
LECTURE 19: DESIGN PATTERNS

Software Engineering

Mike Wooldridge



Lecture 19 Software Engineering

1 Introduction

• Recall that one goal of software
engineering is reuse: instead of designing
and implementing all software from
scratch, make use of existing, developed
software.

• Design patterns are about reuse in design.

• The idea is that certain stereotypical
design problems arise again and again.

• Rather than develop solutions anew every
time we are presented with a problem, we
can make use of design patterns that others
have used.

•We will look at the following design
patterns:

– interfaces & templates;
– observers;
– proxies.

Mike Wooldridge 1



Lecture 19 Software Engineering

2 Interfaces

• Suppose we have classes Square ,
Circle , Triangle , Hexagon , and so on
for implementing shapes.
We want to build a vector of shapes, and
we want to process the vector to get the
total area of all shapes.
This is what we want to write.

Vector v = new Vector();
// add shapes to the vector
...
float totalArea = 0.0;
Enumeration e = v.elements();
while(e.hasMoreElements()) {

totalArea += e.nextElement().area();
}

This will cause a problem, since the
compiler does not know that each object in
the array implements the area() method.

Mike Wooldridge 2



Lecture 19 Software Engineering

• One possibility: define a class Shape , with
a default method area() , and get each
sub-class (Triangle , Square , . . . ) to
overwrite this method.
But what if the method is not overwritten?

• Solution is to implement an interface for
shapes.

• The interface a number of methods,
without providing an implementation for
them.

• Any class that implements the interface
must provide an implementation for these
methods.

Mike Wooldridge 3



Lecture 19 Software Engineering

• Here is the interface for Shapes:

public interface Shape {
public float area() ;

} // end interface Shape

• And here is how we state that Rectangle
implements the Shape interface:

public class Rectangle implements Shape {
...
public float area() {

return (float)(width * height);
}
...

} // end class Rectangle

• Similarly for Circle s:

public class Circle implements Shape {
...
public float area() {

return Math.PI * (radius * radius);
}
...

} // end class Circle

Mike Wooldridge 4



Lecture 19 Software Engineering

• The code to process the vector of Shapes
is then:

Vector v = new Vector();
// add shapes to the vector
...
float totalArea = 0.0;
Enumeration e = v.elements();
while(e.hasMoreElements()) {

totalArea += ((Shape)e.nextElement()).area();
}

•We cast the Object returned by
nextElement() to a Shape — the
compiler knows that any class
implementing Shape has a float valued
method area() , and so is happy.

• This means that at design time, we can
write code that needn’t worry about the
implementation of any class that
implements Shape .
We can treat the implementation as a black
box, and rest safe in the knowledge that it
must provide area() .

Mike Wooldridge 5



Lecture 19 Software Engineering

• Interfaces are thus like certificates, which
say “I provide these services”.

• You can’t make an instance of an interface:

Shape s = new Shape(); // ERROR!

Mike Wooldridge 6



Lecture 19 Software Engineering

2.1 Abstract Methods & Classes

•With interfaces, the entire functionality of
the interface is left unspecified.

• But suppose you want to provide some of
the functionality of a class, but leave some
of it unspecified.

• Use abstract methods.

public abstract class Shape {

public abstract float area () ;

}

• As with interfaces, you can’t make an
instance of an abstract class directly.
You must sub-class it and provide an
implementation for the abstract methods.

public class Rectangle extends Shape {
...
public float area() {

return (float)(width * height);
}
...

} // end class Rectangle

Mike Wooldridge 7



Lecture 19 Software Engineering

2.2 Notes. . .

• If you don’t provide any implementation,
then use an interface in preference to an
abstract class.

• A class can implement many interfaces,
but extend only one super-class;

• Interfaces are thus how Java provides (a
kind of) multiple inheritance.

• If even one method in a class is declared to
be abstract , then the whole class must
be declared abstract .

• Both abstract classes and interfaces can
contain constants, which will be inherited
by classes that extend or implement
them respectively.

Mike Wooldridge 8



Lecture 19 Software Engineering

3 Observers

• Suppose a collection of objects (observers)
all want to monitor a particular object
(subject), and be notified when a particular
event happens within this object.

• EXAMPLE. A collection of applications
(word processors, spreadsheets. . . ) want
to know when a printer handled by a
Printer object becomes available.

• Bad solution:
Each observer repeatedly polls the subject
to see if event has occurred.

• Better solution:
Subject notifies observers when the event
occurs.

Mike Wooldridge 9



Lecture 19 Software Engineering

1. Subject s and observer objects o1 , . . . on
are created.

2. Each observer oi invokes register
method on subject, passing itself as an
argument:

s.register(this);

3. The register method causes the object
passed as a parameter to be added to a
list of observers of the subject.
(This list is held within the subject.)

4. When the relevant event occurs inside s ,
the object s gets the list of registered
observers and for each object oi , invokes
a method notify on oi , passing itself as
an argument.

Mike Wooldridge 10



Lecture 19 Software Engineering

public interface Subject {

// adds the calling object to
// the list of observers

public void register(Object o)

// removes the calling object
// from the list of observers

public void deRegister(Object o) ;

}

public interface Observer {

// notify observer that the event
// has occurred

public void notify(Object o) ;

}

Mike Wooldridge 11



Lecture 19 Software Engineering

4 Proxies
• Particularly in distributed systems, it is

useful for objects to “pretend” they are
talking to objects that are actually
distributed across the network.

• Standard method for doing this:

proxy objects

• In distributed object systems, a proxy
object p to an ordinary object o provides
all the methods that o does.
When a method mis invoked on p, by
object q, the proxy p communicates across
the network to a program that is managing
o.
This program then invokes the method m
on o, collects any return parameters, and
sends them back to p.
Then p returns the arguments to q.
As far as q is concerned, p actually
executed the method itself.

• Clients need not be aware of where objects
actually are.

Mike Wooldridge 12


