbracket j a n, f e b \rrbracket \sqsubseteq \llbracket j a n, m a r, f e b$, apr \rrbracket
$\llbracket j a n, f e b \rrbracket \sqsubseteq \llbracket j a n, f e b \rrbracket$
- Some theorems about bag membership and sub-bags.

$$
\begin{gathered}
\llbracket \rrbracket \sqsubseteq B \\
B \sqsubseteq C \wedge C \sqsubseteq B \Leftrightarrow B=C \\
B \sqsubseteq C \wedge C \sqsubseteq D \Rightarrow B \sqsubseteq D
\end{gathered}
$$

3 Counting Bags

- Suppose we want to know how many times a value x occurs in bag B. We use \#: - \# _ : bag $T \times T \rightarrow \mathbb{N}$
- EXAMPLE. If

$$
\text { storms }==\llbracket j a n, j a n, f e b, \text { dec } \rrbracket
$$

then

$$
\begin{aligned}
& \text { storms } \# \text { jan }=2 \\
& \text { storms } \# \text { dec }=1 \\
& \text { storms } \# \text { apr }=0
\end{aligned}
$$

- Definition: If

$$
\begin{aligned}
& B: \operatorname{bag} T \\
& x: T
\end{aligned}
$$

then the number of times x occurs in B (a natural number) is given by the expression $B \# x$.

4 Scaling Bags

- Another common operation we want to do is scale bags; that is, we want to 'multiply' their contents. We do this using the bag scaling operator: \otimes.
- EXAMPLE. Let

$$
\text { storms }==[j a n, j a n, f e b \rrbracket
$$

then

$$
\begin{aligned}
& 2 \otimes \text { storms }= \\
& \quad \llbracket j a n, j a n, j a n, j a n, f e b, f e b \rrbracket .
\end{aligned}
$$

- Definition: If

$$
\begin{aligned}
& B: \operatorname{bag} T \\
& n: \mathbb{N}
\end{aligned}
$$

then

$$
n \otimes B
$$

is a bag which contains the same elements as B, except that every element that occurs m times in B occurs $n * m$ times in $n \otimes B$.

- Some theorems about scaling...

$$
\begin{aligned}
n \otimes \llbracket \rrbracket & =\llbracket \rrbracket \\
0 \otimes B & =\llbracket \rrbracket \\
1 \otimes B & =B \\
(n * m) \otimes B & =n \otimes(m \otimes B)
\end{aligned}
$$

5 Bag Union

- Just as there is a set union operator, so there is a bag union operator.
- EXAMPLE. Let

$$
\text { storms }==[j a n, j a n, f e b \rrbracket
$$

then

$$
\begin{aligned}
\text { storms } \uplus \llbracket \mathrm{mar} \rrbracket & =\llbracket j a n, j a n, \text { feb, } \mathrm{mar} \rrbracket \\
\text { storms } \uplus \llbracket j a n \rrbracket & =\llbracket j a n, j a n, j a n, \text { feb } \rrbracket
\end{aligned}
$$

- Definition: If

$$
B_{1}, B_{2}: \operatorname{bag} T
$$

then

$$
B_{1} \uplus B_{2}
$$

is bag that contains just those values that occur in either B_{1} or B_{2}, except that the number of times a value x occurs in $B_{1} \uplus B_{2}$ is equal to $\left(B_{1} \# x\right)+\left(B_{2} \# x\right)$.

- There is a bag difference operator, $৮ \ldots$

6 Making Bags out of Sequences

- One last thing we often want to do is to make a bag out of a sequence, by counting up all number of times in a sequence. We do this using items.
EXAMPLE.

$$
\begin{aligned}
& \text { items }\langle a, b, a, b, c\rangle=\llbracket a, a, b, b, c \rrbracket \\
& \text { items }\langle a, c, d, a, a\rangle=\llbracket a, a, a, c, d \rrbracket
\end{aligned}
$$

- Definition: If

$$
\sigma: \operatorname{seq} T
$$

then $\operatorname{items}(\sigma)$ is a bag over T such that a value x occurs in items (σ) exactly as many times as it appears in σ.

7 A Model for Bags

- In the previous lecture, we saw that sequences are defined in terms of functions.

$$
\langle a, b, c\rangle=\{1 \mapsto a, 2 \mapsto b, 3 \mapsto c\} .
$$

Bags are defined in a similar way:

$$
\operatorname{bag} T==T \rightarrow \mathbb{N}_{1}
$$

- So the bag

$$
\llbracket j a n, f e b, j a n \rrbracket
$$

is really the function

$$
\{j a n \mapsto 2, f e b \mapsto 1\}
$$

- So we can use all the function manipuating operations to manipulate bags.
- In particular:

$$
\operatorname{dom} \llbracket a_{1}, \ldots, a_{n} \rrbracket=\left\{a_{1}, \ldots, a_{n}\right\}
$$

and so

$$
\operatorname{dom} \llbracket j a n, j a n, f e b \rrbracket=\{j a n, f e b\} .
$$

- Taking the range of a bag is not generally as useful.
- QUESTION: If bags are defined in this way, then how do we define all the operations on them?
- The difficult one is \#; given this, the others are all more or less easy...
- First, \otimes :

$$
a \mapsto(n * m) \in(B \otimes m) \Leftrightarrow a \mapsto n \in B
$$

- Now, 'in':

$$
x \text { in } B \Leftrightarrow(B \# x)>0
$$

- The \sqsubseteq predicate is a bit more complicated.

$$
\begin{aligned}
& \forall B_{1}, B_{2}: \operatorname{bag} T \bullet \\
& B_{1} \sqsubseteq B_{2} \Leftrightarrow \\
& \quad \forall x: T \bullet B_{1} \# x \leq B_{2} \# x
\end{aligned}
$$

