LECTURE 15: RELATIONS

Software Engineering Mike Wooldridge

1 Introduction

• We saw in earlier lectures that a function is just a set of maplets, for example:

 $tel == \{mikew \mapsto 1531, eric \mapsto 1489\}.$

A maplet is just an ordered pair, so another way of writing this is

 $tel == \{(mikew, 1531), (eric, 1489)\}$

Formally, if $f : T_1 \rightarrow T_1$, then f is a subset of the cartesian product of $T_1 \times T_1$:

 $f \subseteq T_1 \times T_2.$

But functions can't be *defined* in this way, as they must have the uniqueness property — the following is not a function:

 $\{(mike, 1531), (eric, 1531)\}.$

- A more general way of capturing a relationship between two sets is to use a *relation*.
- Relations are similar to functions, but do not have the uniquness property.

- Just as we have a variety of function construction arrows, so we have the relation constructor arrow, '↔'.
- **Definition:** If *T*₁ and *T*₂ are arbitrary types, then

 $T_1 \leftrightarrow T_2$

is an expression giving the set of all relations between T_1 and T_2 . It may be defined:

$$T_1 \leftrightarrow T_2 == \mathbb{P}(T_1 \times T_2).$$

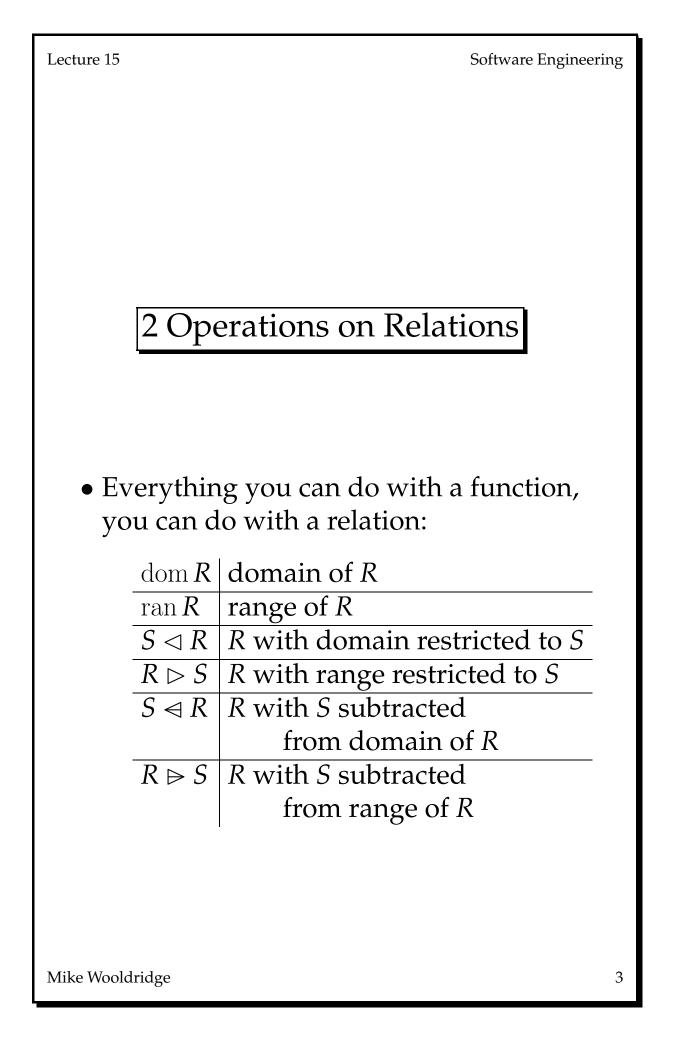
• EXAMPLE. Let

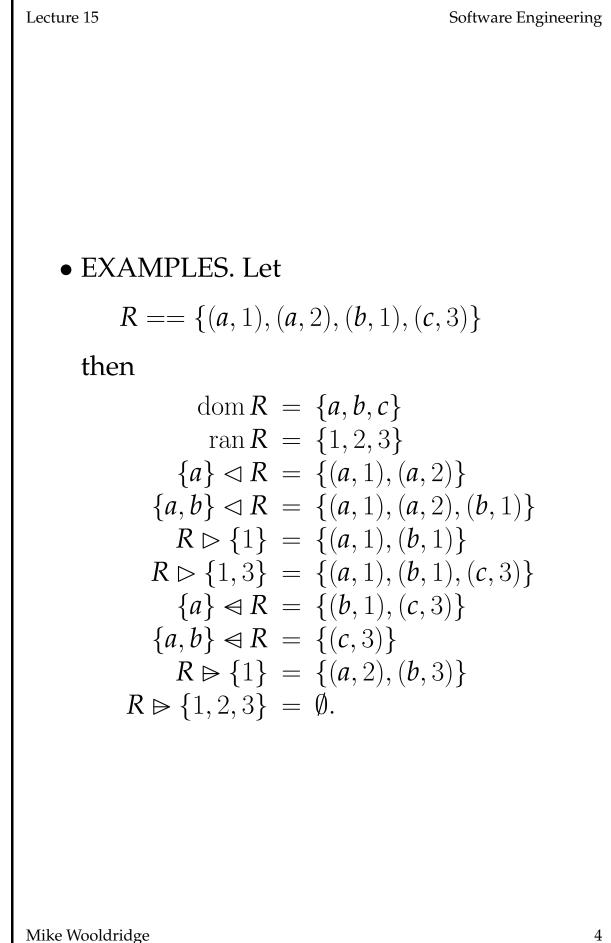
$$A == \{a, b, c\}$$

 $B == \{1, 2\}$

then

