
LECTURE 15: RELATIONS

Software Engineering

Mike Wooldridge

Lecture 15 Software Engineering

1 Introduction

•We saw in earlier lectures that a function is
just a set of maplets, for example:

tel == {mikew 7→ 1531, eric 7→ 1489}.

A maplet is just an ordered pair, so
another way of writing this is

tel == {(mikew, 1531), (eric, 1489)}

Formally, if f : T1 → T1, then f is a subset
of the cartesian product of T1 × T1:

f ⊆ T1 × T2.

But functions can’t be defined in this way,
as they must have the uniqueness
property — the following is not a function:

{(mike, 1531), (eric, 1531)}.

• A more general way of capturing a
relationship between two sets is to use a
relation.

• Relations are similar to functions, but do
not have the uniquness property.

Mike Wooldridge 1

Lecture 15 Software Engineering

• Just as we have a variety of function
construction arrows, so we have the
relation constructor arrow, ‘↔’.

• Definition: If T1 and T2 are arbitrary
types, then

T1 ↔ T2

is an expression giving the set of all
relations between T1 and T2. It may be
defined:

T1 ↔ T2 == IP(T1 × T2).

• EXAMPLE. Let
A == {a, b, c}
B == {1, 2}

then

{(a, 1), (a, 2)} ∈ A↔ B.

Mike Wooldridge 2

Lecture 15 Software Engineering

2 Operations on Relations

• Everything you can do with a function,
you can do with a relation:

dom R domain of R
ran R range of R
S � R R with domain restricted to S
R � S R with range restricted to S
S−� R R with S subtracted

from domain of R
R−� S R with S subtracted

from range of R

Mike Wooldridge 3

Lecture 15 Software Engineering

• EXAMPLES. Let

R == {(a, 1), (a, 2), (b, 1), (c, 3)}

then
dom R = {a, b, c}
ran R = {1, 2, 3}

{a}� R = {(a, 1), (a, 2)}
{a, b}� R = {(a, 1), (a, 2), (b, 1)}

R � {1} = {(a, 1), (b, 1)}
R � {1, 3} = {(a, 1), (b, 1), (c, 3)}
{a} −� R = {(b, 1), (c, 3)}
{a, b} −� R = {(c, 3)}

R−� {1} = {(a, 2), (b, 3)}
R−� {1, 2, 3} = ∅.

Mike Wooldridge 4

Lecture 15 Software Engineering

2.1 The Inverse of a Relation

• Additionally, we can take the inverse of a
relation.

• Definition: If

R : T1 ↔ T2

then

R∼ : T1 : T2

such that (y, x) ∈ R∼ iff (x, y) ∈ R.
Formally:

R∼ == {x : T1; y : T1 |
(x, y) ∈ R • (y, x)}

• EXAMPLE. If

R == {(a, 1), (a, 2), (b, 1), (c, 3)}

then

R∼ = {(1, a), (1, 2), (1, b), (3, c)}.

• Note that you can always take the inverse
of a function, since functions are just
special kinds of relation, but you do not
always get a function as a result.

Mike Wooldridge 5

Lecture 15 Software Engineering

• EXAMPLE. Suppose we had

f == {a 7→ 1, b 7→ 1}

Now f is certainly a function (though it is
not one-to-one.) But take the inverse of f :

f∼ = {(1, a), (1, b)}.

Although f∼ is a relation, it is not a
function.

Mike Wooldridge 6

Lecture 15 Software Engineering

2.2 Relational Image

• Can we do relation application . . . ?

• EXAMPLE. If

R == {(a, 1), (a, 2), (b, 1), (c, 3)}

then

R(a) =?

• No, we can’t, since it is not defined what
the value of R should be here — should it
be 1 or 2 or both?

• However, we can do something a bit more
general — we can get the relation image of a
value, using the image brackets ‘(| |)’.

Mike Wooldridge 7

Lecture 15 Software Engineering

• Definition: If
S : IP T1

R : T1 ↔ T2

then

R(|S|)

is an expression of type IP T2, such that

y ∈ R(|S|)⇔ ∃x : T1 • x ∈ S ∧ (x, y) ∈ R

(i.e., y is in R(|S|) iff there is some x in S
such that R relates x to y).

