
LECTURE 16: VENDING MACHINE
CASE STUDY

Software Engineering

Mike Wooldridge



Lecture 16 Software Engineering

1 Specification of a Vending Machine

• In this lecture, we will give a complete
specification of a vending machine – the
sort you buy cans of coke or cigarettes
from.

• First, we need to introduce some types; the
first one will be COIN, representing all the
coins that are accepted by the machine.

COIN == {100, 50, 20, 10, 5, 2, 1}

• That is, there are coins in denominations
of 100, 50, 20, 10, 5, 2, and 1 pence.

•We will also need a type for system
messages
– this is parachuted in:

[REPORT]

Mike Wooldridge 1



Lecture 16 Software Engineering

• Next, we need a type PROD, representing
all the products that the machine can sell.

[PROD]

•We can define the state space of the
vending machine thus:

VendingMachine
cost : PROD 7→ IN
stock : bag PROD
float : bag COIN
dom stock ⊆ dom cost

Mike Wooldridge 2



Lecture 16 Software Engineering

• The function cost return the cost of a
product in pence. For example,

cost(MarsBar) = 25
cost(Penguin) = 15

• The bag stock tells us how many items of
each type are in stock. For example,

stock = {Penguin 7→ 2}

means that there are just 2 penguins in the
machine.

• The bag float records the coins that are
currently in the machine; for example

float = {100 7→ 2, 50 7→ 8, 5 7→ 20}

means that there are 2× £1 coins, 8× 50p
coins and 20× 5p coins.

• QUESTION: Why are stock and float bags
and not sets or sequences?

• The invariant dom stock ⊆ dom cost says
that everything in the machine (i.e. in
stock) must have a cost associated with it.

Mike Wooldridge 3



Lecture 16 Software Engineering

Operations

Here are the operations we shall specify:

• initialising the machine;

• pricing goods;

• restocking;

• buying goods.

Mike Wooldridge 4



Lecture 16 Software Engineering

Initialisation

InitVendingMachine
∆VendingMachine
cost′ = {}
stock′ = [[]]
float′ = [[]]

• So initially, the machine does not know the
cost of anything, contains nothing, and has
no float.

Mike Wooldridge 5



Lecture 16 Software Engineering

Pricing Goods

• This simply means changing the price of
an item in stock, or pricing an item that is
going to be stocked.

• The inputs are the item and a price.

Price
∆VendingMachine
item? : PROD
price? : IN
cost′ = cost⊕ {item? 7→ price?}
stock′ = stock
float′ = float

Mike Wooldridge 6



Lecture 16 Software Engineering

Restocking

• The next operation to specify is that of
restocking the machine with more goods.

• The only input is a new bag of products.

• The precondition dom new? ⊆ dom cost is
implied by the invariant of
VendingMachine′.

Restock
∆VendingMachine
new? : bag PROD
stock′ = stock ] new?
float′ = float
cost′ = cost

• (Note that ] is the ‘bag union’ operator.)

Mike Wooldridge 7



Lecture 16 Software Engineering

•We shall now make the operation robust.
The Restock operation fails when an
attempt is made to add goods which are
not priced. We need a schema to identify
this situation.

GoodsNotPriced
ΞVendingMachine
new? : bag PROD
rep! : REPORT
¬(dom new? ⊆ dom cost)
rep! = ‘Some goods are not priced’

Mike Wooldridge 8



Lecture 16 Software Engineering

•We need an operation to report success...

Success
rep! : REPORT
rep! = ‘Okay’

• Now, we simply use the schema calculus
to specify a robust version of the Restock
operation, called RestockOp:

RestockOP =̂ (Restock ∧ Success)
∨ GoodsNotPriced

Mike Wooldridge 9



Lecture 16 Software Engineering

• This schema expands to ...

RestockOp
∆VendingMachine
new? : bag PROG
rep! : REPORT
cost′ = cost
float′ = float
(stock′ = stock ] new? ∧
rep! = ‘Okay’)
∨
(¬(dom new? ⊆ dom cost) ∧
stock′ = stock ∧
rep! = ‘Some goods are not priced’)

Mike Wooldridge 10



Lecture 16 Software Engineering

Buying

• The buying operation is a somewhat more
complex operation ...

• The inputs are the chosen item and some
money.

•We have to check that the item is in stock,
and that the user has entered enough
money to buy it.

•We may also have to figure out what
change to give ...

Mike Wooldridge 11



Lecture 16 Software Engineering

•We assume that a function
sum : bag COIN → IN
is available, which takes a bag of coins and
calculates how much is in the bag. For
example, given a bag containing 7× 2p,
and 3× 5p coins,

sum{2 7→ 7, 5 7→ 3} = (2× 7) + (5× 3)
= 14 + 15
= 29pence

Mike Wooldridge 12



Lecture 16 Software Engineering

• The basic Buy operation is as follows:

Buy
∆VendingMachine
in?, out! : bag COIN
item? : PROD
item? in stock
sum(in?) ≥ cost(item?)
out! v float
sum(in?) = sum(out!) + cost(item?)
stock′ ] {item? 7→ 1} = stock
float′ ] out? = float ] in?
cost′ = cost

Mike Wooldridge 13



Lecture 16 Software Engineering

• in? represents the coins entered; out!
represents the change;

• item? is the item dispensed to the user;

• the 1st condition says that the item must
be in stock;

• the 2nd condition says that the amount of
money entered must be greater than or
equal to the cost of the item;

• the 3rd condition says that the change
given must have been part of the float;

• the 4th condition says that the the money
entered must equal the change given plus
the cost of the item;

• the 5th condition says that the stock before
must be equal to the stock after, to which
is added the dispensed item;

• the 6th condition says that the float after,
together with the change dispensed must
equal the float before plus the amount
entered (i.e. no money disappears)

Mike Wooldridge 14


