LECTURE 16: VENDING MACHINE
CASE STUDY

Software Engineering
Mike Wooldridge
1 Specification of a Vending Machine

- In this lecture, we will give a complete specification of a vending machine – the sort you buy cans of coke or cigarettes from.

- First, we need to introduce some types; the first one will be $COIN$, representing all the coins that are accepted by the machine.

 $COIN == \{100, 50, 20, 10, 5, 2, 1\}$

- That is, there are coins in denominations of 100, 50, 20, 10, 5, 2, and 1 pence.

- We will also need a type for system messages
 – this is parachuted in:

 $[REPORT]$
• Next, we need a type $PROD$, representing all the products that the machine can sell.

\[PROD \]

• We can define the state space of the vending machine thus:

\[
V vendingMachine \\
cost : PROD \leftrightarrow \mathbb{N} \\
stock : \text{bag } PROD \\
float : \text{bag } COIN \\
\text{dom } stock \subseteq \text{dom } cost
\]
• The function \textit{cost} return the cost of a product in pence. For example,

\[
\text{cost}(\text{MarsBar}) = 25 \\
\text{cost}(\text{Penguin}) = 15
\]

• The bag \textit{stock} tells us how many items of each type are in stock. For example,

\[
\text{stock} = \{\text{Penguin} \mapsto 2\}
\]

means that there are just 2 penguins in the machine.

• The bag \textit{float} records the coins that are currently in the machine; for example

\[
\text{float} = \{100 \mapsto 2, 50 \mapsto 8, 5 \mapsto 20\}
\]

means that there are $2 \times \pounds 1$ coins, 8×50p coins and 20×5p coins.

• \text{QUESTION: Why are \textit{stock} and \textit{float} bags and not sets or sequences?}

• The invariant dom \textit{stock} \subseteq dom \textit{cost} says that everything in the machine (i.e. in stock) must have a cost associated with it.
Here are the operations we shall specify:

- initialising the machine;
- pricing goods;
- restocking;
- buying goods.
Initialisation

\[\text{InitVendingMachine} \]
\[\Delta \text{VendingMachine} \]
\[cost' = \{ \} \]
\[stock' = [] \]
\[float' = [] \]

- So initially, the machine does not know the cost of anything, contains nothing, and has no float.
Pricing Goods

- This simply means changing the price of an item in stock, or pricing an item that is going to be stocked.
- The inputs are the item and a price.

\[
\begin{align*}
\text{Price} \quad & \\
\Delta VendingMachine & \\
\text{item?} : \text{PROD} & \\
\text{price?} : \text{IN} & \\
\text{cost}' = \text{cost} \oplus \{\text{item?} \rightarrow \text{price}?) & \\
\text{stock}' = \text{stock} & \\
\text{float}' = \text{float} &
\end{align*}
\]
Restocking

- The next operation to specify is that of restocking the machine with more goods.
- The only input is a new bag of products.
- The precondition $\text{dom } new? \subseteq \text{dom } cost$ is implied by the invariant of $VendingMachine'$.

Restock	$\Delta VendingMachine$
$new? : \text{bag PROD}$	$\text{stock}' = \text{stock } \cup new?$
	$\text{float}' = \text{float}$
	$\text{cost}' = \text{cost}$

- (Note that \cup is the ‘bag union’ operator.)
We shall now make the operation robust. The Restock operation fails when an attempt is made to add goods which are not priced. We need a schema to identify this situation.

\[
\text{GoodsNotPriced} \equiv \text{VendingMachine} \\
\text{new}^? : \text{bag PROD} \\
\text{rep}! : \text{REPORT} \\
\neg (\text{dom new}^? \subseteq \text{dom cost}) \\
\text{rep}! = ‘\text{Some goods are not priced}’
\]
• We need an operation to report success...

\[
\begin{align*}
\text{Success} & \\
\text{rep! : REPORT} & \\
\text{rep! = ‘Okay’}
\end{align*}
\]

• Now, we simply use the schema calculus to specify a robust version of the Restock operation, called RestockOp:

\[
\text{RestockOP} \equiv (\text{Restock} \land \text{Success}) \\
\lor \text{GoodsNotPriced}
\]
• This schema expands to ...

\[
\begin{align*}
\text{RestockOp} & \quad \Delta \text{VendingMachine} \\
n\text{ew}? & : \text{bag} \text{ PROG} \\
\text{rep!} & : \text{REPORT} \\
\text{cost}' & = \text{cost} \\
\text{float}' & = \text{float} \\
(\text{stock}' & = \text{stock} \uplus \text{new}? \land \\
\text{rep!} & = \text{‘Okay’}) \\
\lor \\
(\neg (\text{dom } \text{new}? \subseteq \text{dom cost}) \land \\
\text{stock}' & = \text{stock} \land \\
\text{rep!} & = \text{‘Some goods are not priced’})
\end{align*}
\]
Buying

- The buying operation is a somewhat more complex operation ...
- The inputs are the chosen item and some money.
- We have to check that the item is in stock, and that the user has entered enough money to buy it.
- We may also have to figure out what change to give ...
We assume that a function

\[\text{sum} : \text{bag COIN} \rightarrow \mathbb{N} \]

is available, which takes a bag of coins and calculates how much is in the bag. For example, given a bag containing \(7 \times 2\text{p},\) and \(3 \times 5\text{p}\) coins,

\[
\text{sum}\{2 \mapsto 7, 5 \mapsto 3\} = (2 \times 7) + (5 \times 3) \\
= 14 + 15 \\
= 29\text{pence}
\]
• The basic Buy operation is as follows:

\[
\begin{align*}
\text{Buy} & \\
\Delta VendingMachine & \\
\text{in?}, \text{out!} : \text{bag COIN} & \\
\text{item?} : \text{PROD} & \\
\text{item?} \text{ in stock} & \\
\text{sum}(\text{in?}) \geq \text{cost}(\text{item?}) & \\
\text{out!} \subseteq \text{float} & \\
\text{sum}(\text{in?}) = \text{sum}(\text{out!}) + \text{cost}(\text{item?}) & \\
\text{stock}' \uplus \{\text{item?} \mapsto 1\} = \text{stock} & \\
\text{float}' \uplus \text{out?} = \text{float} \uplus \text{in?} & \\
\text{cost}' = \text{cost} &
\end{align*}
\]
- in? represents the coins entered; out! represents the change;
- item? is the item dispensed to the user;
- the 1st condition says that the item must be in stock;
- the 2nd condition says that the amount of money entered must be greater than or equal to the cost of the item;
- the 3rd condition says that the change given must have been part of the float;
- the 4th condition says that the money entered must equal the change given plus the cost of the item;
- the 5th condition says that the stock before must be equal to the stock after, to which is added the dispensed item;
- the 6th condition says that the float after, together with the change dispensed must equal the float before plus the amount entered (i.e. no money disappears)