$$\{(a,1),(a,2)\}\in A\leftrightarrow B.$$





Lecture 15

2.1 The Inverse of a Relation

- Additionally, we can take the *inverse* of a relation.
- **Definition:** If

$$R:T_1\leftrightarrow T_2$$

then

 $R^{\sim}:T_1:T_2$

such that $(y, x) \in R^{\sim}$ iff $(x, y) \in R$. Formally:

$$R^{\sim} == \{x: T_1; y: T_1 \mid (x, y) \in R \bullet (y, x)\}$$

• EXAMPLE. If

$$R == \{(a, 1), (a, 2), (b, 1), (c, 3)\}$$

then

$$R^{\sim} = \{(1, a), (1, 2), (1, b), (3, c)\}.$$

• Note that you can always take the inverse of a function, since functions are just special kinds of relation, but you do not always get a function as a result.

Mike Wooldridge

5

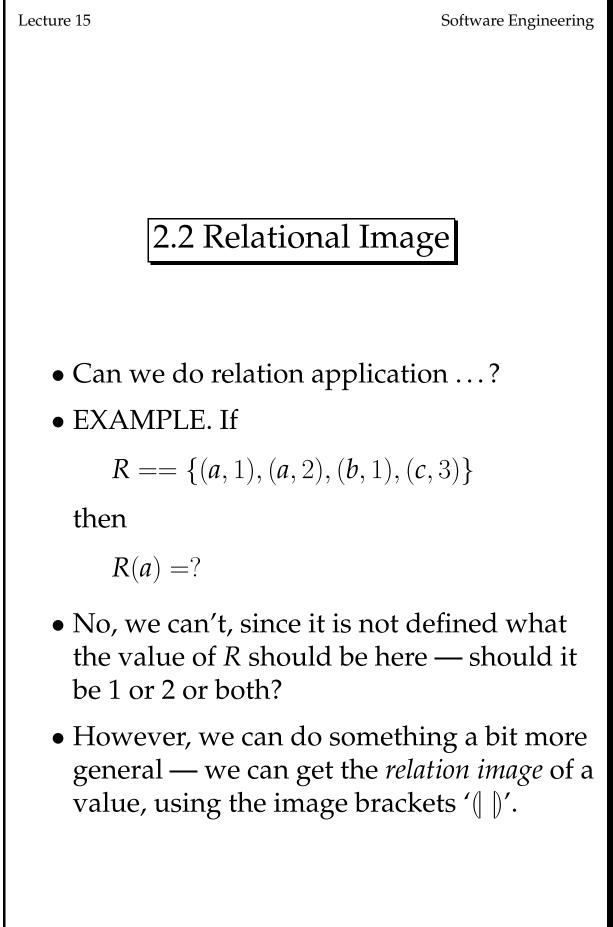
• EXAMPLE. Suppose we had

 $f == \{a \mapsto 1, b \mapsto 1\}$

Now *f* is certainly a function (though it is not one-to-one.) But take the inverse of *f*:

 $f^{\sim} = \{(1, a), (1, b)\}.$

Although f^{\sim} is a relation, it is *not* a function.



• **Definition:** If

 $\begin{array}{l} S: {\rm I\!P}\, T_1 \\ R: T_1 \leftrightarrow T_2 \end{array}$

then

R(|S|)

is an expression of type $\mathbb{P} T_2$, such that

 $y \in R(|S|) \Leftrightarrow \exists x : T_1 \bullet x \in S \land (x, y) \in R$

(i.e., *y* is in R(|S|) iff there is some *x* in *S* such that *R* relates *x* to *y*).

