Logistic regression: a simple ANN



Outline of the lecture

This lecture describes the construction of binary classifiersusing a
technique called L ogistic Regression. The objectiveisfor you to learn:

1 How to apply logistic regression to discriminate between two
classes.

 How to formulate the logistic regression likelihood.

1 How to derive the gradient and Hessian of logistic regression.

1 How to incorporate the gradient vector and Hessian matrix into
Newton’s optimization algorithm so as to come up with an algorithm
for logistic regression, which we call IRLS.

1 How to do logistic regression with the softmax link.



M cCulloch-Pitts model of a neuron
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Sigmoid function

sigm(n) refers to the sigmoid function, also known as the logistic or

logit function: — , ~ .
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Linear separating hyper-plane
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Bernoulli: amodel for coins -

A Bernoulli random variabler.v. X takesvaluesin {0,1} A Noen
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Where 6 2 (0,1). \We can write this probability more succinctly as
follows:
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Entropy

In information theory, entropy H is a measure of the uncertainty
associated with a random variable. It is defined as:

H(X)= - p(x[6)log p(x|6)
X

Example: For a Bernoulli variable X, the entropy Is: \
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L ogistic regression

The logistic regression model specifies the probability of a binary output

; € 10,1} given the input x; as follows: ,
yi €{0,1} g D i 2

p(y|X,0) = ]]Ber(ylsigm(x;6)) |
1=1
n 2 Yi 17[
— H y 1 — 1 .
1 4/e—xi0 14+ e—x:0
=1 \/\r\/
h 0=20 “ 0 m; i
where x,6 =60+ 2 j—1 ;% e P(re=tl o)
c(6) < ~ LogP(¥ [x,0) - = P(Ye=°\5‘c(9> —

= - ?:'Yc LoaT\'g t+ (\-‘/;3 (og (“'ﬁc> cyo;q—zwlfog)y




Gradient and Hesslan of binary logistic regression

The gradient and Hessian of the negative loglikelihood, J(0) = —log p(y|X, 8),
are given by:

gw) = ~-J(0) X7 (x—y)
H = %g(e)T =) mi(l—m)xx; = X diag(m;(1 }_/Wi))X

where 7; = sigm(x;0)

One can show that H is positive definite; hence the NLL is convex and
has a unique global minimum.

To find this minimum, we turn to batch optimization.



Iteratively reweighted |least squares (IRLS)

For binary logistic regression, recall that the gradient and Hessian of the
negative log-likelihood are given by

g = XT(m—y)

H, = XI's;x_—
S = diag(mix(l —mix)s - Tne(l — Thr))
Tk = sigm(x;0k)

The Newton update at iteration k + 1 for this model is as follows (using
e = 1, smce the Hessian is exact):
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Softmax formulation
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Likelithood function
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Negative log-likelihood criterion
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Neura network representation of |oss
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Manual gradient computation
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Manual gradient computation
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Next lecture

In the next lecture, we develop an automatic layer-wise way of
computing all the necessary derivatives known as back-propagation.

Thisisthe approach used in Torch. We will review the torch nn class.



