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Outline of the lecture
This lecture describes the construction of binary classifiers using a
technique called Logistic Regression. The objective is for you to learn:

 How to apply logistic regression to discriminate between two
classes.
 How to formulate the logistic regression likelihood.
 How to derive the gradient and Hessian of logistic regression.
 How to incorporate the gradient vector and Hessian matrix into
Newton’s optimization algorithm so as to come up with an algorithm
for logistic regression, which we call IRLS.
 How to do logistic regression with the softmax link.



McCulloch-Pitts model of a neuron



Sigmoid functionP

sigm(´) refers to the sigmoid function, also known as the logistic or
logit function:

sigm(´) =
1

1 + e¡´
=

e´

e´ + 1



Linear separating hyper-plane

[Greg Shakhnarovich]



Bernoulli: a model for coins

A Bernoulli random variable r.v. X takes values in {0,1}

q if x=1
p(x|q ) =

1- q if x=0

Where q 2 (0,1). We can write this probability more succinctly as
follows:



Entropy

In information theory, entropy H is a measure of the uncertainty
associated with a random variable. It is defined as:

H(X) = - p(x|q ) log p(x|q )

Example: For a Bernoulli variable X, the entropy is:

S
x



Logistic regression
The logistic regression model speci¯es the probability of a binary output
yi 2 f0; 1g given the input xi as follows:

p(yjX; µ) =

nY

i=1

Ber(yijsigm(xiµ))

=
nY

i=1

·
1

1 + e¡xiµ

¸yi ·

1¡
1

1 + e¡xiµ

¸1¡yi

where xiµ = µ0 +
Pd

j=1 µjxij



Gradient and Hessian of binary logistic regression

The gradient and Hessian of the negative loglikelihood, J(µ) = ¡ log p(yjX;µ),
are given by:

g(w) =
d

dµ
J(µ) =

nX

i=1

xTi (¼i ¡ yi) = XT (¼ ¡ y)

H =
d

dµ
g(µ)T =

X

i

¼i(1¡ ¼i)xix
T
i = XTdiag(¼i(1¡ ¼i))X

where ¼i = sigm(xiµ)

One can show that H is positive de¯nite; hence the NLL is convex and
has a unique global minimum.

To ¯nd this minimum, we turn to batch optimization.



Iteratively reweighted least squares (IRLS)
For binary logistic regression, recall that the gradient and Hessian of the
negative log-likelihood are given by

gk = XT (¼k ¡ y)

Hk = XTSkX

Sk := diag(¼1k(1¡ ¼1k); : : : ; ¼nk(1¡ ¼nk))

¼ik = sigm(xiµk)

The Newton update at iteration k + 1 for this model is as follows (using
´k = 1, since the Hessian is exact):

µk+1 = µk ¡H¡1gk

= µk + (XTSkX)¡1XT (y ¡ ¼k)

= (XTSkX)¡1
£
(XTSkX)µk + XT (y ¡ ¼k)

¤

= (XTSkX)¡1XT [SkXµk + y ¡ ¼k]



Softmax formulation



Likelihood function



Negative log-likelihood criterion



Neural network representation of loss



Manual gradient computation



Manual gradient computation



Next lecture

In the next lecture, we develop an automatic layer-wise way of
computing all the necessary derivatives known as back-propagation.

This is the approach used in Torch. We will review the torch nn class.