• EXAMPLE. If

$$R == \{(a, 1), (a, 2), (b, 1), (c, 3)\}$$

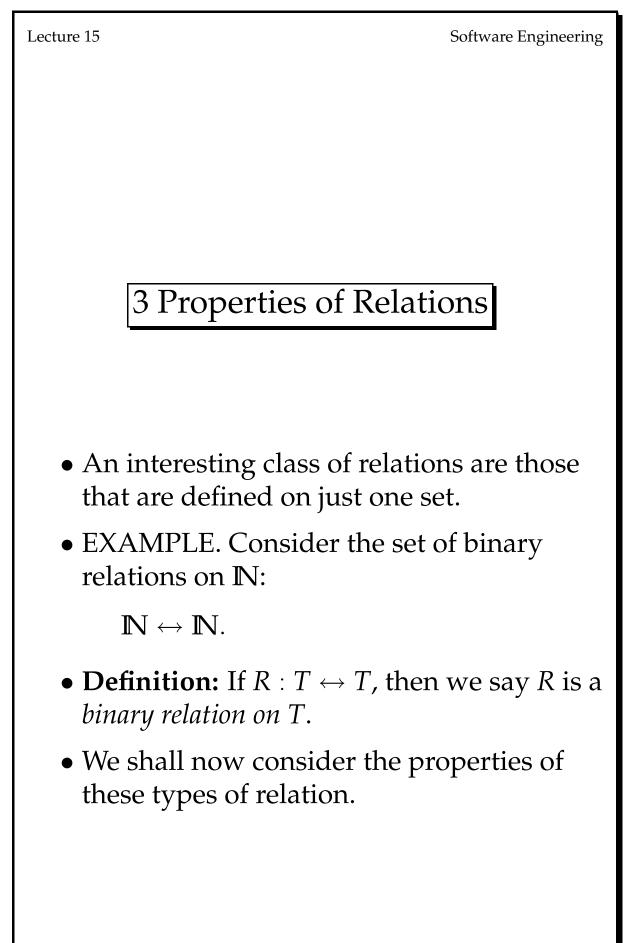
then

$$R(|\{a\}|) = \{1,2\}$$

$$R(|\{a,b\}|) = \{1,2\}$$

$$R(|\{a,c\}|) = \{1,2,3\}$$

$$R(|\{b\}|) = \{1\}$$



Lecture 15

3.1 Reflexivity

- Suppose we have a relation *R* on *T* such that for any element *x* ∈ (dom *R* ∪ ran *R*), we have (*x*, *x*) ∈ *R*. Then *R* is said to be *reflexive*.
- EXAMPLES.
 - **1.** {(1, 1), (1, 2), (2, 2), (1, 3), (3, 3)} ... *is* a reflexive relation on **N**.
 - 2. {(1,1), (1,2), (2,2), (1,3)}
 … *is not* a reflexive relation on **N** (because (3,3) is not a member).
 - 3. The subset relation, \subseteq , is reflexive, because $S \subseteq S$, for any set S.
 - 4. The 'less that' relation, <, is not reflexive, because it is not true that *n* < *n*, for any value *n*.
 - 5. The 'is the father of' relation (defined on the set of people) is *not* reflexive, because it is not true that *p* is the father of *p*, for any person *p*.

3.2 Symmetry

- A relation *R* is said to be *symmetric* if whenever $(x, y) \in R$, we have $(y, x) \in R$.
- EXAMPLES.
 - 1. $\{(2,1), (1,2), (2,3), (3,2)\}$
 - \dots *is* a symmetric relation on \mathbb{N} .
 - 2. {(2,1), (1,2), (2,3)}
 ... *is not* a symmetric relation on **N** (because (2,3) is a member, but (3,2) is not).
 - 3. The equality relation, '=', is a symmetric relation, since a = b implies b = a.
 - 4. The subset relation, ' \subseteq ', is not a symmetric relation, since it is not generally the case that $S \subseteq T$ implies $T \subseteq S$.
 - 5. The 'is father of relation' is not symmetric.

3.3 Transitivity

- A relation *R* is said to be *transitive* iff whenever we have $(x, y) \in R$ and $(y, z) \in R$, we also have $(x, z) \in R$.
- EXAMPLES.
 - 1. $\{(2,1), (1,2), (2,3), (3,2)\}$
 - \dots *is not* a transitive relation, as it does not contain (1, 3).
 - 2. The less than relation, <, *is* transitive, since if a < b and b < c then a < c.
 - 3. The 'is an ancestor of' relation is transitive.
 - 4. Equality is transitive.

3.4 Equivalence Relations

- **Definition:** If a relation is reflexive, symmetric, and transitive, then it is called an *equivalence* relation.
- The general idea behind equivalence relations is that they classify objects which are 'alike' in some respect.
- EXAMPLES.
 - 1. Equality is an equivalence relation.
 - 2. The relation 'is the same species as', defined on the set of all animals, is an equivalence relation.
 - 3. The relation 'owns the same make car as', defined on the set of people, is an equivalence relation.
 - 4. Neither < nor \subseteq are equivalence relations.
- Equivalence relation are often written \equiv or \sim .

3.5 Reflexive and Transitive Closures

• **Definition:** If *R* is a relation on some set *T*, then the *reflexive closure* of *R* is the smallest reflexive relation containing *R*, and is given by the expression

 R^+ .

• **Definition:** If *R* is a relationon some set *T*, then the *transitive closure* of *R* is the smallest transitive relation containing *R*, and is given by the expression

 R^* .