• EXAMPLE. If

R == {(a, 1), (a, 2), (b, 1), (c, 3)}

then

R(|{a}|) = {1, 2}
R(|{a, b}|) = {1, 2}
R(|{a, c}|) = {1, 2, 3}

R(|{b}|) = {1}

Mike Wooldridge 8

Lecture 15 Software Engineering

3 Properties of Relations

• An interesting class of relations are those
that are defined on just one set.

• EXAMPLE. Consider the set of binary
relations on IN:

IN↔ IN.

• Definition: If R : T ↔ T, then we say R is a
binary relation on T.

•We shall now consider the properties of
these types of relation.

Mike Wooldridge 9

Lecture 15 Software Engineering

3.1 Reflexivity

• Suppose we have a relation R on T such
that for any element x ∈ (dom R ∪ ran R),
we have (x, x) ∈ R. Then R is said to be
reflexive.

• EXAMPLES.

1. {(1, 1), (1, 2), (2, 2), (1, 3), (3, 3)}
. . . is a reflexive relation on IN.

2. {(1, 1), (1, 2), (2, 2), (1, 3)}
. . . is not a reflexive relation on IN
(because (3, 3) is not a member).

3. The subset relation, ⊆, is reflexive,
because S ⊆ S, for any set S.

4. The ‘less that’ relation, <, is not
reflexive, because it is not true that
n < n, for any value n.

5. The ‘is the father of’ relation (defined
on the set of people) is not reflexive,
because it is not true that p is the
father of p, for any person p.

Mike Wooldridge 10

Lecture 15 Software Engineering

3.2 Symmetry

• A relation R is said to be symmetric if
whenever (x, y) ∈ R, we have (y, x) ∈ R.

• EXAMPLES.

1. {(2, 1), (1, 2), (2, 3), (3, 2)}
. . . is a symmetric relation on IN.

2. {(2, 1), (1, 2), (2, 3)}
. . . is not a symmetric relation on IN
(because (2, 3) is a member, but (3, 2) is
not).

3. The equality relation, ‘=’, is a
symmetric relation, since a = b implies
b = a.

4. The subset relation, ‘⊆’, is not a
symmetric relation, since it is not
generally the case that S ⊆ T implies
T ⊆ S.

5. The ‘is father of relation’ is not
symmetric.

Mike Wooldridge 11

Lecture 15 Software Engineering

3.3 Transitivity

• A relation R is said to be transitive iff
whenever we have (x, y) ∈ R and
(y, z) ∈ R, we also have (x, z) ∈ R.

• EXAMPLES.

1. {(2, 1), (1, 2), (2, 3), (3, 2)}
. . . is not a transitive relation, as it does
not contain (1, 3).

2. The less than relation, <, is transitive,
since if a < b and b < c then a < c.

3. The ‘is an ancestor of’ relation is
transitive.

4. Equality is transitive.

Mike Wooldridge 12

Lecture 15 Software Engineering

3.4 Equivalence Relations

• Definition: If a relation is reflexive,
symmetric, and transitive, then it is called
an equivalence relation.

• The general idea behind equivalence
relations is that they classify objects which
are ‘alike’ in some respect.

• EXAMPLES.

1. Equality is an equivalence relation.
2. The relation ‘is the same species as’,

defined on the set of all animals, is an
equivalence relation.

3. The relation ‘owns the same make car
as’, defined on the set of people, is an
equivalence relation.

4. Neither < nor ⊆ are equivalence
relations.

• Equivalence relation are often written ≡ or
∼.

Mike Wooldridge 13

Lecture 15 Software Engineering

3.5 Reflexive and Transitive Closures

• Definition: If R is a relation on some set T,
then the reflexive closure of R is the smallest
reflexive relation containing R, and is
given by the expression

R+.

• Definition: If R is a relationon some set T,
then the transitive closure of R is the
smallest transitive relation containing R,
and is given by the expression

R∗.

Mike Wooldridge 14

